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Most modern industrial products are manufac-
tured through supply chains. Competition, rapid 
product upgrading, and demand for customized 
products make design and redesign important 
activities in supply chains. From the manufactur-
ing perspective, a supply chain consists of a set 
of manufacturers that cooperate in the design and 
production of a final product or multiple related 
products. Each pair of manufacturers directly 
involved in the supply chain form a supplying 
relation, with one of them being the supplier and 
the other being the consumer. In this chapter, we 
use the term consumer to refer to a manufacturer 
in the above sense, and we refer to people who 
purchase and consume the product as end-users, 
who are regarded as outside the supply chain. A 
manufacturer R1 may be the consumer relative to 
another manufacturer R2, but acts as the supplier to 
a third manufacturer R3 in the same supply chain.

Product design in supply chains are dominated 
by component-centered design, in which a final 
product is designed as a set of components. In 
computer design, a processor chip is a compo-
nent, and so is a hard-disk drive. Lower level 
components may be composed into a higher level 
component. For instance, a desktop system unit 
is a component assembled from month-board, 
processor chips, etc. Under component-centered 
design and production, each supplier supplies one 
or more components to one or more consumers.

Contemporary design in supply chains is 
essentially top-down (Huang et al., 2000). The 
manufacturer R of final product decomposes it 
into components. For each component C to be 
supplied to R, a supplier S further decomposes C 

into sub-components, and the process continues. 
With top-down design, consumers play dominant 
roles and suppliers are passive. Such designs are 
unlikely to be optimal, because consumers are 
usually not in the best position to judge options 
available to suppliers.

This chapter presents a computational frame-
work for collaborative design where suppliers 
play equally active roles in shaping design. In 
particular, we describe a multiagent framework, 
where manufacturers are collaborative designers 
aided by intelligent agents. The objective is to 
produce an overall optimal design by distributed 
decision making. The multiagent system and 
decision algorithm are elaborated.

A product has a design space described by a set 
D of variables. Each variable in D is a design 
parameter. Type of processor used in a smart 
appliance is a design parameter. We assume that 
each parameter is associated with a discrete do-
main of possible values, and a naturally continu-
ous parameter is discretized. A partial design is 
an assignment of values to variables in a proper 
subset of D, and a complete design assigns values 
to all variables in D.

A design is subject to a set of constraints. For 
instance, if length of a computer case is L and 
length of the motherboard is L’, then L>L’ should 
hold. A constraint involves a subset S ⊂ D of 
variables and specifies allowable assignments for 
S. A design is valid if it satisfies all constraints.

Different valid designs result in products with 
different performances. Maximum speed is a 
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performance measure of a car. For simplicity, we 
refer to performance of a product resultant from 
a design as performance of the design. Perfor-
mance space of a product is described by a set M 
of variables, each being a performance measure. 
We assume that each measure is associated with 
a discrete domain.

Performance of a product also depends on 
environment in which it operates. For instance, 
high level of humidity may cause a computer to 
fail. We describe such environmental factors by 
a set T of discrete variables.

People differ in preference over a given product 
performance. Subjective preference of stake-
holders (manufacturer or end-user) over design 
is represented by utility functions (Keeney & 
Raiffa, 1976). For clarity, we assume that utility 
is directly dependent on performance of product, 
not directly on design parameters. Hence, we 
denote the utility function U(M). An overview of 
methods for utility function assessment is given 
in (Farquhar, 1984).

We assume that U(M) can be decomposed 
additively (Keeney & Raiffa, 1976) as follows: 
Partition performance measures into groups M1, 
M2, .... Each Mi is associated with a utility function 
Ui(Mi) ∈ [0,1]. The overall utility function satisfies

U(M) = Σi ωi Ui(Mi), 

where each weight ωi ∈(0,1) such that Σi ωi = 1. 
As argued in (Keeney & Winterfeldt, 2007), when 
decision objectives are properly chosen, additive 
utility decompositions are widely applicable.

Design cannot ensure performance determin-
istically, due to uncertainty in product life-cycle. 
We evaluate expected utility of design instead. 
Denote a design by D = d. Denote an assignment 
of performance measures of resultant product by 
M = m. P(m|d) is the probability of performance 
m of product resultant from design d. Expected 
utility of d relative to Ui(Mi) is

EUi(d) = Σm Ui(proj(m, Mi)) P(m|d),  (1)

where proj(m, Mi) is projection of m to Mi. Ex-
pected utility of d is

EU(d) = Σi ωi (Σm Ui(proj(m, Mi)) P(m|d)).  
(2)

Given (D, T, M, U), the problem of decision-
theoretic design is to find a valid design d* that 
maximizes EU(d).

Deterministic design assumes typical maxi-
mum loads and minimum material property. It 
often leads to overdesign and inability to risk 
analysis. Probabilistic design optimizes in face 
of uncertainties (Batill et al., 2000). We extends 
probabilistic design to decision-theoretic, which 
incorporates stake-holder preference, and to col-
laborative design by distributed decision-making. 
Collaborative design may be viewed as distributed 
constraint satisfaction problems (DisCSPs), e.g., 
(Meisels & Zivan, 2007). However, DisCSPs in-
volve finding constraint satisfying solutions, but 
not optimization among them. The limitation is 
overcome by distributed constraint optimization 
(DCOP). However, most research on DCOP, e.g., 
(Petcu & Faltings, 2005) is not decision-theoretic. 
Below, we present a multiagent framework for 
decision-theoretically optimal, collaborative 
design (Xiang et al., 2004).

To compute EU(d) effectively, we represent a 
centralized design problem as a graphical model, 
called design network (DN). We then represent 
a design problem on supply chain as a collab-
orative design network (CDN). How to solve the 
design problem by distributed computation will 
be elaborated.

A DN consists of a set V of variables, a dependency 
structure G, and a set F of conditional probability 
tables (CPTs). V = D ∪ T ∪ M ∪ U is the set of 
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variables, where each ui ∈ U corresponds to a 
utility function Ui(). Each variable has a domain 
of possible values, which are naturally defined 
for elements of D, T, and M. Each ui ∈ U has a 
domain {true, false} or {t, f}.

G = (V, E) is an acyclic, directed graph (DAG), 
whose nodes are labeled by variables in V. Each 
arc in E is denoted (p,c) directed from parent p to 
child c. The following 5 types of arcs are legal:

1.  Arc (d, d’) between design parameters d, d’ 
∈D signifies that they are constrained.

2.  Arc (d, m) from design parameter d ∈D to 
performance measure m ∈ M signifies that 
m is dependent on d.

3.  Arc (t, m) from environment factor t ∈T to 
performance measure m ∈M signifies that 
m is dependent on t.

4.  Arc (m, m’) between performance measures 
m, m’ ∈M signifies that m’ is a composite 
performance measure.

5.  Arc (m, u) from performance measure m 
∈M to utility u ∈U signifies that u depends 
on performance measure m.

Figure 1 illustrates the DAG of a design net-
work, where variables in D, T, M, V are shown as 
square, circle, oval, and diamond, respectively. G 
encodes conditional independence (Pearl, 1988).

F is syntactically a set of CPTs, one for each 
node in G. Each t ∈T is a root and F(t) = P(t). 

Each m ∈M with parent set π(m) is associated with 
F(m, π(m)) = P(m|π(m)). For each d ∈D, its CPT 
corresponds to a design constraint defined below:

If d is a root in G, it is unconstrained and F(d) 
= P(d) is uniform. If d is internal, its parent set 
π(d) ⊂ D, and F(d, π(d)) = P(d|π(d)) is made of 0 
or 1. In particular, for each assignment π(d) of π(d) 
and each value d’ of d, if assignment (d’, π(d)) is 
valid, P(d’| π(d)) = 1. Otherwise, P(d’| π(d)) = 0.

Some assignments of π(d) may also be in-
valid. In general, for any subset of D of size > 
1, some assignments may be invalid, which can 
be encoded as follows: Consider 10 constrained 
binary variables d0, …, d9. Let π(d1) = {d0} and 
define P(d1|d0) as above. Then let π(d2) = { d0, d1} 
and define P(d2|d0, d1). Repeat the process until 
P(d9|d0, ..., d8) is assigned. For each di, if no value 
is invalid for any valid assignment of d0, ..., di-1, 
the corresponding step is skipped. This yields 
best case space complexity of 2*10+210 = 1044 
(all steps skipped except the last) and worst case 
complexity of 2+22+23+...+210 = 2046 (no step 
is skipped).

Each ui ∈ U corresponds to a utility func-
tion Ui(Mi). Its parent set in G is π(ui) = Mi. In 
Figure 1, utility node u_safety has π(u_safety) = 
{device_safety}. The function associated with ui
is F(u i, π(ui)) such that F(u i = t, π(ui)) = Ui(Mi) 
and F(u i = f, π(ui)) = 1 - Ui(Mi). Thus, F(u i, 
π(ui)) syntactically is a CPT while semantically 
encodes Ui(Mi).

Figure 1. DAG of design network for mobile device casing
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Formally, denote a DN specified above as S 
= (V, G, F). It is syntactically a Bayesian net-
work (Pearl, 1988), while semantically decision 
theoretic (with decisions and utilities). DN differs 
from influence diagrams (IDs) (Jensen & Nielsen, 
2007). First, in IDs, arcs into a decision node can 
be directed from both chance and decision nodes, 
signifying what is known prior to the decision. 
DN is used for online decision making, arcs from 
chance nodes (performance and environment fac-
tor) to design parameters are disallowed. Second, 
arcs into a decision node in IDs are not associated 
with quantitative knowledge. In DNs, arcs into 
design parameters from other design parameters 
signify design constraints, and are associated with 
design constraints in terms of CPTs.

Since DN is a Bayesian network, for any valid 
design d (for detection of invalid design, see 
(Xiang, 2006)), conditional probability P(x|d) 
for any x ∈ V can be computed by probabilistic 
inference. Several algorithms exist and readers 
are referred to literature, e.g., (Pearl, 1988; Xiang, 
2002; Jensen & Nielsen, 2007; Darwiche, 2009) 
for details. Through probabilistic inference, for 
each ui ∈ U, we obtain

P u t d P u t m d P m d

P u t m P m d

i i i i

i i i

m

m

i

i
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= =
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( | ) ( | )  

  == ( ) = ( )∑
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i i i i

i

U P m d EUm d( | ) ,

 

due to Equation (1), where mi is an assignment of 
Mi. From Equation (2), we can obtain

EU P u t dd
i i

i( ) = =( )∑� � | .  (3)

It is infeasible to conduct design on supply chain 
with centralized DNs, as design constraints and 

utility functions for each manufacturer are often 
proprietary. In the following, we present a forward 
looking multiagent framework, where a globally, 
decision-theoretically optimal design is obtained 
distributively.

Each supplier is the designer of its supplied 
component, and this design role is delegated to a 
computational agent (Russell & Norvig, 2010). 
These agents, one per supplier, form a multiagent 
system. The set V of system variables, is divided 
(with overlapping) among agents into subsystems. 
Denote the ith subsystem by Vi, we have V = ∪i Vi. 
Each agent Ai embodies a DN over a subsystem, 
called a design subnet, denoted as Si = (Vi, Gi, 
Fi), where Vi = Di ∪ Ti ∪ Mi ∪ Ui .

Subsystems are organized into a hypertree: 
Each hypernode corresponds to a subsystem. 
Each hyperlink corresponds to a set Iij of design 
parameters shared by subsystems Vi and Vj, where 
Iij renders Vi\Iij and Vj\Iij conditionally indepen-
dent. Iij = Di ∩ Dj is also called agent interface. 
Variables in Vi not contained in any agent interface 
are private to Ai. The hypertree satisfies run-
ning intersection: Iij must be contained in each 
subsystem on the path between Vi and Vj in the 
hypertree. Hypertree specifies direct communicate 
links between agents. See (Xiang et al., 2004) for 
more on hypertree construction. Figure 2 illustrates 
hypertree and subnet of a CDN.

Each agent is assigned a weight αi ∈ (0,1) 
where Σi αi = 1, representing compromise among 
agents over individual preferences. The collection 
of subnets {Si | i = 1,2,… } forms a CDN.

Let d be a complete design over D = ∪ i Di
and di = proj(d, Di). If each Ai obtains EU(di) by 
local inference and Equation (3), then

EU EUd d
i i

i( ) = ( )∑  (4)

can be computed. The globally optimal design is 
a valid design d* that maximizes EU(d). Hence, 
given a CDN, decision-theoretically optimal 
design is well defined. On the other hand, ex-
haustively evaluating each d and selecting the 
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optimal has complexity of O(κ|D|), where κ is the 
maximum domain size of design parameters, 
and is intractable. A more efficient method is 
presented below.

The algorithm suite consists of algorithms Col-
lectUtil and DistributeUtil, executed by each agent, 
and algorithm CoDesign, executed by the system 
coordinator. When coordinator starts CoDesign, 
it designates one of the agents as the root agent. 
Suppose the PC agent in Figure 2 (left) is the root. 
Then the hypertree is effectively directed from 
hypernode PC outwards. Agents corresponding 
to hypernodes CPU, Monitor, and Power Supply 
become leaf agents.

For CollectUtil and DistributeUtil, denote 
executing agent by A0, whose execution is acti-
vated by a caller agent, denoted Ac. If A0 is root, 
Ac is coordinator. Otherwise, Ac is an adjacent 
agent of A0 on hypertree. If Ac is not coordinator, 
the interface between Ac and A0 is denoted as I0c. 
If A0 has additional adjacent agents on hypertree, 
they are denoted as A1, A2, ..., Aw, and their inter-
face with A0 are denoted as I01, I02, ..., I0w, respec-
tively, where subscript identifies the two agents 
in arbitrary order. The kth partial design over I0i 
is denoted as e

i
k , and that over I0c is denoted as 

e
c
k .

First, we introduce CollectUtil. CollectUtil 
propagates utility evaluations of local designs 
from leaf agents towards the root. During execu-
tion, A0 receives a vector message MEUi0(I0i), 
from each adjacent agent Ai (i=1,…,w), where 
subscript of MEUi0 identifies sender and receiver 
in that order. Elements of the vector are indexed 
by partial designs over I0i. The kth element of the 
vector, indexed by e

i
k , is denoted MEU

i
k . When 

Ai is a leaf agent (whose only adjacent agent is 
A0), MEUi

k  represents the maximum expected 
utility of partial design e

i
k , as evaluated in sub-

system Vi. Denote the vector A0 sends to Ac as 
MEU0c(I0c). Finally, let d j  be the jth local design 
over Di.

If A0 is a leaf agent, it executes lines 1 through 
5, and lines 12 through 17. In lines 1 through 5, 
it evaluates each local design and computes its 
weighted expected utility EU’(d j ). In line 14, it 
compares EU’(d j ) for each d j  whose projection 
to I0c matches e

c
k
0
,  and sets MEU

c
k  to the maxi-

mum. It also records the corresponding best d j

as δ
c
k . It then sends MEU0c(I0c) to Ac.

If A0 is an internal agent (neither leaf nor root), 
it executes lines 1 and 2, and lines 6 through 17. 
In lines 7 through 9, it receives from each Ai util-
ity evaluation MEUi0(I0i). In lines 10 and 11, it 
updates EU’(d j ) with the utility evaluation re-
ceived from Ai . The updating uses Ai’s evaluation 

Figure 2. Left: Hypertree of a CDN for customized PC design; right: CPU design subnet.
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MEU
i
k  relative to e

i
k , the projection of d j  to 

interface I0i. If A0 is the root agent, it executes 
lines 1 and 2, lines 6 through 11, and line 17.

Upon returning from CollectUtil, A0 has com-
puted EU’(d j ) for each local design d j . In addi-
tion, for each partial design e

c
k  over interface I0c, 

a local design δ
c
k  is recorded. EU’(d j ) and δ

c
k  

are used in algorithm DistributeUtil presented 
below:

The algorithm executed by the system coor-
dinator combines CollectUtil and DistributeUtil, 
as specified below:

It has been shown (Xiang et al., 2005) that 
after CoDesign, a complete, globally optimal 
design d* is defined by the collection of 

0
*  at 

each agent. Note that d* is not assembled anywhere 
in the multiagent system. Only 

0
*  is recorded 

privately as the globally optimal, local design for 
each agent. The proof of optimality is through 

induction. Once agent A in CoDesign is selected, 
the hypertree is viewed as a tree rooted at A. The 
length of the longest path from the root to a leaf 
is the depth of the tree. The induction is performed 
on the depth. For the base case where depth = 1, 
the root hypernode has one or more child hyper-
nodes, each being a leaf. It can be established that 
local computations at leafs and the root, coupled 
by messages between them will determine the 
optimal design. The base case is then extended to 
any hypertree with depth > 1. See the above ref-
erence for formal details of the proof.

Denote the number of subsystems in CDN 
by g. On average, each subsystem has |D|/g 
design parameters. During CollectUtility, each 
agent evaluates O(κ|D|/g) local designs. Hence, 
the computation complexity of CoDesign is O(g 
κ|D|/g). In comparison with exhaustively evaluating 
each complete design directly, the complexity is 
reduced exponentially by a ratio of

Algorithm 1. [CollectUtil] When A0 is called by Ac to CollectUtil, it does the following:

d j

d j

d j

EU d EU dj j'( ) ( )
0 0 0
= ∗α

d j

EU d EU d MEUj j
i
k

w

i proj d I ej
oi i

k

'( ) * ( )
, ( , )

0 0 0 0
1 0 0

= +
= =
∑α

e
c
k

MEU EU d
c
k

proj I e

j

d dj j
c c

k0 0
0 0 0 0

= ( )
( )=
max '

, ,

δ
0 0

0 0 0 0

c
k

proj I e

j

d dj j
c c

k
EU d= ( )

( )=
arg max '

, ,
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We illustrate execution of CoDesign below with 
a trivially-sized CDN, shown in Figure 3. The 
multiagent system consists of agents A1 through 
A4, for subsystems V1 through V4, respectively. 
Variables labeled di are private design parameters, 
e.g., d1 is private to A1. Variables labeled sj are 
shared design parameters, e.g., s2 is shared by A2 
and A3. All design parameters are binary with the 
domain {0, 1}. Variables labeled mk and ul are 
performance measures and utilities, respectively. 
The hypertree, the subnets, and agent interfaces 
are shown in Figure 3.

Suppose A4 is selected as the root in CoDesign. 
CollectUtil is then called on A4. A4 performs 
utility evaluation of local designs with EU(s3,d4) 
shown in Table 1 (top left). By recursive call of 
CollectUtil (line 8), each agent does the same with 
its utility evaluation shown in Table 1.

Assume αi = 1/4 for i=1,…,4. after local 
evaluation, leaf agent A1 executes lines 4 and 5 
to scale utility evaluation into EU’(s1,d1) (Table 
2, left). It then executes lines 12 through 17, ob-
tains MEU13(s1) in Table 2 (2nd to the left), and 
sends it to A3. The local designs corresponding 
to MEU13(s1) are

δ δ
13
0

13
1

1 1 1 1
0 0 1 0= = = = = ={ }( , ); ( ,s d s d   . 

Similarly, A2 scales utility evaluation into 
EU’(s2,d2) (Table 2, 3rd to the left), obtains 
MEU23(s2) (Table 2, right), and sends it to A3. 
The local designs corresponding to MEU23 are

δ δ
23
0

23
1

2 2 2 2
0 1 1 0= = = = = ={ }( , ); ( ,s d s d   . 

After receiving the messages, A3 executes 
lines 10 through 17. It updates EU(s1, s2, s3,d3) 
in Table 1 to EU’(s1, s2, s3,d3) in Table 3 (left). It 
obtains MEU34(s3) shown in Table 3 (middle) and 
sends it to A4. The local designs corresponding 
to MEU34(s3) are

Algorithm 2. [DistributeUtil] When A0 is called by Ac to DistributeUtil, it does the following:

d dEU
d

j

j0 0
0

* arg max '= ( )

e
c
k

d
c
k

0 0
* = δ

0
*

Algorithm 3 [CoDesign]
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Figure 3. A trivially-sized example CDN

Table 1. Utility evaluation of local designs by each agent 

s3 d4 EU(s3,d4) s1 s2 s3 d3 EU(s1, s2, s3,d3)

0 0 0.05 0 0 0 0 0.15

0 1 0.06 0 0 0 1 0.13

1 0 0.08 0 0 1 0 0.10

1 1 0.09 0 0 1 1 0.09

0 1 0 0 0.11

s2 d2 EU(s2,d2) 0 1 0 1 0.17

0 0 0.06 0 1 1 0 0.09

0 1 0.08 0 1 1 1 0.08

1 0 0.10 1 0 0 0 0.12

1 1 0.07 1 0 0 1 0.09

1 0 1 0 0.15

s1 d1 EU(s1,d1) 1 0 1 1 0.13

0 0 0.15 1 1 0 0 0.08

0 1 0.14 1 1 0 1 0.10

1 0 0.17 1 1 1 0 0.11

1 1 0.16 1 1 1 1 0.14
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After receiving the message from A3, agent A4 
executes lines 10 and 11. It updates EU(s3,d4) in 
Table 1 (top left) to EU’(s3,d4) in Table 3 (right). 
CollectUtil is now finished.

When DistributeUtil is called on A4, it deter-
mines that complete, globally optimal design has 
expected utility of 0.50/4 = 0.125, and a globally 
optimal local design is 

4
*  = (s3=1,d4=1). It calls 

A3 to DistributeUtil with message Proj(
4
* , s3) = 

(s3=1). From message (s3=1), A3 determines its 
globally optimal local design

3 34
1* = δ  = (s1=1, s2=1, s3=1, d3=1). 

Table 2. Utility weighting and maximization by A1 (first two) and A2 (last two) 

s1 d1 EU’(s1,d1) s1 MEU13(s1) s2 d2 EU’(s2,d2) s2 MEU23(s2)

0 0 0.15/4 0 0.15 / 4 0 0 0.06/4 0 0.08 / 4

0 1 0.14/4 1 0.17 / 4 0 1 0.08/4 1 0.10 / 4

1 0 0.17/4 1 0 0.10/4

1 1 0.16/4 1 1 0.07/4

Table 3. Left: Utility update by agent A3. Middle: Message from A3. Right: Utility update by A4. 

s1 s2 s3 d3 EU’(s1, s2, s3,d3) s3 MEU34 (s3) s3 d4 EU’(s3,d4)

0 0 0 0 (0.15+0.15+0.08)/4 = 0.38/4 0 0.42 / 4 0 0 (0.05+0.42)/4 = 0.47/4

0 0 0 1 (0.13+0.15+0.08)/4 = 0.36/4 1 0.41 / 4 0 1 (0.06+0.42)/4 = 0.48/4

0 0 1 0 (0.10+0.15+0.08)/4 = 0.33/4 1 0 (0.08+0.41)/4 = 0.49/4

0 0 1 1 (0.09+0.15+0.08)/4 = 0.32/4 1 1 (0.09+0.41)/4 = 0.50/4

0 1 0 0 (0.11+0.15+0.10)/4 = 0.36/4

0 1 0 1 (0.17+0.15+0.10)/4 = 0.42/4

0 1 1 0 (0.09+0.15+0.10)/4 = 0.34/4

0 1 1 1 (0.08+0.15+0.10)/4 = 0.33/4

1 0 0 0 (0.12+0.17+0.08)/4 = 0.37/4

1 0 0 1 (0.09+0.17+0.08)/4 = 0.34/4

1 0 1 0 (0.15+0.17+0.08)/4 = 0.40/4

1 0 1 1 (0.13+0.17+0.08)/4 = 0.38/4

1 1 0 0 (0.08+0.17+0.10)/4 = 0.35/4

1 1 0 1 (0.10+0.17+0.10)/4 = 0.37/4

1 1 1 0 (0.11+0.17+0.10)/4 = 0.38/4

1 1 1 1 (0.14+0.17+0.10)/4 = 0.41/4
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It calls A1 to DistributeUtil with message Proj(

3
* , s1) = (s1=1), and calls A2 to DistributeUtil 

with message Proj(
3
* , s2) = (s2=1). From the 

message, A1 determines its globally optimal local 
design

1 13
1* = δ  = (s1=1, d1=0), 

and A2 determines  
2 23

1* = δ  = (s2=1, d2=0).
As the result, the complete, optimal design is 

distributively defined as

d* = (s1=1, s2=1, s3=1, d1=0, d2=0, d3=1). 

Future research for collaborative design will follow 
several directions: CDN knowledge representation 
will be refined to enhance its expressiveness for 
design problems in various industries. New tech-
niques will be developed to enhance hypertree 
subsystem organization, including algorithms 
for distributed hypertree existence detection 
and distributed hypertree construction. Decision 
algorithms to further improve computational com-
plexity will be developed by exploring properties 
existing in collaborative design problems.

Most modern industrial products are manufactured 
through supply chains due to product complexity 
and manufacturing specialization. Competition, 
rapid product upgrading, and demand for custom-
ized products will drive design and redesign into 
more frequent supply chain activities. Distributed, 
collaborative, decision theoretically optimal 
design by multiagent systems offers a futuristic 
framework to satisfy the need of rapid design 
and redesign in supply chains. Prototypes of the 

framework already exist in university labs and 
are ready to be tested and deployed in industry.
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Collaborative Design Network: Distributed 
graphical representation of industrial design 
problems, including design parameters, product 
working conditions, product performance mea-
sures, and subjective measures of stake-holders.

Conditional Independence: Involve gener-
ally disjoint sets of variables, X, Z, and Y, such 
that dependence between X and Y is completely 
mediated by Z. It is the fundamental condition 
that allows graphical models to be applied suc-
cessfully to decision theoretical reasoning in large 
applications.

Decision Theoretic Optimal Design: Take 
into account both uncertainty in the life-cycle of 
product under design and desirability of stake-
holders, and optimize according to the maximum 
expected utility principle.
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Design Network: Centralized graphical repre-
sentation of industrial design problems, including 
design parameters, product working conditions, 
product performance measures, and subjective 
measures of stake-holders.

Multiagent System: Computational paradigm 
where distributed intelligent programs access 
local sensors, make decisions, and take actions 
autonomously.

Supply Chain: A set of industrial manufactur-
ers collectively involved in design and production 
of a set of related products. Each pair of directly 
interacting manufacturers is related by supplying 
relationship.

Utility Function: Numerical function defined 
over a set of variables, e.g., product performance 
measures, that specifies a stake-holder’s subjec-
tive measure of desirability for each assignment 
of the variables.
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