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Abstract

Discovery of graphical models is NP-hard in general, which
justifies using heuristics. We consider four commonly used
heuristics. We summarize the underlying assumptions and
analyze their implications as to what graphical models they
can and cannot discover. In particular, we consider discovery
of pseudo-independent (PI) models, a subclass of probabilis-
tic models where subsets of a set of collectively dependent
variables display marginal independence. We show that some
heuristics essentially exclude PI models other than the sim-
plest from the model search space. We argue for a decision
theoretic perspective for choosing heuristics and emphasize
its implication to mission critical applications.

Introduction
Graphical models such as Bayesian networks (BNs) (Pearl
1988), decomposable Markov networks (DMNs) (Xiang,
Wong, & Cercone 1997), and chain graphs (Lauritzen 1996)
have been applied successfully to probabilistic reasoning in
intelligent systems. These models describe the state of an
environment by a set of variables. Dependencies among
these variables are encoded by a graph where nodes cor-
respond to variables and links correspond to direct depen-
dence between nodes connected. Conditional independen-
cies (CIs) are encoded by graphical separation. Strengths
of dependencies are quantified through a set of probabil-
ity distributions associated with components of the graph.
The graph is so structured that a joint probabilitydistribution
(JPD) over all variables can be factorized into a product of
the set of probabilitydistributions associated with the graph.

The fundamental assumption underlying the success of
graphical models is that, in most practical environments,
not everything is directly dependent on everything else. Un-
der this assumption ofindirect dependency, graphs in these
models are sparse, and the models constitute concise repre-
sentation of probabilistic knowledge and efficient organiza-
tion for probabilistic inference.

Given the usefulness of graphical models, one way to con-
struct them is by discovery from data, as demonstrated by
pioneer work such as (Chow & Liu 1968; Rebane & Pearl
1987; Herskovits & Cooper 1990; Fung & Crawford 1990;
Spirtes & Glymour 1991; Cooper & Herskovits 1992; Lam
& Bacchus 1994; Heckerman, Geiger, & Chickering 1995;
Xiang, Wong, & Cercone 1997). A single model or a set
of complementary models may be discovered from a given
data set. To discover a model, both its graph structure and
the associated set of probability distributions must be deter-
mined. For the purpose of this paper, we assume, without
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losing generality, the discovery of a single model and we
focus on the discovery of model structure.

To this end, an environment is viewed as an unknown
probabilistic model (equivalent to an unknown JPD) respon-
sible for the generation of the data set. A space of alternative
graphical models is searched to find the model judged as the
best by the discovery algorithm, relative to the data, accord-
ing to some criterion. The search is hampered, however, by
the intractable number of alternative graphical models, and
the task has been shown to be NP-hard (Chickering, Geiger,
& Heckerman 1995). Use of heuristics is thus justified.

In this paper, we analyze some commonly used heuristics
and summarize their underlying assumptions that are addi-
tional to the indirect dependency assumption. We then con-
sider implications of such assumptions as to what graphical
models they can and cannot discover. In particular, we con-
sider discovery of pseudo-Independent (PI) models (Xiang
2005), a subclass of probabilistic models where subsets of a
set of collectively dependent variables display marginal in-
dependence. We show that PI models other than the simplest
are essentially excluded from the model search space by
some heuristics. We exemplify the consequence of such ex-
clusion and argue for a decision theoretic strategy for choos-
ing heuristics, especially in mission critical applications.

Background
This sectionbriefly overviews terminologies on graphical
models that are necessary to the remainder of the paper.
Elaborations of these terminologies can be found in refer-
ences such as (Pearl 1988; Spirtes, Glymour, & Scheines
1993; Lauritzen 1996; Jensen 2001; Xiang 2002; Neapoli-
tan 2004) and those listed below.

In a graphical model, the dependence relations among en-
vironment variables are encoded as a graphG = (V, E),
whereV is a set of nodes andE a set of links. In BNs,
G is a directed acyclic graph (DAG) where each link is di-
rected. In DMNs,G is a chordal graph where each link
is undirected. Chain graphs have a mixture of directed
and undirected links. They all admit factorized representa-
tion of JPD. For inference, BNs and chair graphs can first
be converted into a DMN and algorithms assuming such
a representation, e.g., (Jensen, Lauritzen, & Olesen 1990;
Shafer 1996), can then be applied. The key conversion op-
eration ismoralizationby which a DAG is converted into its
moral graphby pairwise connecting parent nodes of each
child and dropping the direction of links. A related con-
cept is theskeletonof a directed graph, which is obtained
by dropping the direction of links only. For our purpose,
it suffices to focus on DMNs, although our results can be



generalized to other graphical models.
In an undirected graphG, a path or cycleρ has achord

if there is a link between two non-adjacent nodes inρ. G
is chordal if every cycle of length≥ 4 has a chord. The
structure of a DMN is a chordal graph. A subsetX of nodes
in G is completeif elements ofX are pairwise adjacent.
A maximal set of nodes that is complete is aclique. Two
subsetsX andY of nodes inG areseparatedby a subsetZ
if every path from a node inX and a node inY contains a
node inZ. A nodex in G is eliminatedif nodes adjacent to
it are pairwise connected beforex and its incoming links are
deleted. Each link added in the process is afill-in . If nodes
in G can be eliminated in some order such that no fill-ins are
added, thenG is chordal.

Let V be a set of discrete environment variables, each of
which has a finite space. The space of a setX ⊆ V of
variables is the Cartesian product of the spaces of variables
in X. Each element in this space is aconfigurationx of X.
A probabilistic model(PM) overV specifies a probability
value for every configuration of every subsetX ⊆ V .

For any disjoint subsetsX, Y, Z ⊂ V , subsetsX and
Y areconditionally independentgivenZ, if P (X|Y, Z) =
P (X|Z) wheneverP (Y, Z) > 0. When Z = ∅, sub-
setsX and Y are marginally independent. If each vari-
able x ∈ X is marginally independent ofX \ {x}, vari-
ables inX are marginally independent. Variables inX are
collectively dependentif, for each proper subsetY ⊂ X,
there exists no proper subsetZ ⊂ X \ Y that satisfies
P (Y |X \ Y ) = P (Y |Z).

A graphG is an I-map of a PM M over V if (1) there
is an one-to-one correspondence between nodes ofG and
variables inV , and (2) forX, Y, Z ⊂ V , wheneverX and
Y are separated inG by Z, they are conditionally indepen-
dent givenZ according toM . Note thatG may be directed
or undirected and the criterion of separation differs in each
case (Xiang 2002).G is a minimal I-mapof M if no link
in G can be removed without affecting its I-mapness. If the
graphical separation relations inG correspond to all condi-
tional independence relations inM and no more, thenG is a
P-mapof M . If there exists a P-map forM , then the model
M is faithful.

A pseudo-independent(PI) model (Xiang 2005) is a PM
where proper subsets of a set of collectively dependent vari-
ables display marginal independence.

Definition 1 (Full PI model) A PM over a setV (|V | ≥ 3)
of variables is afull PI model if the following hold:

(SI) Variables in eachX ⊂ V are marginally independent.
(SII) Variables inV are collectively dependent.

SI is relaxed in partial PI models intomarginally inde-
pendent partition:

Definition 2 (Marginally independent partition) Let V
(|V | ≥ 3) be a set of variables andB = {B1, . . . , Bm}
(m ≥ 2) be a partition of V . B is a marginally
independent partition if for every subset
X = {xk|xk ∈ Bk, k = 1, . . . , m}, variables in X
are marginally independent. Each blockBi in B is called a
marginally independent block.

Definition 3 (Partial PI model) A PM overV (|V | ≥ 3) is
a partial PI model if the following hold:

(S′
I ) V is partitioned into marginally independent blocks.

(SII ) Variables inV are collectively dependent.

The most general PI models are those that embed one or
more PI submodels:

Definition 4 (Embedded PI submodel)Let a PM be over
a setV of variables. A proper subsetX ⊂ V (|X| ≥ 3)
forms anembedded PI submodel if the following hold:

(SIII ) X forms a partial PI model.
(SIV ) The partition{B1, . . . , Bm} of X byS′

I extends into
V . That is, there is a partition{Y1, . . . , Ym} of V such
thatBi ⊆ Yi (i = 1, .., m), and, for eachx ∈ Yi and each
y ∈ Yj (i 6= j), x andy are marginally independent.

For experimental discovery of PI models, see (Xianget al.
2000). The result of this paper applies to all types of PI mod-
els and hence we refer to them as PI model without further
distinction. To represent PI models as undirected graphical
models, we distinguish between two types of links. In a min-
imal I-map of a non-PI model, all links are drawn as solid
lines. In a minimal I-map of a PI model, for each embedded
PI submodel, each pair of marginally independent variables
are connected by a dotted line, signifying marginal indepen-
dence as well as collective dependence. Each remaining pair
of unconnected variables in the submodel are then connected
by a solid line. Two nodes are adjacent if they are connected
by either type of links.

Some Discovery Heuristics
Given an environment described by a setV of variables and
a data set overV , the task of discovery is to search the model
space for a model judged as the best according to some cri-
terion relative to the data. The search is hampered, however,
by the prohibitive number of alternative models. To learn a
BN, the number of directed acyclic graphs (DAGs) givenV
is 3 for |V | = 2, 25 for |V | = 3, and 29000 for|V | = 5.
To learn a DMN, the number of chordal graphs givenV is
2 for |V | = 2, 8 for |V | = 3, and 822 for|V | = 5. It
has been shown (Chickering, Geiger, & Heckerman 1995)
that, in general, discovery of graphical models from data is
NP-hard. Hence, use of heuristics is justified.

Two broad types of heuristics can be identified. We refer
to the first type aslimiting model space. According to this
type of heuristics, before discovery starts, the model space
is pruned to contain a subset of graph structures.

The most common in this type is theNaive Bayes heuris-
tic. It prunes the model space so that it contains only Naive
Bayes models. The graph of a Naive Bayes model is a DAG
of a single root, which we refer to as thehypothesis, and
its set of observable child nodes, which we refer to as the
attributes. Each attribute has a single parent, the hypothe-
sis. For this heuristic, the DAG is given (since hypothesis is
given). Hence, discovery focuses on finding the conditional
probability distribution at each node, and is very efficient.

Another heuristic of this type is theTAN heuristic, which
prunes the model space to contain onlytree augmented
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Naive Bayes(TAN) models. The DAG of a TAN model
also has a single root, the hypothesis. However, attributes
themselves form a tree. Each attribute has as parent the hy-
pothesis and at most one other attribute. Figure 1 shows an
example.

Figure 1: A TAN model whereh is the hypothesis.

We refer to the second type of heuristics aslimitingsearch
procedure. Under this type, no explicit pruning of the model
space is made before discovery. Search starts from some
base model in the general model space. Based on this model,
a subset of alternative models is defined by a search proce-
dure and is evaluated. One of them, that has the best eval-
uation and improves over the base model, will be chosen as
the new base model for the next step. The process continues
until no alternative model in the subset improves over the
current base model.

The above search process is fairly general and hence its
behavior is mainly determined by what constitutes the can-
didate set given a base model. To gain efficiency, a heuristic
of this type prescribes a search procedure such that from any
starting base model, only a subspace of the model space will
ever be visited.

The most common heuristic of this type is thesingle-link
lookahead. According to this heuristic, the new base model
and the current base model differ by exactly one link. An
alternative isbounded multi-link lookaheadwhere the two
base models differ by up tok > 1 links.

Ideal Outcome from Discovery
Without limitation on what is the ideal outcome from dis-
covery, it will be difficult, if not impossible, to compare dif-
ferent heuristics. For instance, how desirable the discovered
graphical model is can be judged by how well it performs in
a classification task. Alternatively, it can also be judged by
how accurately it can estimate posterior probability. The two
criteria are not equivalent. For instance, it has been reported
(Rish 2001) that Naive Bayes models perform well on clas-
sification task even though they are not accurate estimators
of posteriors.

This surprising success of Naive Bayes has been at-
tributed to the winner-takes-it-all nature of the classification
task. That is, as long as the correct class (a possible value of
the hypothesis variable) is given the highest posterior proba-
bility value by the classifier, the accuracy of the posterior
does not matter. However, tasks supported by graphical
models go beyond classification. For instance, in decision
theoretic reasoning, the posterior must be combined with
utility in order to trade between possibility and desirability.
For such tasks, accuracy of the posterior matters. Models
that are good at classification but poor in posterior estima-
tion are expected to be outperformed by good posterior esti-

mators. On the other hand, models that are good at posterior
estimation are expected to perform well in decision theoretic
reasoning as well as in classification.

The accuracy of a graphical model in posterior estimation
depends both on its graph structure and on its numerical pa-
rameters. We take the position that the ideal outcome of the
discovery is an approximate minimal I-map of the unknown
PM. We choose I-map because our focus here on the struc-
tural discovery. Without being concerned with the numerical
parameters, the only way to judge the accuracy of a graphi-
cal model is whether it contains the correct set of conditional
independence relations. We choose I-map instead of P-map
because every PM has a minimal I-map, but not necessarily
a P-map (Pearl 1988). Given such a criterion, we can judge
a given heuristic based on itsexpressiveness, that is, whether
it enables discovery of minimal I-maps of a broad range of
PMs.

Underlying Assumptions
The assumptions underlying a heuristic has a lot to do
with how expressive it is. The following two propositions
summarize the independence assumptions underlying Naive
Bayes and TAN heuristics. Their proofs are straightforward.

Proposition 1 In a Naive Bayes model, every two attributes
are conditionally independent given the hypothesis.

Proposition 2 In a TAN model, every two non-adjacent at-
tributes are conditionally independent given the parent of
one of them and the hypothesis.

It is unclear what is the general assumption underlying
the single-link lookahead heuristic, due to the many fac-
tors that can affect the outcome of a discovery process.
Known results are all based on particular algorithms that
employ the heuristic and are all centered around faithful-
ness. Results in (Spirtes, Glymour, & Scheines 1993;
Chickering & Meek 2002) are presented as sufficient con-
dition: If a PM M is faithful, the algorithms in question can
discover a minimal I-map ofM . Results in (Xiang, Wong,
& Cercone 1996) are presented as necessary condition (the
interpretation will be clear after Theorem 4 in the next sec-
tion): If M is unfaithful, the output of the algorithms in
question will not be an I-map. Therefore, we will regard
faithfulness as the main assumption underlying the single-
link lookahead heuristic.

The bounded multi-link lookahead heuristic is more gen-
eral than the single-link lookahead heuristic as it includes
single-link lookahead as a search step. An analysis (Hu &
Xiang 1997) shows that if a PM contains no embedded PI
submodels of more thanµ dotted links, its minimal I-map
can be discovered by a boundedµ-link lookahead. Note
that faithfulness is not assumed (as will be clear after The-
orem 4). Instead, it has been lifted in the spirit of the much
weaker assumption on indirect dependency, which underlies
all the above heuristics.

Expressiveness
Next, we consider the expressiveness of the above heuris-
tics. The following theorem establishes that the Naive Bayes
heuristic cannot discover any PI model. In the theorem, each
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element in eachΛ is a PM and is characterized by a distinct
JPD.

Theorem 1 LetΛ be the set of all Naive Bayes models over
a setV of variables. LetΛ′ be the set of all PI models over
V . ThenΛ ∩ Λ′ = ∅.

Proof: Let M ∈ Λ be a Naive Bayes model. Without
losing generality, we assume that each attribute ofM is
not marginally independent of the hypothesis. Then, from
Proposition 1, an undirected minimal I-map ofM is a star
where the center is the hypothesis and the external nodes are
the attributes. That is, no three nodes are pairwise adjacent.

Let M ′ ∈ Λ′ be a PI model. There exists three variables
x, y, z ∈ V such thatx, y, z are all contained in the same
embedded PI submodel inM ′. Therefore, in any minimal
I-map ofM ′, x, y, z must be pairwise connected, by either
solid or dotted links. That is, they are pairwise adjacent.

The above implies that a minimal I-map ofM is never
structured as that ofM ′. That is,Λ ∩Λ′ = ∅.

�
The following theorem uncovers some properties of the

moral graph of a TAN model. These properties are used
later to establish the expressiveness of the TAN heuristic.

Theorem 2 Let M ∈ Λ be a TAN model andG be its di-
rected minimal I-map (see Background section). Then the
moral graphG∗ of G has the following properties:

1. G∗ is the skeleton ofG.
2. G∗ is chordal.
3. All cliques ofG∗ have size 3.

Proof: We constructG∗ from G by moralization, a common
operation used to convert a BN to a DMN: For each child
node inG, connect its parents pairwise and drop directions
of its incoming links. To establish the first statement, we
show that no link will be added during moralization: The
hypothesis has no parent and hence no link is added for it.
SinceM is a TAN, each attribute has at most two parents
and at least one. If it has one parent, no link is added for
it. If it has two parents, then one of them is the hypothesis
and the other is an attribute. Since the parent attribute is
already connected to hypothesis, no link is added. The first
statement follows.

Next, we show the second statement by constructing an
order in which nodes inG∗ are eliminated one by one with-
out fill-ins. We construct the order by using bothG andG∗

as follows: Pick a leaf nodex in G. It must have exactly two
parents inG and hence adjacent to exactly these two nodes
in G∗. As mentioned above, the two parents are connected
in G∗. Hence,x can be eliminated fromG∗ without fill-ins.
We eliminatex from G∗ and also deletex from G (with its
incoming links).

The resultantG is still a TAN structure with one less at-
tribute, and the resultantG∗ is a moral graph of the newG.
Therefore, another leaf node inG can be eliminated in the
same fashion. By eliminating such leaf nodes recursively
from G andG∗, eventually, only one attribute is left as well
as the hypothesis. Both can be eliminated without any fill-in.
The second statement follows.

SinceG∗ is chordal and the above constructed order is a
fill-in free elimination order, each clique inG∗ is the adja-
cency of a node plus the node itself when it is eliminated.
The adjacency of each node when eliminated has a size 2,
except the last two nodes. The third statement now follows.

�
The following theorem establishes that the TAN heuristic

cannot discover PI models that contain embedded PI sub-
models over four or more variables.

Theorem 3 LetΛ be the set of all TAN models over a setV
of variables. LetΛ′ be the set of all PI models overV such
that each PI model inΛ′ contains at least one embedded PI
submodel over 4 or more variables. ThenΛ ∩ Λ′ = ∅.

Proof: LetM ∈ Λ be a TAN model,G be a directed minimal
I-map of M , andG∗ be the moral graph ofG. Because
G is a directed minimal I-map ofM , G∗ is an undirected
minimal I-map (Theorem 4.8 (Xiang 2002)). By Theorem 2,
the cliques ofG∗ all have a cardinality of 3.

Next, letM ′ be a PI model inΛ′. By assumption, there
exists four variablesw, x, y, z ∈ V such thatw, x, y, z are
all contained in the same embedded PI submodel inM ′.
Therefore, in any minimal I-map ofM ′, w, x, y, z must be
pairwise connected, by either solid or dotted links. That is,
they are contained in a same clique and this clique has a car-
dinality of at least 4.

The above implies that a minimal I-map ofM is never
structured as that ofM ′. That is,Λ ∩ Λ′ = ∅.

�
From Theorem 2, it can be seen that if a PI model contains

only embedded PI submodels of size 3, then such PI models
are not excluded by the TAN heuristic. Since a PI submodel
must contain at least 3 variables, by combining Theorems 2
and 3, we conclude that the TAN heuristic cannot discover
PI models other than the simplest.

For the single-link lookahead heuristic, recall that its main
assumption is faithfulness of the data generating model. The
following theory says that PI models violate the assumption.

Theorem 4 A PI model is unfaithful.

Proof: LetM be a PM over a setV of variables. IfM is
faithful, then it has a P-mapG such that, forX, Y, Z ⊂ V ,
wheneverX andY are conditionally independent givenZ,
they are separated inG byZ, and wheneverX andY are not
conditionally independent givenZ, they are not separated in
G by Z.

SupposeM is a PI model. There exists a subsetX ⊆ V
that forms a PI submodel1 and in the submodel there exist
x, y ∈ X such thatx andy are marginally independent. If
M has a P-mapG, because variables inX are collectively
dependent, each pair of variables inX must be directly con-
nected inG. Becausex andy are marginally independent,
they must be separated inG (by ∅). No graphG can sat-
isfy both conditions simultaneously. Therefore,M has no
P-map.

�
Theorem 4 establishes that discovery algorithms that as-

sume faithfulness essentially exclude PI models in its model

1In the caseX = V , the submodel isM itself.
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search space. It has been shown (Xiang, Wong, & Cercone
1996) that indeed several algorithms are unable to discover
the minimal I-map of PI model.

We conclude this section with an example PI-model and
how each of the above heuristics behaves when the data is
generated by this model.

Example 1 Patient of a chronic disease changes his/her
health state (denoted by variables) daily between stable
(denoted by valuet) and unstable (denoted by valueu).
Patient suffers badly in an unstable day unless treated in
the morning, at which time no indicator of the state is
detectable. However, if treated at the onset of a stable
day, the day is spoiled due to side effect. From historical
data, patient’s states in four consecutive days observe the
following estimated probability distribution:

(s1, s2, s3, s4) P (.) (s1, s2, s3, s4) P (.)
(t, t, t, t) 0.125 (u, t, t, t) 0
(t, t, t, u) 0 (u, t, t, u) 0.125
(t, t, u, t) 0 (u, t, u, t) 0.125
(t, t, u, u) 0.125 (u, t, u, u) 0
(t, u, t, t) 0 (u, u, t, t) 0.125
(t, u, t, u) 0.125 (u, u, t, u) 0
(t, u, u, t) 0.125 (u, u, u, t) 0
(t, u, u, u) 0 (u, u, u, u) 0.125

What is the best strategy for treatment?

For each of the four days, the state is uniformly distributed
betweent andu, that is,

P (si = t) = 0.5 (i = 1, 2, 3, 4).
The state of each day is independent of that of the previous
day, that is,

P (si = t|si−1) = 0.5 (i = 2, 3, 4).
The state of each day is independent of that of the previous
two days, that is,

P (si = t|si−1, si−2) = 0.5 (i = 3, 4).
However, the state of the last day can be precisely predicted
given the states of the previous three days, for instance,

P (s4 = u|s3 = u, s2 = t, s1 = t) = 1.

In the minimal I-map of this PM, each pair of variables are
directly connected by a dotted link. We denote it byG6.

Clearly, the I-map cannot be represented either as a Naive
Bayes or as a TAN. Hence, discovery algorithms assum-
ing Naive Bayes or TAN will not discover it. In fact, since
each pair of variables are marginally independent, the Naive
Bayes heuristic will return an empty graphG0 (four nodes
without links). Similarly, since each subset of 3 variables
are marginally independent, the TAN heuristic will also re-
turnG0.

For the single-link lookahead heuristic, we consider an al-
gorithm that scores a graphical structure using the K-L cross
entropy and starts withG0. It can be shown (Xiang, Wong,
& Cercone 1997) that the scoreKLS(G0) is

KLS(G0) =
4∑

i=1

H(si),

whereH(si) is the entropy ofsi,

H(si) = −P (si = t)logP (si = t)−P (si = u)logP (si = u).

Let G1 be an alternative structure, according to the single-
link lookahead heuristic, with a single link betweens1 and
s2. Its scoreKLS(G1) is

KLS(G1) = H(s1, s2) +
4∑

i=3

H(si),

whereH(s1, s2) is the entropy over the variable set{s1, s2}.
Sinces1 ands2 are marginally independent, we have

H(s1, s2) = H(s1) + H(s2)

and henceKLS(G1) = KLS(G0). The discovery algo-
rithm thus regardsG1 as no better thanG0. Since this anal-
ysis applies to any other single link added toG0, the final
outcome of the discovery will beG0.2

In summary, each heuristic above has the outcome ofG0.
The model says that the state of the patient is unpredictable
and hence there is nothing we can do to help the patient.
However, if a bounded 6-link lookahead heuristic is used,
the correct minimal I-mapG6 will have the score

KLS(G6) = H(s1, s2, s3, s4) < KLS(G0)

andG6 will be discovered. Note that even if this PI model
is an embedded submodel in a much large PM, the bounded
6-link lookahead search is still sufficient to discover the cor-
responding minimal I-map. The model says that patient state
can be predicted accurately from states of the previous three
days. Hence, patient can be helped by treatment at the onset
of each predicted unstable day.

Decision Theoretic Perspective
The limited expressiveness of some heuristics analyzed
above can be attributed to their underlying assumptions.
Naive Bayes makes the strongest assumption, followed
by TAN, followed by single-link lookahead, followed by
bounded multi-link lookahead. Note that none of these
assumptions (including the assumption of indirect depen-
dency) are subject to the verification of the discovery pro-
cess. Hence, the stronger the assumption made, the more
likely that the discovered model is not the minimal I-map.

As expected, according to the complexity of the discov-
ery computation, these heuristics are reversely ordered, al-
though all of them are efficient. Therefore, the heuristics
with stronger assumptions are mainly motivated by effi-
ciency. In addition, the faithfulness has also been motivated
by the much higher likelihood of faithful models over un-
faithful ones. We argue that choosing discovery heuristics
based on a decision theoretic strategy should be preferred
over one based mainly on efficiency and prior model likeli-
hood, as elaborated below. We focus on single-link looka-
head versus bounded multi-link lookahead, which differ in
whether to assume faithfulness. The argument is equally

2For analysis of behavior of a constraint-based algorithm, such
as PC, see the above reference.
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valid between heuristics that differ relative to other assump-
tions such as those presented in Propositions 1 and 2.

Let the choice be one of two alternative discovery al-
gorithmsA andA′, to be applied to a given environment,
whereA assumes faithfulness (more precisely, the heuristic
used byA assumes faithfulness) andA′ does not. Both al-
gorithms are efficient butA′ has higher computational cost
thanA. That is, discovery costCdisc(A) = d, Cdisc(A′) =
d′, andd < d′. The unknown PMM of the environment has
a small probabilityε to be unfaithful and a probability1 − ε
to be faithful. ChoosingA, if M is faithful, the discovered
model supports optimal actions. IfM is unfaithful, the dis-
covered model causes suboptimal actions. ChoosingA′, no
matterM is faithful or not, the discovered model supports
optimal actions.

Let the action cost of a correct model (a minimal I-map)
beCopt and that of an incorrect model beCsub. We assume
that optimal actions has zero cost, that is,Copt = 0 and
Csub = ω > 0. Then the expected cost of choosingA is

ECost(A) = Cdisc(A) + (1 − ε)Copt + ε Csub = d + ε ω.

The expected cost of choosingA′ is

ECost(A′) = Cdisc(A′) + Copt = d′.

Therefore, according to decision theory,A′ is a better choice
if and only if

ω > (d′ − d)/ε.

Note thatd andd′ are preference functions of the actual
discovery cost which may be measured, say, by execution
time of the discovery algorithm. It can be estimated (Xi-
ang & Lee 2006) asO(|V |2µ µ κc′), whereµ is the max
number of lookahead links,κ is the max number of values
of a variable,c′ is the size of the maximum clique in the
subgraph with newly modified links. For reasonably sized
µ, κ and c′, the difference between single link lookahead
(µ = 1) and bounded multi-link lookahead are no more than
several hours in execution time. Since discovery is often
off-line, such difference in execution time may mean a very
small difference ind′ − d. Hence, for mission critical ap-
plications, such as treatment strategy in the chronic patient
example, the above inequation often holds, which suggests
the less efficient but more open-minded choice,A′.

Conclusion
Due to the complexity, heuristics must be used to render
discovery of graphical models computationally tractable.
All such heuristics assume indirect dependency. Each also
makes additional assumptions on the data generating PM.
We have demonstrated that heuristics that make stronger
assumptions tend to be more efficient, but are more likely
to discover a graphical model that does not correctly en-
code dependence relations in the PM. We have argued for
a decision-theoretic strategy in choosing the heuristic based
on discovery efficiency, likelihood of discovering an incor-
rect model, as well as consequence in applying an incor-
rectly discovered model in decision making.
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