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Abstract
A multi-valued Non-Impeding Noisy-AND (NIN-AND) tree
model has the linear complexity and is more expressive
than common Causal Independence Models (CIMs). We for-
mulate a Multiplicative Factorization (MF) for multi-valued
NIN-AND Tree (NAT) models. In comparison with the MF
for binary NAT models (of a undirected tree structure), the
proposed MF is a hybrid and multiply connected graphical
model. Although a NAT is made of two types of NIN-AND
gates, we show that a sound and space efficient MF requires
multiple types of gate MFs, and therefore significantly more
sophisticated parameterization and integration of gate MFs,
and soundness analysis. We show that the formulated MF
is exact and its space complexity is linear on the number
n of causes per effect. Based on the proposed MF, we ex-
tend the scheme for lazy propagation (LP) with binary NAT-
modeled Bayesian Networks (BNs) to multi-valued NAT-
modeled BNs. We show that the extended scheme is more
powerful than LP based on MF of noisy-MAX. We demon-
strate that the scheme allows significantly more efficient LP
both in space and in time.

1 Introduction
A BN quantifies the causal strength between an effect and
its n causes by a Conditional Probability Table (CPT) whose
number of parameters is exponential in n. Common CIMs,
e.g., noisy-OR (Pearl 1988), reduce the number to being lin-
ear in n, but are limited in expressiveness. NAT models (Xi-
ang and Jia 2007) have a linear number of parameters, and
express both reinforcement and undermining as well as their
recursive mixture. CIMs are not directly operable by com-
mon BN inference algorithms, e.g., the cluster tree method
(Jensen, Lauritzen, and Olesen 1990). A number of tech-
niques have been proposed to overcome the difficulty, e.g.,
(Zhang and Poole 1996; Madsen and D’Ambrosio 2000).
One technique is MF (Takikawa and D’Ambrosio 1999) and
related tensor decomposition (Savicky and Vomlel 2007).

To take advantage of NAT models in inference, MF has
been applied to binary NAT models (Xiang 2012a). How-
ever, binary NAT models are not sufficiently general. Ad-
vancing MF from binary to multi-valued NAT models (Xi-
ang 2012b) encounters several issues. The number of auxil-
iary variables per NIN-AND gate increases from one in the
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binary case to multiple. The dependency structure per gate
changes from a undirected star to a multiply connected hy-
brid graph. The MF of a NAT is integrated from gate MFs
as in the binary case, but alternative types of gate MFs in-
crease from two to multiple. Parameterization over the hy-
brid structure with sound and space efficient coordination
between multiple types of gate MFs requires more sophisti-
cated design and analysis. We present our solution to these
issues and a general MF for multi-valued NAT models. We
show its soundness and demonstrate significantly more effi-
cient inference in time and space when the MF is applied to
multi-valued NAT-modeled BNs.

Sec. 2 covers background on NAT models. Sec. 3 out-
lines the technical challenges. Sec. 4 shows that NAT models
are more general than noisy-MAX. The MF of NAT models
is developed in Secs. 5 to 8. Its soundness and space com-
plexity are analyzed in Sec. 9. Compilation of binary NAT-
modeled BNs is extended to multi-valued NAT-modeled
BNs for LP in Sec. 10. Experimental evaluation is described
in Sec. 11. We omit proofs for space.

2 Background
Consider an effect e and the set of all causes C =
{c1, ..., cn}, all of which are multi-valued and graded. That
is, e has a domainDe = {e0, ..., eη} (η ≥ 1), where a higher
index signifies a higher intensity, e0 is inactive, and e1, ..., eη
are active. The domain of ci is Di = {c0i , ..., cmi }.

We categorize a causal event as success or failure de-
pending on whether e is rendered active at certain inten-
sity, as single-causal or multi-causal depending on the num-
ber of active causes, and as simple or congregate depending
on the range of effect values. For instance, P (ek ← cji )

= P (ek|cji , c0z : ∀z 6= i) (j > 0) is the probability of
a simple single-causal success. P (e ≥ ek ← cj11 , ..., c

jq
q )

= P (e ≥ ek|cj11 , ..., c
jq
q , c0z : cz ∈ C \ X) (each j >

0) is the probability of a congregate multi-causal success,
where X = {c1, ..., cq} (q > 1). It is also denoted by
P (e ≥ ek ← x+). Probability of the null causal event is
P (ek ←⊥) = P (ek|c0i : ∀i) = 1 for k = 0 and 0 for k > 0.

There are two types of multi-valued NIN-AND gates,
each of which involves disjoint sets of causes W1, ...,Wq .
An input event of a direct gate is e ≥ ek ← w+

i and
the output event is e ≥ ek ← w+

1 , ..., w
+
q . An input of



a dual gate is e < ek ← w+
i and the output event is

e < ek ← w+
1 , ..., w

+
q . Probability of the output event of

a gate is the product of probabilities of its input events.
Causal interactions can be characterized as reinforcing or

undermining based on the magnitude of causal probability of
a set of active causes relative to those of its proper subsets.
A direct gate models undermining causal interactions, and a
dual gate models reinforcing. A multi-valued NAT organizes
multiple gates into a tree to express mixture of reinforcing
and undermining recursively. More details on multi-valued
NAT models can be found in (Xiang 2012b).

3 Technical Issues
To take advantage of NAT models in inference, MF of binary
NAT models is developed (Xiang 2012a). For each type (di-
rect and dual) of gates, a gate MF is made of a undirected star
structure with a single auxiliary variable and with one poten-
tial assigned to each link. MF of a binary NAT integrates the
two types of gate MFs. Its structure is a undirected tree.

Construction of MF for multi-valued NAT Models face
a number of issues. What is the dependence structure of a
(stand-alone) multi-valued NIN-AND gate? As shown be-
low, a suitable structure is multiply connected and is a hybrid
graph with multiple auxiliary variables. How should each
type of gate be parameterized? It turns out that although pa-
rameterization of a dual gate is probabilistic (based solely
on causal probabilities), that of a direct gate must be pseudo-
probabilistic (see below). To allow each type of gate MF to
interface with the other in a NAT, variable domains and pa-
rameters of the gate MF must be redefined. A gate may be
the leaf gate in a NAT or feeds into another. To render gate
MFs space efficient, a distinct gate MF is needed in each
case. As a result, four types of gate MFs are needed in the
MF of a NAT model. Out of the C(4, 2) = 6 possible in-
teractions among these gate MFs, which ones are valid and
where they should apply? How should each type of gate MF
and each type of valid interface be parameterized to allow
sound coordination? Finally, a sophisticated analysis is nec-
essary to establish soundness of the MF resultant from in-
teractions of all gate MFs in a NAT model. After relating
the dual gates to noisy-MAX in the next section, we present
solutions to the above issues.

4 Equivalence of Dual Gate and Noisy-MAX
We show that NAT models generalize noisy-MAX (Hen-
rion 1989; Diez 1993). In particular, noisy-MAX models are
equivalent to multi-valued dual NIN-AND gate models, and
hence are a special case of multi-valued NAT models.
Theorem 1 Let X = {c1, ..., cn} (n ≥ 1) be a set of causes
of effect e that interact according to noisy-MAX. Let g be
a dual NIN-AND gate where each input event involves ex-
actly one ci (i = 1, ..., n). Then the causal probability of the
output event of g is identical to that of noisy-MAX.

By Theorem 1, a noisy-MAX can always be expressed as
a dual NIN-AND gate. Since a dual gate models reinforc-
ing, so does a noisy-MAX. Since NATs model reinforcing
and undermining as well as their recursive mixtures, they
are strictly more expressive than noisy-MAX models.

5 MF of Dual Gate Models
We organize MF of a dual gate model according to a hybrid
graph G (Fig. 1), whose nodes are labeled by the effect e ∈
{e0, e1, ..., eη}, causes ci ∈ {c0i , ..., cmi } (i = 1, ..., n), and
auxilary variables dj (j = 1, ..., η) (one for each active value
of e), where dj ∈ {0, 1}. The link between each pair of ci
and dj is undirected, called a clink, as ci is a cause variable.
The link between each dj and e is directed. The link type
determines how potentials are defined as follows.

Figure 1: Hybrid graphical model for MF of a gate.

Each clink is assigned a potential f(dj , ci). Node e
is assigned a general potential (with negative values)
f(d1, ..., dη, e) over its family defined by incoming directed
links, called the family potential. Table 1 specifies the MF
potentials. We refer to the collection of graph G and the po-
tentials as the MF of a Dual gate model (MDu).

Table 1: The clink and family potentials of MDu
dj ci f
0 c0i 1
0 c1i P (e < ej ← c1i )

... ...
0 cmi P (e < ej ← cmi )
1 ci 1

(d1, ..., dη, e) f
di = 0, ∀j 6=i dj = 1,
e = ei−1 1
di = 0, ∀j 6=i dj = 1,
e = ei -1
∀i di = 1, e = eη 1
otherwise 0

We often obtain a product of potentials and then may
marginalize out some variables, such as

f(e, c1, ..., cn) =
∑

d1,...,dη

f(d1, ..., dη, e)
∏

1≤j≤η,1≤i≤n

f(dj , ci).

We refer to the result as a Marginalized Potential Product
(MPP). When relevant potentials are clear, we mention the
MPP, e.g., f(e, c1, ..., cn), without listing the potentials.

By Theorem 1, MDu is equivalent to MF of noisy-MAX
from which the soundness of MDu follows.

Corollary 1 Let MDu be applied to a dual NIN-AND gate
model whose CPT is P (e|c1, ..., cn). The MPP from the
MDu satisfies f(e, c1, ..., cn) = P (e|c1, ..., cn).

Although MDu is equivalent to MF of noisy-MAX, it
differs from previous work. The MF in (Takikawa and
D’Ambrosio 1999) is not a graphical model (potentials are
not structured through graphs). The MF in (Madsen and
D’Ambrosio 2000) uses a DAG but its potential assignment
does not follow family convention (each child variable is as-
signed a potential over itself and its parents). In fact, nei-
ther DAGs nor undirected graphs can suitably express the



dependency. MDu is a hybrid graphical model with a rigor-
ous syntax, where a potential is assigned to each clink and
to the family when links are directed.

6 MF of Direct Gate Models
MF of a direct gate model is also structured as G in Fig. 1,
but each dj ∈ {0, 1, 2} is ternary (see below). Table 2 speci-
fies MF potentials. The collection of graph G and the poten-
tials is referred to as the MF of a Direct gate model (MDi).

Table 2: The clink and family potentials of MDi

dj ci f
0 c0i 1
0 c1i P (e ≥ ej ← c1i )

... ...
0 cmi P (e ≥ ej ← cmi )
1 ci 1

dj ci f
2 c0i 1
2 c1i 0

... ...
2 cmi 0

line (d1, ..., dη, e) f
1 di = 0, ∀j 6=i dj = 1, e = ei−1 -1
2 di = 0, ∀j 6=i dj = 1, e = ei 1
3 ∀i di = 1, e = e0 1
4 d1 = 2, ∀i>1 di = 0, e = e0 1
5 d1 = 2, ∀i>1 di = 0, e = eη -1
6 otherwise 0

Note f(dj = 0, ci = c0i ) = 1 6= P (e ≥ ej ← c0i ) = 0.
That is, unlike in MDu, f(dj = 0, ci) is not made entirely
of probabilities. We refer to MDu as being probabilistic and
MDi as being pseudo-probabilistic. It is necessary as value 0
blocks other potential values in computing MPP. To ensure
soundness, the domain size of dj is also larger in MDi to
allow necessary manipulation (see f(dj = 2, ci) and lines 4
and 5 in Table 2). Theorem 2 states its soundness.
Theorem 2 Given a direct NIN-AND gate model with
CPT P (e|c1, ..., cn), the MPP from its MDi satisfies
f(e, c1, ..., cn) = P (e|c1, ..., cn).

7 MF of NIN-AND Tree Models
A nontrivial NAT has at least two gates, e.g., Fig. 2 (a),
where event labels are simplified and ovals into gates are
omitted. MF of a NAT model consists of a hybrid graph
G and a set of potentials defined over each undirected link
and each family in G. G is integrated from graphs of gate
MFs according to NAT topology, as shown in (b). Gate g4 in
(a) induces the subgraph spanning {c1, c2, a1, a2, b1} in (b).
The child variable from the MF of the leaf gate is the effect
variable and labeled by e, e.g., the leaf gate g1 in (a). Child
variables from MFs of other gates are internal variables and
labeled differently. For instance, the child variable of MF for
g2 in (a) is labeled as b3 in (b). The structure G of the MF
for a multi-valued NAT differs significantly from that for a
binary NAT (Xiang 2012a), in that the latter is a undirected
tree while the former is hybrid and multiply connected.

The subgraph of G induced by a gate is identical to the
MF graph for a standalone gate. However, variable domains

Figure 2: (a) A 4-gate NAT. (b) MF graph of (a).

and potentials associated with the subgraph may differ from
those in the MF of a standalone gate for several reasons.
First, an undirected link, e.g., 〈k1, b3〉 in Fig. 2 (b), may con-
nect an internal variable b3. It is thus called an ilink and its
potential must differ from that of a clink.

Second, gates have different levels. The leaf gate is at
level 1, e.g., g1. A gate feeding the leaf gate is at level 2,
e.g., g2. The MF of a gate must adapt to its level. For in-
stance, MF of a dual gate at level 2 is more sophisticated
than that of a leaf gate. This is because the latter is terminal
while the former feeds into a gate at the next level.

Third, all gates at the same level have the same type (dual
or direct) and gates at adjacent levels differ in types. Hence,
a dual gate at level 2 receives input from direct gates at level
3, and feeds into the direct leaf gate at level 1. The MF of
a gate must be specified according to the gate from which it
receives input and the gate that it feeds into.

Fourth, a gate can receive input from both clinks and
ilinks. For instance, the MF of g3 in Fig. 2 (b) receives in-
put from clinks 〈c3, di〉 (i = 1, 2) as well as from ilinks
〈b1, di〉. For the family potential over {d1, d2, b2} to work
with both types of input uniformly, the product of potentials
over 〈ci, aj〉 (i, j = 1, 2), {a1, a2, b1}, and 〈b1, di〉, after
marginalizing out {a1, a2, b1}, must be equivalent (syntac-
tically and semantically) to the product of potentials over
〈c3, di〉. Suppose that gate g3 in Fig. 2 (a) is direct and g4 is
dual. Recall that a clink potential of a direct gate is pseudo-
probabilistic. To render the MPP probabilistic (Theorem 2),
the domain size of auxiliary variables is increased from 2
in MDu to 3 in MDi. Here, output from MF of the dual
gate g4 is probabilistic (Corollary 1). To be equivalent to
clink potentials over 〈c3, di〉, the output needs to be rendered
pseudo-probabilistic. As a result, the output variable b1 of g4
needs to have a domain larger than e, which will affect both
the family potential for the MF of gate g4 and the ilink po-
tentials for the MF of gate g3.

Due to these factors, four types of gate MFs are devel-
oped: MDu enhanced with ilink potentials, MDi enhanced
with ilink potentials, Extended MDu (EDu), and Extended
MDi (EDi). A particular gate is assigned one of them de-
pending on its gate type (dual or direct) and level. The rule
of assignment is illustrated in Table 3.

[Level 1] If a gate is the leaf gate, its MF is MDu or MDi
depending on the type of gate. In either case, the output vari-



Table 3: Rule of MF assignment for NIN-AND gates

level of gate type of gate MF
3 or higher EDu EDi
2 EDu MDi
1 MDu MDi

dual direct

able is e, and the MPP output is probabilistic.
[Level 2] MDi requires pseudo-probabilistic input. For a

dual gate at level 2 to feed into MDi at level 1, it must output
accordingly. Its MF is EDu. If a direct gate is at level 2, it
takes pseudo-probabilistic input and delivers output proba-
bilistically. Hence, its MF is MDi.

[Level 3+] A dual gate at level 3 or higher plays the same
role as at level 2. Hence, its MF is also EDu. EDi is described
below as we present MF variables.

For example, if g1 of Fig. 2 (a) is direct, the MF assign-
ment for gates is (g1: MDi; g2: EDu; g3: EDi; g4: EDu). If
g1 is dual, it is (g1: MDu; g2: MDi; g3: EDu; g4: EDi).

Each gate MF has 4 types of variables. Denote an input
cause by c, an input internal variable by b, an auxiliary vari-
able by d, and the output (child) variable by h. Their domain
sizes depend on the gate MF and is summarized in Table 4.

Table 4: Domain sizes for variables b, d and h in a gate MF

domain size
var MDu EDu MDi EDi
b η + 1 η + 2 η + 2 η + 2
d 2 3 3 3
h η + 2 η + 1 η + 2

MDu takes probabilistic input from MDi and outputs
probabilistically. Hence, dMDu is binary, where subscript
indexes the MF, and the domain size for bMDu and hMDi

is the same as e. MDi takes pseudo-probabilistic input but
outputs probabilistically. Hence, dMDi is ternary, and the
domain size for hEDu and bMDi is larger than e (by one).

Edu takes probabilistic input from a direct gate and out-
puts pseudo-probabilistically. Hence, dEDu is ternary. As its
output property differs from MDu, its clink potentials (see
below) also differ from those of MDu. For the MPP output
from an incoming direct gate to match syntax and semantics
of clink potentials, bEDu also differs from bMDu in domain
size (larger by one).

Since EDi feeds into EDu, hEDi must match bEDu in do-
main size and thus differ from hMDi. Hence, EDi must be a
distinct MF from MDi. EDi takes pseudo-probabilistic input
from EDu at a higher level, and outputs probabilistically to
EDu at a lower level. Hence, dEDi is ternary, and bEDi has
the same domain size as hEDu.

As presented above, domain setup for each type of gate
MF has aimed at keeping the domain size of each MF vari-
able as small as possible. Since each type of gate MF is re-
peatedly applied in NAT modeling, this effort will pay off in
the overall space complexity of MF for NAT models.

8 Potentials in MF of NAT Models
Potentials for each type of gate MF are specified below.

[MDu] The clink and family potentials of MDu are shown
in Table 1. The ilink potential of MDu is shown in Table 5.

Table 5: The ilink potential f(dj , b) (j = 1, ..., η) of MDu

line (dj , b) f
1 dj = 0, b = b0, ..., bj−1 1
2 dj = 0, b = bj , ..., bη 0
3 dj = 1 1

[EDu] The clink, ilink and family potentials of EDu are
shown in Table 6.

Table 6: The clink, ilink and family potentials f(dj , ci),
f(dj , b) and f(d1, ..., dη, h) of EDu

dj ci f
0 ci P (e < ej ← ci)
1 ci 1
2 c0i 1
2 ci > c0i 0

line (dj , b) f
1 dj = 0, b = b0, ..., bj−1, bη+1 1
2 dj = 1, b = b0, ..., bη 1
3 dj = 2, b = bη+1 1
4 otherwise 0

line (d1, ..., dη, h) f
1 di = 0, ∀j 6=i dj = 1, h = hi−1 1
2 di = 0, ∀j 6=i dj = 1, h = hi -1
3 ∀i di = 1, h = hη 1
4 d1 = 2, ∀i>1 di = 0, h = h0 -1
5 d1 = 2, ∀i>1 di = 0, h = hη, hη+1 1
6 otherwise 0

[MDi] The clink and family potentials of MDi are shown
in Table 2. The ilink potential of MDi is shown in Table 7.

Table 7: The ilink potential f(dj , b) of MDi and EDi

line (dj , b) f
1 dj = 0, b = bj , ..., bη+1 1
2 dj = 1, b = b0, ..., bη 1
3 dj = 2, b = bη+1 1
4 otherwise 0

[EDi] The clink and ilink potentials of EDi are shown in
Tables 2 and 7, respectively. The family potential of EDi is
shown in Table 8.

9 Soundness and Space Complexity
Due to the existence of 4 types of gate MFs, the analysis to
establish soundness of the MF of NAT models, taking into



Table 8: The family potential f(d1, ..., dη, h) of EDi

line (d1, ..., dη, h) f
1 di = 0, ∀j 6=i dj = 1, h = hi−1 -1
2 di = 0, ∀j 6=i dj = 1, h = hi 1
3 ∀i di = 1, h = h0 1
4 d1 = 2, ∀i>1 di = 0, h = h0, hη+1 1
5 d1 = 2, ∀i>1 di = 0, h = hη -1
6 otherwise 0

account the interactions between the 4 types of gate MFs, is
non-trivial. The approach we have taken is outlined below
and the formal result on soundness is then stated.

To analyze the interaction between gate MFs, we decom-
pose a gate MF into the link layer, consisting of clinks (in-
cluding end nodes) and their potentials, and the family layer,
consisting of the directed links and the family potential.
Auxiliary variables are included in both layers.

For each gate MF, a set of desirable properties of the MPP
(over its causes and auxiliary variables) from the link layer is
identified, called link potential trait. A set of desirable prop-
erties of the MPP (over its causes and output variable) from
the entire gate MF is also identified, called output potential
trait. When a gate MF has internal input variables, its link
layer is extended to include all ancestral variables, and the
gate MF is extended accordingly.

For each gate MF, we show that the corresponding link
potential trait holds if it has no internal input. We also show
that if its internal input satisfies the output potential trait of
the corresponding input gate MF, then the link potential trait
also holds. We then establish that the output potential trait of
the gate MF holds, no matter it has internal input or not. By
integrating the per-gate MF analysis according to the rule of
gate MF assignment in Table 3, the soundness of the MF of
NAT models can be asserted.

Following the above approach (with more than 10
theorem-like intermediate results), we have proved the
soundness as stated in Theorem 3. Due to space limitations,
we omit the intermediate results and their proofs.

Theorem 3 Let the MF be applied to a NAT model over
causes c1, ..., cn by applying MDu, EDu, MDi, and EDi to
appropriate gates. Then the MPP from all potentials of the
MF satisfies f(e, c1, ..., cn) = P (e|c1, ..., cn).

For the space of a NAT model, assume m = η. By Fig. 1
and Table 4, link potentials for each gate takeO(3(η+2)n′η)
space, where n′ is the number of root nodes in the gate MF
graph. The family potential takes O(3η(η+ 2)) space. If the
NAT has k gates, it takes O(3(η + 2)n′k η + 3η(η + 2)k)
space. The n′k counts root nodes in MF graphs of all gates,
and hence n′k < 2n. We also have k < n. This yields space
complexity O(n η (6η + 3η)) that is linear on n.

10 Compilation of NAT-Modeled BNs
To realize efficiency gain in BN inference by the MF of NAT
models, we apply NAT modeling to BNs and compile them
for LP. Consider a BN over a set V of variables with DAG

D. Each root of D is assigned a prior, collected in a set PR.
Each single-parent non-root is assigned a CPT, collected in
a set PS. We assume that the family of each multi-parent
non-root forms a NAT model, collected in a set Ψ. Then,
Γ = (V,D, PR, PS,Ψ) is a NAT-modeled BN (NATBN). It
is compiled into a Junction Tree (JT) as follows.

Algorithm 1 (Input: Γ = (V,D, PR, PS,Ψ))

get the skeleton G of D by dropping direction of links;
for each multi-parent family {e, c1, ..., cn} in D, do

replace subgraph of G spanned by {e, c1, ..., cn} with
the MF graph SG of the NAT model in Ψ;

for each family in SG,
connect members pairwise and drop direction of links;

triangulate G into a chordal graph G′;
construct a JT T from maximum cliques of G′;
assign each potential in PR ∪ PS ∪Ψ to a cluster in T ;
return T ;

Potentials assigned to each JT cluster are not multiplied.
We refer to T as the JT of Multiplicatively Factorized NAT-
modeled BN (JTMFNB), which directly supports LP (Mad-
sen and Jensen 1999).

The above method differs from that based on MF of bi-
nary NAT models (Xiang 2012a). The gate MF for a binary
NAT is a undirected tree, while the gate MF for a multi-
valued NAT is hybrid and multiply connected. Hence, com-
pilation for binary NAT-modeled BNs does not need moral-
ization at all, while a gate level moralization is necessary in
the above compilation (the inner for loop).

11 Experimental Evaluation
To evaluate soundness and space efficiency of the MF and its
advantage in speeding up BN inference, a collection of 140
NATBNs are simulated, divided into 4 groups of 35 each.
Each NATBN contains 100 ternary variables. For NATBNs
in the same group, the number n of causes per NAT model is
identically upper-bounded at 5, 7, 9 and 11, respectively. All
NATBNs have the same density (5% more links than singly-
connected). Each is compiled into a JTMFNB.

A peer BN is derived from each NATBN, where each
multi-parent variable is assigned the CPT computed from
the corresponding NAT model. Each peer BN is compiled
into a JT representation for LP, which provides a standard
for exactness and a baseline for efficiency.

For each NATBN and its peer BN, 5 randomly chosen
variables are observed and posteriors for all variables are
computed by LP. For each NATBN, the same posteriors are
obtained from the JTMFNB and its peer BN JT, which con-
firms soundness of the MF empirically.

The performance is summarized in Table 9. Each row
summarizes for one group of NATBNs. The space complex-
ity of the MF analyzed in Sec. 9 does not reflect accurately
the space complexity of JTMFNB, due to (1) triangulation
and (2) product operation during LP. Therefore, the space ef-
ficiency of JTMFNB and peer BN JT is shown in Table 9 by
the size of the state space of the JT (with sample mean and
standard deviation), which is the upper bound of the actual
space consumption. Time efficiency is shown by LP runtime.



Table 9: Experimental results

Peer BN JT State Space JTMFNB State Space Peer BN JT Time (ms) JTMFNB Time (ms)
n µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂
5 11070.8 590.1 9742.7 1317.9 63.8 12.0 31.3 0.5
7 25951.4 3800.3 10546.0 1570.3 212.5 65.7 30.3 3.5
9 80061.9 6076.6 11189.8 2721.7 1117.9 749.9 33.1 7.3

11 575750.3 37149.6 10996.1 1550.2 12160.8 7658.3 30.7 2.5

As n grows from 5 to 11, peer BN JTs grow in space by
52 times, while JTMFNBs grow only 1.1 times. The run-
time with peer BN JTs grows by 193 times, while inference
with JTMFNBs takes about the same time. For n = 11,
JTMFNBs use less than 2% of space as peer BN JTs, and are
396 times faster in inference. This experiment shows that the
MF of NAT models allows significant improvement in space
and time efficiency for sparse NAT-modeled BNs.

12 Conclusion

The main contribution of this work is the formulation of
multiplicative factorization for multi-valued NAT models.
In comparison with the MF for binary NAT models, the
proposed MF is a hybrid and multiply connected graphi-
cal model. To enable sound and space efficient factorization,
we have shown that multiple alternative gate MFs are neces-
sary. As the result, parameterization of these gate MFs, their
integration, and the overall analysis for soundness become
significantly more sophisticated than the binary case. Over-
coming these challenges, we have shown that the formulated
MF is exact and is space efficient (linear complexity on the
number of causes per effect).

In addition, we have shown that a multi-valued, dual
NIN-AND gate is equivalent to noisy-MAX. Based on the
proposed MF for multi-valued NAT models, we extended
the scheme for LP with binary NATBNs to multi-valued
NATBNs. This scheme is more powerful than LP based on
MF of noisy-MAX (Madsen and D’Ambrosio 2000), since
NATBNs are strictly more expressive than noisy-MAX mod-
eled BNs as implied by the above result about noisy-MAX.
We experimentally demonstrated that JTMFNBs compiled
from sparse NATBNs allow exact but significantly more ef-
ficient LP both in space and in time. Although binarization
(Antonucci et al. 2006) allows MF of binary NAT models
to apply directly to multi-valued BNs, it can be shown to be
less space efficient than the proposed MF. Behavior of the
proposed MF when NAT models degrade into binary will be
examined in future work.

In summary, this work opens a promising direction along
which significantly less computational resource is necessary
for probabilistic reasoning with general BNs, making them
deployable in pervasive computing devices.
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