
Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-4666-5202-6.ch151

Most modern industrial products are manufac-
tured through supply chains. Competition, rapid
product upgrading, and demand for customized
products make design and redesign important
activities in supply chains. From the manufactur-
ing perspective, a supply chain consists of a set
of manufacturers that cooperate in the design and
production of a final product or multiple related
products. Each pair of manufacturers directly
involved in the supply chain form a supplying
relation, with one of them being the supplier and
the other being the consumer. In this chapter, we
use the term consumer to refer to a manufacturer
in the above sense, and we refer to people who
purchase and consume the product as end-users,
who are regarded as outside the supply chain. A
manufacturer R1 may be the consumer relative to
another manufacturer R2, but acts as the supplier to
a third manufacturer R3 in the same supply chain.

Product design in supply chains are dominated
by component-centered design, in which a final
product is designed as a set of components. In
computer design, a processor chip is a compo-
nent, and so is a hard-disk drive. Lower level
components may be composed into a higher level
component. For instance, a desktop system unit
is a component assembled from month-board,
processor chips, etc. Under component-centered
design and production, each supplier supplies one
or more components to one or more consumers.

Contemporary design in supply chains is
essentially top-down (Huang et al., 2000). The
manufacturer R of final product decomposes it
into components. For each component C to be
supplied to R, a supplier S further decomposes C

into sub-components, and the process continues.
With top-down design, consumers play dominant
roles and suppliers are passive. Such designs are
unlikely to be optimal, because consumers are
usually not in the best position to judge options
available to suppliers.

This chapter presents a computational frame-
work for collaborative design where suppliers
play equally active roles in shaping design. In
particular, we describe a multiagent framework,
where manufacturers are collaborative designers
aided by intelligent agents. The objective is to
produce an overall optimal design by distributed
decision making. The multiagent system and
decision algorithm are elaborated.

A product has a design space described by a set
D of variables. Each variable in D is a design
parameter. Type of processor used in a smart
appliance is a design parameter. We assume that
each parameter is associated with a discrete do-
main of possible values, and a naturally continu-
ous parameter is discretized. A partial design is
an assignment of values to variables in a proper
subset of D, and a complete design assigns values
to all variables in D.

A design is subject to a set of constraints. For
instance, if length of a computer case is L and
length of the motherboard is L’, then L>L’ should
hold. A constraint involves a subset S ⊂ D of
variables and specifies allowable assignments for
S. A design is valid if it satisfies all constraints.

Different valid designs result in products with
different performances. Maximum speed is a

Yang Xiang
School of Computer Science, University of Guelph, Canada

IG
I G

LO
BAL Pd
r, we we

facturer urer
people whoeople who

t ass end-usersend-users,
e supply chain. Ae supply chain. A

consumer relative tonsumer relative
 but acts as the supplcts as the sup

R3 in the same supp in the same supp
n in supply chains arein supply chains a

-centered designentered design, in, i
designed as a set oned as a set

er design, a proceser design, a proces
, and so is a hardand so is a

omponents may be mponents may be
component. For component. For

a componea compone
essor esso

PROOFocess conocess
mers play domis play do

ssive. Such designs sive. Such des
l, because consumeecause consum

best position to judgbest position to jud
pliers.ier

pter presents a compter presents a co
collaborative desicollaborative desi

equally active rolesqually active rol
rticular, we describticular, we desc

where manufacturere manufacture
aided by intelliy int
produce an o
decision decision
decisdecis

performance measure of a car. For simplicity, we
refer to performance of a product resultant from
a design as performance of the design. Perfor-
mance space of a product is described by a set M
of variables, each being a performance measure.
We assume that each measure is associated with
a discrete domain.

Performance of a product also depends on
environment in which it operates. For instance,
high level of humidity may cause a computer to
fail. We describe such environmental factors by
a set T of discrete variables.

People differ in preference over a given product
performance. Subjective preference of stake-
holders (manufacturer or end-user) over design
is represented by utility functions (Keeney &
Raiffa, 1976). For clarity, we assume that utility
is directly dependent on performance of product,
not directly on design parameters. Hence, we
denote the utility function U(M). An overview of
methods for utility function assessment is given
in (Farquhar, 1984).

We assume that U(M) can be decomposed
additively (Keeney & Raiffa, 1976) as follows:
Partition performance measures into groups M1,
M2, Each Mi is associated with a utility function
Ui(Mi) ∈ [0,1]. The overall utility function satisfies

U(M) = Σi ωi Ui(Mi),

where each weight ωi ∈(0,1) such that Σi ωi = 1.
As argued in (Keeney & Winterfeldt, 2007), when
decision objectives are properly chosen, additive
utility decompositions are widely applicable.

Design cannot ensure performance determin-
istically, due to uncertainty in product life-cycle.
We evaluate expected utility of design instead.
Denote a design by D = d. Denote an assignment
of performance measures of resultant product by
M = m. P(m|d) is the probability of performance
m of product resultant from design d. Expected
utility of d relative to Ui(Mi) is

EUi(d) = Σm Ui(proj(m, Mi)) P(m|d), (1)

where proj(m, Mi) is projection of m to Mi. Ex-
pected utility of d is

EU(d) = Σi ωi (Σm Ui(proj(m, Mi)) P(m|d)).
(2)

Given (D, T, M, U), the problem of decision-
theoretic design is to find a valid design d* that
maximizes EU(d).

Deterministic design assumes typical maxi-
mum loads and minimum material property. It
often leads to overdesign and inability to risk
analysis. Probabilistic design optimizes in face
of uncertainties (Batill et al., 2000). We extends
probabilistic design to decision-theoretic, which
incorporates stake-holder preference, and to col-
laborative design by distributed decision-making.
Collaborative design may be viewed as distributed
constraint satisfaction problems (DisCSPs), e.g.,
(Meisels & Zivan, 2007). However, DisCSPs in-
volve finding constraint satisfying solutions, but
not optimization among them. The limitation is
overcome by distributed constraint optimization
(DCOP). However, most research on DCOP, e.g.,
(Petcu & Faltings, 2005) is not decision-theoretic.
Below, we present a multiagent framework for
decision-theoretically optimal, collaborative
design (Xiang et al., 2004).

To compute EU(d) effectively, we represent a
centralized design problem as a graphical model,
called design network (DN). We then represent
a design problem on supply chain as a collab-
orative design network (CDN). How to solve the
design problem by distributed computation will
be elaborated.

A DN consists of a set V of variables, a dependency
structure G, and a set F of conditional probability
tables (CPTs). V = D ∪ T ∪ M ∪ U is the set of

IG
I G

LO
BAL PROOF

mposedmposed
s follows: follows:

to groups Mto groups M1,
h a utility functionutility function

lity function satisfiesunction satis

ght ωii ∈(0,1) such ∈(0,1) such
(Keeney & WinterfKeeney & Winterf

objectives are propobjectives a
y decompositions arecompositions

Design cannot ensDesign cannot en
ally, due to unally, due to un

luate eluate

ign d*ign d

mes typical maxi-mes typical m
material property. aterial property

gn and inability togn and inability
ic design optimizesc design optimizes

Batill et al., 2000). ll et al., 200
design to decision-thesign to decision-t

es stake-holder prefstake-holder pre
ve design by distribuve design by distrib

aborative design maorative design m
constraint satisfactiosatisf
(Meisels & Zivan(Meisels & Ziva
volve findingolve findin
not optiminot optim
overcooverco
(DC

variables, where each ui ∈ U corresponds to a
utility function Ui(). Each variable has a domain
of possible values, which are naturally defined
for elements of D, T, and M. Each ui ∈ U has a
domain {true, false} or {t, f}.

G = (V, E) is an acyclic, directed graph (DAG),
whose nodes are labeled by variables in V. Each
arc in E is denoted (p,c) directed from parent p to
child c. The following 5 types of arcs are legal:

1. Arc (d, d’) between design parameters d, d’
∈D signifies that they are constrained.

2. Arc (d, m) from design parameter d ∈D to
performance measure m ∈ M signifies that
m is dependent on d.

3. Arc (t, m) from environment factor t ∈T to
performance measure m ∈M signifies that
m is dependent on t.

4. Arc (m, m’) between performance measures
m, m’ ∈M signifies that m’ is a composite
performance measure.

5. Arc (m, u) from performance measure m
∈M to utility u ∈U signifies that u depends
on performance measure m.

Figure 1 illustrates the DAG of a design net-
work, where variables in D, T, M, V are shown as
square, circle, oval, and diamond, respectively. G
encodes conditional independence (Pearl, 1988).

F is syntactically a set of CPTs, one for each
node in G. Each t ∈T is a root and F(t) = P(t).

Each m ∈M with parent set π(m) is associated with
F(m, π(m)) = P(m|π(m)). For each d ∈D, its CPT
corresponds to a design constraint defined below:

If d is a root in G, it is unconstrained and F(d)
= P(d) is uniform. If d is internal, its parent set
π(d) ⊂ D, and F(d, π(d)) = P(d|π(d)) is made of 0
or 1. In particular, for each assignment π(d) of π(d)
and each value d’ of d, if assignment (d’, π(d)) is
valid, P(d’| π(d)) = 1. Otherwise, P(d’| π(d)) = 0.

Some assignments of π(d) may also be in-
valid. In general, for any subset of D of size >
1, some assignments may be invalid, which can
be encoded as follows: Consider 10 constrained
binary variables d0, …, d9. Let π(d1) = {d0} and
define P(d1|d0) as above. Then let π(d2) = { d0, d1}
and define P(d2|d0, d1). Repeat the process until
P(d9|d0, ..., d8) is assigned. For each di, if no value
is invalid for any valid assignment of d0, ..., di-1,
the corresponding step is skipped. This yields
best case space complexity of 2*10+210 = 1044
(all steps skipped except the last) and worst case
complexity of 2+22+23+...+210 = 2046 (no step
is skipped).

Each ui ∈ U corresponds to a utility func-
tion Ui(Mi). Its parent set in G is π(ui) = Mi. In
Figure 1, utility node u_safety has π(u_safety) =
{device_safety}. The function associated with ui
is F(u i, π(ui)) such that F(u i = t, π(ui)) = Ui(Mi)
and F(u i = f, π(ui)) = 1 - Ui(Mi). Thus, F(u i,
π(ui)) syntactically is a CPT while semantically
encodes Ui(Mi).

Figure 1. DAG of design network for mobile device casing

IG
I G

LO
BAL PROOF

),
EachEach

rent p to p to
s are are legalle ::

n parameters d, d’n parameters d, d
y are constrained.re constrained.

esign parameter d ∈parameter d
measure m ∈ M signasure m ∈ M sign

dent on d.ent on d.
m) from environmenfrom environmen

rmance measure mce measure m
m is dependent on t.is dependent on t.
ArArc (m, m’) betwec (m, m’)
m, m’ ∈M sigm, m’ ∈M si
performancperforman
ArArc (mc (m
∈M ∈M

M with parent set π(M with parent set π(
π(m)) = P(m|π(m)).π(m)) = P(m|π(m

rresponds to a desigresponds to a de
If d is a root in f d is a root in

= P(d) is unifois un
π(d) ⊂ D, an
or 1. In por 1. In p
and eand e
vava

Formally, denote a DN specified above as S
= (V, G, F). It is syntactically a Bayesian net-
work (Pearl, 1988), while semantically decision
theoretic (with decisions and utilities). DN differs
from influence diagrams (IDs) (Jensen & Nielsen,
2007). First, in IDs, arcs into a decision node can
be directed from both chance and decision nodes,
signifying what is known prior to the decision.
DN is used for online decision making, arcs from
chance nodes (performance and environment fac-
tor) to design parameters are disallowed. Second,
arcs into a decision node in IDs are not associated
with quantitative knowledge. In DNs, arcs into
design parameters from other design parameters
signify design constraints, and are associated with
design constraints in terms of CPTs.

Since DN is a Bayesian network, for any valid
design d (for detection of invalid design, see
(Xiang, 2006)), conditional probability P(x|d)
for any x ∈ V can be computed by probabilistic
inference. Several algorithms exist and readers
are referred to literature, e.g., (Pearl, 1988; Xiang,
2002; Jensen & Nielsen, 2007; Darwiche, 2009)
for details. Through probabilistic inference, for
each ui ∈ U, we obtain

P u t d P u t m d P m d

P u t m P m d

i i i i

i i i

m

m

i

i

=()= =

= =

∑

∑

| (| ,) (|)

(|) (|)

 == () = ()∑
m

i i i i

i

U P m d EUm d(|) ,

due to Equation (1), where mi is an assignment of
Mi. From Equation (2), we can obtain

EU P u t dd
i i

i() = =()∑� � | . (3)

It is infeasible to conduct design on supply chain
with centralized DNs, as design constraints and

utility functions for each manufacturer are often
proprietary. In the following, we present a forward
looking multiagent framework, where a globally,
decision-theoretically optimal design is obtained
distributively.

Each supplier is the designer of its supplied
component, and this design role is delegated to a
computational agent (Russell & Norvig, 2010).
These agents, one per supplier, form a multiagent
system. The set V of system variables, is divided
(with overlapping) among agents into subsystems.
Denote the ith subsystem by Vi, we have V = ∪i Vi.
Each agent Ai embodies a DN over a subsystem,
called a design subnet, denoted as Si = (Vi, Gi,
Fi), where Vi = Di ∪ Ti ∪ Mi ∪ Ui .

Subsystems are organized into a hypertree:
Each hypernode corresponds to a subsystem.
Each hyperlink corresponds to a set Iij of design
parameters shared by subsystems Vi and Vj, where
Iij renders Vi\Iij and Vj\Iij conditionally indepen-
dent. Iij = Di ∩ Dj is also called agent interface.
Variables in Vi not contained in any agent interface
are private to Ai. The hypertree satisfies run-
ning intersection: Iij must be contained in each
subsystem on the path between Vi and Vj in the
hypertree. Hypertree specifies direct communicate
links between agents. See (Xiang et al., 2004) for
more on hypertree construction. Figure 2 illustrates
hypertree and subnet of a CDN.

Each agent is assigned a weight αi ∈ (0,1)
where Σi αi = 1, representing compromise among
agents over individual preferences. The collection
of subnets {Si | i = 1,2,… } forms a CDN.

Let d be a complete design over D = ∪ i Di
and di = proj(d, Di). If each Ai obtains EU(di) by
local inference and Equation (3), then

EU EUd d
i i

i() = ()∑ (4)

can be computed. The globally optimal design is
a valid design d* that maximizes EU(d). Hence,
given a CDN, decision-theoretically optimal
design is well defined. On the other hand, ex-
haustively evaluating each d and selecting the

IG
I G

LO
BAL PROOF

ang,
2009) 2009

rence, for ence, for

i i

i ii

| ,) (|),) (|) (|m d P m dd P m d
i i

(|)(|)P m dP m dP m
i i
P mP

) (i)P)) (|)|) (|)|)
i i
m d EUd EU=
i i

ee to Equation (1), wto Equation (1),
From EquationFrom Equation

rvig, 20vig,
m a multiagena multiag

ariables, is dividedariables, is div
gents into subsystemnts into subsystem

m by Vm by Vii, we have V =, we have V
dies a DN over a suies a DN over a su

ubnet,et, denoted as S denoted
= D= Di ∪ T ∪ Ti ∪ M ∪ Mii ∪ U ∪ U

tems are organizedems are organi
hypernode correspoypernode correspo

h hyperlink correspperlink corresp
parameters shared byshar
IIijij renders V i\Iij aa
dent. Ient. ij = D= D
Variables Variables
are a prpr
nin

optimal has complexity of O(κ|D|), where κ is the
maximum domain size of design parameters,
and is intractable. A more efficient method is
presented below.

The algorithm suite consists of algorithms Col-
lectUtil and DistributeUtil, executed by each agent,
and algorithm CoDesign, executed by the system
coordinator. When coordinator starts CoDesign,
it designates one of the agents as the root agent.
Suppose the PC agent in Figure 2 (left) is the root.
Then the hypertree is effectively directed from
hypernode PC outwards. Agents corresponding
to hypernodes CPU, Monitor, and Power Supply
become leaf agents.

For CollectUtil and DistributeUtil, denote
executing agent by A0, whose execution is acti-
vated by a caller agent, denoted Ac. If A0 is root,
Ac is coordinator. Otherwise, Ac is an adjacent
agent of A0 on hypertree. If Ac is not coordinator,
the interface between Ac and A0 is denoted as I0c.
If A0 has additional adjacent agents on hypertree,
they are denoted as A1, A2, ..., Aw, and their inter-
face with A0 are denoted as I01, I02, ..., I0w, respec-
tively, where subscript identifies the two agents
in arbitrary order. The kth partial design over I0i
is denoted as e

i
k , and that over I0c is denoted as

e
c
k .

First, we introduce CollectUtil. CollectUtil
propagates utility evaluations of local designs
from leaf agents towards the root. During execu-
tion, A0 receives a vector message MEUi0(I0i),
from each adjacent agent Ai (i=1,…,w), where
subscript of MEUi0 identifies sender and receiver
in that order. Elements of the vector are indexed
by partial designs over I0i. The kth element of the
vector, indexed by e

i
k , is denoted MEU

i
k . When

Ai is a leaf agent (whose only adjacent agent is
A0), MEUi

k represents the maximum expected
utility of partial design e

i
k , as evaluated in sub-

system Vi. Denote the vector A0 sends to Ac as
MEU0c(I0c). Finally, let d j be the jth local design
over Di.

If A0 is a leaf agent, it executes lines 1 through
5, and lines 12 through 17. In lines 1 through 5,
it evaluates each local design and computes its
weighted expected utility EU’(d j). In line 14, it
compares EU’(d j) for each d j whose projection
to I0c matches e

c
k
0
, and sets MEU

c
k to the maxi-

mum. It also records the corresponding best d j

as δ
c
k . It then sends MEU0c(I0c) to Ac.

If A0 is an internal agent (neither leaf nor root),
it executes lines 1 and 2, and lines 6 through 17.
In lines 7 through 9, it receives from each Ai util-
ity evaluation MEUi0(I0i). In lines 10 and 11, it
updates EU’(d j) with the utility evaluation re-
ceived from Ai . The updating uses Ai’s evaluation

Figure 2. Left: Hypertree of a CDN for customized PC design; right: CPU design subnet.

IG
I G

LO
BAL PROO

hms Col-hms Col-
by each agent, y each agent,

ed by the systemy the system
or starts CoDesign,or starts CoDesign

gents as thes a rootroo agagt
n Figure 2 (left) is thn Figure 2 (left) is t

e is effectively diree is effectively dire
outwards. Agents cutwards. Agents c

es CPU, Monitor, anPU, Monitor, a
eaf agents.eaf agents.

r CollectUtil and r CollectUtil and
ecuting agent by Acuting agent by

vated by a caller agvated by a caller a
AAcc is coordinat is coordina

ent of Aent o
terter

, we introduce Cowe introduce Co
agates utility evaluagates utility eva

rom leaf agents towm leaf agents to
tion, AA00 receives re
from each adjch a
subscript osubscri
in that in that
by pby p

MEU
i
k relative to e

i
k , the projection of d j to

interface I0i. If A0 is the root agent, it executes
lines 1 and 2, lines 6 through 11, and line 17.

Upon returning from CollectUtil, A0 has com-
puted EU’(d j) for each local design d j . In addi-
tion, for each partial design e

c
k over interface I0c,

a local design δ
c
k is recorded. EU’(d j) and δ

c
k

are used in algorithm DistributeUtil presented
below:

The algorithm executed by the system coor-
dinator combines CollectUtil and DistributeUtil,
as specified below:

It has been shown (Xiang et al., 2005) that
after CoDesign, a complete, globally optimal
design d* is defined by the collection of

0
* at

each agent. Note that d* is not assembled anywhere
in the multiagent system. Only

0
* is recorded

privately as the globally optimal, local design for
each agent. The proof of optimality is through

induction. Once agent A in CoDesign is selected,
the hypertree is viewed as a tree rooted at A. The
length of the longest path from the root to a leaf
is the depth of the tree. The induction is performed
on the depth. For the base case where depth = 1,
the root hypernode has one or more child hyper-
nodes, each being a leaf. It can be established that
local computations at leafs and the root, coupled
by messages between them will determine the
optimal design. The base case is then extended to
any hypertree with depth > 1. See the above ref-
erence for formal details of the proof.

Denote the number of subsystems in CDN
by g. On average, each subsystem has |D|/g
design parameters. During CollectUtility, each
agent evaluates O(κ|D|/g) local designs. Hence,
the computation complexity of CoDesign is O(g
κ|D|/g). In comparison with exhaustively evaluating
each complete design directly, the complexity is
reduced exponentially by a ratio of

Algorithm 1. [CollectUtil] When A0 is called by Ac to CollectUtil, it does the following:

d j

d j

d j

EU d EU dj j'() ()
0 0 0
= ∗α

d j

EU d EU d MEUj j
i
k

w

i proj d I ej
oi i

k

'() * ()
, (,)

0 0 0 0
1 0 0

= +
= =
∑α

e
c
k

MEU EU d
c
k

proj I e

j

d dj j
c c

k0 0
0 0 0 0

= ()
()=
max '

, ,

δ
0 0

0 0 0 0

c
k

proj I e

j

d dj j
c c

k
EU d= ()

()=
arg max '

, ,

IG
I G

LO
BAL PROOF

ection of ction of

OBdd jjd to to
t agent, it executesent, it executes

ugh 11, and line 17.gh 11, and line 17
m CollectUtil, Am CollectUtil, A00 hah

each local design ach local design dd j

artial designdes Ge cckke ove ov
igngn

GIδδδδδ
cc
k is recorded.corded

d in algorithm Disd in algorithm
w:

The algorithm exThe algorithm e
r combinesr combine

ied bied

i00

)
())00
jjdd
0

yxiang
Highlight

yxiang
Sticky Note
Replace text "below:" by "in Algorithm 2."

yxiang
Highlight

yxiang
Sticky Note
Replace text "below:" by "in Algorithm 3."

1 1
1

g
g
D

κ
−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
*

 .

We illustrate execution of CoDesign below with
a trivially-sized CDN, shown in Figure 3. The
multiagent system consists of agents A1 through
A4, for subsystems V1 through V4, respectively.
Variables labeled di are private design parameters,
e.g., d1 is private to A1. Variables labeled sj are
shared design parameters, e.g., s2 is shared by A2
and A3. All design parameters are binary with the
domain {0, 1}. Variables labeled mk and ul are
performance measures and utilities, respectively.
The hypertree, the subnets, and agent interfaces
are shown in Figure 3.

Suppose A4 is selected as the root in CoDesign.
CollectUtil is then called on A4. A4 performs
utility evaluation of local designs with EU(s3,d4)
shown in Table 1 (top left). By recursive call of
CollectUtil (line 8), each agent does the same with
its utility evaluation shown in Table 1.

Assume αi = 1/4 for i=1,…,4. after local
evaluation, leaf agent A1 executes lines 4 and 5
to scale utility evaluation into EU’(s1,d1) (Table
2, left). It then executes lines 12 through 17, ob-
tains MEU13(s1) in Table 2 (2nd to the left), and
sends it to A3. The local designs corresponding
to MEU13(s1) are

δ δ
13
0

13
1

1 1 1 1
0 0 1 0= = = = = ={ }(,); (,s d s d .

Similarly, A2 scales utility evaluation into
EU’(s2,d2) (Table 2, 3rd to the left), obtains
MEU23(s2) (Table 2, right), and sends it to A3.
The local designs corresponding to MEU23 are

δ δ
23
0

23
1

2 2 2 2
0 1 1 0= = = = = ={ }(,); (,s d s d .

After receiving the messages, A3 executes
lines 10 through 17. It updates EU(s1, s2, s3,d3)
in Table 1 to EU’(s1, s2, s3,d3) in Table 3 (left). It
obtains MEU34(s3) shown in Table 3 (middle) and
sends it to A4. The local designs corresponding
to MEU34(s3) are

Algorithm 2. [DistributeUtil] When A0 is called by Ac to DistributeUtil, it does the following:

d dEU
d

j

j0 0
0

* arg max '= ()

e
c
k

d
c
k

0 0
* = δ

0
*

Algorithm 3 [CoDesign]

IG
I G

LO
BAL PR

h
The The

through ugh
espectively.espectively.

gn parameters, n parameters,
bles labeled sbles labeled j are are

e.g., s., s2 is shared by Ahared by A
meters are binary witare binary w

ables labeled mbles labeled mkk an ankk
sures and utilities, rsures and utilities,

, the subnets, and ahe subnets, and a
in Figure 3.ure

pose Ase A4 is selected aelecteda
ectUtil is then calectUtil is th

utility evaluation of ity evaluation o
shown in Table shown in Table
CollectUtil (liCollectUtil (l

tility etility

PR
L PPROOF

i = 1/4 for i=1,…1/4 for i=
leaf agent Aleaf agent 1 execexe

utility evaluation itility evaluation i
ft). It then executesft). It then execute

ains MEUns MEU13(s1) in T) in
sends it to Ait to 3. Th
to MEU13(s(s11)

δδ
1313
δδδ0 =={{

yxiang
Highlight

yxiang
Sticky Note
The location of Algorithm 3 is awkward and confusing. Please relocate to be just below Algorithm 2.

Figure 3. A trivially-sized example CDN

Table 1. Utility evaluation of local designs by each agent

s3 d4 EU(s3,d4) s1 s2 s3 d3 EU(s1, s2, s3,d3)

0 0 0.05 0 0 0 0 0.15

0 1 0.06 0 0 0 1 0.13

1 0 0.08 0 0 1 0 0.10

1 1 0.09 0 0 1 1 0.09

0 1 0 0 0.11

s2 d2 EU(s2,d2) 0 1 0 1 0.17

0 0 0.06 0 1 1 0 0.09

0 1 0.08 0 1 1 1 0.08

1 0 0.10 1 0 0 0 0.12

1 1 0.07 1 0 0 1 0.09

1 0 1 0 0.15

s1 d1 EU(s1,d1) 1 0 1 1 0.13

0 0 0.15 1 1 0 0 0.08

0 1 0.14 1 1 0 1 0.10

1 0 0.17 1 1 1 0 0.11

1 1 0.16 1 1 1 1 0.14

IIGGIGIGIGIGIG
I G

LO
BAL PROOF

ocal designs by eacal designs by eac

GLOLOOGLOGLOOOGLGIII G
GIGI
IGIGGG

LOLOLOLOLOLOOO

IGIG
LOOL

GIGI G
GGIGI

,d4)

.06

0.08

0.090

s22 d2

0 0.0 0

11

δ

δ
34
0

34
1

1 2 3 3

1 2 3 3

0 1 0 1

1 1 1

= = = = ={
= = = =

(, , ,);

(, , ,

s s s d

s s s d

 == }1)
.

After receiving the message from A3, agent A4
executes lines 10 and 11. It updates EU(s3,d4) in
Table 1 (top left) to EU’(s3,d4) in Table 3 (right).
CollectUtil is now finished.

When DistributeUtil is called on A4, it deter-
mines that complete, globally optimal design has
expected utility of 0.50/4 = 0.125, and a globally
optimal local design is

4
* = (s3=1,d4=1). It calls

A3 to DistributeUtil with message Proj(
4
* , s3) =

(s3=1). From message (s3=1), A3 determines its
globally optimal local design

3 34
1* = δ = (s1=1, s2=1, s3=1, d3=1).

Table 2. Utility weighting and maximization by A1 (first two) and A2 (last two)

s1 d1 EU’(s1,d1) s1 MEU13(s1) s2 d2 EU’(s2,d2) s2 MEU23(s2)

0 0 0.15/4 0 0.15 / 4 0 0 0.06/4 0 0.08 / 4

0 1 0.14/4 1 0.17 / 4 0 1 0.08/4 1 0.10 / 4

1 0 0.17/4 1 0 0.10/4

1 1 0.16/4 1 1 0.07/4

Table 3. Left: Utility update by agent A3. Middle: Message from A3. Right: Utility update by A4.

s1 s2 s3 d3 EU’(s1, s2, s3,d3) s3 MEU34 (s3) s3 d4 EU’(s3,d4)

0 0 0 0 (0.15+0.15+0.08)/4 = 0.38/4 0 0.42 / 4 0 0 (0.05+0.42)/4 = 0.47/4

0 0 0 1 (0.13+0.15+0.08)/4 = 0.36/4 1 0.41 / 4 0 1 (0.06+0.42)/4 = 0.48/4

0 0 1 0 (0.10+0.15+0.08)/4 = 0.33/4 1 0 (0.08+0.41)/4 = 0.49/4

0 0 1 1 (0.09+0.15+0.08)/4 = 0.32/4 1 1 (0.09+0.41)/4 = 0.50/4

0 1 0 0 (0.11+0.15+0.10)/4 = 0.36/4

0 1 0 1 (0.17+0.15+0.10)/4 = 0.42/4

0 1 1 0 (0.09+0.15+0.10)/4 = 0.34/4

0 1 1 1 (0.08+0.15+0.10)/4 = 0.33/4

1 0 0 0 (0.12+0.17+0.08)/4 = 0.37/4

1 0 0 1 (0.09+0.17+0.08)/4 = 0.34/4

1 0 1 0 (0.15+0.17+0.08)/4 = 0.40/4

1 0 1 1 (0.13+0.17+0.08)/4 = 0.38/4

1 1 0 0 (0.08+0.17+0.10)/4 = 0.35/4

1 1 0 1 (0.10+0.17+0.10)/4 = 0.37/4

1 1 1 0 (0.11+0.17+0.10)/4 = 0.38/4

1 1 1 1 (0.14+0.17+0.10)/4 = 0.41/4

IIIG
IGGIGGGGGGIGIGGGG
IGIGIGIGG
I G

GGIGGIGGIGIII GIGI GIII GII GI GI GGLGGGGLGLOGLOLO
BAL PROOFcalled on Aalled on A44, it de

obally optimal desigally optimal des
50/4 = 0.125, and a= 0.125, an

ign isgn is

OO44
** = (s = (s33=1,d=1,d

uteUtil with messagtil with mes
rom message (srom message (s33=1=1

lly optimal local dely optimal local

3 3434
1* == δδ
33

 = (s = 1=1,1

33. Middle: Messagedle: Message

OBABAA
OBOBBBBBOB

LOLO
BABABABABABABAAABBB) s3

)/4 = 0.38/4)/4 = 0.38/4

+0.08)/4 = 0.36/48)/4 = 0.36/4

0.15+0.08)/4 = 0.33/4.15+0.08)/4 = 0.33/4

09+0.15+0.08)/4 = 0.32/09+0.15+0.08)/4 = 0.32

(0.11+0.15+0.10)/4 = (0.11+0.15+0.10)/4 =

1 (0.17+0.15+0.10(0.17+0.15+0.1

1 0 (0.09+0.151 0 (0.09+0.

1 1 1 (0.01 1 1 (0

1 0 0 01 0 0 0

0 00

It calls A1 to DistributeUtil with message Proj(

3
* , s1) = (s1=1), and calls A2 to DistributeUtil

with message Proj(
3
* , s2) = (s2=1). From the

message, A1 determines its globally optimal local
design

1 13
1* = δ = (s1=1, d1=0),

and A2 determines
2 23

1* = δ = (s2=1, d2=0).
As the result, the complete, optimal design is

distributively defined as

d* = (s1=1, s2=1, s3=1, d1=0, d2=0, d3=1).

Future research for collaborative design will follow
several directions: CDN knowledge representation
will be refined to enhance its expressiveness for
design problems in various industries. New tech-
niques will be developed to enhance hypertree
subsystem organization, including algorithms
for distributed hypertree existence detection
and distributed hypertree construction. Decision
algorithms to further improve computational com-
plexity will be developed by exploring properties
existing in collaborative design problems.

Most modern industrial products are manufactured
through supply chains due to product complexity
and manufacturing specialization. Competition,
rapid product upgrading, and demand for custom-
ized products will drive design and redesign into
more frequent supply chain activities. Distributed,
collaborative, decision theoretically optimal
design by multiagent systems offers a futuristic
framework to satisfy the need of rapid design
and redesign in supply chains. Prototypes of the

framework already exist in university labs and
are ready to be tested and deployed in industry.

Batill, S., Renaud, J., & Gu, X. (2000). Modeling
and simulation uncertainty in multidisciplinary
design optimization. In The 8th AIAA/NASA/
USAF/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, pages 5-8.

Darwiche, A. (2009). Modeling and Reasoning
with Bayesian Networks. Cambridge University
Press. doi:10.1017/CBO9780511811357

Farquhar, P. H. (1984). Utility assessment
methods. Management Science, 30, 1283–1300.
doi:10.1287/mnsc.30.11.1283

Huang, S., Wang, G., & Dismukes, J. (2000). A
manufacturing engineering perspective on supply
chain integration. In Proc. 10th Inter. Conf. on
Flexible Automation and Intelligent Manufactur-
ing, volume 1, pages 204-214.

Jensen, F., & Nielsen, T. (2007). Bayesian Net-
works and Decision Graphs (2nd ed.). Springer.
doi:10.1007/978-0-387-68282-2

Keeney, R., & Raiffa, H. (1976). Decisions with
Multiple Objectives. Cambridge.

Keeney, R., & Winterfeldt, D. (2007). Practi-
cal value models. In W. Edwards, R. F. Miles,
& D. Winterfeldt (Eds.), Advances in Deci-
sion Analysis: From Foundations to Applica-
tions (pp. 232–252). Cambridge. doi:10.1017/
CBO9780511611308.014

Meisels, A., & Zivan, R. (2007). Asynchronous
forward-checking for DisCSPs. Constraints, 12(1),
131–150. doi:10.1007/s10601-006-9013-5

Pearl, J. (1988). Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.

IG
I G

LO
BAL PROOF

for
w tech-w tech

hypertree ypertree
g algorithmsg algorithm

stence detection ence detection
nstruction. Decisionction. Decis

ove computational cve computational c
ped by exploring proped by exploring p

rative design probletive design probl

ost modern industriost modern industr
gh supply chgh supply ch

nufactunufac

discipliiscip
AIAA/NASAIAA/NAS

MultidisciplinaryMultidiscipli
pages 5-8.ages 5-8.

Modeling and ReaModeling and Rea
worksrk . Cambridge Umbridge

17/CBO97805118117/CBO9780511

P. H. (1984). UH. (1984). U
s.s. Management SciManagement Sci

10.1287/mnsc.30.11287/mnsc.30.1

Huang, S., Wang, Huang, S., Wang
manufacturing manufactur
chain integrain integ
Flexible Flexible
ing, v

Petcu, A., & Faltings, B. (2005). A scalable method
for multiagent constraint optimization. In Proc.
19th Inter. Joint Conf. on Artificial Intelligence,
pages 266-271.

Russell, S., & Norvig, P. (2010). Artificial Intel-
ligence: A Modern Approach. Prentice Hall.

Xiang, Y. (2002). Probabilistic Reasoning in Mul-
tiagent Systems: A Graphical Models Approach.
Cambridge, UK: Cambridge University Press.
doi:10.1017/CBO9780511546938

Xiang, Y. (2006). Optimal design with design
networks. In Proc. 3rd European Workshop on
Probabilistic Graphical Models, pages 309-316,
Prague, Czech.

Xiang, Y., Chen, J., & Deshmukh, A. (2004). A
decision-theoretic graphical model for collab-
orative design on supply chains. In A. Tawfik,
& S. Goodwin (Eds.), Advances in Artificial
Intelligence, LNAI 3060 (pp. 355–369). Springer.
doi:10.1007/978-3-540-24840-8_25

Xiang, Y., Chen, J., & Havens, W. (2005). Optimal
design in collaborative design network. In Proc.
4th Inter. Joint Conf. on Autonomous Agents and
Multiagent Systems, pages 241-248.

Bernstein, D., Zilberstein, S., & Immerman, N.
(2000). The complexity of decentralized control
of Markov decision processes. In Proc. 16th Conf.
on Uncertainty in Artificial Intelligence, pages
32-37, Stanford.

Boutilier, C. (1996). Planning, learning and coor-
dination in multiagent decision processes. In Proc.
Conf. on Theoretical Aspects of Rationality and
Knowledge, pages 195-210.

Burke, D. (2008). Exploiting Problem Structure
in Distributed Constraint Optimization with
Complex Local Problems. PhD thesis, U. College
Cork, Ireland.

Castillo, E., Gutierrez, J., & Hadi, A. (1997). Ex-
pert Systems and Probabilistic Network Models.
Springer. doi:10.1007/978-1-4612-2270-5

Hirayama, K., & Yokoo, M. (2005). The distributed
breakout algorithms. Artificial Intelligence, 161(1-
2), 89–116. doi:10.1016/j.artint.2004.08.004

Koller, D., & Friedman, N. (2009). Probabilistic
Graphical Models: Principles and Techniques.
MIT.

Koller, D., & Milch, B. (2001). Multi-agent
influence diagrams for representing and solving
games. In Proc. 17th Inter. Joint Conf. on Artificial
Intelligence, pages 1027-1034.

Kwak, J., Yang, R., Yin, Z., Taylor, M., & Tambe,
M. (2011). Teamwork in distributed POMDPs:
Execution-time coordination under model uncer-
tainty. In Proc. 10th Int. Conf. on Autonomous
Agents and Multiagent Systems, pages 1261-1262.

Modi, P., Shen, W., Tambe, M., & Yokoo, M.
(2005). Adopt: asynchronous distributed con-
straint optimization with quality guarantees.
Artificial Intelligence, 161(1-2), 149–180.
doi:10.1016/j.artint.2004.09.003

Neapolitan, R. (1990). Probabilistic Reasoning
in Expert Systems. John Wiley and Sons.

Pynadath, D., & Tambe, M. (2002). The com-
municative multiagent team decision problem:
Analyzing teamwork theories and models. Journal
of Artificial Intelligence Research, 16, 389–423.

Rao, A., & Georgeff, M. (1995). Bdi agents: from
theory to practice. In Proc. 1st Inter. Conf. on
Multi-Agent Systems, pages 312-319.

Silaghi, M., & Faltings, B. (2005). Asynchro-
nous aggregation and consistency in distributed
constraint satisfaction. Artificial Intelligence,
161(1-2), 25–54. doi:10.1016/j.artint.2004.10.003

IG
I G

LO
BAL Pal
nger.nger.

05). Optimal05). Optimal
etwork. In Proc. ork. In Proc

nomous Agents andnomous Agents and
s 241-248.41

in, D., Zilberstein, , D., Zilberstein,
0). The complexity0). The com

f Markov decision pMarkov decision
on Uncertainty inon Uncertainty
32-37, Stanfor32-37, Stanfor

lierlie

PROOF
9).). ProbPr

es and Techniand Tech

h, B. (2001). Mul. (2001). M
ms for representing ams for representing

. 17th Inter. Joint Conth Inter. Join
e, pages 1027-1034e, pages 1027-103

, J., Yang, R., Yin, ZJ., Yang, R., Yin
(2011). Teamwork(2011). Teamwork

Execution-time coocution-time co
tainty. In Proc.In Pr
Agents and MdM

Modi, Modi,
(200(20

Velagapudi, P., Varakantham, P., Sycara, K., &
Scerri, P. (2011). Distributed model shaping for
scaling to decentralized POMDPs with hundreds
of agents. In Proc. Int. Joint Conf. on Autonomous
Agents and Multi-Agent Systems, pages 955-962.

Vinyals, M., Rodriguez-Aguilar, J., & Cerqui-
des, J. (2010). Constructing a unifying theory
of dynamic programming DCOP algorithms via
the generalized distributive law. J. Autonomous
Agents and Multi-Agent Systems, 22(3), 439–464.
doi:10.1007/s10458-010-9132-7

Xiang, Y. (2007). Tractable optimal multiagent
collaborative design. In Proc. IEEE/WIC/ACM
Inter. Conf. on Intelligent Agent Technology,
pages 257-260.

Xiang, Y., & Hanshar, F. (2010). Comparison of
tightly and loosely coupled decision paradigms
in multiagent expedition. International Jour-
nal of Approximate Reasoning, 51, 600–613.
doi:10.1016/j.ijar.2010.01.016

Xiang, Y., & Hanshar, F. (2011). Partial evalua-
tion for planning in multiagent expedition. In C.
Butz, & P. Lingras (Eds.), Advances in Artificial
Intelligence, LNAI 6657 (pp. 420–432). Springer.
doi:10.1007/978-3-642-21043-3_50

Xiang, Y., & Hanshar, F. (2012). Multiagent deci-
sion by partial evaluation. In L. Kosseim, & D.
Inkpen (Eds.), Advances in Artificial Intelligence,
LNAI 7310 (pp. 242–254). Springer-Verlag Berlin
Heidelberg. doi:10.1007/978-3-642-30353-1_21

Xiang, Y., & Janzen, M. (2006). A computa-
tional framework for package planning. Inter. J.
Knowledge-Based and Intelligent Engineering
Systems, 10(2), 93–104.

Xiang, Y., Jensen, F., & Chen, X. (2006). Inference
in multiply sectioned Bayesian networks: Meth-
ods and performance comparison. IEEE Trans.
Systems, Man, and Cybernetics-Part B, 36(3),
546–558. doi:10.1109/TSMCB.2005.861862

Xiang, Y., & Lesser, V. (2003). On the role of
multiply sectioned Bayesian networks to coop-
erative multiagent systems. IEEE Trans. Systems,
Man, and Cybernetics-Part A, 33(4), 489–501.
doi:10.1109/TSMCA.2003.809220

Xiang, Y., Smith, J., & Kroes, J. (2011). Multiagent
Bayesian forecasting of structural time-invariant
dynamic systems with graphical models. Inter-
national Journal of Approximate Reasoning, 52,
960–977. doi:10.1016/j.ijar.2010.07.004

Xiang, Y., Ye, C., & Stacey, D. (2002). Applica-
tion of Bayesian networks to shopping assistance.
In R. Cohen, & B. Spencer (Eds.), Advances in
Artificial Intelligence, LNAI 2338 (pp. 344–348).
doi:10.1007/3-540-47922-8_31

Zhang, W., Wang, G., Xing, Z., & Wittenburg,
L. (2005). Distributed stochastic search and dis-
tributed breakout: properties, comparison and
applications to constraint optimization problems in
sensor networks. Artificial Intelligence, 161(1-2),
55–87. doi:10.1016/j.artint.2004.10.004

Collaborative Design Network: Distributed
graphical representation of industrial design
problems, including design parameters, product
working conditions, product performance mea-
sures, and subjective measures of stake-holders.

Conditional Independence: Involve gener-
ally disjoint sets of variables, X, Z, and Y, such
that dependence between X and Y is completely
mediated by Z. It is the fundamental condition
that allows graphical models to be applied suc-
cessfully to decision theoretical reasoning in large
applications.

Decision Theoretic Optimal Design: Take
into account both uncertainty in the life-cycle of
product under design and desirability of stake-
holders, and optimize according to the maximum
expected utility principle.

IG
I G

LO
BAL PROOF

evalua-evalua
tion. In C. on. In C.

s in Artificial s in Artificia
0–432). Springer. 432). Springer.

43-3_50_50

. (2012). Multiagen. (2012). Multiagen
uation. In L. Kosseation. In L. Kosse

dvances in Artificialces in Artificial
p. 242–254). Springp. 242–254). Spring

g. doi:10.1007/978-g. doi:10.1007/978

g, Y., & Janzen, MY., & Janzen,
nal framework fornal framework fo

wledge-Basedwledge-Based
1010(2)(

-inv-inv
models.odel InIn

e Reasoninge Reasoning, 52,
2010.07.004010.07.004

acey, D. (2002). Apacey, D. (2002). A
works to shopping asorks to shopping as

B. Spencer (Eds.), pencer (Eds A
lligence, LNAI 2338lligence, LNAI 2338

07/3-540-47922-8_3-540-47922

g, W., Wang, G., XW., Wang, G.,
(2005). Distributed. Dist

tributed breakouttributed breakou
applications to applications
sensor netwsor netw
55–87. d55–87.

Design Network: Centralized graphical repre-
sentation of industrial design problems, including
design parameters, product working conditions,
product performance measures, and subjective
measures of stake-holders.

Multiagent System: Computational paradigm
where distributed intelligent programs access
local sensors, make decisions, and take actions
autonomously.

Supply Chain: A set of industrial manufactur-
ers collectively involved in design and production
of a set of related products. Each pair of directly
interacting manufacturers is related by supplying
relationship.

Utility Function: Numerical function defined
over a set of variables, e.g., product performance
measures, that specifies a stake-holder’s subjec-
tive measure of desirability for each assignment
of the variables.

IG
I G

LO
BAL PROOF

pp
holder’sholde

or each assigneach assi

