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INTRODUCTION

Most modern industrial products are manufac-
tured through supply chains. Competition, rapid
product upgrading, and demand for customized
products make design and redesign important
activities in supply chains. From the manufactur-
ing perspective, a supply chain consists of a set
of manufacturers that cooperate in the design and
production of a final product or multiple related
products. Each pair of manufacturers directly
involved in the supply chain form a supplying
relation, with one of them being the supplier and
the other being the consumer. In this chapter, we
use the term consumer to refer to a manufacturer
in the above sense, and we refer to people who
purchase and consume the product as end-users,
who are regarded as outside the supply chain. A
manufacturer R may be the consumer relative to
another manufacturer R , butacts as the supplier to
a third manufacturer R, in the same supply chain.

Productdesign in supply chains are dominated
by component-centered design, in which a final
product is designed as a set of components. In
computer design, a processor chip is a compo-
nent, and so is a hard-disk drive. Lower level
components may be composed into a higher level
component. For instance, a desktop system unit
is a component assembled from month-board,
processor chips, etc. Under component-centered
design and production, each supplier supplies one
Or more components to one or more consumers.

Contemporary design in supply chains is
essentially top-down (Huang et al., 2000). The
manufacturer R of final product decomposes it
into components. For each component C to be
supplied to R, a supplier S further decomposes C
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into sub-components, and the process continues.
With top-down design, consumers play dominant
roles and suppliers are passive. Such designs are
unlikely to be optimal, because consumers are
usually not in the best position to judge options
available to suppliers.

This chapter presents a computational frame-
work for collaborative design where suppliers
play equally active roles in shaping design. In
particular, we describe a multiagent framework,
where manufacturers are collaborative designers
aided by intelligent agents. The objective is to
produce an overall optimal design by distributed
decision making. The multiagent system and
decision algorithm are elaborated.

BACKGROUND

A product has a design space described by a set
D of variables. Each variable in D is a design
parameter. Type of processor used in a smart
appliance is a design parameter. We assume that
each parameter is associated with a discrete do-
main of possible values, and a naturally continu-
ous parameter is discretized. A partial design is
an assignment of values to variables in a proper
subset of D, and a complete design assigns values
to all variables in D.

A design is subject to a set of constraints. For
instance, if length of a computer case is L and
length of the motherboard is L’, then L>L’ should
hold. A constraint involves a subset S C D of
variables and specifies allowable assignments for
S. A design is valid if it satisfies all constraints.

Different valid designs result in products with
different performances. Maximum speed is a
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performance measure of a car. For simplicity, we
refer to performance of a product resultant from
a design as performance of the design. Perfor-
mance space of a product is described by a set M
of variables, each being a performance measure.
We assume that each measure is associated with
a discrete domain.

Performance of a product also depends on
environment in which it operates. For instance,
high level of humidity may cause a computer to
fail. We describe such environmental factors by
a set T of discrete variables.

People differin preference over a given product
performance. Subjective preference of stake-
holders (manufacturer or end-user) over design
is represented by utility functions (Keeney &
Raiffa, 1976). For clarity, we assume that utility
is directly dependent on performance of product,
not directly on design parameters. Hence, we
denote the utility function UM). An overview of
methods for utility function assessment is given
in (Farquhar, 1984).

We assume that U(M) can be decomposed
additively (Keeney & Raiffa, 1976) as follows:
Partition performance measures into groups M,
M., ....Each M, is associated with a utility function
U.(M) €[0,1]. The overall utility function satisfies

UM) = = o, UM),

where each weight o, €(0,1) such that £ o, = 1.
Asarguedin (Keeney & Winterfeldt,2007), when
decision objectives are properly chosen, additive
utility decompositions are widely applicable.

Design cannot ensure performance determin-
istically, due to uncertainty in product life-cycle.
We evaluate expected utility of design instead.
Denote a design by D = d. Denote an assignment
of performance measures of resultant product by
M = m. P(mld) is the probability of performance
m of product resultant from design d. Expected
utility of d relative to U(M,) is

EU,(d) = ¥m U (proj(m, M,)) P(mld), (1)
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where proj(m, M) is projection of m to M.. Ex-
pected utility of d is

EU(d) =%, o, (Em U (proj(m, M,)) P(mld)).
2)

Given (D, T, M, U), the problem of decision-
theoretic design is to find a valid design d* that
maximizes EU(d).

Deterministic design assumes typical maxi-
mum loads and minimum material property. It
often leads to overdesign and inability to risk
analysis. Probabilistic design optimizes in face
of uncertainties (Batill et al., 2000). We extends
probabilistic design to decision-theoretic, which
incorporates stake-holder preference, and to col-
laborative design by distributed decision-making.
Collaborative design may be viewed as distributed
constraint satisfaction problems (DisCSPs), e.g.,
(Meisels & Zivan, 2007). However, DisCSPs in-
volve finding constraint satisfying solutions, but
not optimization among them. The limitation is
overcome by distributed constraint optimization
(DCOP). However, most research on DCOP, e.g.,
(Petcu & Faltings, 2005) is not decision-theoretic.
Below, we present a multiagent framework for
decision-theoretically optimal, collaborative
design (Xiang et al., 2004).

MAIN FOCUS

To compute EU(d) effectively, we represent a
centralized design problem as a graphical model,
called design network (DN). We then represent
a design problem on supply chain as a collab-
orative design network (CDN). How to solve the
design problem by distributed computation will
be elaborated.

Design Networks
ADNconsistsofaset V of variables, adependency

structure G, and a set F of conditional probability
tables (CPTs). V=D U T U M U U is the set of
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Figure 1. DAG of design network for mobile device casing
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variables, where each u, € U corresponds to a
utility function U,(). Each variable has a domain
of possible values, which are naturally defined
for elements of D, T, and M. Each u, € U has a
domain {true, false} or {t, f}.
G=(V,E)isanacyclic,directed graph (DAG),
whose nodes are labeled by variables in V. Each
arc in E is denoted (p,c) directed from parent p to
child c. The following 5 types of arcs are legal:

1. Arc(d, d’) between design parameters d, d’
€D signifies that they are constrained.

2. Arc (d, m) from design parameter d €D to
performance measure m € M signifies that
m is dependent on d.

3. Arc (t, m) from environment factor t €T to
performance measure m €M signifies that
m is dependent on t.

4. Arc(m,m’)between performance measures
m, m’ €M signifies that m’ is a composite
performance measure.

5. Arc (m, u) from performance measure m
€M to utility u €U signifies that u depends
on performance measure m.

Figure 1 illustrates the DAG of a design net-
work, where variables in D, T, M, V are shown as
square, circle, oval, and diamond, respectively. G
encodes conditional independence (Pearl, 1988).

F is syntactically a set of CPTs, one for each
node in G. Each t €T is a root and F(t) = P(t).
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Each m eM with parent set t(m) is associated with
F(m, t(m)) = P(mlr(m)). For each d €D, its CPT
corresponds to adesign constraint defined below:

If dis aroot in G, it is unconstrained and F(d)
= P(d) is uniform. If d is internal, its parent set
n(d) ¢ D, and F(d, n(d)) = P(dlx(d)) is made of O
or 1. Inparticular, for each assignment z(d) of w(d)
and each value d’ of d, if assignment (d’, x(d)) is
valid, P(d’l z(d)) = 1. Otherwise, P(d’l z(d)) = 0.

Some assignments of n(d) may also be in-
valid. In general, for any subset of D of size >
1, some assignments may be invalid, which can
be encoded as follows: Consider 10 constrained
binary variables d, ..., d,. Let n(d)) = {d } and
define P(d,Id ) as above. Thenletn(d,) = { d, d, }
and define P(d,Id, d,). Repeat the process until
P(d,ld; ..., d,) is assigned. For each d,, if no value
is invalid for any valid assignment of d;, ..., d_,
the corresponding step is skipped. This yields
best case space complexity of 2*10+2'° = 1044
(all steps skipped except the last) and worst case
complexity of 24+22+23+...4+2'° = 2046 (no step
is skipped).

Each u, € U corresponds to a utility func-
tion U,(M,). Its parent set in G is ©(v,) = M.. In
Figure 1, utility node u_safety has n(u_safety) =
{device_safety }. The function associated with u,
is F(u , m(u,)) such that F(u, = t, n(u)) = U(M))
and F(u . = f, n(v)) = 1 - U(M)). Thus, F(u
n(u,)) syntactically is a CPT while semantically
encodes U,(M,).

573




Optimal Collaborative Design in Supply Chains

Formally, denote a DN specified above as S
= (V, G, F). It is syntactically a Bayesian net-
work (Pearl, 1988), while semantically decision
theoretic (with decisions and utilities). DN differs
frominfluence diagrams (IDs) (Jensen & Nielsen,
2007). First, in IDs, arcs into a decision node can
be directed from both chance and decision nodes,
signifying what is known prior to the decision.
DN is used for online decision making, arcs from
chance nodes (performance and environment fac-
tor) to design parameters are disallowed. Second,
arcs into a decision node in IDs are not associated
with quantitative knowledge. In DN, arcs into
design parameters from other design parameters
signify design constraints, and are associated with
design constraints in terms of CPTs.

Since DN is a Bayesian network, for any valid
design d (for detection of invalid design, see
(Xiang, 2006)), conditional probability P(xId)
for any x € V can be computed by probabilistic
inference. Several algorithms exist and readers
arereferred to literature, e.g., (Pearl, 1988; Xiang,
2002; Jensen & Nielsen, 2007; Darwiche, 2009)
for details. Through probabilistic inference, for
each u, € U, we obtain

Pu =t|d)=SP(u =t|m,d)P(m, |d)
=Y P(u, = titmi)P(mi | d)
= SV, (1) Plm, | =0 (4),

m
=i

due to Equation (1), where m. is an assignment of
M.. From Equation (2), we can obtain

EU(@):Z Plu =t|d). 3)

Collaborative Design Networks

It is infeasible to conduct design on supply chain
with centralized DN, as design constraints and
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utility functions for each manufacturer are often
proprietary. In the following, we present a forward
looking multiagent framework, where a globally,
decision-theoretically optimal design is obtained
distributively.

Each supplier is the designer of its supplied
component, and this design role is delegated to a
computational agent (Russell & Norvig, 2010).
These agents, one per supplier, form a multiagent
system. The set V of system variables, is divided
(with overlapping) among agents into subsystems.
Denote the ith subsystemby V,,wehave V=U, V..
Each agent A, embodies a DN over a subsystem,
called a design subnet, denoted as S, = (V,, G,
F), where V,=D.UT. UM U U, .

Subsystems are organized into a hypertree:
Each hypernode corresponds to a subsystem.
Each hyperlink corresponds to a set L, of design
parameters shared by subsystems V. and A where
I renders Vi\Iij and VAL conditionally indepen-
dent. Iij =D.n Dj is also called agent interface.
Variables in V,notcontained in any agent interface
are private to A. The hypertree satisfies run-
ning intersection: Iij must be contained in each
subsystem on the path between V, and \Z in the
hypertree. Hypertree specifies direct communicate
links between agents. See (Xiang et al., 2004) for
more on hypertree construction. Figure 2 illustrates
hypertree and subnet of a CDN.

Each agent is assigned a weight o € (0,1)
where £, o = 1, representing compromise among
agents over individual preferences. The collection
of subnets {S, li=1,2,... } forms a CDN.

Let d be a complete design over D = U, D,
and d = proj(d, D). If each A obtains EU(d) by
local inference and Equation (3), then

EU (d) :Z. EU(d) 4)

can be computed. The globally optimal design is
a valid design d* that maximizes EU(d). Hence,
given a CDN, decision-theoretically optimal
design is well defined. On the other hand, ex-
haustively evaluating each d and selecting the
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Figure 2. Left: Hypertree of a CDN for customized PC design; right: CPU design subnet.
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optimal has complexity of O(k'™), where k is the
maximum domain size of design parameters,
and is intractable. A more efficient method is
presented below.

Optimal Design in CDNs

The algorithm suite consists of algorithms Col-
lectUtil and DistributeUtil, executed by each agent,
and algorithm CoDesign, executed by the system
coordinator. When coordinator starts CoDesign,
it designates one of the agents as the root agent.
Suppose the PC agent in Figure 2 (left) is the root.
Then the hypertree is effectively directed from
hypernode PC outwards. Agents corresponding
to hypernodes CPU, Monitor, and Power Supply
become leaf agents.

For CollectUtil and DistributeUtil, denote
executing agent by A, whose execution is acti-
vated by a caller agent, denoted A . If A is root,
A, is coordinator. Otherwise, A is an adjacent
agent of A on hypertree. If A_is not coordinator,
the interface between A_and A is denoted as I, .
If A has additional adjacent agents on hypertree,
they are denoted as A, A, ..., A, and their inter-
face with A jare denoted as I, I, ...,1 , respec-
tively, where subscript identifies the two agents
in arbitrary order. The kth partial design over I,

18 denoted as goklﬁ , and that over I, is denoted as
k
—ef)(‘, °

m_cV’ u_cost

d voltage

First, we introduce CollectUtil. CollectUtil
propagates utility evaluations of local designs
from leaf agents towards the root. During execu-
tion, A, receives a vector message MEU, (I ),
from each adjacent agent A, (i=1,...,w), where
subscript of MEU,  identifies sender and receiver
in that order. Elements of the vector are indexed
by partial designs over I . The kth element of the
vector, indexed by gelz ,isdenoted MEU fo . When
A, is a leaf agent (whose only adjacent agent is
A), MEU f('] represents the maximum expected
utility of partial design _69"[ , as evaluated in sub-
system V,. Denote the vector A sends to A_ as
MEU_ (I,). Finally, let glO] be the jth local design
over D..

If A is aleaf agent, it executes lines 1 through
5, and lines 12 through 17. In lines 1 through 5,
it evaluates each local design and computes its
weighted expected utility EU’(d;). In line 14, it
compares EU’(d/) for each d/ whose projection
to I, matches gﬁ, and sets MEU, (];C to the maxi-
mum. It also records the corresponding best QZO]
as §0"[ . It then sends MEU_ (I,.) to A .

If A, is aninternal agent (neither leaf nor root),
it executes lines 1 and 2, and lines 6 through 17.
In lines 7 through 9, it receives from each A, util-
ity evaluation MEU, (I)). In lines 10 and 11, it
updates EU’( gloj ) with the utility evaluation re-
ceived from A, . The updating uses A.’s evaluation
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Algorithm 1. [CollectUtil] When A is called by A _to CollectUtil, it does the following:

: J
1 for each local design QZO over D,
2 compute EU(QZOJ) by Equation (2);
3 if A_is the only adjacent agent,
4 for each local design c_ioj over D,
Vo i
5 EU'd])=a,* EU(d) ;
6 else
7 for each adjacent agent A, (i=1,...,w),
8 call A, to CollectUtil;
9 receive MEUiO(IOi) from A
10 for each local design dol over D,
w
1 77) — * j ko,
11 EU'd))=oa,*EU(d)+ >  MEU.;
i=Lproj(d) 1, ) =g,
12 if A  is an adjacent agent,
13 for each partial design _eﬂlz over I,
14 MEU} =  max  EU'(d);
c . k =0
& pros{df. 1y, )= <,
ko "7 .
15 4, =arg  max LEU (c_io)
dy ,pTOj((jd.,[m): Se
16 send MEU (I, ) to A;
17 return;

MEU ;‘0 relative to Q)ki’ the projection of 407 to

interface . If A is the root agent, it executes

lines 1 and 2, lines 6 through 11, and line 17.
Upon returning from CollectUtil, A has com-

puted EU’(d/) for each local design d; . In addi-
tion, for each partial design _eeli over interface [,
a local design §O'“L is recorded. EU’( glof ) and Qi
are used in algorithm DistributeUtil presented

below:

The a@ithm executed by the system coor-
dinator combines CollectUtil and DistributeUtil,

as specified below: @
It has been shown (Xiang et al., 2005) that

after CoDesign, a complete, globally optimal
design d* is defined by the collection of dg at
each agent. Note thatd* is not assembled anywhere
in the multiagent system. Only c_io is recorded
privately as the globally optimal, local design for
each agent. The proof of optimality is through
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induction. Once agent A in CoDesign is selected,
the hypertree is viewed as a tree rooted at A. The
length of the longest path from the root to a leaf
isthe depth of the tree. The induction is performed
on the depth. For the base case where depth = 1,
the root hypernode has one or more child hyper-
nodes, each being a leaf. It can be established that
local computations at leafs and the root, coupled
by messages between them will determine the
optimal design. The base case is then extended to
any hypertree with depth > 1. See the above ref-
erence for formal details of the proof.

Denote the number of subsystems in CDN
by g. On average, each subsystem has IDl/g
design parameters. During CollectUtility, each
agent evaluates O(x™"¢) local designs. Hence,
the computation complexity of CoDesign is O(g
k'P’¢). In comparison with exhaustively evaluating
each complete design directly, the complexity is
reduced exponentially by a ratio of
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Algorithm 2. [DistributeUtil] When A, is called by A to DistributeUrtil, it does the following:

5

Yy r Iol);

Assume o = 1/4 for i=1,...,4. after local
evaluation, leaf agent A, executes lines 4 and 5

1 if A  is the coordinator,
* g7 .
2 d, —argma]meU (gfo),
4
3 else
4 receive ek from A ;
e c
*7 /{"
5 d =8
6 for each adjacent agent A, (i=1,...,w),
7 call A, to DistributeUtil with message Proj (d
8 return;
1
1—[¥D
1 [
g

lllustration of Collaborative Design

We illustrate execution of CoDesign below with
a trivially-sized CDN, shown in Figure 3. The
multiagent system consists of agents A through
A,, for subsystems V| through V , respectively.
Variables labeled d. are private design parameters,
e.g., d, is private to A|. Variables labeled s, are
shared design parameters, e.g., s, is shared by A,
and A,. All design parameters are binary with the
domain {0, 1}. Variables labeled m, and u, are
performance measures and utilities, respectively.
The hypertree, the subnets, and agent interfaces
are shown in Figure 3.

Suppose A, is selected as the rootin CoDesign.
CollectUtil is then called on A,. A, performs
utility evaluation of local designs with EU(s,.d,)
shown in Table 1 (top left). By recursive call of
CollectUtil (line 8), each agent does the same with
its utility evaluation shown in Table 1.

Algorithm 3 [CoDesign] @

select an agent A arbitrarily;
call A to CollectUtil;
call A to DistributeUtil;

return;

Sw N

to scale utility evaluation into EU’(s ,d,) (Table
2, left). It then executes lines 12 through 17, ob-
tains MEU  (s)) in Table 2 (2" to the left), and
sends it to A,. The local designs corresponding
to MEU  .(s,) are

{680 =(s,=0,d =0) 6, =(s, =1 d =0}.

Similarly, A2 scales utility evaluation into
EU’(s,,d,) (Table 2, 3" to the left), obtains
MEU (s,) (Table 2, right), and sends it to A,
The local designs corresponding to MEU, are

{80 =(5,=0, d,=1); 6, = (s, =1, d, =0}

2

After receiving the messages, A, executes
lines 10 through 17. It updates EU(s , s,, s,.d,)
in Table 1 to EU’(s , s, s,,d,) in Table 3 (left). It
obtains MEU, (s,) shown in Table 3 (middle) and
sends it to A,. The local designs corresponding
to MEU, (s,) are
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Figure 3. A trivially-sized example CDN
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51 52
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G, My G, m,
u; u;
Table 1. Utility evaluation of local designs by each agent

S, d, EU(s,,d,) S, s, S, EU(s s, 5,,d,)
0 0 0.05 0 0 0 0 0.15
0 1 0.06 0 0 0 1 0.13
1 0 0.08 0 0 1 0 0.10
1 1 0.09 0 0 1 1 0.09

0 1 0 0 0.11

s, d, EU(s,d,) 0 1 0 1 0.17
0 0 0.06 0 1 1 0 0.09
0 1 0.08 0 1 1 1 0.08
1 0 0.10 1 0 0 0 0.12
1 1 0.07 1 0 0 1 0.09

1 0 1 0 0.15

s, q, EU(s,d,) 1 0 1 1 0.13
0 0 0.15 1 1 0 0 0.08
0 1 0.14 1 1 0 1 0.10
1 0 0.17 1 1 1 0 0.11
1 1 0.16 1 1 1 1 0.14
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Table 2. Utility weighting and maximization by A, (first two) and A, (last two)
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S, d, EU’(s,,d) MEU (s) s, d, EU’(s,d,) S, MEU,(s,)
0 0 0.15/4 0.15/4 0 0 0.06/4 0 [008/4
0 1 0.14/4 0.17/4 0 1 0.08/4 1 ]0.10/4
1 0 0.17/4 1 0 0.10/4
1 1 0.16/4 1 1 0.07/4

Afterreceiving the message from A, agent A,
executes lines 10 and 11. It updates EU(s,,d ) in
Table 1 (top left) to EU’(s,,d,) in Table 3 (right).
CollectUtil is now finished.

When DistributeUtil is called on A, it deter-
mines that complete, globally optimal design has
expected utility of 0.50/4 = 0.125, and a globally
optimal local design is d: =(s,=1,d,=1). It calls
A, to DistributeUtil with message Proj( 44* ,8) =
(s,=1). From message (s,=1), A, determines its
globally optimal local design

d, =6, =@6=1,s=1,s=1,d=1).

Table 3. Left: Utility update by agent A, Middle: Message from A . Right: Utility update by A .

(0.17+0.15+0.10)/4 = 0.42/4

0 |1 1 |0 (0.0940.15+0.10)/4 = 0.34/4
0 |1 1 1 (0.0840.15+0.10)/4 = 0.33/4
1 [0 [0 (O (0.1240.17+40.08)/4 = 0.37/4
1 10 (0 |1 (0.0940.17+0.08)/4 = 0.34/4

(0.1540.17+40.08)/4 = 0.40/4

(0.1340.1740.08)/4 = 0.38/4

(0.08+40.17+40.10)/4 = 0.35/4

(0.1040.1740.10)/4 = 0.37/4

(0.1140.1740.10)/4 = 0.38/4

(0.144-0.1740.10)/4 = 0.41/4

S, |s, | s | d, EU’(s, s, 5,,d,) s, MEU,, (s, s, | d, EU’(s,,d,)

0 [0 |0 |0 |(0.15+0.15+0.08)/4 = 0.38/4 0 [042/4 0 0 | (0.05+0.42)/4 = 0.47/4
0 |0 |0 |1 |(0.13+0.15+0.08)/4 = 0.36/4 I [041/4 0 1| (0.06+0.42)/4 = 0.48/4
0 [0 |1 |0 |(0.10+0.15+0.08)/4 = 0.33/4 1 0 | (0.08+0.41)/4 = 0.49/4
0 [0 |1 |1 |(0.09+0.15+0.08)/4 = 0.32/4 1 1| (0.09+0.41)/4 = 0.50/4
0 (1 |0 |0 | (0.11+0.15+0.10)/4 = 0.36/4
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Itcalls A, to DistributeUtil with message Proj(
c_Z; ,8,) = (s,=1), and calls A, to DistributeUtil
with message Proj(f, s,) = (s,=1). From the
message, A determines its globally optimal local
design

d: = 6113 = (Slzl’ dlzo)’

and A, determines d, = 6,, = (s,=1, d,=0).
As the result, the complete, optimal design is
distributively defined as

d*=(s=1,s,=1,s,=1,d=0,d,=0,d=1).

FUTURE RESEARCH DIRECTIONS

Future research for collaborative design will follow
several directions: CDN knowledge representation
will be refined to enhance its expressiveness for
design problems in various industries. New tech-
niques will be developed to enhance hypertree
subsystem organization, including algorithms
for distributed hypertree existence detection
and distributed hypertree construction. Decision
algorithms to further improve computational com-
plexity will be developed by exploring properties
existing in collaborative design problems.

CONCLUSION

Mostmodern industrial products are manufactured
through supply chains due to product complexity
and manufacturing specialization. Competition,
rapid productupgrading, and demand for custom-
ized products will drive design and redesign into
more frequent supply chain activities. Distributed,
collaborative, decision theoretically optimal
design by multiagent systems offers a futuristic
framework to satisfy the need of rapid design
and redesign in supply chains. Prototypes of the
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framework already exist in university labs and
are ready to be tested and deployed in industry.
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KEY TERMS AND DEFINITIONS

Collaborative Design Network: Distributed
graphical representation of industrial design
problems, including design parameters, product
working conditions, product performance mea-
sures, and subjective measures of stake-holders.

Conditional Independence: Involve gener-
ally disjoint sets of variables, X, Z, and Y, such
that dependence between X and Y is completely
mediated by Z. It is the fundamental condition
that allows graphical models to be applied suc-
cessfully todecision theoretical reasoning in large
applications.

Decision Theoretic Optimal Design: Take
into account both uncertainty in the life-cycle of
product under design and desirability of stake-
holders, and optimize according to the maximum
expected utility principle.



Design Network: Centralized graphical repre-
sentation of industrial design problems, including
design parameters, product working conditions,
product performance measures, and subjective
measures of stake-holders.

Multiagent System: Computational paradigm
where distributed intelligent programs access
local sensors, make decisions, and take actions
autonomously.
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Supply Chain: A setof industrial manufactur-
ers collectively involved in design and production
of a set of related products. Each pair of directly
interacting manufacturers is related by supplying

relationship.

Utility Function: Numerical function defined
over a set of variables, e.g., product performance
measures, that specifies a stake-holder’s subjec-
tive measure of desirability for each assignment

of the variables.
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