
Generating Dependence Structure of
Multiply Sectioned Bayesian Networks

Y. Xiang and X. An
Dept. of Computing and Information Science

University of Guelph, Guelph, Ontario, Canada N1G 2W1
yxiang@snowhite.cis.uoguelph.ca, xan@uoguelph.ca

Abstract

Multiply sectioned Bayesian networks (MSBNs) pro-
vide a general and exact framework for multi-agent dis-
tributed interpretation. To investigate algorithms for
inference and other operations , experimental MSBNs
are necessary. However, it is very time consuming and
tedious to construct MSBNs manually. In this work,
we investigate pseduo-random generation of MSBNs.
Our focus is on the generation of MSBN structures.

Pseduo-random generation of MSBN structures can be
performed by a generate-and-test approach. We ex-
pect such approach to have a very low probability of
generating legal MSBN structures that satisfy all the
technical constraints, and hence will be ineÆcient. We
propose a set of algorithms that always generates legal
MSBN dependence structures.

1 Introduction

Multiply sectioned Bayesian networks (MSBNs) pro-
vides a coherent framework for probabilistic inference
in a large domain (XPB93). It can be applied un-
der a single agent paradigm (XPE+93) or a coopera-
tive multi-agent paradigm (Xia96). It supports hier-
archical model-based reasoning (SRA90) and object-
oriented inference (KP97). To investigate issues in-
volved in the veri�cation (Xia98), compilation (Xia01),
inference (XJ99; Xia00), and other operations, and test
algorithms for resolving such issues, experimental MS-
BNs are necessary. For example, to compare the per-
formance of the inference algorithms in (XJ99) and
(Xia00), it is desirable to run the algorithms in a num-
ber of MSBNs of di�erent structures. Since MSBNs
are intended for very large domains and a legal MSBN
must satisfy a set of technical conditions, it is time con-
suming and tedious to construct MSBNs manually. We
investigate pseduo-random generation of MSBNs. Our
focus is on the generation of MSBN structures.
Pseduo-random generation of MSBN structures can

be performed by a generate-and-test approach. Due to
the large number of variables to be generated and the
technical conditions to be satis�ed simultaneously, we
expect such approach to have a very low probability of
generating legal MSBN structures. We take the same
approach in (XM99) where an algorithm that guaran-
tees the generation of a legal Bayesian network struc-
ture is presented. We propose a set of algorithms for
pseduo-random generation that when terminates will

produce legal MSBN structures. Inference computation
can be e�ectively performed only for sparse Bayesian
networks. The same is true for MSBNs. Our algo-
rithms can produce MSBNs which may or may not be
sparse, although parameters in our algorithms can be
adjusted to produce only sparse MSBNs.

2 Overview of MSBNs
A BN (Pea88) S is a triplet (N;D; P) where N is
a set of domain variables, D is a DAG whose nodes
are labeled by elements of N , and P is a joint prob-
ability distribution (jpd) over N . A MSBN (XPB93;
Xia96) M is a collection of Bayesian subnets that to-
gether de�nes a BN. These subnets are required to sat-
isfy certain conditions. One condition requires that
nodes shared by di�erent subnets form a d-sepset, as
de�ned below.
Let Gi = (Ni; Ei) (i = 0; 1) be two graphs. The

graph G = (N0 [N1; E0 [E1) is referred to as the
union of G0 and G1, denoted by G = G0 tG1.

De�nition 1 Let Di = (Ni; Ei) (i = 0; 1) be two DAGs
such that D = D0 t D1 is a DAG. The intersection
I = N0 \ N1 is a d-sepset between D0 and D1 if for
every x 2 I with its parents � in D, either � � N0 or
� � N1. Each x 2 I is called a d-sepnode.

The structure of a MSBN is a multiply sectioned
DAG (MSDAG) with a hypertree organization:

De�nition 2 A hypertree MSDAG D =
F
iDi, where

each Di is a DAG, is a connected DAG constructible by
the following procedure:
Start with an empty graph (no node). Recursively add

a DAG Dk, called a hypernode, to the existing MSDAG
Fk�1

i=0 Di subject to the constraints:
[d-sepset] For each Dj (j < k), Ijk = Nj \ Nk is a

d-sepset when the two DAGs are isolated.
[Local covering] There exists Di (i < k) such that, for

each Dj (j < k; j 6= i), we have Ijk � Ni: For an ar-
bitrarily chosen such Di, Iik is the hyperlink between
Di and Dk which are said to be adjacent.

A MSBN is de�ned as follows:

De�nition 3 An MSBN M is a triplet (N ;D;P).
N =

S
iNi is the total universe where each Ni is

a set of variables. D =
F
iDi (a hypertree MSDAG)

is the structure where nodes of each DAG Di are la-
beled by elements of Ni. Let x be a variable and �(x)

1

be all parents of x in D. For each x, exactly one of
its occurrences (in a Di containing fxg [�(x)) is as-
signed P (xj�(x)), and each occurrence in other DAGs
is assigned a uniform distribution. P =

Q
i PDi

is
the jpd, where each PDi

is the product of the prob-
ability tables associated with nodes in Di. A triplet
Si = (Ni; Di; PDi

) is called a subnet of M . Two sub-
nets Si and Sj are said to be adjacent if Di and Dj are
adjacent.

Each hypernode forms the basic local knowledge rep-
resentation of an agent. The agents cooperate to in-
terpret their local and global environment (such as in
trouble-shooting a complex equipment, or in evaluating
a distributed design) and to act based on the interpre-
tation.

3 Generating hypertree MSDAG

Pseudo-random generation of MSBN dependence struc-
ture should satisfy a set of technical constraints. A legal
structure should have the following properties:

� A tree organization for the hypernodes.

� Each hypernode is a connected DAG.

� The union of all DAGs is also a connected DAG.

� The shared nodes by each pair of DAGs form a d-
sepset.

� The shared nodes by hypernodes in the hypertree sat-
isfy local covering.

Furthermore, as the sparseness is for Bayesian net-
works, to allow e�ective inference with a MSBN, its de-
pendence structure should be sparse. This means not
only a sparse DAG structure at each hypernode, but
also a sparse structure of each d-sepset (a hyperlink in
the hypertree).
Finally, generated structures should display varieties

of legal structures. That is, if a MSBN dependence
structure satis�es all the above properties, then the
generator should be able to generate it with a non-zero
probability. For instance, a pair of adjacent hypern-
odes share a set I of d-sepnodes. It is possible that I is
shared by no other hypernode. But it is also legal that
I or a subset of I is shared by additional hypernodes.
It is desirable for the generator to be able to produce
both type of d-sepsets.
We aim at designing generation algorithms that do

not backtrack. That is, the algorithms do not make
mistakes for each decision made in the generation pro-
cess. A mistake is considered as a generation deci-
sion/action that will result in an illegal generated struc-
ture no matter how the subsequent decisions are made.
To ensure the generation algorithms backtrack-free, we
adopt a top-down approach: That is, we �rst generate
the macro aspect of the structure and add micro details
stepwise.
We allow the user to specify the following input pa-

rameters.

� n: the total number of hypernodes (n � 3).

� d: the maximum degree of each hypernode (d � 2),
where the degree of a hypernode Di is the number of
its adjacent hypernodes on the hypertree.

We propose the following top level algorithm for the
generator:

Algorithm 1

1 create a hypertree topology;
2 create a sparse structure for each hyperlink;
3 create a junction tree for each hypernode;
4 convert each junction tree to a chordal graph;
5 convert each chordal graph to a DAG;

The hypertree topology is determined at the onset
without specifying the details of any hypernodes and
hyperlinks. Next, a sparse structure is created for each
hyperlink. The structure is secondary in that it is not
a directed graph but rather is a junction tree (called
a linkage tree) where each cluster is a subset of shared
variables (by the corresponding pair of hypernodes). In
step 3, a sparse structure is created for each hypern-
ode. Again, the structure is secondary. This structure
is made consistent with the structures of all the hyper-
links that are incident to the hypernode. All the macro
features have thus been determined. In step 4, each
hypernode structure is converted into an undirected
graph structure and in step 5 further converted into
a DAG. The dependence structure of a MSBN is then
completed.
In subsequent sections, we present and illustrate the

algorithm for each step. Due to the space limit, we
present the formal justi�cation of the algorithms else-
where.

4 Creating hypertree topology

The following algorithm generates a tree such that each
node has a bounded degree. It is used to create the
hypertree topology.

Algorithm 2 (GetBoundedTree)

input: the number n � 3 of nodes and the
maximum degree d � 2 of each node.
begin
create a set V of n nodes;
associate each node v 2 V with a variable bv = d;
pick u 2 V randomly, set V = V n fug, and
create a graph G = (fug; ;);

while V is not empty, do
pick x 2 V randomly and set V = V n fxg;
pick a node y randomly from G where by > 0;
add x to G and connect x with y;
bx = bx � 1 and by = by � 1;

return G;
end

In Figure 1(a), V initially contains 5 nodes with the
maximum degree d = 3. The node h2 is used to create
the �rst node of the graph G (b). In (c), the node h0
is removed from V and connected with h2. Afterwards,

2

(d)(c)

(f)(e)

,

(a)

V={ (h , 3)}

V={(h , 3)

V={(h , 3), (h , 3)
 (h , 3), (h , 3)}

(b)

1

3

1

3

2G

4

4

1

3

 (h , 3), (h , 3)}

2G
h , 2

0h ,2

4 (h , 3), (h , 3)}

4

0
h ,2

h ,0 0h ,0

 h ,2

h ,1

3

h ,1

h ,2

h , 2

h , 2

h , 2

h , 3

h ,2

(h , 3), (h , 3)}

(h , 3), (h , 3),1 2

V={(h , 3),

h ,2

4

2G

3

10

1

V={

4
2G

}

0

3V={

0

2G

Figure 1: Illustration of GetBoundedTree

we have bh2 = 2 and bh0 = 2. In (d), h0 is selected to
connect with the new node h1 resulting in bh0 = 1 and
bh1 = 2. In (e), h0 is selected to connect with the new
node h3 resulting in bh0 = 0 and bh3 = 2. Finally, h4 is
added to the tree and the result G is shown in (f).
The graph G will be used as the topology of the hy-

pertree MSDAG.

5 Expanding a junction tree

We adopt the strategy of generating hyperlinks �rst
and then hypernodes in order to ensure the local cov-
ering condition. Therefore, we need to construct hy-
perlink structures that are consistent with each other
even though the hypernodes to which they are incident
have not been determined yet. To do that, we use the
following idea: If a linkage tree L1 has been generated
and another linkage tree L2 is to be generated such that
it shares some variables with L1, then the graph sep-
aration relations in L1 should not be invalidated. We
therefore randomly take a subtree (possibly null) of L1
and expand it into L2 with the graphical separation in
L1 preserved. The expansion is de�ned in Algorithm 3.
The �rst part of the algorithm (the if section) pro-

duces a single cluster junction tree when the input T is
null. The remaining part of the algorithm expands T
by either enlarging an existing cluster or adding a new
cluster.
In Figure 2, a set V of variables used to expand a

junction tree T is shown in (a). In (b), a subset fg; hg
of V is removed to expand cluster c1. In (c), i is re-
moved from V to expand cluster c2 and in (d), j is used
to expand c3. In (e), k is used to form a new cluster
c4. Note that a random separator between c2 and c4
is selected. In (f), the remaining variables form a new
cluster c5 in T .
An important property of the algorithm is that it pre-

serves the graph separation de�ned by the input junc-
tion tree T .

Algorithm 3 (ExpandJunctionTree)
input: a set V 6= ; and a junction tree T over

a set U such that U \ V = ;.
begin
if T is null
randomly select C � V (C 6= ;);
V = V n C;
set T to have the single cluster C;

while V is not empty, do
randomly select X � V (X 6= ;);
V = V nX;
randomly select a cluster Q in T ;
randomly select a boolean value b;
if b = true, expand cluster Q = Q [X;
else
randomly select separator S � Q (S 6= ;);
create a new cluster X [S;
connect the new cluster with Q in T ;

return T ;
end

c2
b, c, d, i

,c1 a, b, c
g, h

d, e, f

a, b, c

c3

c1

V = {j, k, l, m}

(c)

c3

c3c2

b, c, d, i

,c1 a, b, c

g, h

d, e, f, jb, c, d, i
c2

b,d, i,k
,a, b, c

g, h

c4
V = { }

c2

c4
V = { l, m}

T

(f)
d, e, f, jb, c, d, i

d, e, f, j

(d)

c1

c3

T

c3c2
d, e, fb, c, d

,c1
V = {i, j, k, l, m}

T

T

T

V = { k, l, m}

T
V = {g, h, i, j, k, l, m}

g, h

j,l
h

c,g,
a,b

m

b, c, d
c2

c1 a, b, c

d, e, f

c5

c3

b,d, i,k

(e)

(b)(a)

Figure 2: Illustration of ExpandJunctionTree

The linkage trees (corresponding to the hyperlinks
in the hypertree MSDAG) are created using the above
algorithm as follows: Consider Figure 1 (f) as the hy-
pertree topology. The hypertree is traversed breadth-
�rst starting at an arbitrary hyperlink, say, fh0; h2g. A
linkage tree will be created using ExpandJunctionTree
with a set V and a null T . Afterwards, two subtrees
will be selected from the resultant T . One is expanded
into the linkage tree for hyperlink fh0; h1g. The other
is expanded for the linkage tree of fh0; h3g, followed by
the selection of its subtree which is expanded into the
linkage tree for fh3; h4g.

6 Merging two junction trees

Once the linkage trees are created, we create a junction
tree for each hypernode H by merging the linkage trees

3

from all hyperlinks incident to H and expanding the
result. We present the merging algorithm below. The
key requirement of the algorithm is to preserve graph
separation relations in all linkage trees merged. We �rst
introduce some terminology to facilitate the description
of the algorithm.

Let T be a junction tree, T 0 a (possibly null) expan-
sion of T , R a (possibly null) subtree of T , and T � an
expansion of R. We shall call T a source JT, T 0 an ex-
pansion of T , and T � a partial expansion of T . We can
associate a boolean ag marked with each cluster in a
junction tree. A cluster is said to bemarked if the ag is
true, otherwise it is unmarked. Let Y 0 be an expansion
(possibily partial) of a junction tree Y . We mark the
clusters in Y 0 as follows: If a cluster C in Y 0 is expanded
from a cluster Q in Y , C will be marked and Q is called
the source cluster of C. If a cluster in Y 0 is created, it
will be unmarked. With clusters thus marked, we say
that Y 0 is a marked expansion of Y . Note that there
is an one-to-one mapping between marked clusters in
Y 0 and clusters in Y . Algorithm 4 de�nes the merging
operation.

Algorithm 4 (MergeJunctionTree)

input: A source junction tree T , a marked expansion T 0

of T and a marked partial expansion T � of T .
begin
search T � for a marked cluster;
if no such cluster is found, do
pick randomly a cluster C in T � and Q in T 0;
randomly select SC � C and SQ � Q;
expand C with SQ and Q with SC ;
merge T � into T 0 by connecting C to Q;

else
search T � for a marked cluster C with a single
adjacent marked cluster C 0;

while C is found, do
delete the link between C and C 0, which
split T � into two subtrees;

denote the subtree rooted at C by RC and
denote the other subtree by T �;

search T 0 for a cluster Q that has the same
source cluster with C;

if Q � C, remove each subtree rooted at C
from RC and connect it to Q;

else if Q � C, merge RC into T 0 by replacing
Q with C;

else merge RC into T 0 by connecting C to Q;
search T � for a marked cluster C with a
single adjacent marked cluster C 0;

if C is not found, do
denote the single marked cluster in T � by C;
search T 0 for a cluster Q that has the same
source cluster with C;

if Q � C, merge T � into T by connecting
each subtree of T � rooted at C to Q;

else if Q � C, merge T � into T 0 by replacing
Q with C;

else merge T � into T 0 by connecting C to Q;
return T 0;

end

The if section of the algorithm processes the case
where T � contains no marked clusters. Merging is per-
formed by expanding a pair of clusters one from each
JT to form a common separator, and connecting the
two clusters.

The rest of the algorithm processes the case where
T � contains marked clusters. The while section handles
the case where there are more than one marked cluster.
The marked clusters form a connected subtree in T �.
The algorithm recursively removes a terminal cluster
C from this subtree, together with the subtree rooted
at C that contains no marked clusters. The subtree is
connected to its source cluster Q in three possible ways
(the if=else=else section), depending on whether C is
not expanded with new elements (Q � C), or C is ex-
panded but Q is not (Q � C), or both are expanded.
When the `marked subtree' is reduced to one marked
cluster, the if section that follows the while section will
be entered. The subtree rooted at the last marked clus-
ter will be merged into T similarly.
Figure 3 and 4 illustrate the algorithm MergeJunc-

tionTree:

i,l,m

i,j,k

 i,k,n,o,p
(b)

 C

Q

a,b,e,f
(a)

a,b,c

b,c, d

b,e,g,h

b,e,g,h

b,c, d

a,b,c

a,b,e,f

T’=T

T’

T*

i,l,m

j,k i,j,k,b,g
C

i,k,n,o,p

Q

(c)

Figure 3: Illustration of MergeJunctionTree where T �

contains no marked cluster.

In Figure 3, the junction tree T 0 is the same as the
source tree T and the junction tree T � is an expansion
of a null subtree of T . A cluster Q in T 0 and another
cluster C in T � are randomly selected to connect with
each other and merge T 0 and T �. The separator is con-
structed by randomly selecting a subset fj; kg from C
and a subset fb; gg from Q.

a,b,cd,t

a,b,e,f,w

a,b,w,y

b,c,d
x

a,b,e,f,

a,b,e,f,w

i,k

x
d,t

i,l,ma,b,e,f,s

i,kva,b,c

a,b,w,y

(a)

a,b,e,f,s

v
b,f,s,u,

(b)

T*

T’

T’

i,l,m

(c)

b,c,d

a,b,e,f,

CQ

i,j,k,b,g

i,k,n,o,p

i,k,n,o,p

b,f,s,u, i,j,k,b,gb,e,g,h,

b,e,g,h,

Figure 4: Illustration of MergeJunctionTree where clus-
ters C and Q are incomparable

4

In Figure 4, an expansion T 0 (a) of T (as in Fig. 3
(a)) and a partial expansion T � (b) of T are shown. In
(c), a cluster C in T � and its corresponding cluster Q
in T 0 are selected. Because Q and C are incomparable,
T � is merged into T 0 by connecting C to Q.
After a junction tree for each hypernode is created, a

linked junction forest is de�ned. Next, we convert each
junction tree into a DAG.

7 Converting junction forest into

MSDAG

To convert the junction tree at each hypernode into a
DAG, we �rst convert the junction tree into its equiva-
lent chordal graph. This operation is trivial. We then
convert the chordal graph into a DAG by orienting the
links into arcs with the possibility of removal of some
links. The criteria for this step is the following:

1. The resultant graph (a local graph) at each hypern-
ode is acyclic.

2. The union of local graphs is acyclic.

3. The d-sepset condition is maintained.

4. The set of all local graphs will compile to the same
linked junction forest.

These conditions together ensure the resultant is a
hypertree MSDAG and respects all the graphical sepa-
rations de�ned by the previous operations.
The link orientation operation is performed by

traversing the hypertree in a breadth-�rst fashion start-
ing at an arbitrary hypernode. The operation at the
�rst hypernode is performed by calling the following
recursive algorithm DirectArc at a terminal cluster of
the local junction tree.

Algorithm 5 (DirectArc) Let Q be a cluster in a JT
H and G be the corresponding chordal graph of H. A
caller is either an adjacent cluster or H. When the
caller calls in Q, it does the following:

1. If caller is a cluster, denote caller by C, else denote
the unique adjacent cluster of Q by C.

2. Direct the link from each node in Q\C to each node
in Q n C in G.

3. Pick up randomly z 2 Q n C.

4. Direct the link from each node in Q n (C [fzg) to z
in G.

5. Remove randomly the remaining links among nodes
in Q.

6. For each node x 2 Q with unoriented links, direct the
links to x with x selected in random order.

7. Q calls DirectArc in each adjacent cluster in H except
caller.

Figure 5 illustrates algorithm DirectArc. H and
G are shown in (a) and (b). DirectArc is called on
the cluster fa; b; cg. Its separator with the cluster
fb; c; d; e; f; gg is fb; cg. In (c), links in cluster fa; b; cg

are directed away from b and c. The remaining links
are randomly removed. In this case the only link fb; cg
is removed. Afterwards, the processing is moved to the
cluster fb; c; d; e; f; gg. Again, links are directed away
from b and c. This leaves links among d; e; f; g undi-
rected. In (d), d is selected as the common child of
e; f; g. In (e), the link fe; gg is removed, and the re-
maining links are oriented as shown in (f). In (g), the
processing is shifted to the last cluster. Links are di-
rected away from fc; d; eg. Finally, the remaining one
link is oriented as in (h).

e

h

a

gc

f

d

b

i

d

i

h

a

gc

f

d

b
i

(g)

(d)

(h)

g

e
i

h

a
c

(a) (b)

(e)e

h

b

f

d

a g

a

h d

i

h

a
c gc

b,c,d,e,f,g

c,d,e,h,i

H

a,b,c

b G

f

e

g

f

d

i

a

h
c

(f)

b

f
e

g

e (c)i

b

d

f

e

c

b

Figure 5: Illustration of DirectArc

After the �rst local graph is directed, the remain-
ing local graphs are processed traversing the hypertree
breath-�rst in a caller/callee fashion similar to the al-
gorithm DirectArc (but at the hypertree level). Denote
the caller by (H 0; G0) and the callee by (H;G). When
called by (H 0; G0), (H;G) executes the following algo-
rithm DirectHnode. We de�ne the peer concept to fa-
cilitate the description of the algorithm:
G and G0 share a set of nodes. A cluster Q in H may

contain one or more shared nodes. We call the set of
shared nodes contained in Q the peer set of Q which we
denote as peer(Q). We say that Q has a maximum peer
if no other cluster Q0 satis�es peer(Q0) � peer(Q).
Algorithm 6 calls the algorithm DirectArc-d which is

similar to DirectArc except that when a cluster Q with
a maximum peer is called, it does nothing locally but
calls the next adjacent cluster.
Since G0 is a directed graph, after the �rst step of

the algorithm, for each cluster, links among d-sepnodes
are all directed. In the �rst statement of the for loop,
each non-d-sepnode is made as the child of all the d-
sepnodes of the cluster. In the rest of the for loop, some
links among these non-d-sepnodes are deleted and the
remaining are oriented.

5

Algorithm 6 (DirectHnode)
When DirectHnode is called in a hypernode (H;G) by an
adjacent hypernode (H 0; G0), the following is performed
at (H;G):

begin
copy all arcs among shared nodes between (H;G)
and (H 0; G0) from G0;

remove each undirected link among shared nodes
for each cluster Q in H that has a maximum

peer C = peer(Q), do
for each non-shared node in Q, make it the
child of each shared node in Q;

pick randomly z 2 Q n C;
direct the link from each node in Q n (C [fzg)
to z in G;

remove randomly the remaining links among
nodes in Q;

for each node x 2 Q with unoriented links, do
direct links to x with x selected in random order;

call DirectArc-d on a cluster Q with maximum peer;
end

g

e

a,b,c,j,k

j

e

k

b b

k

f

e

f

k

j

g

fm

l

k

n

b

c

m

l

c

g

(b)(a)

dd

k

(c)

b,c,d,e,f,ga,b,c,n

(g)

(f)(e)

(d)

c

g

e

c

c

 f

f

n

f

g

f

g

a

d

n

(h)

j

l

a

b
j

k

a
l

m d

m

e

b

n

l,m
b,k

a

l

c

d

n
a

m

e

b

n
a

g

j j

m

l

c

d

b

n
j

dm

l

k

e

a

Figure 6: Illustration of DirectHnode

Figure 6 illustrates algorithm DirectHnode where
the d-sepset is fa; b; c; d; e; f; gg. Clusters fa; b; c; j; kg,
fa; b; c; ng and fb; c; d; e; f; gg each has a maximum
peer. H and G are shown in (a) and (b). Arc copy-
ing from G0 is shown in (c). Cluster fb; c; d; e; f; gg re-
quires no further processing. The processing of cluster
fa; b; c; j; kg is shown in (d) and (e). The processing
of cluster fa; b; c; ng is shown in (f). After DirectArc-
d is called on, say, fa; b; c; ng, eventually, the cluster
fb; k; l;mg is processed, which is shown in (g) and (h).

References

[KP97] D. Koller and A. Pfe�er. Object-oriented
Bayesian networks. In D. Geiger and P.P. Shenoy, edi-
tors, Proc. 13th Conf. on Uncertainty in Arti�cial In-
telligence, pages 302{313, Providence, Rhode Island,
1997.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

[SRA90] S. Srinivas, S. Russell, and A. Agogino. Au-
tomated construction of sparse Bayesian networks for
unstructured probabilistic models and domain infor-
mation. In M. Henrion, R.D. Shachter, L.N. Kanal,
and J.F. Lemmer, editors, Uncertainty in Arti�cial In-
telligence 5, pages 295{308. North-Holland, 1990.

[Xia96] Y. Xiang. A probabilistic framework for coop-
erative multi-agent distributed interpretation and op-
timization of communication. Arti�cial Intelligence,
87(1-2):295{342, 1996.

[Xia98] Y. Xiang. Veri�cation of dag structures in co-
operative belief network based multi-agent systems.
Networks, 31:183{191, 1998.

[Xia00] Y. Xiang. Belief updating in multiply sectioned
Bayesian networks without repeated local propaga-
tions. Inter. J. Approximate Reasoning, 23:1{21, 2000.

[Xia01] Y. Xiang. Cooperative triangulation in MS-
BNs without revealing subnet structures. Networks,
37(1):53{65, 2001.

[XJ99] Y. Xiang and F.V. Jensen. Inference in multi-
ply sectioned Bayesian networks with extended Shafer-
Shenoy and lazy propagation. In Proc. 15th Conf. on
Uncertainty in Arti�cial Intelligence, pages 680{687,
Stockholm, 1999.

[XM99] Y. Xiang and T. Miller. A well-behaved
algorithm for simulating dependence structures of
Bayesian networks. Inter. J. Applied Mathematics,
1(8):923{932, 1999.

[XPB93] Y. Xiang, D. Poole, and M. P. Beddoes. Mul-
tiply sectioned Bayesian networks and junction forests
for large knowledge based systems. Computational In-
telligence, 9(2):171{220, 1993.

[XPE+93] Y. Xiang, B. Pant, A. Eisen, M. P. Beddoes,
and D. Poole. Multiply sectioned Bayesian networks
for neuromuscular diagnosis. Arti�cial Intelligence in
Medicine, 5:293{314, 1993.

6

