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INTRODUCTION

Graphical models such as Bayesian networks (BNs) and decomposable Markov networks
(DMNs) have been widely applied to probabilistic reasoning in intelligent systems. Figure 1
illustrates a BN and a DMN on a trivial uncertain domain: Virus can damage computer
files and so can a power glitch. Power glitch also causes VCR to reset. The BN in (a)
has four nodes, corresponding to four binary variables (taking values from {true, false}.
The graph structure encodes a set of dependence and independence assumptions, e.g., that
f is directly dependent on v and p but is independent of r once the value of p is known.
Each node is associated with a conditional probability distribution conditioned on its par-
ent nodes, e.g., P (f |v, p). The joint probability distribution is the product P (v, p, f, r) =
P (f |v, p)P (r|p)P (v)P (p). The DMN in (b) has two groups of nodes that are maximally
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Figure 1: (a) A trivial example BN. (b) A corresponding DMN.

pairwise connected, called cliques. Each clique is associated with a probability distri-
bution, e.g., clique {v, p, f} is assigned P (v, p, f). The joint probability distribution is
P (v, p, f, r) = P (v, p, f)P (r, p)/P (p), where P (p) can be derived from one of the clique
distributions. The networks can be used to reason about, say, whether there are virus in the
computer system after observations on f and r are made.

Construction of such networks by elicitation from domain experts can be very time-
consuming. Automatic discovery [Nea04] by exhaustively testing all possible network struc-
tures is intractable. Hence, heuristic search must be used. This chapter examines a class of
graphical models that cannot be discovered using the common heuristics.
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BACKGROUND

Let V be a set of n discrete variables x1, . . . , xn (in what follows we will focus on finite,
discrete variables). Each variable xi has a finite space Si = {xi,1, xi,2, . . . , xi,Di

} of cardinality
Di. When there is no confusion, we write xi,j as xij for simplicity. The space of a set V
of variables is defined by the Cartesian product of the spaces of all variables in V , that is,
SV = S1× ...×Sn (or

∏
i Si). Thus, SV contains the tuples made of all possible combinations

of values of the variables in V . Each tuple is called a configuration of V , denoted by v =
(x1, . . . , xn).

Let P (xi) denote the probability function over xi and P (xij) denote the probability
value P (xi = xij). A probabilistic domain model (PDM) M over V defines the probability
values of every configuration for every subset A ⊆ V . Let P (V ) or P (x1, . . . , xn) denote
the joint probability distribution (JPD) function over x1, . . . , xn and P (x1j1 , . . . , xnjn

) denote
the probability value of a configuration (x1j1, . . . , xnjn

). We refer to the function P (A) over
A ⊂ V as the marginal distribution over A and P (xi) as the marginal distribution of xi. We
refer to P (x1j1, . . . , xnjn

) as a joint parameter and P (xij) as a marginal parameter of the
corresponding PDM over V .

For any three disjoint subsets of variables W , U and Z in V , subsets W and U are called
conditionally independent given Z, if

P (W |U,Z) = P (W |Z)

for all possible values in W , U and Z such that P (U,Z) > 0. Conditional independence
signifies the dependence mediated by Z. This allows the dependence among W ∪ U ∪ Z to
be modeled over subsets W ∪ Z and U ∪ Z separately. Conditional independence is the key
property explored through graphical models.

Subsets W and U are said to be marginally independent (sometimes referred to as un-
conditionally independent) if

P (W |U) = P (W )

for all possible values W and U such that P (U) > 0. When two subsets of variables are
marginally independent, there is no dependence between them. Hence, each subset can be
modeled independently without losing information.

If each variable xi in a subset A is marginally independent of A \ {xi}, the variables in A
are said to be marginally independent. The following proposition reveals a useful property
called factorization when this is the case.

Proposition 1 If each variable xi in a subset A is marginally independent of A \ {xi}, then

P (A) =
∏

xi∈A

P (xi).

Variables in a subset A are called generally dependent if P (B|A \ B) 6= P (B) for every
proper subset B ⊂ A. If a subset of variables is generally dependent, its proper subsets
cannot be modeled independently without losing information. A generally dependent subset
of variables, however, may display conditional independence within the subset. For example,
consider A = {x1, x2, x3}. If P (x1, x2|x3) = P (x1, x2), i.e., {x1, x2} and x3 are marginally
independent, then A is not generally dependent. On the other hand, if

P (x1, x2|x3) 6= P (x1, x2), P (x2, x3|x1) 6= P (x2, x3), P (x3, x1|x2) 6= P (x3, x1),
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then A is generally dependent.
Variables in A are collectively dependent if, for each proper subset B ⊂ A, there exists

no proper subset C ⊂ A \ B that satisfies P (B|A \ B) = P (B|C). Collective dependence
prevents conditional independence and modeling through proper subsets of variables. Table 1

Table 1: A PDM where v = (x1, x2, x3, x4).

v P (v) v P (v) v P (v) v P (v)
(0, 0, 0, 0) 0.0586 (0, 1, 0, 0) 0.0517 (1, 0, 0, 0) 0.0359 (1, 1, 0, 0) 0.0113
(0, 0, 0, 1) 0.0884 (0, 1, 0, 1) 0.0463 (1, 0, 0, 1) 0.0271 (1, 1, 0, 1) 0.0307
(0, 0, 1, 0) 0.1304 (0, 1, 1, 0) 0.0743 (1, 0, 1, 0) 0.0451 (1, 1, 1, 0) 0.0427
(0, 0, 1, 1) 0.1426 (0, 1, 1, 1) 0.1077 (1, 0, 1, 1) 0.0719 (1, 1, 1, 1) 0.0353

shows the JPD over a set of variables V = {x1, x2, x3, x4}. The four variables are collectively
dependent, e.g.,

P (x1,1|x2,0, x3,1, x4,0) = 0.257

and
P (x1,1|x2,0, x3,1) = P (x1,1|x2,0, x4,0) = P (x1,1|x3,0, x4,0) = 0.3.

MAIN THRUST OF THE CHAPTER

Pseudo-Independent (PI) Models

A pseudo-independent (PI) model is a PDM where proper subsets of a set of collectively
dependent variables display marginal independence [XWC97]. The basic PI model is a full
PI model:

Definition 2 (Full PI model) A PDM over a set V (|V | ≥ 3) of variables is a full PI

model if the following properties (called axioms of full PI models) hold:

(SI) Variables in each proper subset of V are marginally independent.

(SII) Variables in V are collectively dependent.

Table 1 shows the JPD of a binary full PI model, where V = {x1, x2, x3, x4}. Its marginal
parameters are

P (x1,0) = 0.7, P (x2,0) = 0.6, P (x3,0) = 0.35, P (x4,0) = 0.45.

Any subset of three variables are marginally independent, e.g.,

P (x1,1, x2,0, x3,1) = P (x1,1) P (x2,0) P (x3,1) = 0.117.

The four variables are collectively dependent as explained above.
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Table 2: The color model where v = (x1, x2, x3).

v P (v) v P (v)
(red, red, red) 0.25 (green, red, red) 0

(red, red, green) 0 (green, red, green) 0.25
(red, green, red) 0 (green, green, red) 0.25

(red, green, green) 0.25 (green, green, green) 0

Table 2 is the JPD of the color model given earlier, where V = {x1, x2, x3}. The marginal
independence can be verified by

P (x1 = red) = P (x2 = red) = P (x2 = red) = 0.5,

P (x1 = red|x2) = P (x1 = red|x3) = P (x2 = red|x3) = 0.5

and the collective dependence can be seen from P (x1 = red|x2 = red, x3 = red) = 1.
By relaxing condition (SI) on marginal independence, full PI models are generalized into

partial PI models, which are defined through marginally independent partition [XHCH00]
introduced below:

Definition 3 (Marginally independent partition) Let V (|V | ≥ 3) be a set of vari-
ables, and B = {B1, . . . , Bm} (m ≥ 2) be a partition of V . B is a marginally independent

partition if, for every subset A = {xk
i |x

k
i ∈ Bk, k = 1, . . . ,m}, variables in A are marginally

independent. Each block B i is called a marginally independent block.

Intuitively, a marginally independent partition groups variables in V into m blocks. If one
forms a subset A by taking one element from each block, then variables in A are marginally
independent. Unlike full PI models, in a partial PI model, it is not necessary that every
proper subset is marginally independent. Instead, that requirement is replaced with the
marginally independent partition.

Definition 4 (Partial PI model) A PDM over a set V (|V | ≥ 3) of variables is a partial

PI model if the following properties (called axioms of partial PI models) hold:

(S ′

I) V can be partitioned into two or more marginally independent blocks.

(SII) Variables in V are collectively dependent.

Table 3 shows the JPD of a partial PI model over two ternary variables and one binary
variable, where V = {x1, x2, x3}. Its marginal parameters are

P (x1,0) = 0.3, P (x1,1) = 0.2, P (x1,2) = 0.5,

P (x2,0) = 0.3, P (x2,1) = 0.4, P (x2,2) = 0.3,

P (x3,0) = 0.4, P (x3,1) = 0.6.
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Table 3: A partial PI model where v = (x1, x2, x3).

v P (v) v P (v) v P (v) v P (v) v P (v) v P (v)
(0, 0, 0) 0.05 (0, 1, 1) 0.11 (1, 0, 0) 0.05 (1, 1, 1) 0.08 (2, 0, 0) 0.10 (2, 1, 1) 0.11
(0, 0, 1) 0.04 (0, 2, 0) 0.06 (1, 0, 1) 0.01 (1, 2, 0) 0.03 (2, 0, 1) 0.05 (2, 2, 0) 0.01
(0, 1, 0) 0.01 (0, 2, 1) 0.03 (1, 1, 0) 0 (1, 2, 1) 0.03 (2, 1, 0) 0.09 (2, 2, 1) 0.14

The marginally independent partition is {{x1}, {x2, x3}}. Variable x1 is marginally indepen-
dent of each variable in the other block, e.g.,

P (x1,1, x2,0) = P (x1,1) P (x2,0) = 0.06.

However, variables within block {x2, x3} are dependent, e.g.,

P (x2,0, x3,1) = 0.1 6= P (x2,0) P (x3,1) = 0.18.

The three variables are collectively dependent, e.g.,

P (x1,1|x2,0, x3,1) = 0.1 and P (x1,1|x2,0) = P (x1,1|x3,1) = 0.2.

Similarly,
P (x2,1|x1,0, x3,1) = 0.61, P (x2,1|x1,0) = 0.4, P (x2,1|x3,1) = 0.5.

Variables that form either a full or a partial PI model may be a proper subset of V ,
where the remaining variables display normal dependence and independence relations. In
such a case, the subset is called an embedded PI submodel. A PDM can contain one or more
embedded PI submodels.

Definition 5 (Embedded PI submodel) Let a PDM be over a set V of generally de-
pendent variables. A proper subset V ′ ⊂ V (|V ′| ≥ 3) of variables forms an embedded PI
submodel if the following properties (axioms of embedded PI models) hold:

(SIII) V ′ forms a partial PI model.

(SIV ) The marginal independent partition {B1, . . . , Bm} of V ′ extends into V . That is, there
is a partition {A1, . . . , Am} of V such that Bi ⊆ Ai, (i = 1, ..,m), and for each x ∈ Ai

and each y ∈ Aj (i 6= j), x and y are marginally independent.

Definition 5 requires that variables in V are generally dependent. It eliminates the
possibility that a proper subset is marginally independent of the rest of V .

Table 4 shows the jpd of a PDM with an embedded PI model over variables x1, x2 and
x3, where the marginals are

P (x1,0) = 0.3, P (x2,0) = 0.6, P (x3,0) = 0.3, P (x4,0) = 0.34, P (x5,0) = 0.59.

The marginally independent partition of the embedded PI model is

{B1 = {x1}, B
2 = {x2, x3}}.
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Table 4: A PDM containing an embedded PI model where v = (x1, x2, x3, x4, x5).

v P (v) v P (v) v P (v) v P (v)
(0, 0, 0, 0, 0) 0 (0, 1, 0, 0, 0) .0018 (1, 0, 0, 0, 0) .0080 (1, 1, 0, 0, 0) .0004
(0, 0, 0, 0, 1) 0 (0, 1, 0, 0, 1) .0162 (1, 0, 0, 0, 1) .0720 (1, 1, 0, 0, 1) .0036
(0, 0, 0, 1, 0) 0 (0, 1, 0, 1, 0) .0072 (1, 0, 0, 1, 0) .0120 (1, 1, 0, 1, 0) .0006
(0, 0, 0, 1, 1) 0 (0, 1, 0, 1, 1) .0648 (1, 0, 0, 1, 1) .1080 (1, 1, 0, 1, 1) .0054
(0, 0, 1, 0, 0) .0288 (0, 1, 1, 0, 0) .0048 (1, 0, 1, 0, 0) .0704 (1, 1, 1, 0, 0) .0864
(0, 0, 1, 0, 1) .0072 (0, 1, 1, 0, 1) .0012 (1, 0, 1, 0, 1) .0176 (1, 1, 1, 0, 1) .0216
(0, 0, 1, 1, 0) .1152 (0, 1, 1, 1, 0) .0192 (1, 0, 1, 1, 0) .1056 (1, 1, 1, 1, 0) .1296
(0, 0, 1, 1, 1) .0288 (0, 1, 1, 1, 1) .0048 (1, 0, 1, 1, 1) .0264 (1, 1, 1, 1, 1) .0324

Outside the PI submodel, B1 extends to include x4 and B2 extends to include x5. Each
variable in one block is marginally independent of each variable in the other block, e.g.,

P (x1,1, x5,0) = P (x1,1) P (x5,0) = 0.413.

Variables in the same block are pairwise dependent, e.g.,

P (x2,1, x3,0) = 0.1 6= P (x2,1) P (x3,0) = 0.12.

The three variables in the submodel are collectively dependent, e.g.,

P (x1,1|x2,0, x3,1) = 0.55, P (x1,1|x2,0) = P (x1,1|x3,1) = 0.7.

However, x4 is independent of other variables given x1 and x5 is independent of other variables
given x3, displaying the normal conditional independence relation, e.g.,

P (x5,1|x2,0, x3,0, x4,0) = P (x5,1|x3,0) = 0.9.

PDMs with embedded PI submodels are the most general type of PI models.

Discovery of PI Models

Given a data set over n variables, the number of possible network structures is super-
exponential. To make the discovery tractable, a common heuristic method is the single-link
lookahead search. Learning starts with some initial graphical structure. Successive graphical
structures representing different sets of conditional independence assumptions are adopted.
Each adopted structure differs from its predecessor by a single link and improves a score
metric optimally.

PI models pose a challenge to such algorithms. It has been shown [XWC96] that when
the underlying PDM of the given data is PI, the graph structure returned by such algorithms
misrepresents the actual dependence relations of the PDM. Intuitively, these algorithms up-
date the current graph structure based on some tests for local dependence (see the next
paragraph for justification). The marginal independence of a PI model misleads these algo-
rithms into ignoring the collective dependence.
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Consider a full PI model over n binary variables x1, ..., xn where n ≥ 3. Each xi (1 ≤
i < n) takes value red or green with equal chance. Variable xn takes red if even number
of other variables take red and takes green otherwise. If the search starts with an empty
graph, then the single-link lookahead will return an empty graph because every proper subset
of variables is marginally independent. From the values of any n-1 variables, this learned
model will predict the n’th variable as equally likely to be red or green. In fact, when the
values of any n-1 variables are known, the value of the n’th variable can be determined with
certainty! When one has a life or death decision to make, one certainly does not want to use
such incorrectly learned model.

Most known algorithms use a scoring metric and a search procedure. The scoring metric
evaluates the goodness-of-fit of a structure to the data, and the search procedure generates
alternative structures and selects the best based on the evaluation. Although not all scoring
metrics explicitly test for local dependence, they are implicitly doing so or approximately
doing so: Bayesian metrics (based on posterior probability of the model given the data with
variations on possible prior probability of the model), description length metrics, and entropy
metrics have been used by many [HC90, Bun91, CH92, LB94, MR94, HGC95, Bou94, WX94].
A Bayesian metric can often be constructed in a way that is equivalent to a description length
metric, or at least approximately equal. See [Che93, Scl94] for detailed discussion. Based on
the minimum description length principle, Lam and Bacchus [LB94] showed that the data
encoding length is a monotonically increasing function of the Kullback-Leibler cross entropy
between the distribution defined by a BN model and the true distribution. It has also been
shown [XWC97] that the cross entropy of a DMN can be expressed as the difference between
the entropy of the distribution defined by the DMN and the entropy of the true distribution
which is a constant given a static domain. Entropy has also been used as a means to
test conditional independence in learning BNs [RP87]. Therefore, the maximization of the
posterior probability of a graphical model given a database [CH92, HGC95], the minimization
of description length [LB94], the minimization of cross entropy between a graphical model
and the true model [LB94], the minimization of entropy of a graphical model [HC90, WX94],
and conditional independence tests are all closely related. The inability of several common
algorithms to discover PI models is another testimony of this close relationship.

The key to correctly discover a PI model from data is to identify collective dependence.
In particular, given a large problem domain which contains embedded PI submodels, the
key to discovery is to identify collective dependence among variables in each submodel. This
requires multi-link lookahead search, during which candidate graph structures with k > 1
additional links are examined before the best candidate is adopted. The multiple additional
links define their endpoints as a subset of variables whose potential collective dependence is
tested explicitly. Once such collective dependence is confirmed, the subset will be identified
as a PI submodel. Clearly, if improperly organized, multi-link lookahead search can become
intractable. Hu and Xiang [HX97] presented an algorithm, which applys single-link lookahead
search and low-order (small k value) multi-link lookahead search as much as possible, and
uses high-order (large k value) multi-link lookahead search only when necessary.

An experiment using data from social survey was reported in [XHCH00]. A PI model was
discovered from the data on Harmful Drinking (see Table 5). The discovered DMN graphical
structure is shown in Figure 2. The discovered PI model performed 10% better in prediction
than the model discovered using single-link lookahead search.
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Table 5: Variables in social survey data on Harmful Drinking

i V ariable Question
0 HarmSocial Did alcohol harm friendships/social life?
1 HarmHealth Did alcohol harm your physical health?
2 HrmLifOutlk Did alcohol harm your outlook on life?
3 HarmLifMrig Did alcohol harm your life or marriage?
4 HarmWorkSty Did alcohol harm your work, studies, etc?
5 HarmFinance Did alcohol harm your financial position?
6 NumDrivrDrink How many drinks should a designated driver have?
7 NmNonDrvrDrink How many drinks should non− designated driver have?

NumDrivrDrink

HrmLifOutlk

HarmHealth

NmNonDrvrDrink

HarmFinance

HarmWorkSty

HarmLifMrigHarmSocial

Figure 2: DMN learned from data on Harmful drinking.

FUTURE TRENDS

A number of issues are still open for research. A PI submodel is highly constrained by
its collective dependence. Therefore, a PI submodel over k binary variables is specified by
less than 2n − 1 probability parameters. This means that a PI submodel, though collective
dependent, is simpler than a conventional complete graphical submodel. Research is needed
to quantify this difference. The outcome will allow more precise scoring metrics to be devised
in the next generation of discovery algorithms.

Collective dependence in PI models does not allow the conventional factorization, which
is a powerful tool in both knowledge representation and probabilistic inference with graphical
models. On the other hand, PI submodels are simple submodels as argued above. Research
into formalisms and techniques that can explore this simplicity in both representation and
inference is needed.

Causal models are stronger models than dependence models as they provides a basis for
successful manipulation and control. What is the relation between PI models and its causal
counterpart? How can one discover the causal structure within a PI model? Answers to
these questions will make useful contributions to knowledge discovery both theoretically as
well as practically.
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CONCLUSION

Research in the last decade indicated that PI models exist in practice. This fact complements
the theoretical analysis that for any given set of n ≥ 3 variables, there exist infinitely
many PI models, each of which is characterized by a distinct JPD. Knowledge discovery
by definition is an open-minded process. The newer generation of discovery algorithms
equipped with the theoretical understanding of PI models are more open-minded. They
admit PI models when the data say so, thus improving the quality of knowledge discovery
and allowing more accurate predictions from more accurately discovered models. The first
generation of algorithms that are capable of discovering PI models demonstrates that, with
a reasonable amount of extra computation (relative to single-link lookahead search), many
PI models can be effectively discovered and effectively used in inference.
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TERMS AND THEIR DEFINITION

Conditional independence: Two sets X and Y of variables are conditionally independent
given a third set Z, if knowledge on Z (what value Z takes) makes knowledge on Y
irrelevant to guessing the value of X.

Marginal independence: Two sets X and Y of variables are marginally independent, if
knowledge on Y is irrelevant to guessing the value of X.

Collective dependence: A set V of variables is collectively dependent if V cannot be split
into nonempty subsets X and Y such that X and Y are marginally independent, nor
can V be partitioned into nonempty subsets X, Y and Z such that X and Y are
conditionally independent given Z.

Full PI model: A full PI model is a PI model where every proper subset of variables is
marginally independent. Full PI models are the most basic PI models.

Partial PI model: A partial PI model is a PI model where some proper subsets of variables
are not marginally independent. A partial PI model is also a full PI model, but the
converse is not true. Hence, partial PI models are more general than full PI models.

Embedded PI submodel: An embedded PI submodel is a full or partial PI model over a
proper subset of domain variables. The most general PI models are those over large
problem domains which contain embedded PI submodels.
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