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Abstract

To specify a Bayes net (BN), a conditional probability ta-
ble (CPT), often of an effect conditioned on itsn causes,
needs assessed for each node. Its complexity is generally ex-
ponential inn. Noisy-OR reduces the complexity to linear,
but can only represent reinforcing causal interactions. The
non-impeding noisy-AND (NIN-AND) tree is the first causal
model that explicitly expresses reinforcement, undermining,
and their mixture. It has a linear complexity, in terms of both
the number of parameters and the size of the tree topology. As
originally proposed, the model allows only binary effect and
cause variables. This work generalizes the model to multi-
valued effect and causes, and analyzes key properties.

Introduction
To specify a BN, a CPT needs to be assessed for each non-
root node. It is often advantageous to construct BNs along
the causal direction, in which case a CPT is the distribution
of an effect conditioned on itsn causes. In general, assess-
ment of a CPT has the complexity exponential onn.

Noisy-OR (Pearl 1988) is the most well known technique
that reduces this complexity to linear. A number of exten-
sions have also been proposedsuch as (Heckerman & Breese
1996; Galan & Diez 2000; Lemmer & Gossink 2004). How-
ever, noisy-OR, noisy-AND (Galan & Diez 2000), as well
as related techniques, can only represent causal interactions
that are reinforcing (Xiang & Jia 2007).

The NIN-AND tree (Xiang & Jia 2007) extends noisy-OR
and provides the first causal model that explicitly expresses
reinforcing and undermining causal interactions, as well as
their mixture.1 It requires specification of a set of proba-
bility parameters of a size linear inn, and a tree topology
also of a size linear inn, which expresses the types of causal
interactions among causes. The model uses default indepen-
dence assumptions to gain the efficiency, but is also flexible
enough to allow these assumptions to be relaxed. With the
assumptions relaxed incrementally and more parameters are
specified accordingly, any CPT can be encoded through a
NIN-AND tree.

As originally proposed (Xiang & Jia 2007), the effect and
cause variables in a NIN-AND tree are binary, which limits
its scope of applicability. In this work, we draw from the
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1Being unaware of this work and its precursor, (Maaskant &
Druzdzel 2008) independently presented special cases of NIN-
AND tree models.

generalization of noisy-OR from the binary case, such as
(Henrion 1989; Diez 1993), and generalize the NIN-AND
tree model to multi-valued effect and cause variables.

The remainder of the paper is organized as follows: We
first review the binary NIN-AND tree models. We then in-
troduce our terminology on graded multi-causal events. The
basic processing units in a NIN-AND tree model, the NIN-
AND gates, are generalized to graded multi-causal events.
This is followed by the definition of the generalized NIN-
AND tree model. We analyze its properties in relation to
reinforcement and undermining, as well as the complexity
for specifying a CPT using such a model.

Background on Binary NIN-AND Trees
This section is mostly based on (Xiang & Jia 2007). An
uncertain causeis a cause that can produce an effect but
does not always do so. Denote a binary effect variable bye
and a set of binary cause variables ofe by X = {c1, ..., cn}.
Denotee = true by e+ ande = false by e−. Similarly, for
each causeci, denoteci = true by c+

i andci = false by
c−i .

A causal eventrefers to an event that a causeci caused
an effecte to occur successfully when all other causes of
e are absent. Denote this causal event bye+ ← c+

i and its
probability byP (e+ ← c+

i ). The causal failure event, where
e is false whenci is true and all other causes ofe are false,
is denoted bye+ 6← c+

i . Denote the causal event that a set
X = {c1, ..., cn} of causes causede by e+ ← c+

1 , ..., c+
n or

e+ ← x+. Denote the set ofall causesof e by C.
The CPTP (e|C) relates to probabilities of causal events

as follows: If C = {c1, c2, c3}, thenP (e+|c+
1 , c−2 , c+

3 ) =
P (e+ ← c+

1 , c+
3 ). C is assumed to include a leaky variable

(if any) to capture causes that we do not wish to represent
explicitly, and henceP (e+|c−1 , c−2 , c−3 ) = 0.

Causes reinforce each other if collectively they are at least
as effective in causing the effect as some acting by them-
selves. If collectively they are less effective, then they un-
dermine each other. Note that ifC = {c1, c2} andc1 andc2

undermine each other, then all the following hold:

P (e+|c−1 , c−2 ) = 0, P (e+|c+
1 , c−2 ) > 0, P (e+|c−1 , c+

2 ) > 0,

P (e+|c+
1 , c+

2 ) < min(P (e+|c+
1 , c−2 ), P (e+|c−1 , c+

2 )).

The following Def.1 defines the two types of causal in-
teractions generally. Note that reinforcement and undermin-
ing can occur between individual variables as well as sets of
variables. For instance, variables within each of two sets can



be reinforcing, while the two sets can undermine each other.
Hence, eachWi in Def.1 is not necessarily a singleton.

Definition 1 Let R = {W1, W2, ...} be a partition of a set
X of causes,R′ ⊂ R be any proper subset ofR, andY =
∪Wi∈R′Wi. Sets of causes inR reinforce each other, iff

∀R′ P (e+ ← y+) ≤ P (e+ ← x+).

Sets of causes inR undermine each other, iff

∀R′ P (e+ ← y+) > P (e+ ← x+).

Disjoint sets of causesW1, ..., Wm satisfy failure con-
junction iff

(e+ 6← w+
1 , ..., w+

m) = (e+ 6← w+
1 ) ∧ ...∧ (e+ 6← w+

m).

That is, collective failure is attributed to individual failures.
They also satisfyfailure independenceiff

P ((e+ 6← w+
1 ) ∧ ...∧ (e+ 6← w+

m))

= P (e+ 6← w+
1 ) ... P (e+ 6← w+

m). (1)

Disjoint sets of causesW1, ..., Wm satisfysuccess con-
junction iff

e+ ← w+
1 , ..., w+

m = (e+ ← w+
1 ) ∧ ...∧ (e+ ← w+

m).

That is, collective success requires individual effectiveness.
They also satisfysuccess independenceiff

P ((e+ ← w+
1 ) ∧ ...∧ (e+ ← w+

m))

= P (e+ ← w+
1 ) ... P (e+ ← w+

m). (2)

It can be shown that causes are reinforcing when they sat-
isfy failure conjunction and independence, and they are un-
dermining when they satisfy success conjunction and inde-
pendence. Undermining can be modeled by a direct NIN-
AND gate as shown in the left of Fig. 1. Its root nodes (top)

+        ++        +

+        +           +e     c  ,...,c1           n

1 n...
e     ce     c +        ++        +

+        +           +e     c  ,...,c1           n

1 n...
e     ce     c

Figure 1: Direct (left) and dual (right) NIN-AND gates

are causal success events of single causes, and its leaf node
(bottom) is the causal event in question, whose probability
is computed by Eqn. (1). Reinforcement can be modeled by
a dual NIN-AND gate (right). Its root nodes (top) are causal
failure events of single causes, and its leaf node (bottom)
is the causal failure event in question, whose probability is
computed by Eqn. (2).

By combining direct and dual NIN-AND gates and orga-
nizing them into a tree topology, both reinforcement and un-
dermining can be expressed in a single model, called a NIN-
AND tree. Consider an example whereC = {c1, c2, c3},
c1 andc3 undermine each other, but collectively they rein-
force c2. Assuming the default conjunction and indepen-

e     c+        +
2+        +     +

1     3    e     c , c 

e     c1
+        + e     c+        +

3

e     c , c , c1     2     3
+        +     +     +

Figure 2: A NIN-AND tree causal model.

dence, their causal interaction, relative to the event

e+ ← c+
1 , c+

2 , c+
3 ,

can be expressed by the NIN-AND tree shown in Fig. 2. The
top gate is direct and the bottom gate (theleaf gate) is dual.
The link downward from nodee+ ← c+

1 , c+
3 has a white oval

end (anegationlink) and negates the event. All other links
areforward links. Given an NIN-AND tree, the probability
of the leaf event can be computed by Algorithm 1.

Algorithm 1 GetCausalEventProb(T)
Input: A NIN-AND treeT of leafv and leaf gateg, with root
probabilities specified.
for each nodew directly inputting tog, do

if P (w) is not specified,
denote the sub-NIN-AND-tree withw as the leaf byTw;
P (w) = GetCausalEventProb(Tw);

if (w, g) is a forward link,P ′(w) = P (w);
elseP ′(w) = 1− P (w);

return P (v) =
∏

w P ′(w);
For the example in Fig. 2, after the followingare specified,

P (e+ ← c+
1 ) = 0.85, P (e+ ← c+

2 ) = 0.8, P (e+ ← c+
3 ) = 0.7,

the probabilityP (e+ 6← c+
1 , c+

2 , c+
3 ) = 0.081 can be de-

rived. Using other NIN-AND tree models simplified from
Fig. 2, the CPT in Table 1 can be derived.P (e+|c+

1 , c−2 , c+
3 )

Table 1: The CPT of an example NIN-AND tree model.
P (e+|c−1 , c−2 , c−3 ) 0 P (e+|c+

1 , c−2 , c+
3 ) 0.595

P (e+|c+
1 , c−2 , c−3 ) 0.85 P (e+|c+

1 , c+
2 , c−3 ) 0.97

P (e+|c−1 , c+
2 , c−3 ) 0.8 P (e+|c−1 , c+

2 , c+
3 ) 0.94

P (e+|c−1 , c−2 , c+
3 ) 0.7 P (e+|c+

1 , c+
2 , c+

3 ) 0.919

is less than eitherP (e+|c+
1 , c−2 , c−3 ) or P (e+|c−1 , c−2 , c+

3 )
(undermining). P (e+|c+

1 , c+
2 , c+

3 ) is larger than both
P (e+|c+

1 , c−2 , c+
3 ) andP (e+|c−1 , c+

2 , c−3 ) (reinforcement).

Graded Multi-Causal Events
Let e be a multi-valued effect variable whose finite domain
is denotedDe = {e0, e1, , ..., eη}, whereη ≥ 1. The value
e0 (through the superscript index0) represents the absence
of the effect condition. Each valueej with a higher super-
script indexj > 0 represents the effect condition at a higher
intensity. For instance, ife represents the fever condition
of a patient, it may have a domain{c0

i , c
1
i , c

2
i} which corre-

sponds to

{normal, low fever, high fever}.
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Notatione < ej is well defined, when0 < j ≤ η, to denote
e ∈ {e0, e1, ..., ej−1}, and so ise ≥ ej .

Let ci (i = 1, 2, ...) be a multi-valued uncertain cause,
whose finite domain is denotedDi = {c0

i , c
1
i , c

2
i , ...}. The

valuec0
i represents the absence of the condition signified by

the variableci, and each valuecj
i with a higher superscript

index j > 0 represents the condition at a higher intensity.
Variables such ase and ci are often referred to asgraded
(Diez 1993).

We denote a set of multi-valued cause variables of effect
e (multi-valued) asX = {c1, ..., cn}. The set ofall causes
of e is denoted byC. SetC is assumed to include a leaky
variable (if any) to capture causes not represented explicitly.

For multi-valued causes and effect, agraded singular
causal successis an event that a causeci with value cj

i

(j > 0) caused the effecte to occur at a valueek (k > 0)
or higher, when every other causecm of e has the valuec0

m
(absent). Conditionk > 0 means that the effect must be
present. Denote this event by

e ≥ ek ← {cj
i} or simply e ≥ ek ← cj

i

and its probability byP (e ≥ ek ← cj
i ).

A graded multi-causal successinvolves a setX (|X| > 1)
of causes ofe, where eachci ∈ X has a valuecj

i (j > 0).
That is, causes inX collectively caused the effecte to occur
at a valueek (k > 0) or higher, when every other cause
cm ∈ C \X has the valuec0

m. We denote the multi-causal
success by

e ≥ ek ← {cj1
1 , ..., cjn

n } or simply e ≥ ek ← cj1
1 , ..., cjn

n

or by the (somewhat abused) vector notion

e ≥ ek ← x+,

where superscript+ signifies that, for eachci ∈ X, its value
cji

i > c0
i .

A graded singular causal failurerefers to an event where
e < ek (k > 0) when a causeci has a valuecj

i (j > 0) and
every other causecm of e has the valuec0

m. It is a failure
event in the sense thatci fails to produce the effect with an
intensityek or higher. We denote the failure event by

e < ek ← cj
i .

In a graded multi-causal failure, a setX (|X| > 1) of
causes ofe are active when the effecte < ek (k > 0). That
is, e < ek, eachci ∈ X has a valuecj

i (j > 0), and each
cm ∈ C \X has the valuec0

m. We denote the failure event
by

e < ek ← cj1
1 , ..., cjn

n

or by the vector notion

e < ek ← x+.

Note that our terminology on multi-valued causal events
differs from those based on inhibitors, e.g., (Pearl 1988;
Heckerman& Breese 1996), and is more coherent with those
in (Lemmer & Gossink 2004; Xiang & Jia 2007), although
the latter deal with only binary cases.

The negation of event

e ≥ ek ← cj1
1 , ..., cjn

n

is
e < ek ← cj1

1 , ..., cjn
n

and vice versa.
Probabilities of graded causal events can be converted to

conditional probabilities and vice versa through the follow-
ing proposition, whose proof is straightforward. For a set
Y of causes, ifcj = c0

j for eachcj ∈ Y , we denote the
instantiation ofY by y0.

Proposition 1 Lete be an effect,C = X ∪ Y (X ∩ Y = ∅)
be the set of all causes ofe, X be instantiated tox+, andY
be instantiated toy0. Then the following hold, wherek > 0.

1. P (e ≥ ek ← x+) = 1− P (e < ek ← x+).
2. P (e0|x+, y0) = 1− P (e ≥ e1 ← x+).
3. P (eη|x+, y0) = P (e ≥ eη ← x+).
4. Fork < η,

P (ek|x+, y0) = P (e ≥ ek ← x+)−P (e ≥ ek+1 ← x+).

5. P (e ≥ ek ← x+) =
∑η

j=k P (ek|x+, y0).

The first equation in Proposition 1 deals with negation of
a causal event. The next three convert causal probabilities to
conditional probabilities. The last one converts conditional
probabilities to a causal probability. These conversions are
useful in processing the probabilities of input and output
events of generalized NIN-AND trees as will be presented
below.

Generalized NIN-AND Gates
Definition 2 Disjoint sets of causesW1, ..., Wm of effecte
satisfygraded success conjunctioniff

e ≥ ek ← w+
1 , ..., w+

m

= (e ≥ ek ← w+
1 ) ∧ ...∧ (e ≥ ek ← w+

m),
wherek > 0.

Definition 3 Disjoint sets of causesW1, ..., Wm of effecte
satisfygraded success independenceiff events

e ≥ ek ← w+
1 , ..., e ≥ ek ← w+

m

are independent of each other, wherek > 0. That is, the
following equation holds,

P (e ≥ ek ← w+
1 , ..., w+

m)

= P (e ≥ ek ← w+
1 ) ... P (e ≥ ek ← w+

m). (3)

We depict the interaction of causes that satisfy graded
success conjunction and graded success independence by a
graphical model as shown in Fig. 3. The success conjunc-
tion is represented by the AND gate. The success indepen-
dence is signified by the disconnection of input events other
than through the gate. Since the causes are uncertain causes,
the AND gate is noisy. Common noisy-AND gates, e.g.,
(Galan & Diez 2000), areimpedingin that the probability
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cn
jnc1

j1

...e  ek c1
j1 cn

jne  ek

,...,e  ek

Figure 3: A generalized direct NIN-AND gate.

of a causal event is zero unless the set of active causes is
equal toC. The probability of the output event of the gate
in Fig. 3 is determined by Eqn. (3) from probabilities of the
input events, no matterX = C or not. Hence, the gate is
non-impeding. To distinguish it from the binary case (see
the background section) as well as the case introduced be-
low, we term the gate in Fig. 3 as ageneralized direct non-
impeding noisy-AND gateor a generalized direct NIN-AND
gate.

Definition 4 Disjoint sets of causesW1, ..., Wm of effecte
satisfygraded failure conjunction iff

e < ek ← w+
1 , ..., w+

m

= (e < ek ← w+
1 ) ∧ ...∧ (e < ek ← w+

m),

wherek > 0.

Definition 5 Disjoint sets of causesW1, ..., Wm of effecte
satisfygraded failure independenceiff failure events

e < ek ← w+
1 , ..., e < ek ← w+

m

are independent of each other, wherek > 0. That is, the
following equation holds,

P (e < ek ← w+
1 , ..., w+

m)

= P (e < ek ← w+
1 ) ... P (e < ek ← w+

m). (4)

We depict the interaction of causesthat satisfy graded fail-
ure conjunction and graded failure independenceby a graph-
ical model as shown in Fig. 4. The failure conjunction is

...c1
j1e<ek

cn
jnc1

j1

cn
jne<ek

,...,e<ek

Figure 4: A generalized dual NIN-AND gate.

represented by the AND gate, and the failure independence
is signified by the disconnection of input events other than
through the gate. The probability of the output event of the
gate is determined by Eqn. (4) from probabilities of the input
events. The gate in Fig. 4 differs from that in Fig. 3 in that

all input and output events are causal failure events. Hence,
we refer to it as ageneralized dual NIN-AND gate.

Def. 2 through 5 are relative to sets of causes. Figs. 3 and
4 are special cases where these sets are singletons. A more
general example appears in Fig. 5 below.

Reinforcing and Undermining Properties
We analyze the reinforcing and undermining behaviors of
generalized NIN-AND gates, which differ from those of bi-
nary NIN-AND gates. We first give a more refined definition
of reinforcing and undermining.

Definition 6 Let De be the domain of effecte andSe be a
subset ofDe, where eitherSe contains a single elementek

(k > 0), or it contain all values≥ ek.
LetR = {W1, W2, ...} be a partition of a setX of causes

of effecte, R′ ⊂ R be any proper subset ofR, andY =
∪Wi∈R′Wi. DenoteV = C \X andZ = C \ Y .

Sets of causes inR reinforce each otherrelative to Se,
iff

∀R′ P (e ∈ Se|y+, z0) ≤ P (e ∈ Se|x+, v0).
Sets of causes inR undermine each otherrelative to Se, iff

∀R′ P (e ∈ Se|y+, z0) > P (e ∈ Se|x+, v0).

Note that Def. 6 is defined based on conditional proba-
bilities rather than (causal) probabilities of causal events as
Def. 1. This is because reinforcement and undermining are
best described through comparison of conditional probabili-
ties. In the binary case, the conversion between conditional
and causal probabilities is trivial, but it is less so in the multi-
valued case.

In the following, we show that a generalized direct NIN-
AND gate models undermining relative to certainSe’s.

Proposition 2 Let W1, ..., Wm be disjoint sets of causes of
effecte and e ≥ eη ← w+

1 , ..., e ≥ eη ← w+
m be the

root (input) events of a generalized direct NIN-AND gateg.
Let P (e ≥ eη ← w+

1 , ..., w+
m) be the probability of the leaf

(output) event ofg. Then, fori = 1, ..., m, we have

P (e ≥ eη ← w+
1 , ..., w+

m) < P (e ≥ eη ← w+
1 ).

Proposition 2 says that a generalized direct NIN-AND
gate models undermining relative to the most intensive value
of the effect, i.e.,Se = {eη}. It follows directly from
Eqn. (3).

Proposition 3 Let W1, ..., Wm be disjoint sets of causes of
effecte and e ≥ e1 ← w+

1 , ..., e ≥ e1 ← w+
m be the

root (input) events of a generalized direct NIN-AND gateg.
Let P (e ≥ e1 ← w+

1 , ..., w+
m) be the probability of the leaf

(output) event ofg. Then, fori = 1, ..., m, we have

P (e ≥ e1 ← w+
1 , ..., w+

m) < P (e ≥ e1 ← w+
1 ).

Proposition 3 says that a generalized direct NIN-AND
gate models undermining relative to the collection of active
values of the effect, i.e.,Se = {e1, ..., eη}. It follows di-
rectly from Eqn. (3).

Consider an example whereC = {c1, c2}, |D1| = 2,
|D2| = |De| = 3, and

P (e1|c1
1, c

0
2) = 0.3, P (e2|c1

1, c
0
2) = 0.45,
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P (e1|c0
1, c

1
2) = 0.35, P (e2|c0

1, c
1
2) = 0.22,

P (e1|c0
1, c

2
2) = 0.4, P (e2|c0

1, c
2
2) = 0.5.

Using suitable generalized direct NIN-AND gates with all
root events singular, we can derive the following by Eqn. (3),

P (e ≥ e1|c1
1, c

2
2) = 0.675,

P (e ≥ e2|c1
1, c

2
2) = 0.225,

from which we obtain the following by Proposition 1,
P (e0|c1

1, c
2
2) = 0.325,

P (e1|c1
1, c

2
2) = 0.45,

P (e2|c1
1, c

2
2) = 0.225.

Undermining holds relative toSe = {e2} because

P (e2|c1
1, c

2
2) = 0.225 < 0.45 = P (e2|c1

1, c
0
2)

and0.225 < 0.5 = P (e2|c0
1, c

2
2). It also holds relative to

Se = {e1, e2} because

P (e ≥ e1|c1
1, c

2
2) = 0.675 < 0.75 = P (e ≥ e1|c1

1, c
0
2)

and0.675 < 0.9 = P (e ≥ e1|c0
1, c

2
2). However, undermin-

ing does not hold relative toSe = {e1} because

P (e1|c1
1, c

2
2) = 0.45 > 0.3 = P (e1|c1

1, c
0
2)

and0.45 > 0.4 = P (e1|c0
1, c

2
2).

Similarly, we show below that a generalized dual NIN-
AND gate models reinforcement relative to both the most
intensive value of the effect and the collection of active val-
ues of the effect.
Proposition 4 Let W1, ..., Wm be disjoint sets of causes of
effecte and e ≥ ek ← w+

1 , ..., e ≥ ek ← w+
m be the

root (input) events of a generalized dual NIN-AND gateg,
where eitherk = η or k = 1. LetP (e ≥ ek ← w+

1 , ..., w+
m)

be the probability of the leaf (output) event ofg. Then, for
i = 1, ..., m, we have

P (e ≥ ek ← w+
1 , ..., w+

m) > P (e ≥ ek ← w+
1 ).

Consider the above example. Using suitable generalized
dual NIN-AND gates with all root events singular, we can
derive the following by Eqn. (4),

P (e < e1|c1
1, c

2
2) = 0.025,

P (e < e2|c1
1, c

2
2) = 0.275,

from which we obtain the following by Proposition 1,
P (e0|c1

1, c
2
2) = 0.025,

P (e1|c1
1, c

2
2) = 0.25,

P (e2|c1
1, c

2
2) = 0.725.

Reinforcement holds relative toSe = {e2} because

P (e2|c1
1, c

2
2) = 0.725 > 0.45 = P (e2|c1

1, c
0
2)

and0.725 > 0.5 = P (e2|c0
1, c

2
2). It also holds relative to

Se = {e1, e2} because

P (e ≥ e1|c1
1, c

2
2) = 0.975 > 0.75 = P (e ≥ e1|c1

1, c
0
2)

and0.975 > 0.9 = P (e ≥ e1|c0
1, c

2
2). However, reinforce-

ment does not hold relative toSe = {e1} because

P (e1|c1
1, c

2
2) = 0.25 < 0.3 = P (e1|c1

1, c
0
2)

and0.25 < 0.4 = P (e1|c0
1, c

2
2).

In summary, a generalized direct NIN-AND gate ex-
presses undermining and a generalized dual NIN-AND gate
expresses reinforcement, relative to both the most intensive
value and the collection of active values of the effect.

Generalized NIN-AND Trees
The following definition generalizes the binary NIN-AND
tree models to multi-valued effect and causes.

Definition 7 A generalized NIN-AND tree is a directed
tree for a multi-valued effecte and a setX = {c1, ..., cn}
of multi-valued causes, parameterized by aboundary value
ek (k > 0) of e and an instantiationx+ = {cj1

1 , ..., cjn
n } of

X, whereji > 0 (i = 1, ..., n).

1. There are two types of nodes. Anevent node (a black
oval) has an in-degree≤ 1 and an out-degree≤ 1. Agate
node (a generalized NIN-AND gate) has an in-degree≥ 2
and an out-degree1.

2. There are two types of links, each connecting an event
and a gate along the input-to-output direction of gates. A
forward link (a line) is implicitly directed. Anegation
link (with a white oval at one end) is explicitly directed.

3. Each terminal node is an event labeled by a graded causal
evente ≥ ek ← y+ or e < ek ← y+. There is a single
leaf (no child) wherey+ = x+, and the gate it connects
to is theleaf gate. For eachroot (no parent; indexed by
i), y+

i
⊂ x+, y+

j
∩ y+

k
= ∅ for j 6= k, and

⋃
i y+

i
= x+.

4. Inputs to a gateg are in one of two cases:
(a) Each is either connected by a forward link to a node

labelede ≥ ek ← y+, or by a negation link to a node
labelede < ek ← y+. The output ofg is connected by
a forward link to a node labelede ≥ ek ← ∪iy

+
i

.

(b) Each is either connected by a forward link to a node
labelede < ek ← y+, or by a negation link to a node
labelede ≥ ek ← y+. The output ofg is connected by
a forward link to a node labelede < ek ← ∪iy

+
i

.

Fig. 5 is an example of a generalized NIN-AND tree for
C = {c1, c2, c3} where|De| = |D1| = |D2| = |D3| = 3.

c ,21

c ,21

2e  e c 23

2e<e c 22

2
2c , 3

2c 2e<e

2e  e c 21

3
2c 2e  e

Figure 5: A generalized NIN-AND tree.

The probability of the leaf event of a generalized
NIN-AND tree can be evaluated using Algorithm 1 Get-
CausalEventProb. From the model in Fig. 5,P (e ≥ e2 ←
c2
1) = 0.85, P (e ≥ e2 ← c2

2) = 0.8, andP (e ≥ e2 ←
c2
3) = 0.7, it can be derived

P (e < e2 ← c2
1, c

2
2, c

2
3) = 0.081.

Using Proposition 1, the probabilities of root events in a
generalizedNIN-AND tree can be obtained from conditional

5



probabilities that involve only a single active cause (ci 6= c0
i

andcj = c0
j for j 6= i). After the probability of the leaf event

is derived for each relevant graded causal event, the corre-
sponding CPT can be obtained by applying Proposition 1 to
the probabilities of the leaf events.

Properties of Generalized NIN-AND Trees
Theorem 1 establishes that generalized NIN-AND trees
model both reinforcement and undermining correctly.

Theorem 1 LetT be a generalized NIN-AND tree where the
probability for each root node is specified in the range(0, 1).
LetP (v) be returned by GetCausalEventProb(T).

ThenP (v) combines the given probabilities according to
reinforcement and undermining expressed by the topology
of T , with each generalized direct NIN-AND gate corre-
sponding to undermining and each generalized dual NIN-
AND gate corresponding to reinforcement, relative to both
Se = {en} andS′

e = De \ {e0}.
Proof: GetCausalEventProb evaluates first the output
event for each gate node whose inputs are root events. If
the root events are graded causal successes, then the gate is
a generalized direct NIN-AND gate. By Propositions 2 and
3, the probability of the output event reflects the result of
undermining, relative to bothSe andS′

e. Otherwise, the root
events are graded causal failures, and the gate is a general-
ized dual NIN-AND gate. By Proposition 4, the probability
of the output event reflects the result of reinforcement, rela-
tive to bothSe andS′

e.
After the evaluation, root nodes (and links incident

to them) no longer participate in further evaluations and
can be deleted. The remaining subtree is still a gen-
eralized NIN-AND tree with the depth reduced by one.
GetCausalEventProb repeats the above computation un-
til the depth reduces to zero. The statement is true for the
evaluation at each depth and hence the theorem holds.�

The following theorem establishes that specification of
CPT using generalized NIN-AND trees is efficient.

Theorem 2 LetC = {c1, ..., cn} be the set of all causes of
effecte that satisfy the graded success (failure) conjunction
and independence. Denote|De| byη + 1 and|Di| byβ + 1
(i = 1, ..., n). LetP ∗ be a set of conditional probabilities

P ∗ = {P (ek|c0
1, ..., c

0
i−1, c

m
i , c0

i+1, ..., c
0
n) | k > 0, m > 0}.

Then, the following hold.

1. The CPTP (e|X) can be derived fromP ∗ using general-
ized NIN-AND trees.

2. The complexity to specifyP ∗ is O(η (β1 + ... + βn)).

Proof: Other thanP (e0|c0
1, ..., c

0
n) = 1, each other condi-

tional probability in the CPTP (e|X) can be derived from
probabilities of output events of at most two generalized
NIN-AND trees through Proposition 1. For each probability
in P ∗, the effect is present and exactly one cause is active.
P ∗ contains all such probabilities. Hence,P ∗ is sufficient to
specify the probabilities of input events of all relevant gener-
alized NIN-AND trees through Proposition 1, and condition
1 follows.

Condition 2 amounts to a simple counting. �
Assumingη = βi for i = 1, ..., n, the above complex-

ity becomesO(n η2) and is hence linear inn. A number
of other important properties of generalized NIN-AND tree
models are mentioned briefly below although their elabora-
tion is beyond space limit.

Although the probability of each graded multi-causal
event requires the use of a separate generalized NIN-AND
tree, all of them can be derived from a single generalized
NIN-AND tree. Hence, the complexity to specify the neces-
sary tree topologies is also linear inn. Default conjunction
and independence assumptions embedded in the model can
be relaxed if necessary through additional numerical param-
eters than what is included in Theorem 2. By doing so, any
CPT can be encoded through a generalized NIN-AND tree.
Finally, generalized NIN-AND trees revert to binary NIN-
AND trees when all variables are binary.

Conclusion
In this work, we generalize the binary NIN-AND tree causal
models to multi-valued effect and causes. The generalized
NIN-AND trees model explicitly reinforcement and under-
mining among causes relative to the most intensive level as
well as the collection of active levels of effect. Specification
of CPTs using generalized NIN-AND trees is shown to be
efficient. Hence, this result will allow numerical parameters
in Bayes nets to be specified efficiently through the intuitive
concepts of reinforcement and undermining.
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