
Extraction of NAT Causal
Structures Based on Bipartition

Yang Xiang
School of Computer Science

University of Guelph
Canada

Abstract

Non-impeding noisy-And Trees (NATs) provide a general,
expressive, and efficient causal model for conditional prob-
ability tables (CPTs) in discrete Bayesian networks (BNs). A
BN CPT may either be directly expressed as a NAT model
or be compressed into one. Once CPTs in BNs are so ex-
pressed or compressed, complexity of inference (both space
and time) can be significantly reduced. The most important
operation in encoding or compressing CPTs into NAT mod-
els is extracting the NAT structure from interaction patterns
between causes. The existing method does so by referencing
a NAT database and an associated search tree. Although both
are constructed offline, their complexity is exponential on the
number of causes. In this work, we propose a novel method
for NAT extraction from causal interaction patterns based on
bipartition of causes. The method does not require the sup-
port of a NAT database and the related search tree, making
NAT extraction more efficient and flexible.

Introduction

We consider expressing BN CPTs as or compressing them
into multi-valued NAT models (Xiang 2012b), where NAT
stands for Non-impeding noisy-And Tree or NIN-AND
Tree. Once so expressed or compressed, inference effi-
ciency (space and time) can be significantly improved (Xi-
ang 2012a). For instance, two orders of magnitude speedup
in lazy propagation is achieved in BNs where the number of
parents per node is bounded at 11 (Xiang and Jin 2016).

A number of space-efficient models exist, including
noisy-OR (Pearl 1988), noisy-MAX (Henrion 1989; Diez
1993), CSI (Boutilier et al. 1996), recursive noisy-OR
(Lemmer and Gossink 2004), tensor-decomposition (Vom-
lel and Tichavsky 2012), and cancellation model (Wouden-
berg, van der Gaag, and Rademaker 2015). Merits of NAT
models include being based on simple causal interactions
(reinforcement and undermining), expressiveness (recur-
sive mixture, multi-valued), generality (generalizing noisy-
OR, noisy-MAX and DeMorgan (Maaskant and Druzdzel
2008)), and support of much more efficient inference (Xi-
ang and Jin 2016).

To compress a target BN CPT into a NAT model, the
following method has been applied (Xiang and Liu 2014;

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Xiang and Jiang 2016). A partial PCI (Pairwise Causal In-
teraction) pattern is first extracted from the target CPT. From
the PCI pattern, compatible candidate NATs are retrieved.
Which candidate NAT becomes the final choice is deter-
mined by parameterization.

In that framework, candidate NATs are extracted from the
PCI pattern using a NAT database and an associated search
tree. A target CPT is defined over an effect and its n causes.
Each n value is associated with a distinct space of alternative
NATs, which populate the NAT database indexed by n. The
size of the NAT database grows super-exponentially on n
(see Table 1 below). The main contribution of this work is a
novel method that extracts NATs from PCI patterns without
using NAT databases and related search trees.

Background
We briefly review background on NAT models and further
details can be found in (Xiang 2012b). Consider an effect e
and its set of n causes C = {c1, ..., cn} that are multi-valued
and graded. The domain of e is De = {e0, ..., eη} (η ≥ 1),
where e0 is inactive, e1, , ..., eη are active, and a higher index
signifies higher intensity (graded). The domain of ci is Di =
{c0i , ..., cmi

i } (mi > 0). An active value may be written as
e+ or c+i .

A causal event is success or failure depending on if e is ac-
tive at a given intensity, is single- or multi-causal depending
on the number of active causes, and is simple or congregate
depending on the effect value range. More specifically,

P (ek ← cji) = P (ek|cji , c0z : ∀z �= i) (j > 0)

is the probability of a simple single-causal success.

P (e ≥ ek ← cj11 , ..., cjqq) =

P (e ≥ ek|cj11 , ..., cjqq , c0z : cz ∈ C \X),

is the probability of a congregate multi-causal success,
where j1, ..., jq > 0, X = {c1, ..., cq} (q > 1), and it may
be denoted as P (e ≥ ek ← x+). Interactions among causes
may be reinforcing or undermining as defined below.
Definition 1 Let ek be an active effect value, R =
{W1,W2, ...} be a partition of a set X ⊆ C of causes,
R′ ⊂ R, and Y = ∪Wi∈R′Wi. Sets of causes in R rein-
force each other relative to ek, iff

∀R′ P (e ≥ ek ← y+) ≤ P (e ≥ ek ← x+).

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

754

They undermine each other iff

∀R′ P (e ≥ ek ← y+) > P (e ≥ ek ← x+).

A NAT has multiple NIN-AND gates. A direct gate in-
volves disjoint sets of causes W1, ...,Wm. Each input event
is a success e ≥ ek ← w+

i (i = 1, ...,m) and its output
event is e ≥ ek ← w+

1 , ..., w
+
m. Fig. 1 (a) shows a direct

Figure 1: (a) A multi-valued direct NIN-AND gate. (b) A
dual NIN-AND gate. (c) A NAT.

gate where each Wi is a singleton. Probability of the output
event is

P (e ≥ ek ← w+
1 , ..., w

+
m) =

m∏

i=1

P (e ≥ ek ← w+
i),

which encodes undermining causal interaction. Each input
event of a dual gate is a failure e < ek ← w+

i and its output
event is e < ek ← w+

1 , ..., w
+
m, as shown in Fig. 1 (b).

Probability of the output is

P (e < ek ← w+
1 , ..., w

+
m) =

m∏

i=1

P (e < ek ← w+
i),

which encodes reinforcement. Fig. 1 (c) shows a NAT, where
causes h1 and h2 reinforce each other, so do b1 and b2, but
the two groups undermine each other.

A NAT can be depicted by a Root-Labeled-Tree (RLT).

Definition 2 Let T be a NAT. The RLT L of T is a directed
graph obtained from T as follows.

1. Delete each gate and direct its inputs to output.
2. Delete each non-root label.
3. Replace each root label by the corresponding cause.

Fig. 2 shows a NAT and its RLT. The leaf of RLT corre-
sponds to leaf gate of the NAT. When the leaf gate is dual
(or direct), we say that leaf of the RLT is dual (or direct).

The leaf gate of a NAT is at level-one. A gate that feeds
into the leaf gate is at level-two, and so on. We refer to levels
of non-root nodes of RLTs in the same way, as they corre-
spond to gates in NATs. All gates in the same level have the
same type (dual or direct) and gates in adjacent levels differ.
An RLT and a leaf type uniquely specifies a NAT.

Figure 2: (a) A NAT. (b) The RLT of NAT in (a).

A NAT T has a single leaf z. For n ≥ 3, leaf z has at least
two parents. Let v be a parent of z. If v is a root, we refer
to v as a root parent of z. If v is a non-root, it is the leaf of
a subtree in T . We refer to the subtree as being induced by
leaf z. In Fig. 2 (b), c2 is a root parent of the leaf. The leaf
has one induced subtree with its root set {c1, c3}.

Each NAT uniquely determines the pairwise causal inter-
action between each pair of causes ci and cj (i �= j), de-
noted by PCI bit pci(ci, cj) ∈ {u, r} (u for reinforcing and
r for reinforcing) ((Xiang and Truong 2014)). The value of
pci(ci, cj) is determined by the common gate of ci and cj at
the highest level. The NAT in Fig. 1 (c) has pci(h1, h2) = r
since g2 is dual and pci(h1, b2) = u since g1 is direct. A PCI
pattern (the collection of PCI bits over all pairs of causes)
uniquely determines a NAT.

Root Bipartition in NATs

Although a PCI pattern uniquely determines a NAT, it is not
obvious which NAT matches a given PCI pattern (over n

causes) and the number of candidate NATs is O(2n
2

). In
(Xiang and Liu 2014), a method is proposed to extract a NAT
over n causes from its PCI pattern by using a NAT database
(for n causes) and a search tree. Both the size of the NAT
database and that of the search tree are O(2n

2

) (generated
off-line before compressing target CPTs).

In this work, we propose a novel method of NAT extrac-
tion that does not require support of NAT database and the
search tree. We assume n = |C| ≥ 3. We analyze a PCI pat-
tern through its PCI matrix (see Fig. 3). In the left, an RLT
with n = 6 is shown. With leaf type being dual, it uniquely
specifies a NAT (hence the caption). The PCI matrix in the
right is equivalent to the PCI pattern of the NAT, except each
PCI bit is duplicated in diagonally symmetric locations. The
diagonal locations are empty.

Figure 3: A NAT and its PCI matrix

The leaf of the NAT has two root parents (b and c) and two
induced subtrees with root sets {a, e} and {d, f}. Consider
dividing root nodes into two root groups, where the root set

755

of each leaf-induced subtree must be contained in one group.
Start with root sets {a, e}, {d, f}, {b} and {c}. If one root
group is made of a single root set, there are 4 groupings.
If one root group is made of two root sets, such as X =
{a, b, e} and Y = {c, d, f}, there are 3 groupings. Hence,
there are 7 distinct root groupings. We refer to such root
groupings as subtree-consistent root bipartitions.

Consider matrix cells at the intersection of rows indexed
by X and columns indexed by Y . The result is the same
for each of the three rows: (r, r, r). The same is true if X
and Y are switched. The following theorem generalizes the
example to reveal an important property of PCI matrices, on
which this work is based.

Theorem 1 Let T be a NAT over C. Let X and Y be a
subtree-consistent root bipartition, where X �= ∅, Y �= ∅,
X ∩ Y = ∅, and X ∪ Y = C. Then, one of the following
holds.

1. ∀x ∈ X, ∀y ∈ Y, pci(x, y) = r

2. ∀x ∈ X, ∀y ∈ Y, pci(x, y) = u

Proof: The leaf of T has at least two parents. Each parent
is either a root or the leaf of a subtree induced by leaf of
T . Hence, root bipartition into X �= ∅ and Y �= ∅, where
X ∩ Y = ∅ and X ∪ Y = C, is always possible.

For each pair of x ∈ X and y ∈ Y , their only
common gate is leaf of T . Hence, if leaf of T is dual,
∀x∀y (pci(x, y) = r) is true. If the leaf is direct,
∀x∀y (pci(x, y) = u) is true. �

The uniformity of causal interaction between root groups
raises the question whether subtree-consistent root biparti-
tions may be identified from PCI matrices. The following
theorem answers this positively.

Theorem 2 Let T be a NAT over C, and X,Y be nonempty
subsets of root nodes in T (X ∩ Y = ∅, X ∪ Y = C) such
that one of the following holds.

1. ∀x ∈ X, ∀y ∈ Y, pci(x, y) = r

2. ∀x ∈ X, ∀y ∈ Y, pci(x, y) = u

Then, X and Y form a subtree-consistent root bipartition
for the NAT T .

Proof: From Theorem 1, root groups exist such that condi-
tions 1 and 2 hold. We show that if root groups X and Y are
not subtree-consistent, neither condition 1 nor 2 holds.

Suppose that X,Y ⊂ C are nonempty, X ∩ Y = ∅ and
X ∪ Y = C, such that X and Y are not subtree-consistent.
That is, there exists a subtree ST induced by the leaf of T ,
such that one root node of ST satisfies x ∈ X and another
root node of ST satisfies y ∈ Y .

Denote the leaf of T by z. Since z has at least two parents
and subtrees induced by z do not share causes, there exists a
root node v such that either v is on a subtree H induced by
z with H �= ST (see Fig. 4) or v is a root parent of z (not
shown).

Depending on whether z is dual or direct and whether
v ∈ X or v ∈ Y , there are four mutually exclusive and
exhaustive cases.
(a) Dual z and v ∈ X

Figure 4: Illustration of proof for Theorem 2

(b) Dual z and v ∈ Y

(c) Direct z and v ∈ X

(d) Direct z and v ∈ Y

With case (a), assume dual z and v ∈ X . For x and y,
either pci(x, y) = u or pci(x, y) = r. Suppose pci(x, y) =
u. Then condition 1 does not hold. Since the only common
gate of v and y is z (dual), we have v ∈ X , y ∈ Y , and
pci(v, y) = r. Hence, condition 2 does not hold either.

Next, suppose pci(x, y) = r. Then condition 2 does not
hold. Let w be the leaf of subtree ST . Since z is dual, w
must be direct. From pci(x, y) = r, node w cannot be the
common gate of x and y at the highest level. That is, there
exists an ancestor p of w that is the common gate of x and y
at the highest level, and p is dual. This implies that x and y
are contained in the the same subtree induced by w.

Since w has at least two parents, there exists either another
subtree (not containing x, y, p) induced by w or there exists
a root parent of w. Let q be a root in that subtree (see Fig. 4)
or be the root parent (not shown). Since w is the common
gate of x, y, q at the highest level and w is direct, we have
pci(x, q) = u and pci(q, y) = u. If q ∈ X , pci(q, y) =
u violates condition 1. If q ∈ Y , pci(x, q) = u violates
condition 1. Hence, condition 1 does not hold either.

Since cases (a) through (d) are symmetric, the above proof
on case (a) can be adapted to cases (b) through (d). �

NAT Identification by PCI Matrices

Based on Theorem 2, we propose the following algorithm
suite that extracts a NAT from its PCI matrix.

The first algorithm is InteractBtwSets. As input, it takes
a set X of causes, a PCI matrix A over X , and a proper
subset S ⊂ X . It determines if any of the two conditions in
Theorem 2 is true for root groups S and X\S. If so, it returns
the NIN-AND gate type that corresponds to the condition. If
neither condition is true, it returns null.

Algorithm 1 InteractBtwSets(X,A, S)
1 if ∀x ∈ S, ∀y ∈ X \ S, pci(x, y) = r,
2 gatetype = dual;
3 else if ∀x ∈ S, ∀y ∈ X \ S, pci(x, y) = u,
4 gatetype = direct;
5 else gatetype = null;
6 return gatetype;

756

The main algorithm is SetNatByPci and it is recursive. As
input, it takes a set X of causes and a PCI matrix A over
X , and returns the NAT that generates the matrix. It calls
InteractBtwSets to analyze the causal interaction between
alternative root groups.
Algorithm 2 SetNatByPci(X,A)
1 init NAT T with a leaf z only; type(z) = null;
2 init set D = ∅;
3 for each x ∈ X , do
4 if ∀y ∈ X \ {x}, pci(x, y) = r,
5 type(z) = dual; D = D ∪ {x};
6 add x as a parent of z in T ;
7 else if ∀y ∈ X \ {x}, pci(x, y) = u,
8 type(z) = direct; D = D ∪ {x};
9 add x as a parent of z in T ;
10 if D = X , return T ;

11 if D �= ∅, reduce X and A relative to D;
12 k = |X|/2, D = ∅, W = ∅;
13 for i = 2 to k, do
14 for each S ⊆ X where |S| = i, do
15 ibs = InteractBtwSets(X, A, S);
16 if ibs �= null,
17 if type(z) = null, assign type(z) = ibs;
18 if ibs = type(z),
19 D = X , W = W ∪ {S,X \ S};

20 remove each S ∈ W from W if for some V ∈ W , S ⊇ V ;
21 D = union of elements in W;
22 for each S ∈ W , do
23 reduce A to matrix B over S;
24 R = SetNatByPci(S,B);
25 add R to T as a subtree induced by z;
26 if D = X , return T ;

27 R = SetNatByPci(X \D, B);
28 add R to T as a subtree induced by z;
29 return T ;

In the following, we illustrate processing of SetNatByPci
by examples.
Example 1 Consider the example in Fig. 5.

Figure 5: A NAT whose leaf has root parents only and its
PCI matrix

The for loop starting at line 3 iterates for each of
a, b, c, d, say, in that order. For a, it compares pci(a, y)
where y ∈ {b, c, d}. These PCI bits are in the matrix row
indexed by a. Hence, the test on line 7 is passed, node a is
added as a parent of leaf z, and the leaf type is set to direct.
Each subsequent iteration adds another parent to z, and the
correct NAT is returned in line 10. Note that the result is
independent of the order in which x ∈ X is processed.

Example 2 Consider the example in Fig. 3. The matrix rows
indexed by b and c pass the test at line 4. Hence, b and c
are added as root parents of the leaf. This and the above
example illustrate that the for loop in lines 3 to 9 adds all
root parents of the leaf to T .

Continuing with the example in Fig. 3, X is reduced to
X = {a, d, e, f} in line 11 and matrix A is reduced to that
in Fig. 6.

Figure 6: PCI matrix in Fig. 3 is reduced relative to {b, c}.

After line 11, all root parents of the leaf are removed from
X . The nested for loop in lines 13 to 19 processes alternative
root bipartitions of X . Each bipartition made of S and X\S
is tested starting with S size 2 (line 13). Since the root set of
each subtree has at least 2 causes, an obvious upper limit of
for index is |X| − 2, which is less efficient than limit |X|/2
(integer division) defined in line 12. Validity of limit |X|/2
is justified in the proof of Theorem 3 below.

Lines 15 and 16 test causal interactions between S and
X \ S. Grouping S = {a, d} and X \ S = {e, f} does not
pass the test, but grouping S = {a, e} and X \ S = {d, f}
does. As the result, root groups {a, e} and {d, f} are added
to W (line 19).

As presented, {a, e} and {d, f} are added twice to W in
separate iterations of the inner for loop. The duplicate will
be removed in line 20. We omit the potential optimization for
simplicity.

Through the for loop in lines 22 to 25, each of {a, e} and
{d, f} will be processed by a recursive call of SetNatByPci.
The corresponding subtrees (see Fig. 3) will be extracted
and added to T . The initial activation of SetNatByPci termi-
nates in line 26, returning the NAT in Fig. 3.
Example 3 Consider the example in Fig. 7. The for loop
in lines 13 to 19 add root groups {a, c}, {b, d}, {e, f} as
well as groups such as {a, b, c, d}. Although {a, b, c, d} and
{e, f} form a subtree-consistent root bipartition, {a, b, c, d}
does not correspond to a leaf-induced subtree in the NAT of
Fig. 7. Line 20 removes root groups such as {a, b, c, d} from
W before each root group is converted to a subtree.

Figure 7: A NAT with 3 subtrees and its PCI matrix

Example 4 Consider the example in Fig. 8. After the for
loop in lines 3 to 9 adds e as a parent of the leaf in T , X
is reduced to X = {a, b, c, d} and matrix A is reduced ac-
cordingly (removing the last row and the last column from

757

that in Fig. 8). It may appear that the loop in lines 13 to 19
would add S = {a, b} and Y = X \S = {c, d} to W , since
they satisfy pci(x, y) = u for each x ∈ S and y ∈ Y . It

Figure 8: A NAT with one subtree and its PCI matrix

would result in incorrect subtrees with root sets S and Y .
Such error is prevented by the test in line 18. Leaf z of T is
dual, as determined when e was added to T . The causal in-
teraction between S and Y requires a direct gate that differs
from type(z). As the result, S and Y are not added to W .

Since the NAT in Fig. 8 has a single subtree, the for loop
in lines 13 to 19 cannot find a subtree-consistent root bipar-
tition that passes the test in line 18. Thus, processing contin-
ues to line 27. The subtree with the root set {a, b, c, d} will
be extracted by recursive call in line 27 and added to T in
line 28. The NAT in Fig. 8 is returned in line 29.

Soundness Analysis

The soundness of the algorithm suite in Section is estab-
lished in Theorem 3.

Theorem 3 Let Ψ be a NAT over a set X of causes and A be
the PCI matrix of Ψ. Then algorithm SetNatByPci(X,A)
halts and returns T = Ψ.

Proof: Let ρ be the leaf of Ψ. Since n = |X| ≥ 3, ρ belongs
to one of the following mutually exclusive and exhaustive
cases.

1. Leaf ρ has 2 or more root parents only.

2. Leaf ρ has 2 or more non-root parents and 0 or more root
parent.

3. Leaf ρ has 1 non-root parent and 1 or more root parent.

In case 1, for each x ∈ X , {x} and X \ {x} form a
subtree-consistent root bipartition. By Theorem 1, one of the
conditions holds. Hence, each iteration of for loop in lines 3
to 9 identifies one root parent x of ρ. SetNatByPci(X,A)
halts on line 10 and returns T = Ψ.

In case 2, if ρ has any root parent x, it is correctly iden-
tified and added to T as argued above. After line 11 is exe-
cuted, X is reduced to be the set of root nodes in all subtrees.

By assumption, ρ has at least 2 induced subtrees. For
each subtree and its root set S, either |S| ≤ |X|/2 or
|S| > |X|/2. If |S| ≤ |X|/2, S is evaluated when the in-
ner for loop (lines 14 to 19) is run relative to i = |S|. If
|S| > |X|/2, then |X \S| < |X|/2 and S is evaluated when
the inner for loop is run relative to i = |X \ S|.

Since S and X \ S form a subtree-consistent root bipar-
tition, by Theorem 1, one of the conditions holds. As the
result, ibs (line 15) equals the type of ρ, and S and X \S are
added to W . Since root sets of distinct subtrees are disjoint,
S cannot be removed from W in line 20. The subtree over S

is added to T . If X \ S is the root set of another subtree, the
subtree is also added to T .

Suppose Ψ has q ≥ 3 subtrees. For each subtree root set
S that is added to W , X \ S contains multiple subtree root
sets and is also added to W . Since each root set contained in
X \S is added to W , X \S will be removed from W in line
20. Hence, the for loop in lines 22 to 25 adds exactly the
subtrees of Ψ to T . Therefore, SetNatByPci(X,A) halts
on line 26 and returns T = Ψ.

In case 3, Ψ has a single subtree induced by ρ. All root
parents of ρ are identified by the for loop in lines 3 to 9.
After line 11, X is the root set of the subtree and A is the
PCI matrix over the root set. Hence, X has no other root set
to pair, it cannot be added to W , and W = ∅ after the for
loop in lines 13 to 19. Through a recursive argument, the
subtree over X is added to T in lines 27 and 28. Therefore,
SetNatByPci(X,A) halts on line 29 and returns T = Ψ.

�

Experiment

To evaluate effectiveness of the algorithm suite, the exper-
imental setup in Fig. 9 is used. The case for n = 9 is il-
lustrated and cases for other n values are similar. Note that
NAT models are local models in BNs. Due to conditional in-
dependence encoded in BNs, the number of causes per BN
CPT is not unbounded.

Figure 9: Experimental setup.

For each n value between 4 and 9, the NAT database is
used to retrieve all NATs (dual leaf) of n causes exhaustively.
For the two NATs of the same RLT, since they differ by the
type of leaf gate only and their processing are symmetric,
only the NAT of the dual leaf is experimentally processed.
For each NAT H , its PCI pattern P is derived. P is used as
the input to SetNatByPci, implemented in Java and exe-
cuted in a 2.9 GHz ThinkPad X230 laptop. After the NAT
T is extracted by SetNatByPci, its PCI pattern B is also
derived. If B = P , the NAT extraction is verified.

The verification is sound since a PCI pattern uniquely
identifies a NAT (Xiang and Truong 2014). Hence, compar-
ison between B and P is equivalent to comparison between
T and H . On the other hand, comparison of B and P can
be conducted much more easily than testing isomorphism
between T and H .

758

Table 1 summarizes the experimental results. For all
NATs with n value in the range of 4 to 9, the PCI pattern
of the extracted NAT matches exactly that of the retrieved
NAT.

Table 1: Runtime for NAT recovery

n No. NATs Time (sec) Time/1000 NATs (sec)
4 26 0.016 0.62
5 236 0.093 0.39
6 2,752 0.500 0.18
7 39,208 7.13 0.18
8 660,032 136.87 0.21
9 12,818,912 3,638.62 0.28

The 1st column indicates the number of causes n. The
2nd column shows the total number of NATs of a dual leaf
for a given n. The 3rd column indicates the total runtime to
process all NATs of a given n. The last column is the run-
time per 1,000 NATs. Note that the processing for each NAT
includes all steps illustrated in Fig. 9. Hence, the runtime
consumed by SetNatByPci is only a fraction of the time
reported.

Remarks

Expressing BN CPTs as or compressing them into NAT
models can significantly improve efficiency in BN inference.
The most important operation in encoding or compressing
CPTs into NAT models is extraction of NAT structures from
PCI patterns. The contribution of this work is a novel method
for NAT extraction based on bipartition of causes. In com-
parison with the existing method, it does not require the sup-
port of a NAT database and the associated search tree, mak-
ing NAT extraction more efficient and flexible. The sound-
ness of the method is formally established and its effective-
ness is experimentally evaluated.

A number of future work can be identified. Although the
efficiency of the proposed method is empirically evaluated,
a formal analysis of its complexity is desirable. Its efficiency
relative to the existing method (based on a NAT database and
a search tree) is yet to be experimentally compared.

The proposed extraction method assumes the input of a
full PCI pattern from an unknown NAT. To express or com-
press a target CPT, often only partial PCI patterns (with
missing PCI bits) are available. PCI patterns that do not cor-
respond to any NAT can also occur (due to error or noise in
PCI pattern acquisition). The result presented in this paper
provides a solid foundation for further research in order to
tackle such cases.

Acknowledgement

We thank anonymous reviewers for constructive criticism.
Financial support from the Discovery Grant, NSERC,
Canada is acknowledged.

References

Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D.
1996. Context-specific independence in Bayesian networks.
In Proc. 12th Conf. on Uncertainty in Artificial Intelligence,
115–123.
Diez, F. 1993. Parameter adjustment in Bayes networks: The
generalized noisy OR-gate. In Heckerman, D., and Mam-
dani, A., eds., Proc. 9th Conf. on Uncertainty in Artificial
Intelligence, 99–105. Morgan Kaufmann.
Henrion, M. 1989. Some practical issues in constructing
belief networks. In Kanal, L.; Levitt, T.; and Lemmer, J.,
eds., Uncertainty in Artificial Intelligence 3. Elsevier Sci-
ence Publishers. 161–173.
Lemmer, J., and Gossink, D. 2004. Recursive noisy OR - a
rule for estimating complex probabilistic interactions. IEEE
Trans. on System, Man and Cybernetics, Part B 34(6):2252–
2261.
Maaskant, P., and Druzdzel, M. 2008. An independence of
causal interactions model for opposing influences. In Jaeger,
M., and Nielsen, T., eds., Proc. 4th European Workshop on
Probabilistic Graphical Models, 185–192.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Vomlel, J., and Tichavsky, P. 2012. An approximate
tensor-based inference method applied to the game of
Minesweeper. In Proc. 7th European Workshop on Prob-
abilistic Graphical Models, Springer LNAI 8745, 535–550.
Woudenberg, S.; van der Gaag, L.; and Rademaker, C. 2015.
An intercausal cancellation model for Bayesian-network en-
gineering. Inter. J. Approximate Reasoning 63:3247.
Xiang, Y., and Jiang, Q. 2016. Compression of general
Bayesian net CPTs. In Khoury, R., and Drummond, C., eds.,
Advances in Artificial Intelligence, LNAI 9673. Springer.
285–297.
Xiang, Y., and Jin, Y. 2016. Multiplicative factorization
of multi-valued NIN-AND tree models. In Markov, Z., and
Russell, I., eds., Proc. 29th Inter. Florida Artificial Intelli-
gence Research Society Conf., 680–685. AAAI Press.
Xiang, Y., and Liu, Q. 2014. Compression of Bayesian
networks with NIN-AND tree modeling. In vander Gaag,
L., and Feelders, A., eds., Probabilistic Graphical Models,
LNAI 8754. Springer. 551–566.
Xiang, Y., and Truong, M. 2014. Acquisition of causal mod-
els for local distributions in Bayesian networks. IEEE Trans.
Cybernetics 44(9):1591–1604.
Xiang, Y. 2012a. Bayesian network inference with NIN-
AND tree models. In Cano, A.; Gomez-Olmedo, M.; and
Nielsen, T., eds., Proc. 6th European Workshop on Proba-
bilistic Graphical Models, 363–370.
Xiang, Y. 2012b. Non-impeding noisy-AND tree causal
models over multi-valued variables. International J. Approx-
imate Reasoning 53(7):988–1002.

759

