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Abstract

Learning belief networks from large domains can be expensive even with single-link
lookahead search (SLLS). Since a SLLS cannot learn correctly in a class of problem
domains, multi-link lookahead search (MLLS) is needed which further increases the
computational complexity. In our experiment, learning in some difficult domains over
more than a dozen variables took days. In this paper, we study how to use parallelism
to speed up SLLS for learning in large domains and to tackle the increased complexity
of MLLS for learning in difficult domains.

We propose a natural decomposition of the learning task for parallel processing.
We investigate two strategies for job allocation among processors to further improve
load balancing and efficiency of the parallel system. For learning from very large
datasets, we present a regrouping of the available processors such that slow data
access through the file system can be replaced by fast memory access. Experimental
results in a distributed memory MIMD computer demonstrate the effectiveness of the
proposed algorithms.

Keywords: belief networks, parallel implementation of data mining

1 Introduction

Probabilistic belief networks [12, 7] have been widely used for inference with uncertain
knowledge in artificial intelligence. As an alternative to elicitation from domain experts,
learning belief networks from data has been actively studied [3, 4, 5, 9, 13, 16]. Since the
task is NP-hard in general [2], it is justified to use heuristics in learning. Many algorithms
developed use a scoring metric combined with a single-link lookahead search (SLLS), where
alternative network structures differing from the current structure by one link are evaluated
exhaustively before one of them is adopted. Although the complexity is polynomial on the
number of variables of the problem domain, the computation is still expensive for large
domains. Furthermore, a class of domain models termed pseudo-independent (PI) models
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cannot be learned correctly by a SLLS [16]. One alternative is to use a multi-link lookahead
search (MLLS) [16], where consecutive structures differ by multiple links. However, the
complexity of a MLLS is higher. In our experiment (Section 11), learning a 35 variable
PI domain model (containing two small PI submodels) took about two and half days, and
learning a 16 variable PI domain model (containing a slightly larger PI submodel) took
about 25 days.

In this paper, we study parallel learning to speed up computation during SLLS in large
domains and to tackle the increased complexity during MLLS in potential PI domains. We
focus on learning decomposable Markov networks (DMNs) [16] and show that the lessons
we learned are applicable to learning Bayesian networks (BNs) [12]. To the best of our
knowledge, this is the first investigation on parallel learning of belief networks. As learn-
ing graphical probabilistic models has become an important subarea in data mining and
knowledge discovery, this work extends parallel data mining to learning these models. We
focus on multiple instruction multiple data (MIMD) distributed-memory architecture for
it is available to us, and we discuss the generalization of our lessons to other architectures.

The paper is organized as follows: To make it self-contained, we briefly introduce PI
models and MLLS in Sections 2 and 3. In Sections 4 through 9, we propose parallel
algorithms for learning DMNs and their refinements. We present experimental results
in Sections 10 and 11. Graph-theoretic terms unfamiliar to some readers and a list of
frequently used acronyms are included in Appendix.

2 Pseudo-independent models

Let N be a set of discrete variables in a problem domain. A tuple of N ′ ⊆ N is an
assignment of values to every variable in N ′. A probabilistic domain model (PDM) over
N determines the probability of every tuple of N ′ for each N ′ ⊆ N . For disjoint sets X,
Y and Z of variables, X and Y are conditionally independent given Z if P (X|Y,Z) =
P (X|Z) whenever P (Y,Z) > 0, which we shall denote by I(X,Z, Y ). If Z = φ, X and Y
are marginally independent, denoted by I(X,φ, Y ).

(u, v, x, y) P (N ) (u, v, x, y) P (N ) (u, v, x, y) P (N ) (u, v, x, y) P (N )
(0,0,0,0) 0.0225 (0,1,0,0) 0.0175 (1,0,0,0) 0.02 (1,1,0,0) 0.035
(0,0,0,1) 0.2025 (0,1,0,1) 0.0075 (1,0,0,1) 0.18 (1,1,0,1) 0.015
(0,0,1,0) 0.005 (0,1,1,0) 0.135 (1,0,1,0) 0.01 (1,1,1,0) 0.12
(0,0,1,1) 0.02 (0,1,1,1) 0.09 (1,0,1,1) 0.04 (1,1,1,1) 0.08

Table 1: A PI model

Table 1 shows a PDM over four binary variables. The PDM satisfies I(u, {v, x}, y).
In the subset {v, x, y}, each pair is marginally dependent, e.g., P (v, x) 6= P (v)P (x), and
is dependent given the third, e.g., P (v|x, y) 6= P (v|y). However in the subset {u, v, x},
although each pair is dependent given the third, e.g., P (u|v, x) 6= P (u|v), we have I(u, φ, v)
and I(u, φ, x). Hence u, v and x are said to be collectively dependent even though u and v are
marginally independent (so are u and x). This PDM is a PI model. In general, a PI model
is a PDM where proper subsets of a set of collectively dependent variables display marginal
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independence [16]. Example PI models include parity and modulus addition problems [14].
PI models have also been found in real datasets. Analysis of data1 from 1993 General Social
Survey (conducted by Statistics Canada) on Personal Risk has discovered two PI models,
one on harmful drinking and the other on accident prevention [6].

For disjoint subsets X, Y and Z of nodes in an undirected graph G, we use < X|Z|Y >G

to denote that nodes in Z intercept all paths between X and Y . A graph G is an I-map of
a PDM over N if there is an one-to-one correspondence between nodes of G and variables
in N such that for all disjoint subsets X, Y and Z of N , < X|Z|Y >G =⇒ I(X,Z, Y ).
G is a minimal I-map if no link can be removed such that the resultant graph is still an
I-map. The minimal I-map of the above PDM is shown in Figure 1 (a).

u
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y

v x

u

y

x

Figure 1: (a) Minimal I-map of PDM in Table 1. (b) Network structure learned by a SLLS.

Several algorithms for learning belief networks have been shown being unable to learn
correctly when the underlying PDM is PI [15]. Suppose learning starts with an empty
graph (with all nodes but without any link). A SLLS will not connect u and v since
I(u, φ, v). Neither will u and x be connected. This results in the learned structure in
Figure 1 (b), which is incorrect. On the other hand, if we perform a double link search
after the single-link search, which can effectively test whether P (u|v, x) = P (u|v) holds,
then the answer will be negative and the two links (u, v) and (u, x) will be added. The
structure in Figure 1 (a) will be learned.

3 A sequential MLLS algorithm

The parallel learning algorithms presented in the paper are based on the sequential MLLS
algorithm Seq [16], which learns the structure (a chordal graph) of a DMN using K-L cross
entropy [8] as scoring metric. Once the structure is learned, numerical parameters can be
easily estimated from the same dataset. Search is organized into levels (the outer for loop)
and the number of lookahead links is identical in the same level. Each level consists of
multiple passes (the repeat loop). In each pass at the same level, alternative structures that
differ from the current structure by the same number i of links are evaluated. Search at each
pass selects i links that decrease the cross entropy maximally after evaluating all distinct
and valid combinations of i links. If the corresponding entropy decrement is significant,
the i links will be adopted and the next pass at the same level starts. Otherwise, the first
pass at the next higher level starts.

1The survey is over 469 variables. Analysis was performed only on data about some subtopics due to
limited time. More PI models may be found if analysis is applied to the entire data.
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Algorithm 1 (Seq)

Input:A dataset D over a set N of variables, a maximum size η of clique, a
maximum number κ ≤ η(η − 1)/2 of lookahead links, and a threshold δh.

begin
initialize an empty graph G = (N,E), G′ := G;
for i = 1 to κ, do

repeat
initialize the entropy decrement dh′ := 0;
for each set L of i links (L ∩ E = φ), do

if G∗ = (N,E ∪ L) is chordal and
L is implied by a single clique of size ≤ η, then

compute the entropy decrement dh*;
if dh∗ > dh′, then dh′ := dh∗, G′ := G∗;

if dh′ > δh, then G := G′,done := false; else done := true;
until done = true;

return G;
end

Note that each intermediate graph is chordal as indicated by the if statement in the
innermost loop. The condition that L is implied by a single clique C means that all links in
L are contained in the subgraph induced by C. It helps reduce search space. Note also that
the algorithm is greedy while the learning problem is NP-hard. Hence, a link committed
early in the search is not necessarily contained in a corresponding minimal I-map.

Figure 2 illustrates Seq with a dataset over variables {u, v, x, y}. A SLLS is performed
for simplicity. Search starts with an empty graph in (a). Six alternative graphs in (b)
through (g) are evaluated before, say, (b) is selected. The next pass starts with (b) as the
current strucuture (redrawn as (h)) and graphs in (i) through (m) are evaluated. Repeating
the above process, suppose eventually the graph in (n) is obtained. In the last pass, suppose
none of the graphs in (o) and (p) decreases the cross entropy significantly. Then the graph
in (n) will be the final result.

4 Task decomposition for parallel learning

In algorithm Seq, for each pass at level 1, O(|N |2) structures are evaluated before a link
is added. O(|N |2m) structures are evaluated before m links are added in a pass at level
m. To tackle the complexity of MLLS and to speed up SLLS in large domains, we explore
parallelism. To this end, we decompose the learning task based on the following observation:
At each pass of search, the exploration of alternative structures are coupled only through
the current structure. Given the current structure, evaluation of alternative structures are
independent, and hence the evaluation can be performed in parallel.

As mentioned earlier, this study is performed using an architecture where processors
communicate through message passing (vs. shared memory) only. We partition the pro-
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Figure 2: An example of sequential learning

cessors as follows: One processor is designated as the search manager and the others are
structure explorers. The manager executes Mgr1 (Algorithm 2). For each pass, it gener-
ates alternative graphs based on the current graph. It then partitions them into n sets and
distributes one set to each explorer.

Algorithm 2 (Mgr1)

Input:N , D, η, κ, δh as algorithm Seq, and the total number n of explorers.
begin

send N , D and η to each explorer;
initialize an empty graph G = (N,E), G′ := G;
for i = 1 to κ, do

repeat
initialize the cross entropy decrement dh′ := 0;
partition all graphs that differ from G by i links into n sets;
send one set of graphs and G to each explorer;
for each explorer

receive dh∗ and G∗;
if dh∗ > dh′ then dh′ := dh∗, G′ := G∗;

if dh′ > δh, then G := G′, done := false; else done := true;
until done = true;

send a halt signal to each explorer;
return G;

end

Each explorer executes Epr1. It checks chordality for each graph received and computes
dh∗ for each chordal graph. It then chooses the best graph G∗ and reports dh∗ and G∗ to
manager. Manager collects the reported graphs from all explorers, selects the global best,
and then starts the next pass of search.

Figure 3 illustrates the parallel learning with two explorers and a dataset over variables
{u, v, x, y}. A SLLS is performed for simplicity. Manager starts with an empty graph in (a).
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Algorithm 3 (Epr1)

begin
receive N , D and η from the manager;
repeat

receive G = (N,E) and a set of graphs from the manager;
initialize dh∗ := 0 and G∗ := G;
for each received graph G′ = (N,L ∪ E), do

if G′ is chordal and L is implied by a single clique of size ≤ η, then compute dh′;
if dh′ > dh∗, then dh∗ := dh′, G∗ := G′;

send dh∗ and G∗ to the manager;
until halt signal is received;

end

It sends six alternative graphs in (b) through (g) to explorers 1 and 2. Explorer 1 checks
graphs in (b), (c) and (d). Suppose the one in (b) is selected and reported to manager.
Suppose explorer 2 reports the one in (e). After collecting the two graphs, manager chooses
the one in (b) as the new current graph. It then sends graphs in (i) through (m). Repeating
the above process, manager finally gets the graph in (n) and sends graphs in (o) and (p) to
explorers. Suppose none of them decreases the cross entropy significantly. Then manager
chooses the graph in (n) as the final result and terminates explorers.
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Figure 3: An example of parallel learning
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5 Issue of Load Balancing

In algorithm Mgr1, alternative graphs are evenly allocated to explorers. However, the
amount of computation in evaluating each graph tends to swing between two extremes. If
a graph is non-chordal, it is discarded immediately without further computation. On the
other hand, if a graph is chordal, its cross entropy decrement will be computed. Figure 4
(a) shows an example graph. There are six supergraphs (graphs with more links) that
differ by one link. If any of the dotted links in (b) is added to (a), the resultant graph is
non-chordal. If any of the dashed links in (c) is added to (a), the resultant graph is chordal.
Since the complexity of checking chordality is O(|N |+|E|), where |E| is the number of links
in the graph, the amount of computation is very small. Since the complexity of computing
cross entropy decrement is O(|D|+η (η log η+2η)) [16], where |D| is the number of distinct
tuples appearing in the dataset, the amount of computation is much greater. As a result,
even job allocation may cause significant fluctuation among explorers in the amount of
computation. As manager must collect reports from all explorers before the new current
graph can be selected, some explorers will be idle while others are completing their jobs.

x

u
v w

(b) (c)
y y

u
v w

xx
y

u
v w

(a)

Figure 4: Chordal and nonchordal alternative structures

Figure 5 shows the time taken by each of six explorers in a particular pass in learning
from a dataset over 37 variables, where a distributed memory MIMD computer was used.
Explorer 1 took much longer than others did.

8

6

4

2

0

10

4 5 6
explorers

3

12
t sec 

1 2

Figure 5: Job completion time of six explorers

The above analysis implies that more sophisticated job allocation strategy is needed
to improve the efficiency of the parallel system. In the following sections, we propose two
strategies: multi-batch allocation and two-stage allocation.

6 Multi-batch allocation

Multi-batch allocation is based on the idea of keeping some jobs unallocated in the ini-
tial allocation and allocating them later to explorers who finish early. The multi-batch
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allocation problem can be abstracted as follows:
Let L0 be the total number of job units, each of which corresponds to a graph to be

evaluated. A job unit is either of type 0 (non-chordal) or of type 1 (chordal). It takes
time T0 to process a unit of type 0 job and T1 for that of type 1. After an explorer has
finished a given batch of job units, it takes time Tc to send another batch of job units (by
one message) to the explorer. We shall refer to any batch sent to an explorer after the first
batch as an additional batch. The goal is to find the proper size of each batch such that
the sum of idle time of all explorers is reduced during the completion of L0 job units.

In deriving the batch sizes, we make the following assumptions:

Assumption 1 T0 and Tc are constants in a pass.

T0 is the computation time to test the chordality of a graph. Since the complexity of
checking chordality is O(|N | + |E|), and each graph in the same pass has the identical
number of nodes and links, T0 can be treated as a constant.

Tc is the time for manager to send an additional batch to an explorer. An additional
batch is much smaller (as will be seen) than the first batch. A message for an additional
batch is thus very short. Messages are sent through communication channels (> 10M bps)
within the parallel computer, and the actual data transfer is very fast. Consequently, Tc

consists mainly of handshaking time and only varies slightly from message to message.

Assumption 2 T1 is a constant in a pass and is much larger than T0 and Tc.

T1 is the computation time to process one unit of type 1 job which involves checking
the chordality of a given graph and computing the cross entropy decrement of a chordal
graph. It is much larger than T0 and Tc. For example, in learning from a database with 37
variables, we found T0 to be between 0.007 to 0.009 seconds and Tc about 0.017 seconds in
our parallel computing environment. T1 was at least 0.06 seconds. However, the assumption
that T1 is a constant is less accurate. When the variation of clique sizes in a chordal graph
is small, T1 tends to be close to a constant. When the variation is large, T1 tends to vary
depending on specific job unit. Still, we found the assumption to be a useful approximation
in deriving a simple method to determine the batch size.

Suppose the first batch allocated to each explorer has J0 (< L0/n) units. Let Qi (Bi)
denote the number of type 1 (0) units in the batch assigned to explorer i. Let Q denote
the total number of type 1 units in the n batches. Let βi = Qi/J0 be the percentage of
type 1 units in the batch to explorer i. Let β = Q/(n J0) be the percentage of type 1 units
in the n batches. Without losing generality, suppose β1 = maxn

i=1(βi) and we alternatively
denote β1 by βmax.

The time ti taken by explorer i to process its first batch is

ti = QiT1 + BiT0 = βiJ0T1 + (1 − βi)J0T0 = J0(βi(T1 − T0) + T0). (1)

Let T be the sum of the idle time of explorers 2 through n while explorer 1 is processing
its first batch. We can derive

T =
n∑

i=2

(t1 − ti) =
n∑

i=2

J0((βmax(T1 − T0) + T0) − (βi(T1 − T0) + T0))

=
n∑

i=2

J0βmax(T1 − T0) −
n∑

i=2

J0βi(T1 − T0). (2)
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Substituting
∑n

i=2 J0βi = Q− Q1 = nJ0β − J0βmax in equation (2), we have

T = (n − 1)J0βmax(T1 − T0) − (nJ0β − J0βmax)(T1 − T0)

= nJ0(βmax − β)(T1 − T0). (3)

To make use of the idle time T , we allocate the L0 − nJ0 (denoted by L1) reserved
job units in additional batches to explorers who finish their first batches before explorer 1.
Denote the percentage of type 1 jobs in the L1 units by βr. Ideally, the L1 units should be
allocated to explorers 2 through n such that they will be fully engaged during the [0, t1]
time period and all L1 units will be completed at time t1. Using the result in equation (1),
this condition can be expressed as

T = L1(βr(T1 − T0) + T0) + MTc (4)

where M is the total number of additional batches to allocate the L1 units. The value of M
depends on the actual size of each batch (including J0) and its estimation will be discussed
shortly.

Equations (3) and (4) imply

(L0 − nJ0)(βr(T1 − T0) + T0) + MTc = nJ0(βmax − β)(T1 − T0). (5)

Solving equation (5), J0 can be expressed as

J0 =
L0(βr(T1 − T0) + T0) + MTc

n((βmax − β + βr)(T1 − T0) + T0)
. (6)

To compute J0, we need the values for β, βmax, βr and M . However, they are unknown
at the beginning of the search pass when J0 is to be computed. The estimation of these
values is discussed below:

The values of β and βmax can be estimated based on the following assumption:

Assumption 3 The difference between the values of β (βmax) in successive search passes
is small.

Assumption 3 usually holds since the graphs involved in successive passes differ by only
i links. Figure 6 shows the values of β and βmax from search pass 5 to 75 in learning from
a dataset of 37 variables, which provides an empirical justification of the assumption.

The value of βr usually varies from βmin = minn
i=1(βi) to βmax. We can approximate βr

of equation (6) by the average βavg = 0.5(βmin + βmax).
By equation (6), estimation errors in β, βmax and βr can make J0 smaller or larger than

the ideal value. If J0 is smaller, more units will be reserved, resulting in more additional
batches. On the other hand, if J0 is larger, less units will be reserved and some explorers
will be idle after all units have been allocated.

Finally, we consider the estimation of M . From the numerator of equation (6), the
effect of estimation error in M is small because βr(T1 − T0) + T0 is larger than Tc and L0

is much larger than M .
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Figure 6: β and βmax values obtained with eight explorers

Based on Assumption 3 and the above analysis, manager can collect the values β ′, β ′
avg,

β ′
max and M ′ from the previous pass of search to calculate the value of J0 as follows:

J0 ≈
L0(β

′
avg(T1 − T0) + T0) + M ′Tc

n((β ′
max + β ′

avg − β ′)(T1 − T0) + T0)
. (7)

We have now determined the size of the first batch to each explorer.
Next, we determine the size for additional batches. As an example, consider a situation

illustrated by Figure 5. Suppose that the histogram depicts the computation time of the
first batch by each explorer. Explorer 4 finishes the first. Let J1 be the size of the second
batch allocated to explorer 4. The most conservative batch size is J1 = L1/(n − 1), which
effectively assumes that every explorer (other than explorer 1) finishes at this moment.
Usually other explorers will finish later and hence this size will under-allocate for explorer
4. However, the under-allocation will only slightly increases the number M of additional
batches. Since Tc is very small, a few more additional batches will not affect the overall
efficiency significantly. We have therefore adopted this conservative batch size.

In general, let L2 be the remaining job units after the allocation of a batch of J1 units
to the explorer that finishes the first, L3 be the remaining job units after the allocation
of a batch of J2 units to the explorer that finishes the second, and so on. The batch size
allocated to the explorer that finishes the ith place will be

Ji =

{
Li

n−1
when Li ≥ 2(n − 1)

1 when Li < 2(n − 1)
(8)

where i = 1, 2, . . ., and Li+1 = Li−Ji. Note that after the number of remaining units drops
below 2(n − 1), jobs are allocated unit by unit to achieve high degree of load balancing.

Based on equations (7) and (8), we modify Mgr1/Epr1 into algorithms Mgr2/Epr2.
Manager executes Mgr2. For each pass, it computes J0 according to equation (7), and

then sends the current graph G and a batch of J0 graphs to each explorer. Each explorer
executes Epr2. It checks chordality for each graph received and computes the entropy
decrement for each chordal graph. The explorer then sends a signal to manager indicating
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Algorithm 4 (Mgr2)

Input:N , D, η, κ, δh and n.
begin

send N , D and η to each explorer;
initialize an empty graph G = (N,E), G′ := G;
set initial values for β, βmax, βavg, T0, T1, Tc and M ;
for i = 1 to κ, do

repeat
initialize the cross entropy decrement dh′ := 0; j := 0;
send current graph G and Jj graphs to each explorer; j++;
repeat

receive a completion signal from an explorer;
if Lj > 0, then send Jj graphs to the explorer; j++;
else send a report signal to the explorer;

until report signal has been sent to each explorer;
for each explorer x, do

receive dh∗, βx, T0, T1 and G∗;
if dh∗ > dh′, then dh′ := dh∗, G′ := G∗;

if dh′ > δh, then G := G′, done := false; else done := true;
if done = true, then update β, βmax, βavg, T0, T1 and M = j;

until done = true;
send a halt signal to each explorer;
return G;

end

its completion of the batch. Upon receiving the signal, manager computes size Jj for an
additional batch and sends the batch to the explorer. If no job units are left for this pass,
manager will signal the explorer for report. After reports are collected from all explorers,
manager updates the relevant search parameters and starts the next pass. Note that both
T0 and T1 are updated to account for the inaccuracy of Assumptions 1 and 2.

7 Two-stage allocation

The two-stage allocation is based on the fact that a chordal structure and a non-chordal
one require significantly different amount of computation in evaluation, and the difference
is the major source of unbalanced load amount processors in even allocation.

To improve load balancing, we modify even job allocation of Mgr1/Epr1 by allocating
jobs in two stages as shown in algorithms Mgr3/Epr3. In the first stage, manager (see Mgr3)
partitions alternative graphs evenly and distributes one set to each explorer. Each explorer
(see Epr3) checks the chordality for each graph received and reports to manager valid
candidates (chordal graphs). Since the complexity of checking chordality is O(|N | + |E|),
and each graph has the identical number of nodes and links, the computation among
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Algorithm 5 (Epr2)

begin
receive N , D and η from manager;
repeat

receive G = (N,E) from manager;
initialize dh∗ := 0 and G∗ := G;
repeat

receive a set of graphs from manager;
for each received graph G′ = (N,L ∪ E), do

if G′ is chordal and L is implied by a single clique of size ≤ η,
then compute the entropy decrement dh′;

if dh′ > dh∗, then dh∗ := dh′, G∗ := G′;
send a completion signal to manager;

until report signal is received;
send dh∗, βx, T0, T1 and G∗ to manager;

until halt signal is received;
end

explorers is even.
In the second stage, manager partitions all received graphs evenly and distributes one

set to each explorer. Each explorer computes entropy decrement for each graph received. It
then chooses the best graph and reports it and its entropy decrement to manager. Manager
collects the reported graphs, selects the best, and then starts the next pass. Since all graphs
are chordal in the second stage, the degree of load balance mainly depends on the variability
of the sizes of the largest cliques.

8 Comparison of allocation strategies

Compared with multi-batch allocation, two-stage allocation is much simpler. It only needs
to partition and distribute job units twice. With the multi-batch allocation, multiple
batches are sent to each explorer, resulting higher communication overhead. For example,
in learning from a database of 37 variables with 12 explorers, we found that on average
six batches are sent to each explorer. The data collection and computation involved in
multi-batch allocation are also more expensive.

However, two-stage allocation suffers from variation in the amount of computation for
calculating entropy decrements as each set L of new links forms new cliques whose sizes
may vary significantly. On the other hand, the multi-batch allocation has the resistance to
the variation in clique size since allocation is dynamically adapted to the actual amount of
computation used for each batch.

We present the experimental comparison of the two strategies in Section 11.
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Algorithm 6 (Mgr3)

Input:N , D, η, κ, δh and n.
begin

send N , D and η to each explorer;
initialize an empty graph G = (N,E), G′ := G;
for i = 1 to κ, do

repeat
initialize dh′ := 0;
partition all graphs that differ from G by i links into n sets;
send one set of graphs and G to each explorer;
receive a set of valid graphs from each explorer;
partition all received graphs into n sets;
send one set of graphs to each explorer;
for each explorer, do

receive dh∗ and G∗;
if dh∗ > dh′, then dh′ := dh∗, G′ := G∗;

if dh′ > δh, then G := G′, done := false; else done := true;
until done = true;

send a halt signal to each explorer;
return G;

end

Algorithm 7 (Epr3)

begin
receive N , D and η from manager;
repeat

receive current graph G = (N,E) and a set of graphs from manager;
initialize dh∗ := 0 and G∗ := G;
for each received graph G′ = (N,L ∪ E), do

if G′ is chordal and L is implied by a single clique of size ≤ η,
then mark it as valid;

send all valid graphs to manager;
receive a set of graphs from manager;
for each received graph G′, do

compute the entropy decrement dh′;
if dh′ > dh∗, then dh∗ := dh′, G∗ := G′;

send dh∗ and G∗ to manager;
until halt signal is received;;

end
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9 Marginal Servers

In order to learn a belief network with satisfactory accuracy, a dataset of large number of
cases is preferred. During learning, the data will be frequently accessed by each explorer to
obtain marginal probability distributions (marginals) of subsets of variables (for computing
entropy decrements). Using a distributed-memory architecture, the available local memory
to each processor is limited. If the dataset (with a proper compression) can be fit into
the local memory such that each processor has one copy of the dataset, then data can be
accessed effectively during learning. Otherwise, special measure has to be taken for data
access.

One obvious solution is to access data through the file system. However file access
is much slower than memory access. Even worse, many parallel computers have limited
channels for file access, making it a bottleneck. For example, in the computer available to
us, file access by all processors must be performed through a single host computer.

To achieve efficient data access, we propose an alternative using so called marginal
servers to avoid file access completely during learning. The idea is to split the dataset so
that each subset can be stored into the local memory of a processor. A group of (say m)
such processors is then given the task of serving explorers in computing partial marginals
from their local data.

In particular, the m servers are connected logically into a pipeline. The dataset is
partitioned into m + 1 sets, where the size of each set may not be identical as we will
discuss shortly. Each server stores one distinct set of data and each explorer duplicates one
copy of the remaining set.

As an example, consider the computation of the marginal over two binary variables
{x, y} ⊂ N . Suppose |D| = 10000 and there are one explorer and two marginal servers.
We store 5000 tuples in the explorer and 2500 in each server. Table 2 shows one possible
scenario of how the tuples might be distributed according to {x, y}.

(x, y) tuples in explorer tuples in server 1 tuples in server 2
(0, 0) 2000 1000 500
(0, 1) 1500 500 1000
(1, 0) 1000 500 500
(1, 1) 500 500 500

Table 2: Data storage using servers

When the explorer needs to compute the marginal over {x, y}, it first sends {x, y} to
servers, and then computes locally the potential (non-normalized distribution) (2000, 1500,
1000, 500). Requested by the explorer, server 1 computes the local potential (1000, 500, 500,
500) and sends to server 2. Server 2 computes its local potential, adds to the result from
server 1 to obtain the sum (1500, 1500, 1000, 1000), and sends the sum to the explorer.
The explorer adds the sum to its local potential to obtain (3500, 3000, 2000, 1500) and
normalizes to get the marginal (0.35, 0.3, 0.2, 0.15).

Two-stage allocation enhanced by marginal servers is implemented in Mgr4, Epr4 and
Svr. Multi-batch allocation can be enhanced accordingly.
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Algorithm 8 (Mgr4)

Input:N , D, η, κ, δh, n and m.
begin

partition D into m + 1 sets;
send one set to each server and broadcast the last set to explorers;
initialize an empty graph G = (N,E), G′ := G;
for i = 1 to κ, do

repeat
initialize dh′ := 0;
partition all graphs that differ from G by i links into m + n sets;
send one set of graphs and G to each explorer and each server;
receive a set of valid graphs from each explorer and each server;
partition all received graphs into n sets;
send one set of graphs to each explorer;
for each explorer, do

receive dh∗ and G∗;
if dh∗ > dh′ then dh′ := dh∗, G′ := G∗;

if dh′ > δh, then G := G′, done := false; else done := true;
send an end-of-pass signal to each server;

until done = true;
send a halt signal to each explorer and each server;
return G;

end

Manager executes Mgr4. It partitions data into m+1 sets, distributes to explorers and
servers, and starts the search process. In the first stage of each pass, manager generates
alternative graphs based on the current graph. It partitions them into m+n sets, distributes
to explorers and servers, and receives reported valid graphs. In the second stage, manager
partitions valid graphs into n sets and sends one set to each explorer.

Each explorer executes Epr4. In the first stage of each pass, it checks the chordality
of each received graph and reports valid graphs to manager. In the second stage, the
explorer receives a set of valid graphs from manager. For each graph received, it identifies
the marginals (each over a subset C ⊂ N) necessary in computing entropy decrement.
For each marginal, it sends a request to servers, computes a local potential, receives a
potential from a server (to be specified below), sums them up and obtains the marginal.
After evaluating all valid graphs received, the explorer chooses the best graph and reports
to manager. Manager collects reported graphs from all explorers, selects the best as the
new current graph, sends a signal to each server to notify the end of the current pass, and
then starts the next pass.

Each marginal server executes Svr. In the first stage of each pass, each server func-
tions as an explorer (testing chordality). In the second stage, a server processes requests
repeatedly until it receives a signal to end the current pass. For each request (a marginal
over a subset C ⊂ N), a server computes a local potential, adds to the potential from its
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Algorithm 9 (Epr4)

begin
receive η and a subset of data over N ;
repeat

receive G = (N,E) and a set of graphs from manager;
initialize dh∗ := 0 and G∗ := G;
for each received graph G′ = (N,L ∪ E), do

if G′ is chordal and L is implied by a clique of size ≤ η, then mark G′ valid;
send all valid graphs to manager;
receive a set of graphs from manager;
for each received graph G′ = (N,L ∪ E), do

for each set C of variables involved in computing dh′, do
send C to each marginal server;
compute local potential over C;
receive a potential over C from a server;
compute marginal over C;

compute the entropy decrement dh′;
if dh′ > dh∗, then dh∗ := dh′, G∗ := G′;

send dh∗ and G∗ to manager;
until halt signal is received;;

end

predecessor if it is not the head of the pipeline, and sends the sum to the next server or
the requesting explorer depending on whether it is the end of the pipeline.

To keep all processors fully engaged, the dataset D must be properly partitioned among
explorers and servers. Since each server serves n explorers, the processing of one request
by a server must be n times as fast as the local processing of a requesting explorer. This
implies nTs = Te, where Ts and Te are the time to process one marginal request by a server
and an explorer, respectively. Let |Ds| and |De| be the number of tuples stored locally in
each server and each explorer, respectively. Ts and Te can be expressed as Ts = kd|Ds| and
Te = kg|N | + kd|De|, where kd and kg are coefficients, and kg|N | is the computation time
to identify the marginals necessary in computing entropy decrement. Therefore, we have

nkd|Ds| = kg|N | + kd|De|. (9)

In algorithm Mgr4, D is partitioned into m + 1 sets and hence

|D| = m|Ds| + |De|. (10)

Denoting p = m + n and solving equations (9) and (10), we obtain

n =
p(α|N | + |De|)

α|N | + |D| , m =
p(|D| − |De|)
α|N | + |D| , |Ds| =

α|N | + |D|
p

,

where α = kg/kd with its value between 0.003 to 0.006 in our experimental environment. In
practice, m, n, |Ds| and |De| must be rounded to integers, and |De| must be upper bounded
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Algorithm 10 (Svr)

begin
receive η and a subset of data over N ;
repeat

receive G = (N,E) and a set of graphs from manager;
for each received graph G′ = (N,L ∪ E), do

if G′ is chordal and L is implied by a clique of size ≤ η, then mark G′ valid;
send all valid graphs to manager;
repeat

receive a set C of variables from an explorer;
compute local potential over C;
if this server is not head of server pipeline, then

receive a potential over C from predecessor server;
sum local potential with received potential;

if this server is not tail of server pipeline, then send sum to the next server;
else send sum to the requesting explorer;

until end-of-pass signal is received;;
until halt signal is received;;

end

by the available local memory for data storage. As an example, suppose |D| = 100k,
|De| = 20k, |N | = 1000, p = 30 and α = 0.005. We have n = 6, m = 24 and |Ds| ≈ 3.334k.

10 Experimental environment

The parallel algorithms presented have been implemented on an ALEX AVX Series 2 dis-
tributed memory MIMD computer. It contains 8 root nodes and 64 compute nodes, which
may be partitioned among and used by multiple users at any time. Each root node is a
T805 processor, which can be used to control the topology of compute nodes. Each com-
pute node consists of an i860 processor (40Mhz) for computation and a T805 processor
for message passing with other nodes through four channels at each node. Data transmis-
sion rate is 10Mbps in simplex mode and 20Mbps in duplex mode. The i860 and T805
processors at each node share 32MB memory and the latter has its own additional 8MB
memory. All access to the file system is through a root node and a host computer.

We configure the available processors into a ternary tree (Figure 7) to reduce the length
of message passing path. The root is manager and non-root nodes are explorers/servers.
Servers cooperate logically as a pipeline.

We tested our implementation using the ALARM network [1] and four randomly gen-
erated networks PIMi (i = 1, ..., 4) each of which is a PI model. ALARM has 37 variables.
PIM1 has 26 variables and contains an embedded PI submodel over three variables. PIM2
has 30 variables and contains two embedded PI submodels each of which is over three vari-
ables. PIM3 has 35 variables and contains two embedded PI submodels similar to those
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Figure 7: Ternary tree topology

of PIM2. PIM4 has 16 variables and contains one embedded PI submodel over four vari-
ables. Five datasets are generated by sampling the five control networks with 10000, 20000,
25000, 30000 and 10000 cases, respectively.

We measure the performance of our programs by speed-up (S) and efficiency (E). Given
a task, let T (1) be the execution time of a sequential program and T (n) be that of a parallel
program with n processors. Then S = T (1)/T (n) and E = S/n.

11 Experimental results

We demonstrate the performance of multi-batch and two-stage allocation strategies and
the benefit of using marginal servers.
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Figure 8: DMNs learned from data obtained from ALARM (left) and PIM3 (right)

The DMN learned from ALARM dataset is shown in Figure 8 (left). Since the task
decomposition that we used for parallelism does not introduce errors, the learning outcome
is identical to what is obtained by Seq with the same learning parameters. Figure 8 (right)
shows the DMN learned from PIM3 dataset. Nodes labeled 6, 8 and 9 form a PI submodel
in PIM3 and so do nodes labeled 14, 15 and 16.

In learning from the ALARM dataset, we compared even (Mgr1/Epr1), multi-batch
(Mgr2/Epr2) and two-stage (Mgr3/Epr3) allocations. The dataset, after compression, was
loaded into the local memory of each explorer. Table 3 shows experimental results for even
and two-stage allocations as the number n of explorers increases from 1 to 12.
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Even allocation Two-stage allocation
n time(s) speed-up efficiency time(s) speed-up efficiency
1 3160 1.0 1.0 3160 1.0 1.0
2 1750 1.81 0.903 1617 1.95 0.977
4 957 3.30 0.825 850 3.72 0.929
6 712 4.44 0.740 609 5.19 0.865
8 558 5.66 0.708 472 6.69 0.837

10 486 6.50 0.650 393 8.04 0.804
12 454 6.96 0.580 351 9.00 0.750

Table 3: Experimental results for even and two-stage allocations

Columns 3 and 6 show that as n increases, speed-up increases as well when either
allocation strategy is used. This demonstrates that the parallel algorithms can effectively
reduce learning time and provides positive evidence that parallelism is an alternative to
tackle the computational complexity in learning belief networks.

Comparing column 3 with 6 and column 4 with 7, it can be seen that two-stage allocation
further speeds up learning and improves efficiency beyond that of even allocation. For
example, when eight explorers are used, speed-up is 5.66 and efficiency is 0.708 for even
allocation, and 6.69 and 0.837 for two-stage. Figure 9 plots the speed-up and efficiency for
all three strategies for comparison.

Among the three strategies, even allocation has the lowest speed-up and efficiency,
especially when n increases. There is no significant difference between multi-batch and
two-stage allocations. For n > 6, multi-batch allocation is slightly better than two-stage
allocation. As n increase beyond 9, two-stage performs better than multi-batch. This is
because the overhead of multi-batch job allocation becomes more significant as the number
of explorers increases.
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Figure 9: Speed-up (left) and efficiency (right) in learning from ALARM dataset

The results also show a gradual decrease in efficiency as n increases. This decrease is
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due to allocation overhead. At the start of each pass, manager allocates jobs to explorers
in sequence. Hence an explorer is idle between submission of its report in previous pass
and receipt of the next batch of jobs. However, efficiency decrease will be less significant
when learning is performed in large or PI domains as the proportion of message passing
time in each pass will be much smaller than computation time. This is illustrated by our
learning results in PI domains as follows:

n PIM1 PIM2 PIM3 PIM4
1 Time (min) 262.4 868.6 3555.4 36584

Time (min) 26.8 89.3 352.2 3382
12 Speed-up 9.8 9.7 10.1 10.8

Efficiency 0.82 0.81 0.84 0.90
Time (min) 17.2 54.2 179.4 1735

24 Speed-up 15.3 16.0 19.8 21.1
Efficiency 0.64 0.67 0.83 0.88

Time (min) 12.5 37.7 124.5 1197
36 Speed-up 21.0 23.0 28.6 30.6

Efficiency 0.58 0.64 0.79 0.85

Table 4: Experimental results in learning PI models

Table 4 shows experimental results for learning PI models PIMi (i = 1, ..., 4), where
triple-link lookahead is used for learning PIMi (i = 1, ..., 3) and six-link lookahead is used
for learning PIM4. The first column indicates the number of explorers used. As expected,
speed-up is shown to increase with n.

The third column shows results in learning PIM1. When 12 explorers are used, speed-
up and efficiency are 9.8 and 0.82. The table shows rapid decrease of efficiency when 24 and
36 explorers are used. The similar trend can be seen in column 4 for learning PIM2. This
is because the two domains are relatively small (with 20 and 30 variables, respectively) and
less complex (sparse, and with one and two small PI submodels, respectively). Message
passing time is significant compared with computation time in these cases.

Column 5 shows results for learning PIM3. The domain contains 35 variables and
two PI submodels, and the control network is more densely connected. Significantly longer
computation time (3555.4 min) was used by the sequential program. The last column shows
results for learning PIM4. Although its domain is not large (16 variables), the fact that it
contains a PI sub-model with 4 variables and a six-link lookahead is needed to identify the
sub-model makes its computation expensive. It took the sequential program over 25 days
(36584 min). Compared with PIM1 and PIM2, speed-up and efficiency in learning these
two models are much better when larger number of explorers are used. Note that with 36
explorers, the time to learn PIM4 is reduced from over 25 days to less than one day (1197
min).

Finally, we demonstrate the use of marginal servers by learning the ALARM network.
Although ALARM is not very large and the dataset can be loaded entirely into the local
memory of each explorer, we choose to use it for two reasons: First, domain size does
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not hinder demonstration of correctness of the server method. Second, if we decrease the
available local memory below what we have, at some point, it would not be large enough
to hold ALARM dataset. In that case, data access by file system would be necessary if the
server method were not used. Hence, generality is not compromised by using ALARM .

To demonstrate the effect of using servers, we assume that the dataset cannot be loaded
into local memory of explorers. Using data access by file system, it took 12780sec for
the sequential program to complete learning ALARM . Table 5 shows results of learning
ALARM by using m = 4 servers. The number n of explorers ranges from one to eight.
The data size stored in each explorer was twice as large as that in each server. Note that
since marginal servers replace slow file access by fast memory access, the efficiency can be
larger than 1.0 as shown in the table.

n+m 5 6 7 8 9 10 11 12
Time (s) 2870 1616 1166 1015 910 819 762 737
Speed-up 4.45 7.91 10.96 12.59 14.04 15.60 16.77 17.34
Efficiency 0.891 1.318 1.566 1.574 1.560 1.560 1.525 1.445

Table 5: Experimental results by using four marginal servers

12 Looking beyond distributed memory MIMD

Flynn’s taxonomy [11] classifies hardware into SISD, SIMD, MISD and MIMD. MIMD
computers can be further classified into shared or distributed memory. The following
discussion extends our lessons from using distributed memory MIMD to the suitability of
other architectures for parallel learning of belief networks. As SISD is incapable of true
parallelism [10], we discuss only SIMD, MISD and MIMD.

An MISD computer applies multiple instructions to a single data stream. For example,
it can perform matrix operations A + B and A − B simultaneously. The task of learn-
ing belief networks decomposes naturally into evaluation of alternative network structures
(multiple data streams) as we have investigated in this study. Therefore, the MISD archi-
tecture appears unsuitable for this task.

SIMD computers consist of multiple arithmetic logic units (ALUs) under the supervision
of a single control unit (CU). CU synchronizes all the ALUs by broadcasting control signals
to them. The ALUs perform the same instruction on different data that each of them fetches
from its own memory. For instance, CM-2 connect machine has 64K processors each of
which is an one-bit CPU with 256K one-bit memory. Normal instructions are executed
by a host computer and the vector instructions are broadcast by the host computer and
executed by all processors.

In learning belief networks, each alternative network structure has a unique graphical
topology and requires a unique stream of instructions for its evaluation. Therefore, SIMD
computers do not appear suitable if the learning task is decomposed at the level of network
structures. In other words, it appears necessary to decompose the task at a much lower
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abstraction level. One alternative is to partition the dataset into small subsets each of which
is then loaded into the memory of one processor. Each marginal can then be computed by
cooperation of multiple processors when requested by a host computer. However, the host
computer must carry out all other major steps in evaluating each alternative structure.
This is essentially the sequential learning (algorithm Seq) with parallelism applied to only
marginal computation. The degree of parallelism is much reduced compared with what we
have presented. Therefore, SIMD computers do not appear a better architecture than the
MIMD that we have used.

In a MIMD computer, each processor can execute its own program upon its own data.
Cooperation among processors is achieved by either shared memory or message passing (in
distributed memory architectures). In a MIMD computer with shared memory, all programs
and data are stored in k memories and are accessible by all processors with the restriction
that each memory can be accessed by one processor at any time. This restriction tends
to put an upper bound on the number of processors that can be effectively incorporated.
Therefore, shared memory systems are efficient for small to medium number of processors.

For parallel learning of belief networks on a shared memory MIMD computer, our man-
ager/explorer partition of processors can be used. Manager generates alternative structures
and stores them in one memory. Each explorer can fetch one or more structures for eval-
uation at each time, which can be controlled by accessing a critical section. Hence job
allocation can be performed similarly to our multi-batch or two-stage strategies. On the
other hand, dataset access will become a bottleneck if a large number of processors want
to access the same memory for data at the same time. The problem may be alleviated by
duplicating the dataset in multiple memories. However, this may not be practical for large
datasets due to limited total memory.

Based on our investigation using a distributed memory MIMD computer and the above
analysis, we believe that this architecture is most suited to parallel learning of belief net-
works among the four architectures considered.

13 Conclusion

We have investigated parallel learning of belief networks as a way to tackle the computa-
tional complexity when learning in large and difficult (e.g., PI) problem domains. We have
proposed parallel algorithms that decompose the learning task naturally for parallelism
and they do not introduce errors compared with a corresponding sequential learning algo-
rithm. We have studies multi-batch and two-stage job allocations which further improve
the efficiency of the parallel system beyond the straightforward even allocation strategy.
We found that multi-batch is more effective when the number of processors is small and
two-stage is more effective when the number is large. We have proposed marginal server
configuration to replace slow data access through file system by fast memory access. This
allows parallel learning from very large datasets be performed effectively. We have imple-
mented the algorithms in a distributed memory MIMD computer and our experimental
results confirmed our analysis.

Our study has focused on learning DMNs. However, our results can be easily extended
to learning Bayesian networks (BNs). This is because all known algorithms for learning
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belief networks (whether they are DMNs or BNs) are based on evaluation of alternative
network structures (often using local computations) relative to the given dataset. Therefore,
our results on task decomposition, job allocation strategies and use of marginal servers are
applicable to learning any type of belief networks.

We have extended the lessons we learned from using the distributed memory MIMD
system to other architectures based on Flynn’s taxonomy. Our analysis of the features of
each architecture and the features of learning belief networks makes us believe that the
distributed memory MIMD architecture is most suited to this task.
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Appendix A: Graph-theoretic terminology

Let G be an undirected graph. A set X of nodes in G is complete if each pair of nodes in X
is adjacent. A set C of nodes is a clique if C is complete and no superset of C is complete.
A chord is a link that connects two nonadjacent nodes. G is chordal if every cycle of length
> 3 has a chord.

A decomposable Markov network (DMN) over a set N of variables is a pair (G,P ) where
G is a chordal graph and P is a probability distribution over N . Each node in G = (N,E)
is labeled by an element of N . Each link in G signifies the direct dependence of its end
nodes. For disjoint subsets X, Y and Z of nodes, < X|Z|Y >G signifies I(X,Z, Y ), and
hence P can be factorized into marginal distributions over cliques of G.

Appendix B: Frequently used acronyms

BN: Bayesian network
DMN: decomposable Markov network
PDM: probabilistic domain model
PI: pseudo-independent
MIMD: multiple instruction, multiple data
MISD: multiple instruction, single data
MLLS: multi-link lookahead search
SISD: single instruction, single data
SIMD: single instruction, multiple data
SLLS: single link lookahead search
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