
Distributed University Timetabling with Multiply Sectioned Constraint Networks

Yang Xiang
University of Guelph, Canada

Wanling Zhang
SAP Canada Labs, Canada

Abstract

Although timetabling has long been studied through con-
straint satisfaction based techniques, along with many al-
ternatives, only recently work has been reported where dis-
tributed timetabling problems (DisTTPs) was studied as dis-
tributed constraint satisfaction problems (DisCSPs). We
present an alternative method for solving DisTTPs based on
multiply sectioned constraint networks (MSCNs). The pro-
posed solution has several distinguishing features: Unlike
the existing algorithms for DisCSPs whose worst-case time
complexities are exponential, the algorithm suite based on
MSCNs is efficient when the network topology is sparse. Un-
like the existing DisTTP algorithm where a central agent is
needed, there is no need for a central agent in the proposed
solution. Unlike the existing DisTTP algorithm where par-
tial timetables of other agents must be disclosed to the cen-
tral agent, the proposed method keeps partial timetables of all
agents private. We report our preliminary experimental result
on distributed university timetabling problems (DisUTTPs).

Multiagent system, Multiply Sectioned Constraint Net-
works, Distributed Constraint Satisfaction, Distributed
University Timetabling.

Introduction
The timetabling problem (Schaerf 1999; Rossi-Doriaet al.
2003; McCollum 2007) deals with scheduling of a set of lec-
tures within a prefixed time period (typically a week) sub-
ject to a set of constraints involving instructors, students
and space. Often, lectures are managed by different depart-
ments within an institution. The problem can be solved by
centralized timetabling, where constraints are collected cen-
trally from departments and space is centrally managed. A
timetable that satisfies all constraints will be produced cen-
trally, imposed onto departments, and space necessary to
execute the timetable is allocated. Collecting departmental
constraints centrally is subject to the communication cost,
the cost to translate local knowledge into a common format,
and time delay. It is often undesirable to centralize local
constraints for privacy reasons.

Distributed timetabling offers another alternative. In
such a setting, space is managed by individual departments.
Each department timetables its own lectures. However, due
to interdependency of some lectures managed by differ-
ent departments (e.g., a lecture to be attended by students
from multiple departments), timetables of departments in-
volved must be coordinated. Solved properly, distributed

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

timetabling avoids communicatingand translating local con-
straints centrally, shortens scheduling process, and protects
departmental privacy.

Although timetabling has long been studied through con-
straint satisfaction based techniques, along with many al-
ternatives (Werra 1985; Schaerf 1999; Rossi-Doriaet al.
2003), only recently work has been reported where DisTTPs
were studied as DisCSPs (Meisels & Kaplansky 2002). The
solution is obtained by a multiagentsystem consistingof one
scheduling agent(SA) per department and an additionalcen-
tral agent(CA). SAs are responsible to propose departmen-
tal timetables that satisfy their local constraints. CA col-
lects proposed departmental timetables and checks against
global constraints. If violated, CA instructs SAs to revise
departmental timetables. Experimental study was conducted
in nurse timetabling. No general completeness or complex-
ity analysis of the algorithm is reported.

In the more general quest for solving DisCSPs, most ex-
isting algorithms are extensions of CSP algorithms based on
backtracking or iterative improvement. These include ABT
(Yokoo et al. 1992; Silaghi & Faltings 2005; Bessiereet
al. 2005), AFC (Meisels & Zivan 2007), AWC (Yokooet
al. 1998), and DBA (Yokoo & Hirayama 1996; Hirayama &
Yokoo 2005). Among them, ABT, AFC and AWC guarantee
completeness. Although they perform well on average prob-
lem cases, their worst-case time complexities are exponen-
tial. This means that for any problem, before search starts,
no time bound better than exponential can be pre-specified.

In this work, we present an alternative method for solving
DisTTPs based on MSCNs (Xiang & Zhang 2007). The pro-
posed solution has several distinguishing features: Unlike
the existing algorithms for solving DisCSPs whose worst-
case time complexities are exponential, the algorithm suite
based on MSCNs is efficient when the network topology is
sparse. Unlike the existing DisTTP algorithm (Meisels &
Kaplansky 2002) where CA is needed, there is no need for
a central agent in the proposed solution. Unlike the existing
DisTTP algorithm where partial timetables of other agents
must be disclosed to CA, the proposed method keeps partial
timetables of all agents private. We report our preliminary
experimental result on DisUTTPs.

Background on MSCNs
We present background on representation of a DisCSP as an
MSCN and on how to solve the DisCSP using a compiled
representation of the MSCN (Xiang & Zhang 2007). How
to model a DisUTTP as an MSCN will be presented in a sub-
sequent section. We refer to principals involved in a DisCSP
asdepartmentsbecause the semantics is obvious in the con-

(b)

(a)
mkj

cba

nccbad

e

i

h e f f puv r s t

g
d

{d,e}

{a,b,c}

{c,f}

2G

3G

G3

G1

0G

G2

G1

G0

Figure 1: Primal graphs of subnets (a) and hypertree (b) of a trivial example MSCN.

text of DisTTPs and the application focus of this work is on
DisUTTPs. We assume that each department is aided by an
agent and the agents form a multiagent system.

An MSCN encodes a DisCSP in a problemdomaincon-
sisting of a setV of variables and constraints specified over
subsets ofV . Each department/agent is concerned with a
subsetVi ⊂ V (called asubdomain) and a subsetΛi of con-
straints specified overVi. A subdomain and constraints over
it are encoded as aconstraint subnetRi = (Vi, Λi). Each
node in the subnet is labeled by a variable inVi. For each
constraintRX ∈ Λi over a setX of variables, elements of
X are pairwise connected in the subnet. The subnet is em-
bedded in the agent that represents the corresponding de-
partment. Note thatRi can be equivalently represented by
a primal graphGi = (Vi, Ei), whereEi is the set of links
determined byΛi. Without confusion, we will refer to both
Ri andGi by subnet.

Interdependencies between departmentsi and j are en-
coded through overlapping of their subdomains (i.e.,Vi ∩
Vj 6= ∅) and constraints overVi ∩ Vj . Agents solve the
DisCSP by exchanging messages about partial solutions
over these intersections. For such message passing to guar-
antee finding a solution if one exists and terminating if none
exists, subdomains (and agents) are organized into ahyper-
tree. Each hypernode is labeled by a subdomain and is as-
sociated with a corresponding agent. Each hyperlink is la-
beled by the intersection of two subdomains connected and
is called anagent interface. The hypertree is so organized
that the intersection of any two subdomains is contained in
each hypernode on the hyperpath between them. Fig. 1 (a)
shows subnets of an MSCN for a four-department DisCSP.
The hypertree as well as agent interfaces are shown in (b).

To solve a DisCSP effectively by message passing among
agents, each subnet is compiled into a cluster tree, called a
junction tree(JT). For each link in each subnet, the corre-
sponding constraint is assigned to a cluster in the JT. Based
on assigned constraints, illegal configurations in the space of
each cluster are eliminated locally. Each agent interface is
also compiled into a cluster tree, called alinkage tree(LT),
and JTs are linked through clusters of the LT (calledlink-
ages). The resultant runtime representation is alinked junc-
tion forest(LJF) (Xiang 2002), as illustrated in Fig. 2. The
compilation of an MSCN to LJF is efficient.

Constraint propagation is performed through two rounds
of message passing in the LJF. An arbitrary agent is selected
as the root of the hypertree. In the first round, messages flow
from leaf agents towards the root agent. At each agent, local
constraint propagation is first performed so that its JT is arc-
consistent, taking into account the constraints received from

3 L1,3T

L

L

1,2

0,1

T1

2T

T0
a,b

a,b,r

b,c

b,c,t

e,r,v

b,c,m

d,e,r

a,b,j,k

f,n,p

c,fc,f,t,u c,f,n
g,h,i

b,r,s

d,e,g,h d,e

Figure 2: The LJF compiled from MSCN in Fig. 1.

child agents. It then passes the updated constraints on link-
ages to the parent agent. At the end of the first round, each
parent agent is arc-consistent relative to each child agent.
This round of message passing succeeds if there exists a so-
lution for the DisCSP. Otherwise, the message passing ter-
minates early and signifies that the DisCSP has no solution.

In the second round, messages flow from the root agent to-
wards leaf agents. Each agent receives from the parent agent
a configuration over each of their linkages. Taking into ac-
count of these messages, the agent performs local constraint
propagation to determine the configuration for each cluster
in its JT as well as that for each linkage with each child
agent. It then sends the configurations over linkages to child
agents. At the end of the second round, each agent will have
determined the value for each variable in its subdomain. The
collection of these value assignments constitutes a solution
to the DisCSP. Hence, the algorithm suite is complete. Fur-
thermore, the computational complexity isO(n t k2q) (Xi-
ang & Zhang 2007), wheren is the number of agents,t the
maximum number of clusters in a subnet JT,q the maximum
size of clusters, andk binds cardinalities of spaces for vari-
ables inV . Hence, the computation is efficient when the size
of the largest cluster is upper-bounded.

The DisUTTP Problem
The DisUTTP problem used in our experimental study is
as follows: A university has a number of departments,
each of which offers a number of courses to students in a
given semester. The semester is divided into several weeks.
Courses are scheduled for one week and the timetable is re-
peated for each week. Each week is divided into a set of
prefixed time slots. Each course consists of two or more
lectures per week and each lecture lasts for one time slot.
Each department is allocated with a given number of lecture
rooms. Scheduling is subject to several types of constraints.

1. No two lectures can be offered in the same room at the
same time slot.

2. Lectures offered by the same instructor cannot be sched-
uled at the same time slot.

3. Lectures of the same course cannot be offered at the same
time slot.

4. If two courses are to be taken by students in the same
semester, then their lectures cannot be scheduled at the
same time slots.

The last type of constraints can arise primarily due to two
reasons: At a given semester, students in a given department
may be required to take certain courses by the departmental
curriculum. Such restriction is curriculum-imposed. The re-
striction is known well before timetabling is to be performed
and must be respected by timetabling.

Alternatively, a given student or a group of students may
choose to take a set of courses together in a given semester
even though it is not required by the curriculum. Such pref-
erence is student-imposed. Most universities do not consider
such preference in timetabling (McCollum 2007). To the
contrary, students must pick among timetabled courses such
that what they take are not in time-conflict. In light of this
practice, we assume that the last type of constraints above
is curriculum-imposed. If a student-imposed preference is
general enough relative to a large group of students of the
same year in their program, we assume that such preference
has been communicated to the department and incorporated
into the curriculum.

Courses in each department is scheduled independently
into its available rooms over available time slots, unless
there exist inter-departmental constraints. The type 4 con-
straints affect both intra and inter-departmental scheduling.
For instance, students in departmentDept1 are required to
take coursesCrs1 andCrs2 in a semester, while students
in Dept2 are required to takeCrs2 andCrs3 in the same
semester. Hence,Crs2 must be scheduled identicallyat both
departments, its lectures cannot be scheduled into the same
time slots with lectures ofCrs1 atDept1, and nor be sched-
uled into the same time slots with lectures ofCrs3 atDept2.
That is, timetabling ofCrs1, Crs2 andCrs3 at both depart-
ments must be coordinated.

Given the above problem description, the objective is to
timetable lectures of courses in each department into the
given set of rooms and the given set of time slots such that
all intra and inter-departmental constraints are satisfied.

Representing DisUTTP as MSCN
To solve the DisUTTP, we encode it into an MSCN. As the
weekly timetable is repeated (this is the case in the institu-
tion of the first author), we focus on scheduling of lectures
in a week over predetermined time slots.

We choose to represent each lecture during the week as
one variablex. The collection of such variables forms the
domainV of the MSCN. Each variablex is associated with
a tuple(Cx, Ix, tx, rx, COx). Cx is a course ID specifying
the course that lecturex belongs to. Each course is offered
by a unique department.Ix is an instructor ID specifying

the instructor who has been assigned to teach the course. El-
ementtx is itself a variable, representing the time slot that
lecturex will be scheduled into. Time slottx is associated
with its spaceDtx . In the most general case,Dtx would
include all time slots of the week. Elementrx is also a vari-
able, representing the room where lecturex will be offered.
Roomrx is associated with the spaceDrx . In the most gen-
eral case,Drx would include all lecture rooms allocated to
the department that manages the courseCx. Finally, COx

(Cx 6∈ COx) is a set of IDs for courses required to be taken
with Cx.

Given the associated tuple(Cx, Ix, tx, rx, COx), the
spaceDx of variablex is defined as the Cartesian product
Dx = Dtx × Drx , representing all possible ways in which
lecturex may be timetabled. Such a representation, although
general, suffers from high computational cost. SinceDtx in-
cludes all time slots of the week andDrx includes all lecture
rooms allocated to the relevant department, the cardinality
|Dx| = |Dtx | × |Drx | can be large. Let the largest space
cardinality for variables inV be denoted byα. Furthermore,
any two variablesx andy whose spacesDx andDy over-
lap are constrained due to type 1 constraints. That is, they
should be directly connected in the MSCN. As the result, in
each constraint subnet (corresponding to lectures managed
by a department/agent), every pair of variables is directly
connected. Let the largest number of lectures managed by a
department be denoted byβ. The computational complex-
ity to solve the MSCN is proportional toαβ (see section on
Background). Based on this representation, solving the re-
sultant MSCN will be intractable.

To avoid the intractability, we explore preassignment of
time slots and rooms to lectures. That is, we will heuris-
tically reduce the spacesDtx andDrx for each variablex,
and effectively reduce the cardinality of the spaceDx =
Dtx × Drx . As a result,α will be reduced. Furthermore,
as the space of each variablex is reduced, less pairs of vari-
ables will have overlapping spaces. This results in a more
sparse MSCN graphical structure and smaller clusters in the
compiled LJF. As mentioned in the background section, if
the size of the largest cluster in the LJF is upper-bounded,
then solving the MSCN is efficient. Preassignment has been
discussed in the literature (see, for example, (Werra 1985;
Schaerf 1999)) as a practical need to be addressed in
timetabling. In this work, we approach preassignment from
a different perspective for efficiency improvement in solving
DisUTTPs based on MSCNs.

Once domain variables are determined, constraints be-
tween them are specified in each constraint subnet. This
amounts to connecting each pair of variables if there exists a
constraint between them. Below, we elaborate on each type
of constraints presented informally above.

1. Room-slot constraint: No two lectures can be offered in
the same room at the same time slot. If lecture variables
x andy satisfyDx ∩ Dy 6= ∅, then they are subject to
a room-slot constraint. A legal configuration over{x, y}
must satisfy the condition: eitherrx 6= ry or tx 6= ty.

2. Instructor constraint: Lectures offered by the same in-
structor cannot be scheduled at the same time slot. If

lecture variablesx andy satisfyIx = Iy, then they are
subject to an instructor constraint. A legal configuration
over{x, y} must satisfy the condition:tx 6= ty.

3. Course constraint: Lectures of the same course cannot be
offered at the same time slot. If lecture variablesx andy
satisfyCx = Cy, then they are subject to a course con-
straint. A legal configuration over{x, y} must satisfy the
condition:tx 6= ty.

4. Course group constraint: If two courses are required to be
taken by students in the same semester, then their lectures
cannot be scheduled at the same time slots. If lecture vari-
ablesx andy satisfyCx ∈ COy, then they are subject to
a course group constraint. Note that ifCx ∈ COy, then it
must be the caseCy ∈ COx. A legal configuration over
{x, y} must satisfy the condition:tx 6= ty.

The following algorithm describes the construction of a
constraint subnet associated with an agent.

Algorithm 1 (SetSubnet)
Input: The set of lecturesVi for all courses to be taken by
students ini’th department.
Output: A constraint subnetRi = (Vi, Λi).

begin
Λi = ∅;
for each pair ofx ∈ Vi andy ∈ Vi, do

if Dx ∩Dy 6= ∅,
add〈x, y〉 to Λ;
label 〈x, y〉 as a room-slot constraint;

if Ix = Iy,
if 〈x, y〉 6∈ Λ, add〈x, y〉 to Λ;
label 〈x, y〉 as an instructor constraint;

if Cx = Cy,
if 〈x, y〉 6∈ Λ, add〈x, y〉 to Λ;
label 〈x, y〉 as a course constraint;

if Cx ∈ COy,
if 〈x, y〉 6∈ Λ, add〈x, y〉 to Λ;
label 〈x, y〉 as a course group constraint;

returnRi = (Vi, Λi);
end

Note that a given pair of lectures may be labeled with mul-
tiple constraints, e.g., an instructor constraint and a room-
slot constraint. Next, we consider inter-department con-
straints and their representation. The following cases may
arise.

1. An instructormay be jointly appointed by two or more de-
partments and hence may teach courses offered by each
department involved. We represent lectures for these
courses in the subnets of all relevant departments so that
instructor constraints over these lectures can be respected
in timetabling.

2. A lecture room may be shared by two or more depart-
ments and hence courses from each department involved
may be timetabled into the room. We represent those
lectures, whose preassigned rooms include such rooms,

in subnets of all relevant departments so that room-
slot constraints over these lectures can be respected in
timetabling.

3. Students in a given department may be required to take
courses offered by a different department. For instance,
Computer Science students are required to take Calculus
offered by Mathematics department. Lectures of courses
to be offered by a department but to be taken also by stu-
dents in another department will be represented in subnets
of both departments. Therefore, course group constraints
affecting these lectures will be respected in timetabling.

Based on the above representational scheme, these lecture
variables as well as the constraints among them will form the
agent interfaces in the MSCN between relevant subnets.

Experimental Results
We report results from preliminary experiments. The exper-
imental setup consists of five departments. Each week is di-
vided into 15 time slots. Each department offers 20 lectures
per week by 15 instructors. Each department manages four
rooms exclusively plus one room shared by all departments.
The experimental implementation is based on WEBWEAVR
(Xiang), a Java-based toolkit for graphical models.

3 4

3 5
1 9

1{a ,a ,b } 8 20{b ,c }

54{d ,d ,e ,e }
5{c ,c ,d }

G4 G3

G0 G1 G2

Figure 3: The hyperchain of MSCN for the first DisUTTP.

Two different DisUTTP problems were solved. For the
first problem, the inter-departmental course dependency re-
sults in a hyperchain agent organization, shown in Fig. 3.
The five agents are indexed asA0, . . . , A4. Each hypern-
ode in the hyperchain is associated with an agentAi and is
labeled in the figure by the primal graphGi of its subnet.
Agent interfaces are illustrated in terms of lecture variables
contained in each interface.

Table 1 illustrates the subdomain ofA0. For each lecture
in the subdomain, its course ID, instructor ID, time slot pre-
assignment, and room pre-assignment are shown in the first
four columns. If the lecture is in the agent interface, the
agent interfaced with is shown in the fifth column. The type
of interdepartmental dependency that causes the inclusionof
the lecture in the interface is indicated in the last column.

In the second DisUTTP problem, the agent organization
is a more general hypertree, as shown in Fig. 4.

Table 2 summarizes key parameters of the MSCN and the
LJF compiled from it for the first DisUTTP problem. Each
row characterizes the subnet and its JT of one agent. The
number of variables in each subnet is shown in the second
column. The total number of lectures timetabled is 100. The
sparseness of each subnet is indicated by the number of links

Table 1: Subdomain of agentA0 in the first DisUTTP.

Course ID Instructor ID Time Slot Room Agent Interfaced Interface Constraint
a1 1 2,6,12 2,4
a2 2 1,9,11 1,2
a3 3 3,7,13 2,3,9 A1 room
a4 4 5,8,15 3,4,9 A1 room
a5 5 4,8,14 3,4
a6 6 3,8,13 1,3
a7 7 5,9,15 2,3
a8 8 2,7,12 1,4
a9 9 1,10,11 1,2
a10 10 4,10,14 2,3
a11 11 1,6,11 1,4
a12 11 1,6,11 2,4
a13 12 2,7,12 1,4
a14 12 2,7,12 1,3
a15 13 3,8,13 2,4
a16 13 3,8,13 1,2
a17 14 4,9,14 2,3
a18 14 4,9,14 1,3
a19 15 5,10,15 3,4
a20 15 5,10,15 2,4
b1 16 5,6,12 6,7,9 A1 room

Table 2: Key parameters of MSCN and its LJF for the first DisUTTP.

Agent #Variable #Link #Cluster Max Cluster Size Max Cluster Space
A0 21 46 12 6 65 × 9
A1 23 54 15 6 65 × 9
A2 22 53 16 6 66

A3 24 57 16 6 66

A4 22 55 15 6 66

14 1

8

12 2

3 5 11

{a ,b }

4{b ,c }

8{c ,d ,d }

11{c ,c ,e ,e }

G0

G1 G2

G3

G4

Figure 4: The hypertree of MSCN for the second DisUTTP.

in its primal graph shown in the third column. The remain-
ing columns describe local JTs compiled from subnets. The
number of clusters in each JT is indicated in the fourth col-
umn. The fifth column indicates the size of the largest clus-
ter in each JT. The maximal number of configurations per
cluster in each JT is indicated in the last column. As indi-
cated in the previous section, computational complexity for
solving a DisCSP is upper bounded by the maximum num-
ber of configurations per cluster in the LJF of its MSCN.

Table 3 summarizes key parameters of the MSCN and its
compiled LJF for the second DisUTTP problem.

As described in the background section, solving an
MSCN consists of two rounds of constraint propagation
along the hypertree of its LJF. It can be shown that after
the first round of propagation, the JT in each agent is in-
ternally arc-consistent. Furthermore, each parent agent is
arc-consistent relative to each child agent. This intra-agent
arc-consistency and inter-agent arc-consistency guarantee
backtracking-free solution of the MSCN through the second
round of propagation. The dual arc-consistency holds even
though JTs are not internally arc-consistent before the first
round of propagation. Although the internal arc-consistency
before the first round is unnecessary, it can reduce the num-
ber of legal configurations in each cluster in a JT. As seen
from Tables 2 and 3, the maximum number of configura-
tions per cluster for the two problems are sufficiently large.
To reduce the space consumption during first round of prop-
agation, we choose to run one round of internal constraint
propagation in the JT of each agent, termedpreprocessing.

Table 3: Key parameters of MSCN and its LJF for the second DisUTTP.

Agent #Variable #Link #Cluster Max Cluster Size Max Cluster Space
A0 21 49 11 6 66

A1 22 54 14 6 65 × 9
A2 25 56 18 6 65 × 9
A3 21 53 14 6 66

A4 22 58 14 6 66

Each DisUTTP problem is solved by a multiagent system,
where five agents are distributed in four HP p920 Worksta-
tions (Intel Pentium-4 2.4GHz CPU and 512MB memory).
Table 4 shows the runtime for solving each problem. The
runtime for preprocessing and the two rounds of propagation
are shown in the second and third columns, respectively.

Table 4: Runtime for solving the two DisUTTP problems.
Agent Organization Preprocessing Propagation

hyperchain 5min 45sec 8min 23sec
hypertree 5min 23sec 10min 46sec

Remarks
We presented an alternative method for solving DisUTTPs
based on MSCNs. Existing DisCSP algorithms based on
ABT, AFC, AWC and DBA have exponential worst-case
complexity. No time bound better than exponential can be
given before problem solving starts. The MSCN based algo-
rithm is efficient when the largest cluster in its LJF is upper-
bounded in size. As long as sparseness of the MSCN re-
mains the same, complexity of the algorithm grows linearly
with the number of agents and sizes of subnets. The size of
the largest cluster is known after LJF compilation. Hence,
for sparse MSCNs, a linear time bound is available before
problem solving starts. When clusters in LJF are too large,
the MSCN can be be made sparser by relaxing some soft
constraints before recompilation and problem solving.

The existing DisTTP algorithm based on SA/CA needs a
central agent CA to whom partial timetables of other agents
must be disclosed. The MSCN based algorithm selects an
arbitrary agent as root who is identical function-wise to any
other agent. The only timetables exchanged between agents
are those over their interfaces - lectures shared by multiple
departments, and hence better agent privacy is achieved.

Investigation of alternative DisUTTP problems for further
improvement of efficiency and more extensive experimental
study are underway.

Acknowledgement
Financial support to the first author through Discovery Grant
from NSERC, Canada is acknowledged.

References
Bessiere, C.; Maestre, A.; Brito, I.; and Meseguer, P. 2005. Asyn-
chronous backtrackingwithout adding links: a new member in the
ABT family. Artificial Intelligence161(1-2):7–24.

Hirayama, K., and Yokoo, M. 2005. The distributed breakout
algorithms.Artificial Intelligence161(1-2):89–116.

McCollum, B. 2007. A persepctive on bridging the gap between
theory and practice in university timetabling. InPractice and
Theory of Automated Timetabling VI, Springer Lecture Notes in
Computer Science Vol 3867. 3–23.

Meisels, A., and Kaplansky, E. 2002. Scheduling agents - dis-
tributed timetabling problems (DisTTP). InProc. 4th Conf. on
Autom. Timetabling (PATAT-2002), LNCS 2740, 166–180.

Meisels, A., and Zivan, R. 2007. Asynchronous forward-
checking for DisCSPs.Constraints12(1):131–150.
Rossi-Doria, O.; Sampels, M.; Birattari, M.; Chiarandini, M.;
Dorigo, M.; Gambardella, L. M.; Knowles, J.; Manfrin, M.; Mas-
trolilli, M.; Paechter, B.; Paquete, L.; and Stutzle, T. 2003. A
comparison of the performance of different metaheuristics on the
timetabling problem. In Burke, E., and Causmaecker, P., eds.,
Practice and Theory of Automated Timetabling IV, LNCS 2740.
Springer.

Schaerf, A. 1999. A survey of automated timetabling.Artificial
Intelligence Review13:87–127.

Silaghi, M., and Faltings, B. 2005. Asynchronous aggregation
and consistency in distributed constraint satisfaction.Artificial
Intelligence161(1-2):25–54.
Werra, D. 1985. An introduction to timetabling.European J.
Operational Research19:151–162.

Xiang, Y., and Zhang, W. 2007. Multiagent constraint satisfac-
tion with multiply sectioned constraint networks. In Kobti, Z.,
and Wu, D., eds.,Advances in Artificial Intelligence, LNAI 4509.
Springer-Verlag. 228–240.

Xiang, Y. WebWeavr-IV Research Toolkit.
www.cis.uoguelph.ca/˜yxiang/.
Xiang, Y. 2002. Probabilistic Reasoning in Multi-Agent Sys-
tems: A Graphical Models Approach. Cambridge University
Press, Cambridge, UK.

Yokoo, M., and Hirayama, K. 1996. Distributed breakout algo-
rithm for solving distributed constraint satisfaction problems. In
Proc. 2nd Inter. Conf. on Multi-Agent Systems, 401–408.

Yokoo, M.; Durfee, E.; Ishida, T.; and Kuwabara, K. 1992. Dis-
tributed constraint satisfaction for formalizing distributed prob-
lem solving. InProc. 12th IEEE Inter. Conf. on Distributed Com-
puting Systems, 614–621.
Yokoo, M.; Durfee, E.; Ishida, T.; and Kuwabara, K. 1998.
The distributed constraint satisfaction problem: Formalization
and algorithms.IEEE Trans. Knowledge and Data Engineering
10(5):673–685.

