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Abstract generalization of noisy-OR from the binary case, such as
(Henrion 1989; Diez 1993), and generalize the NIN-AND
tree model to multi-valued effect and cause variables.

needs assessed for each node. Its complexity is generally ex- . The r.ema'“de'f of the paper is organized as follows: _We
ponential inn. Noisy-OR reduces the complexity to linear, first review the b_lnary NIN-AND tree mpdels. We then in-
but can only represent reinforcing causal interactions. The  troduce our terminology on graded multi-causal events. The

To specify a Bayes net (BN), a conditional probability ta-
ble (CPT), often of an effect conditioned on its causes,

non-impeding noisy-AND (NIN-AND) tree is the first causal basic processing units in a NIN-AND tree model, the NIN-
model that explicitly expresses reinforcement, undermining, AND gates, are generalized to graded multi-causal events.
and their mixture. It has a linear complexity, in terms of both This is followed by the definition of the generalized NIN-
the number of parameters and the size of the tree topology. As  AND tree model. We analyze its properties in relation to
originally proposed, the model allows only binary effect and reinforcement and undermining, as well as the complexity
cause variables. This work generalizes the model to multi- for specifying a CPT using such a model.

valued effect and causes, and analyzes key properties.

Background on Binary NIN-AND Trees

Introduction This section is mostly based on (Xiang & Jia 2007). An
To specify a BN, a CPT needs to be assessed for each non- uncertain causes a cause that can produce an effect but
root node. It is often advantageous to construct BNs along does not always do so. Denote a binary effect variable by
the causal direction, in which case a CPT is the distribution and a set of binary cause variablesadfy X = {c1, ..., cu}.
of an effect conditioned on its causes. In general, assess- Denotee = true by e™ ande = false by e™. Similarly, for

ment of a CPT has the complexity exponentialan each cause;, denoter; = true by ¢ andc; = false by
Noisy-OR (Pearl 1988) is the most well known technique ¢; -
that reduces this complexity to linear. A number of exten- A causal eventefers to an event that a causecaused

sions have also been proposed such as (Heckerman & Breesean effecte to occur successfully when all other causes of
1996; Galan & Diez 2000; Lemmer & Gossink 2004). How- e are absent. Denote this causal eventeBy — c¢;" and its
ever, noisy-OR, noisy-AND (Galan & Diez 2000), as well  probability byP (et « ¢;"). The causal failure event, where
as related techniques, can only represent causal interactionse is false wher; is true and all other causes ofare false,
that are reinforcing (Xiang & Jia 2007). is denoted byet «~ ¢;. Denote the causal event that a set
The NIN-AND tree (Xiang & Jia 2007) extends noisy-OR X = {¢,, ..., ¢,} of causes causedby et «— ¢, .. chor
and provides the first causal model that explicitly expresses ¢+ — z+. Denote the set ddll causesof e by C.
reinforcing a?d undermining causal interactions, as wellas  The CPTP(¢|C) relates to probabilities of causal events
. - . _ + = )
bity parameters of & Sie Imoat in, and & ree fopology o 1OV 1T = fe excaby thenP(evef ) ~
I y g e i i which leasth pf 9y | P(e* « cf,ef). Cis assumed to include a leaky variable
also of a size linear im, which expresses the types of causal it 4y to capture causes that we do not wish to represent
interactions among causes. The model uses default indepen- ., Jiicitly and henceP(et|cr, ¢5,¢5) = 0
dence assumptions to gain the efficiency, but is also flexible prcit, anc 10 28 3
X ' . Causesreinforce each other if collectively they are at least
enough to allow these assumptions to be relaxed. With the

i laxed i all d i as effective in causing the effect as some acting by them-
assumptions relaxed incrementally and more parameters are g\ o - |f collectively they are less effective, then they un-

specified accordingly, any CPT can be encoded through a 4o mine each other. Note thatdf = {c1, 2} ande; andes

NIN-AND tree. ; ; .
As originally proposed (Xiang & Jia 2007), the effect and undermine each other, then all the following hold:

cause variables in a NIN-AND tree are binary, which limits ~ P(e*|c;,¢5) =0, P(eT|cf,cy) >0, P(etler,cd) > 0,

its scope of applicability. In this work, we draw from the

— P(et|ef . cf) < min(P(et|cf, ¢, P(e¥|ey ).

Copyright(© 2010, Association for the Advancement of Artificial . . .

Intelligence (www.aaai.org). Al rights reserved. The following Def.1 defines the two types of causal in-
Being unaware of this work and its precursor, (Maaskant & teractions generally. Note that reinforcement and undermin-

Druzdzel 2008) independently presented special cases of NIN- ing can occur between individual variables as well as sets of

AND tree models. variables. For instance, variables within each of two sets can



be reinforcing, while the two sets can undermine each other.
Hence, eachV; in Def.1 is not necessarily a singleton.

Definition 1 Let R = {W;, Wa, ...} be a partition of a set
X of causesR’ C R be any proper subset @, andY =
Uw, er W;. Sets of causes iR reinforce each other, iff

VR P(e" —y*) < P(e" —z™).
Sets of causes iR undermine each other, iff
VYR P

Disjoint sets of causedl, ...,
junctioniff

(€% # wf o) = (5 4 wf) A A (e 4 wih).

That is, collective failure is attributed to individual failures.
They also satisfyailure independencf

P(e" —y ) > Plet «z™).

W, satisfy failure con-

P((e* # wi) A A (et o wh))
= P(et £ wl) . P(e" # wh). ()
Disjoint sets of cause®, ..., W,, satisfysuccess con-
junctioniff
et —wl, . wh = (et —w) A A(eh —wth).

That is, collective success requires individual effectiveness.
They also satisfisuccess independeniée

P((e" —wi) A A(eh —wh))

P(et «—wl) ... P(eT «—w}).

(2)

It can be shown that causes are reinforcing when they sat-
isfy failure conjunction and independence, and they are un-
dermining when they satisfy success conjunction and inde-
pendence. Undermining can be modeled by a direct NIN-
AND gate as shown in the left of Fig. 1. Its root nodes (top)

e+k CI e’ C; e+<+ CI etr C;

T—\
J
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e'-—c7,...ch e'-<c1,...ch

Figure 1: Direct (left) and dual (right) NIN-AND gates

are causal success events of single causes, and its leaf nodep

(bottom) is the causal event in question, whose probability
is computed by Eqn. (1). Reinforcement can be modeled by
a dual NIN-AND gate (right). Its root nodes (top) are causal

failure events of single causes, and its leaf node (bottom) .

is the causal failure event in question, whose probability is
computed by Eqn. (2).

By combining direct and dual NIN-AND gates and orga-
nizing them into a tree topology, both reinforcement and un-
dermining can be expressed in a single model, called a NIN-
AND tree. Consider an example whefé = {c;, co, c3},
c1 andcz undermine each other, but collectively they rein-
force co. Assuming the default conjunction and indepen-

e-—Cie @€ -C3

e -+C
+ + o+ 2
€-—0Cy, C3
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Figure 2: A NIN-AND tree causal model.

dence, their causal interaction, relative to the event

+ + 4 ot
& <—Cl,02,03,

can be expressed by the NIN-AND tree shown in Fig. 2. The
top gate is direct and the bottom gate (thef gatg is dual.
The link downward from node™ « ¢, c¢3 has a white oval
end (anegationlink) and negates the event. All other links
areforward links. Given an NIN-AND tree, the probability
of the leaf event can be computed by Algorithm 1.

Algorithm 1 GetCausalEventProb(T)
Input: A NIN-AND treeT” of leafv and leaf gatey, with root

probabilities specified.
for each nodev directly inputting tog, do

if P(w) is not specified,
denote the sub-NIN-AND-tree with as the leaf byl ;
P(w) = GetCausal EventProb(Ty);
if (w, g) is a forward link, P'(w) = P(w);
elseP’(w) =1 — P(w);
return P(v) = [[,, P'(w);
For the example in Fig. 2, after the following are specified,
Plet —¢f) =085, Plet —cf) =08, Ple™ — i) =0.7,

the probabilityP(e* + ¢, c5,ci) = 0.081 can be de-
rived. Using other NIN-AND tree models simplified from
Fig. 2, the CPT in Table 1 can be derivel(e*|c], c; , )

Table 1: The CPT of an example NIN-AND tree model.

P(e" |cf,c§,c§) 0 P(etcf ,c;,c?f) 0.595
P(etcf ,02,03) 0.85| P(ef|c] ,02,03) 0.97
P(etcy, 5, 03 ) 1 08 | Plet c1 , 02 , 03 ) | 0.94
P(et]er,c5,c3) | 0.7 | PleT|ef,c5,c5) | 0.919

is less than eithe (et |c], c;,c5) or P(et|e,cy,cd)
(undermining). P(e*|cf,ci,cf) is larger than both
P(e*|cf,cy,cd)andP(et|cy, c5, c3) (reinforcement).

Graded Multi-Causal Events

Let e be a multi-valued effect variable whose finite domain
is denotedD,, = {e%, e!,,...,e"}, wheren > 1. The value
e? (through the superscript indeé®) represents the absence
of the effect condition. Each valug with a higher super-
script indexj > 0 represents the effect condition at a higher
intensity. For instance, i¢ represents the fever condition
of a patient, it may have a domair?, c;, c?} which corre-
sponds to

(R l’ l

{normal,low fever, high fever}.



Notatione < e’ is well defined, wher) < j < 7, to denote
ec{eel,...,e/71}, and soise > €.

Lete; (i = 1,2,...) be a multi-valued uncertain cause,
whose finite domain is denotel; = {c?,c},c?,...}. The

valuec? represents the absence of the condition signified by

the variablec;, and each value] with a higher superscript
indexj > 0 represents the condition at a higher intensity.
Variables such ag andc¢; are often referred to agraded
(Diez 1993).
We denote a set of multi-valued cause variables of effect
e (multi-valued) asX = {¢y, ..., ¢,}. The set ofall causes
of e is denoted byC. SetC is assumed to include a leaky
variable (if any) to capture causes not represented explicitly.
For multi-valued causes and effect, graded singular
causal successs an event that a cause with value ¢/
(j > 0) caused the effect to occur at a value® (k > 0)
or higher, when every other causg of ¢ has the value?,
(absent). Conditiork > 0 means that the effect must be
present. Denote this event by

e>ef —{cl} orsimply e>e" —cl

and its probability byP (e > e* « 7).
A graded multi-causal succefis/olves a setX (| X| > 1)

of causes ok, where eacl; € X has a value (j > 0).

That s, causesiX collectively caused the effeetto occur

at a valuee® (k > 0) or higher, when every other cause

¢m € C\ X has the value!,. We denote the multi-causal

success by

e>ek — {c',...,clr} or simply e > ek — Aty e

n
or by the (somewhat abused) vector notion
+

e>ef gt

where superscript signifies that, for each; € X, its value
> .

A graded singular causal failureefers to an event where
e < €* (k > 0) when a cause; has a value:! (j > 0) and
every other cause,, of e has the value?, . It is a failure
event in the sense that fails to produce the effect with an
intensitye® or higher. We denote the failure event by

e < ek — C}]
In a graded multi-causal failurea setX (| X| > 1) of
causes ot are active when the effeet < ek (k > 0). That

is, e < e, eachc; € X has avalue: (j > 0), and each
cm € C'\ X has the value?,. We denote the failure event

by _
e<el — Aty e
or by the vector notion

e<ek<—g+.

Note that our terminology on multi-valued causal events
differs from those based on inhibitors, e.g., (Pearl 1988;

Heckerman & Breese 1996), and is more coherent with those

in (Lemmer & Gossink 2004; Xiang & Jia 2007), although
the latter deal with only binary cases.

AW NP

(€2}

The negation of event
e> ek — c{l, o cn

is _ _
e<el et cn

n
and vice versa.

Probabilities of graded causal events can be converted to
conditional probabilities and vice versa through the follow-
ing proposition, whose proof is straightforward. For a set
Y of causes, ifc; = ¢} for eachc; € Y, we denote the

instantiation ofY” by y°.
Proposition 1 Lete be aneffectC = X UY (X NY = ()

be the set of all causes ef X be instantiated ta:*, andY’
be instantiated t(go. Then the following hold, where > 0.

. Ple>ef —at)=1-Ple< el —at).
. P(eV)zt,y?) =1—Pe> el —z™).
. Pezt,y?) = Ple > e? — ™).
. Fork < n,
P(ek|g+,g0) = P(e> eF — zt)—P(e > eFtl xh).
. Ple>ef e 2t) = Z?:k P(ek|£+,g0).

The first equation in Proposition 1 deals with negation of
a causal event. The next three convert causal probabilities to
conditional probabilities. The last one converts conditional
probabilities to a causal probability. These conversions are
useful in processing the probabilities of input and output
events of generalized NIN-AND trees as will be presented
below.

Generalized NIN-AND Gates

Definition 2 Disjoint sets of cause®/, ..., W, of effecte
satisfygraded success conjunctiofff

e>e" —uwl, . ., wh

=(e>ef —wh) A A(e>e —wl),
wherek > 0.

Definition 3 Disjoint sets of cause®/, ..., W, of effecte
satisfygraded success independend# events

+

ezeklea B

eZek&wm

are independent of each other, whefe> 0. That is, the
following equation holds,
Ple>e" —wl, ... wh)

Y m

= Ple>e —wl)..Ple>e" —uw).

3)

We depict the interaction of causes that satisfy graded
success conjunction and graded success independence by a
graphical model as shown in Fig. 3. The success conjunc-
tion is represented by the AND gate. The success indepen-
dence is signified by the disconnection of input events other
than through the gate. Since the causes are uncertain causes,
the AND gate is noisy. Common noisy-AND gates, e.g.,
(Galan & Diez 2000), arémpedingin that the probability



e>ek-—ch e>ek«— ¢

exek-—cl,...,ch

Figure 3: A generalized direct NIN-AND gate.

all input and output events are causal failure events. Hence,
we refer to it as generalized dual NIN-AND gate

Def. 2 through 5 are relative to sets of causes. Figs. 3 and
4 are special cases where these sets are singletons. A more
general example appears in Fig. 5 below.

Reinforcing and Undermining Properties

We analyze the reinforcing and undermining behaviors of
generalized NIN-AND gates, which differ from those of bi-
nary NIN-AND gates. We first give a more refined definition
of reinforcing and undermining.

of a causal event is zero unless the set of active causes is Definition 6 Let D, be the domain of effeetand S, be a

equal toC. The probability of the output event of the gate
in Fig. 3 is determined by Eqn. (3) from probabilities of the
input events, no matteK = C' or not. Hence, the gate is
non-impeding To distinguish it from the binary case (see
the background section) as well as the case introduced be-
low, we term the gate in Fig. 3 asgeneralized direct non-
impeding noisy-AND gater a generalized direct NIN-AND
gate.

Definition 4 Disjoint sets of caused/, ..., W,,, of effecte
satisfygraded failure conjunction iff

+

k +
e<e —Wy,...,w,

=(e<ef —whH)A..Ale<e —wh),

wherek > 0.

Definition 5 Disjoint sets of caused/, ..., W,,, of effecte
satisfygraded failure independencéff failure events
+

k
e<e’ —w

e < ek <—yl+, v

are independent of each other, whére> 0. That is, the
following equation holds,

Swh)

Ple<e —wl)..Ple<e —wh).

Ple<ef —wf, ..
= (4)
We depict the interaction of causesthat satisfy graded fail-
ure conjunction and graded failure independence by a graph-
ical model as shown in Fig. 4. The failure conjunction is

e<ek-—cl  e<ef—cy

.
!

e<ef~—ci,...,.ch

Figure 4: A generalized dual NIN-AND gate.

represented by the AND gate, and the failure independence
is signified by the disconnection of input events other than
through the gate. The probability of the output event of the
gate is determined by Eqn. (4) from probabilities of the input
events. The gate in Fig. 4 differs from that in Fig. 3 in that

subset ofD,, where eitherS, contains a single element
(k > 0), or it contain all values> .

Let R = {W;, Wa, ...} be a partition of a sefX of causes
of effecte, R’ C R be any proper subset @&, andY =
Uw,er W;. DenoteV = C\ X andZ =C\Y.

Sets of causes iR reinforce each otherelative to S,,
iff

VR' P(e € Sely™,2") < P(e € S|z, 7).
Sets of causes iR undermine each otherelative to S., iff
VR' P(e € Sely™,2") > P(e € S|z, 0°).

Note that Def. 6 is defined based on conditional proba-
bilities rather than (causal) probabilities of causal events as
Def. 1. This is because reinforcement and undermining are
best described through comparison of conditional probabili-
ties. In the binary case, the conversion between conditional
and causal probabilities is trivial, but it is less so in the multi-
valued case.

In the following, we show that a generalized direct NIN-
AND gate models undermining relative to certaigis.

Proposition 2 Let Wy, ..., W, be disjoint sets of causes of
effecte ande > " «— wf, ..., e > ¢’ « w be the
root (input) events of a generalized direct NIN-AND gate
Let P(e > e « wy,...,w ) be the probability of the leaf
(output) event of.. Then, fori = 1, ..., m, we have

Ple>e" —wl,...,wh) < Ple > e’ — wl).

Proposition 2 says that a generalized direct NIN-AND
gate models undermining relative to the most intensive value
of the effect, i.e.,.S. = {e"}. It follows directly from
Eqgn. (3).

Proposition 3 Let Wy, ..., W, be disjoint sets of causes of
effecte ande > e!' «— wl, .., e > e! « w/ bethe
root (input) events of a generalized direct NIN-AND gate
Let P(e > e! «— w],...,w}) be the probability of the leaf
(output) event of.. Then, fori = 1, ..., m, we have

Ple>e' —wf, ... ,wh) < Ple>e! «—wy).

Proposition 3 says that a generalized direct NIN-AND
gate models undermining relative to the collection of active
values of the effect, i.e.S. = {e!,...,e"}. It follows di-
rectly from Eqn. (3).

Consider an example wher@ = {c;,c2}, | D]
|D3| = |D.| = 3, and

P(e'le1, 6y) = 0.3, P(€?|ct, c3) = 0.45,
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P(e'|c), c3) = 0.35, P(e?|c), c3) = 0.22,
P(e'd}, c3) = 0.4, P(e*|c}, c3) = 0.5.
Using suitable generalized direct NIN-AND gates with all

root events singular, we can derive the following by Eqgn. (3),

P(e > eY|ct, c3) = 0.675,
P(e > é%|ct, c3) = 0.225,
from which we obtain the following by Proposition 1,
P(e°|ct, c3) = 0.325,
P(e'|ct, c3) = 0.45,
P(e?|ci, c3) = 0.225.
Undermining holds relative t6. = {¢?} because
P(e?*|c1, c3) = 0.225 < 0.45 = P(e?|cq, c3)
and0.225 < 0.5 = P(e?|c), c3). It also holds relative to
S. = {e', e?} because
P(e>etcl,c3) = 0.675 < 0.75 = P(e > e*|c, cY)
and0.675 < 0.9 = P(e > e*|c), c3). However, undermin-
ing does not hold relative t§, = {e'} because
P(e'lci, c3) = 0.45 > 0.3 = P(e'|e1, )
and0.45 > 0.4 = P(et|cY, c3).
Similarly, we show below that a generalized dual NIN-

Generalized NIN-AND Trees

The following definition generalizes the binary NIN-AND
tree models to multi-valued effect and causes.

Definition 7 A generalized NIN-AND tree is a directed
tree for a multi-valued effeat and a setX = {c,...,c,}
of multi-valued causes, parameterized blyauindary value

e* (k > 0) of e and an instantiationzt = {c', ..., ¢} of
X wherej; >0 (i =1,...,n).

1. There are two types of nodes. Awent node (a black
oval) has an in-degreg 1 and an out-degree& 1. Agate
node (a generalized NIN-AND gate) has an in-degre2
and an out-degreé.

2. There are two types of links, each connecting an event

and a gate along the input-to-output direction of gates. A
forward link (a line) is implicitly directed. Anegation
link (with a white oval at one end) is explicitly directed.

3. Each terminal node is an event labeled by a graded causal

evente > e «— yt ore < e* « y*. There is a single
leaf (no child) wherey™ = x", and the gate it connects
to is theleaf gate For eachroot (no parent; indexed by
i),y Cat, y*ﬁy+ =0forj #k, and{J,y} = 2"

AND gate models reinforcement relative to both the most 4. Inputstoa gateg are in one of two cases:

intensive value of the effect and the collection of active val-

ues of the effect.

Proposition 4 Let Wl, ey Wi, be disjoint sets of causes of
effecte ande > eF — wi, ..., e > e « w bethe
root (input) events of a generalized dual NIN-AND g@te
where eithelc = nork = 1. LetP(e > e — w, ..., )
be the probability of the leaf (output) event @f Then “for
i=1,...,m,we have

P(e > —wl, . wh

r =m

) > P(e>e" — w).

Consider the above example. Using suitable generalized

dual NIN-AND gates with all root events singular, we can
derive the following by Eqn. (4),

P(e < eY|ct, c3) = 0.025,
P(e < €*|ct, c3) = 0.275,
from which we obtain the following by Proposition 1,
P(e°ct, c3) = 0.025,
P(e'|ct, c3) = 0.25,
P(e?|ci, c3) = 0.725.
Reinforcement holds relative t§. = {e*} because
P(e*|c1,c3) = 0.725 > 0.45 = P(e?|cq, c3)
and0.725 > 0.5 = P(e?|c), c3). It also holds relative to
S. = {e', e?} because
P(e>eYcl, c3) = 0.975 > 0.75 = P(e > e*|c], D)
and0.975 > 0.9 = P(e > e'|c}, c2). However, reinforce-
ment does not hold relative 1§, = {e'} because
P(e'lei, c3) = 0.25 < 0.3 = P(e!|e1, cd)
and0.25 < 0.4 = P(et|cY, c3).
In summary, a generalized direct NIN-AND gate ex-

(a) Each is either connected by a forward link to a node
labelede > eF «— y™, or by a negation link to a node

labelede < e « y*. The output of is connected by
a forward link to a node labeled > ¢F — Uig.

(b) Each is either connected by a forward link to a node
labelede < ¥ «— y™T, or by a negation link to a node

labelede > e — g*. The output ofy is connected by
a forward link to a node labeled < ¢F — Uigj-

Fig. 5 is an example of a generalized NIN-AND tree for
C = {01,02,03} WherE|De| = |D1| = |D2| = |D3| = 3.

exe?-—c2 exe?-—c?

2 2
e<e~—C
eZeZF CZ, C% 2

i e<e?-—c3, ¢ c2

Figure 5: A generalized NIN-AND tree.

The probability of the leaf event of a generalized
NIN-AND tree can be evaluated using Algorithm 1 Get-
CausalEventProb. From the model in Fig.B(e > e? «

)—085 Ple > €% « ¢3) = 0.8, andP(e > €? «

c3) = 0.7, it can be derived

P(e < e* « ¢} c3,c3) = 0.081.

presses undermining and a generalized dual NIN-AND gate
expresses reinforcement, relative to both the most intensive
value and the collection of active values of the effect.

Using Proposition 1, the probabilities of root events in a
generalized NIN-AND tree can be obtained from conditional



probabilities that involve only a single active causg# c?
andc; = 09- for j # ). After the probability of the leaf event

is derived for each relevant graded causal event, the corre-
sponding CPT can be obtained by applying Proposition 1 to
the probabilities of the leaf events.

Properties of Generalized NIN-AND Trees

Theorem 1 establishes that generalized NIN-AND trees
model both reinforcement and undermining correctly.

Theorem 1 LetT be a generalized NIN-AND tree where the
probability for each root node is specified in the ran@e1).
Let P(v) be returned by GetCausalEventProb(T).

ThenP(v) combines the given probabilities according to
reinforcement and undermining expressed by the topology
of T, with each generalized direct NIN-AND gate corre-
sponding to undermining and each generalized dual NIN-
AND gate corresponding to reinforcement, relative to both
Se ={e"}andS. = D, \ {e"}.

Proof: GetCausal EventProb evaluates first the output
event for each gate node whose inputs are root events. If

Condition 2 amounts to a simple counting. O

Assumingn = g; for i = 1,...,n, the above complex-
ity becomesO(n n?) and is hence linear im. A number
of other important properties of generalized NIN-AND tree
models are mentioned briefly below although their elabora-
tion is beyond space limit.

Although the probability of each graded multi-causal
event requires the use of a separate generalized NIN-AND
tree, all of them can be derived from a single generalized
NIN-AND tree. Hence, the complexity to specify the neces-
sary tree topologies is also linearin Default conjunction
and independence assumptions embedded in the model can
be relaxed if necessary through additional numerical param-
eters than what is included in Theorem 2. By doing so, any
CPT can be encoded through a generalized NIN-AND tree.
Finally, generalized NIN-AND trees revert to binary NIN-
AND trees when all variables are binary.

Conclusion

In this work, we generalize the binary NIN-AND tree causal
models to multi-valued effect and causes. The generalized

the root events are graded causal successes, then the gate isy|N-AND trees model explicitly reinforcement and under-

a generalized direct NIN-AND gate. By Propositions 2 and
3, the probability of the output event reflects the result of
undermining, relative to botS, andS’. Otherwise, the root

events are graded causal failures, and the gate is a general-

ized dual NIN-AND gate. By Proposition 4, the probability
of the output event reflects the result of reinforcement, rela-
tive to bothS, andS..

After the evaluation, root nodes (and links incident
to them) no longer participate in further evaluations and
can be deleted. The remaining subtree is still a gen-
eralized NIN-AND tree with the depth reduced by one.
GetCausal Event Prob repeats the above computation un-
til the depth reduces to zero. The statement is true for the
evaluation at each depth and hence the theorem holdsl

The following theorem establishes that specification of
CPT using generalized NIN-AND trees is efficient.

Theorem 2 LetC = {¢y, ..., ¢, } be the set of all causes of
effecte that satisfy the graded success (failure) conjunction
and independence. Dendt®.| byn + 1 and|D;| by 3 + 1

(: =1,...,n). Let P* be a set of conditional probabilities

pP* = {P(ek|c(1), ...,c?fl,c;”,c%l, s ) | k> 0,m > 0}.

Then, the following hold.

1. The CPTP(e|X) can be derived fronP* using general-
ized NIN-AND trees.

2. The complexity to specify* isO(n (61 + ... + 3n)).
Proof: Other thanP(e’|cY, ..., %) = 1, each other condi-

tional probability in the CPTP(e|X) can be derived from
probabilities of output events of at most two generalized
NIN-AND trees through Proposition 1. For each probability
in P*, the effect is present and exactly one cause is active.
P* contains all such probabilities. Hende is sufficient to
specify the probabilities of input events of all relevant gener-
alized NIN-AND trees through Proposition 1, and condition
1 follows.

mining among causes relative to the most intensive level as
well as the collection of active levels of effect. Specification
of CPTs using generalized NIN-AND trees is shown to be
efficient. Hence, this result will allow numerical parameters
in Bayes nets to be specified efficiently through the intuitive
concepts of reinforcement and undermining.
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