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Abstract

Hybrid BNs (HBNs) extend Bayesian networks (BNs) to both
discrete and continuous variables. Among inference meth-
ods for HBNs, we focus on dynamic discretization (DD) that
converts HBN to discrete BN for inference. Complexity of
BN inference is exponential on treewidth, which extends to
DD for HBNs. We presents a novel framework where HBN
is transformed into NAT-modeled BN (NAT: Non-impeding
noisy-AND Tree) for tractable inference. A case-study under
the framework is presented on sum of continuous variables.
We report significant efficiency gain of approximate inference
by NAT-modeled DD over alternative methods.

1 Introduction
BNs consist of discrete variables and are extended into
HBNs to allow continuous variables. Several methods ex-
ist for inference with HBN (Lauritzen and Jensen 2001;
Moral, Rumi, and Salmeron 2001; Shenoy and West 2011).
We focus on DD (Neil, Tailor, and Marquez 2007), which
converts HBNs into BNs to enable BN techniques for HBN
inference without limitation of static discretization. BN in-
ference complexity is exponential on treewidth, which ex-
tends to DD for HBNs. Our contribution includes a frame-
work for tractable HBN inference by extending DD with lo-
cal models, and identifying and solving key technical issues.

To validate and demonstrate this novel framework, we
present a case-study on HBNs that involve sum of contin-
uous variables (which we will refer to as sum of reals). That
is, we have a set of continuous variables of various prior
distributions. We either infer about their sum distribution or
infer about their posterior distributions upon observation of
their sum (and possibly some addends). Our case-study fo-
cuses on sum of reals since no tractable method is known to
the best of our knowledge. “Calculating such a distribution
represents a major challenge for most BN software” (Fenton
and Neil 2012), due to the large treewidth involved.

In the case-study, we extend DD by NAT modeling
(Xiang 2012) to convert HBN into NAT-modeled BN for
tractable DD inference. NAT models are among several lo-
cal models that encode BN CPTs (Conditional Probability
Tables) efficiently (Pearl 1988; Henrion 1989; Diez 1993;
Boutilier et al. 1996; Savicky and Vomlel 2007; Maaskant
and Druzdzel 2008; Woudenberg, van der Gaag, and Rade-
maker 2015). Merits of NAT models include simple causal
interactions (reinforcing & undermining), expressiveness
(recursive mixture of interactions, multi-valued, ordinal or
nominal), generality (generalizing noisy-OR, noisy-MAX,
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and DeMorgan), and being orthogonal to context-specific
independence. Although efficient tensor decomposition for
sum of integers exists (Savicky and Vomlel 2007), whether
it supports tractable inference with sum of reals remains a
research issue. We resolve key issues under the framework
for NAT-modeled DD, and report tractable approximate in-
ference with sum of reals.

In the remainder, Section 2 reviews background on DD,
inference with sum of reals, and NAT modeling. Sections 4
analyzes limitations of alternative methods. Our case-study
on NAT-modeled DD for sum inference is covered in Sec-
tions 5 to 7. Experimental evaluation is reported in Section 9.

2 Background
[Dynamic discretization] Inference for HBNs can be per-
formed by converting HBN into BN using static discretiza-
tion, where domain of each (continuous) variable is dis-
cretized into bins. However, the inference is inaccurate if
too few bins per variable are used, and inference cost grows
quickly if many bins are used. DD (Fenton and Neil 2012)
overcomes the limitation by revising bins dynamically.

DD inference goes in multi-rounds, starting with a static
discretization and resultant BN. After each round, approx-
imate Kullback-Leibler (KL) distance/error between (un-
known) true PDF (probability density function) and the dis-
cretized PDF is evaluated for each bin of each variable. Each
bin with a large error is split into two, and adjacent bins of
little probability mass are merged. The resultant BN is under
a new static discretization, where bins are refined as needed,
and coarsened when justified to keep the number of bins low.
The new BN is used in the next round of inference.

Since a BN is used for inference in each round, and the
complexity is exponential on its treewidth, the exponential
complexity extends to DD inference for HBNs.

[Inference with sum of continuous variables] Let
u1, ..., un be independent continuous variables (addends),
and w =

∑n
k=1 uk be their sum. Let u′1, ..., u

′
n, w

′ denote
discrete variables from discretizing u1, ..., un, w. We denote
PDFs of uk and w by puk

() and pw(). An HBN (segment)
on u1, ..., un and w consists of a structure where w is the
child with parents u1, ..., un. Inference over addends and
sum may compute (prior) PDF of pw(w) given puk

(uk). In-
ference may also compute posterior PDFs of addends, given
prior PDF for each uk, and observed values of w and some
addends. PDF of w = u+ v can be obtained by convolution
(Grinstead and Snell 2003),

pw(w) =

∫ ∞
−∞

pu(w − v)pv(v)dv, (1)



and PDF ofw =
∑n
k=1 uk can be obtained by n−1 pairwise

convolutions. Sum PDF where addends are uniformly dis-
tributed, denoted by uk ∼ U(a, b), has been studied (Kill-
mann and von Collani 2001; Kang et al. 2010). If each uk ∼
U(0, 1), PDF of w is Irwin-Hall distribution (Irwin 1927;
Hall 1927), with cumulative distribution function (CDF)

F (w;n) =
1

n!

⌊w⌋∑
k=0

(−1)kC(n, k)(w − k)n. (2)

The above methods can compute prior PDF of sum, but are
not directly applicable to posterior on addends and sum. For
general inference (prior and posterior) with DD, an approx-
imate method (referred to below as uniform mixture) com-
putes P (w′|u′1, ..., u′n) based on mixture of uniform distri-
butions (Fenton and Neil 2012).

[NAT models] A NAT model (Xiang 2012; Xiang and
Jiang 2018) is over an effect e and a set of n causes C =
{c1, ..., cn}, where e ∈ De = {e0, ..., eη} (η ≥ 1) and
ci ∈ {c0i , ..., c

mi
i } (i = 1, ..., n,mi ≥ 1). C and e form a

family (a child and its parents) in BN, whose dependence is
quantified by a CPT by default. Values e0 and c0i are inac-
tive. Other values (may be written as e+ or c+i ) are active.

A causal event is a success or failure depending on if e
is active up to a given value, is single- or multi-causal de-
pending on the number of active causes, and is simple or
congregate depending on value range of e. For instance,
P (ek ← cji ) = P (ek|cji , c0z : ∀z ̸= i) (j > 0) is proba-
bility of a simple single-causal success, and
P (e ≥ ek ← c

j1
1 , ..., c

jq
q ) = P (e ≥ ek|cj11 , ..., c

jq
q , c

0
z : cz ∈ C \X)

is probability of a congregate multi-causal success, where
j1, ..., jq > 0, X = {c1, ..., cq} (q > 1). The latter may be
denoted as P (e ≥ ek ← x+). Interactions among causes
may be reinforcing or undermining as defined below.
Definition 1 Let ek be an active effect value, R =
{W1, ...,Wm} (m ≥ 2) be a given partition of a set X ⊆ C
of causes, S ⊂ R, and Y = ∪Wi∈SWi. Sets of causes in
R reinforce each other relative to ek, iff ∀S P (e ≥ ek ←
y+) ≤ P (e ≥ ek ← x+). They undermine each other iff
∀S P (e ≥ ek ← y+) > P (e ≥ ek ← x+).

Figure 1: Direct gate (a), dual gate (b), and NAT (c).

A NAT has multiple NIN-AND gates. A direct gate in-
volves disjoint sets of causes W1, ...,Wm. Each input event
is a success e ≥ ek ← w+

i (i = 1, ...,m), e.g., Fig. 1 (a)
whereWi is a singleton. Output event e ≥ ek ← w+

1 , ..., w
+
m

has probability
∏m
i=1 P (e ≥ ek ← w+

i ). Direct gates en-
code undermining causal interactions.

Each input of dual gate is a failure e < ek ← w+
i ,

e.g., Fig. 1 (b). Output event e < ek ← w+
1 , ..., w

+
m, has

probability
∏m
i=1 P (e < ek ← w+

i ) and satisfies relation
P (e < ek ← ...) = 1 − P (e ≥ ek ← ...). Dual gates
encode reinforcement causal interactions.

Fig. 1 (c) shows a NAT, where causes h1 and h2 reinforce
each other, and so do b1 and b2. However, the two groups
undermine each other. That is, for gate g1, each Wi (as in
Def. 1) is a general set. See (Xiang 2012) for a formal def-
inition of NAT. From the NAT and probabilities of its in-
put events, in the general form P (ek ← cji ) (j, k > 0),
called single-causals, P (e ≥ e1 ← h11, h

1
2, b

1
1, b

1
2) can be

obtained. From the single-causals and all derivable NATs,
CPT P (e|h1, h2, b1, b2) is uniquely specified. A NAT model
is specified by the topology and single-causals with space
linear in n.

The leaky cause for e represents all causes of e not explic-
itly named. If a leaky cause is always active, it is persistent
(Henrion 1989). Special issues arise when NAT-models have
persistent leaky causes (Xiang and Jiang 2018).

A BN where CPT of some family is NAT model is a NAT-
modeled BN. A BN hasO(N κn) space, whereN is number
of variables, κ bounds domain size of variables, and n + 1
bounds family size. A NAT-modeled BN where every family
of size > 2 is NAT model has O(N κ n) space. A CPT can
be approximated into a NAT model by compression (Xiang
and Jiang 2018). By compressing each CPT, a BN is approx-
imated by a NAT-modeled BN. Common inference methods
for BNs can be used for NAT-modeled BNs by converting
them into BNs, e.g., through trans-causalization (Xiang and
Loker 2020). The inference is tractable if NAT-modeled BNs
have high treewidth and low density 1.

3 Tractable Inference by Extended DD
Complexity of BN inference is exponential on its treewidth,
which extends to DD for HBNs. Since DD inference goes in
multiple rounds, this exponential cost is amplified in DD. To
enable tractable inference with HBNs, we propose a novel
framework by extending DD with local modeling:

We apply local modeling to discretized continuous vari-
ables in each round of DD, to create a BN with tractable
inference. Since the BN in each round has specific static
discretization (revised bin settings), local modeling must be
revised. Hence, our framework requires extra tasks: The 1st
creates initial local models for continuous variables (at ini-
tial DD round). The 2nd adapts local models for continuous
variables newly discretized (at each DD round).

Figure 2: The extended DD framework for HBN inference.

Fig. 2 illustrates the framework (one row per DD round).
G denotes HBN structure (directed acyclic graph), Li (i =
0, 1, ...) denotes local models of ith round, and Pi denotes
probability parameters. The 1st task occurs in 1st box of 1st
row. The 2nd task occurs in 1st box of each other row.

The two tasks must be efficient. Otherwise, their cost can
outweigh savings from tractable inference in each round (3rd

1Low density does not imply tractability: Tree BNs (low den-
sity) of large n values (large treewidth) are exponential on n.



box in each row). For example, if achieved by compression,
they are super-exponential on family size n + 1 (Xiang and
Jiang 2018). Below, we exemplify the framework through a
case-study on sum of reals, and present efficient solutions on
the two tasks, when local modeling are NATs.

4 Alternative Methods for Sum of Reals
Consider discrete convolution (DCov) that replaces integra-
tion in Eqn. (1) by summing over even bins. For 2 PDFs dis-
cretized into k and m ≥ k bins, DCov takes k +m rounds,
each of O(k) multiplications, with O(k(k+m)) time. Prior
inference for sum needs n− 1 rounds of DCov. With q bins
per addend, 1st round has k = m = q, and 2nd round has
k = q andm = 2q. Hence, prior for sum hasO(n2 q2) time.

To compute posteriors over addends and sum,
P (w′|u′1, ..., u′n) is needed: qn CPDs (conditional probabil-
ity distributions). Since addend bins are uneven during DD,
each of the q bins needs to be divided up to x even sub-bins
in order to perform DCov. Cost for each CPD is O(n2 x2)
and that for P (w′|u′1, ..., u′n) is O(n2 x2 qn): intractable for
large q and n.

In summary, DCov for prior of sum is efficient and dis-
cretely exact (inaccuracy due to discretization only), but
DCov for posterior is exponential. Hence, we use DCov as
golden standard for accuracy on priors only.

Uniform mixture (Fenton and Neil 2012) (D.3.3) can get
approximate sum CPT P (w′|u′1, ..., u′n) (not equivalent to
convolution, as counter-example can be constructed), with
uneven bins. For each (u′1, ..., u

′
n), get bounds l and h,

that defines distribution U(l, h). For each bin of w′, set
P (w′|u′1, ..., u′n) percentage of w′ overlapping with [l, h].
With q bins per addend and O(qn) CPT values, cost to get
P (w′|u′1, ..., u′n) is O(2n qn): exponential time.

Other relevant work includes tensor rank-one decom-
position for sum of integers (Savicky and Vomlel 2007).
Whether it supports tractable inference with HBNs requires
further research. The same holds for arithmetic circuits (Dar-
wiche 2003). Parent divorcing (Olesen et al. 1989) is in-
tegrated into NAT-modeled DD through trans-causalization
(Xiang and Loker 2020) (see Section 7).

5 NAT-modeled DD with Even Bins
We resolve 1st task in Section 3 on creating initial local mod-
els. We do so with even bins, as they can be adjusted by
subsequent DD.

Without losing generality, assume uk ≥ 0 for k = 1, ..., n
and hence w ≥ 0. First, consider even bin width L = 1. Let
each bin be [i, i+1), denoted by bi, where i = 0, 1, 2, .... We
use u′k = bi to denote uk ∼ U(i, i+1) and hence i = ⌊uk⌋.
If u′k = b0 for each k, then w′ ∈ {b0, ..., bn−1}. By Eqn. (2),
P (w′ = bi|u′1 = b0, ..., u

′
n = b0) = F (i + 1;n) − F (i;n)

(i = 0, ..., n−1). For example, define bins b0 = [0, 1), b1 =
[1, 2), etc. Consider P (w′|u′1 = b0, u

′
2 = b0, u

′
3 = b0) =

P (w′|b0, b0, b0), where u′k = b0 denotes uk ∼ U(0, 1), and
w′ ∈ {b0, b1, b2}. The result is P (w′ = bi|b0, b0, b0) = 1/6
(i = 0, 2) and P (w′ = b1|b0, b0, b0) = 2/3.

When u′k = bi ≥ b0, define ψ =
∑n
k=1⌊uk⌋. It follows

thatw ∈ [ψ,ψ+n) andw′ ∈ {bψ, ..., bψ+n−1}. By Eqn. (2),
P (w′ = bψ+i|u′1, ..., u′n) = F (i+ 1;n)− F (i;n) (3)

holds for i = 0, ..., n − 1. Eqn. (3) specifies sum CPT with
unit bin width L = 1. Table 1 shows an example where
domains of u1, u2, u3 are [0, 2], [0, 3], [0, 2], respectively.

w′ = b0 b1 b2 b3 b4 b5 b6 u′
1 u′

2 u′
3

1/6 2/3 1/6 0.0 0.0 0.0 0.0 b0 b0 b0
0.0 1/6 2/3 1/6 0.0 0.0 0.0 b0 b1 b0
0.0 0.0 1/6 2/3 1/6 0.0 0.0 b0 b2 b0

Table 1: P (w′|u′1, u′2, u′3) (only 3 rows out of 12 are shown).

Next, consider even bin width L ̸= 1. Let bin [i L, (i +
1)L) be denoted by bi, and u′k = bi denote uk ∼ U(i L, (i+
1)L). Hence, i = uk/L by integer division. For example, if
L = 1.5 and uk = 3.3, then i = 2. If u′k = b0 for each k,
then w′ ∈ {b0, ..., bn−1}. It is easy to see that
P (w′ = bi|u′1 = b0, ..., u

′
n = b0) = F (i+ 1;n)− F (i;n)

holds for (i = 0, ..., n − 1), identically to Eqn. (3) when
L = 1. It follows that inference for L ̸= 1 can be performed
by scaling variable domains with 1/L and using unit bins.
Hence, we assume unit bins when even bins are involved.

Once a sum CPT is specified, it must be compressed into a
NAT model (Section 2) for efficient inference. Compression
determines both NAT and single-causals. It is infeasible to
be entirely offline (infinitely many potential sum CPTs). It
is costly to be entirely online, since it involves searching
through NAT topologies exponential in n.

We propose semi-offline compression: Compress offline a
range of sum CPTs to identify the suitable NAT. For a partic-
ular sum CPT, compress online given the NAT to determine
single-causals (much more efficient due to fixed NAT).

Our offline experiment (details omitted for space) found
that the best NAT is dual NIN-AND gate (Fig. 1 (b)) with
a persistent leaky cause. Table 2 shows a NAT model with
persistent leaky cause c0 ∈ {c00, c10}. The sum CPT has 72
parameters, while the NAT model has 30. Euclidean distance
(ED) between NAT CPT and sum CPT is 0.159.

w′ b1 b2 b3 b4 b5 b6

P (w′ ← c10) .534 .219 .109 .01 .01 .01

P (w′ ← u′
1 = b1) .202 .292 .192 .193 .01 .01

P (w′ ← u′
2 = b1) .195 .508 .166 .01 .01 .01

P (w′ ← u′
2 = b2) .109 .170 .232 .160 .179 .039

P (w′ ← u′
3 = b1) .147 .120 .150 .273 .059 .01

Table 2: NAT single causals for sum CPT in Table 1.

6 Model Sum CPT with Bin Merge & Split
Next, we consider 2nd task in Section 3 on how to adapt
local model at each DD round. This task is driven by bin
revisions at either addends or sum, and revised bins require
revised NAT model for sum CPT. As bin revision results in
uneven bins, the above method for 1st task does not apply.

We resolve NAT-modeling on uneven bins as follows:
Given initial NAT model for sum CPT with even bins, mod-
ify the NAT model directly according to revised bins. The
new NAT model is on uneven bins. Bin merge or split may
occur to addend or sum, forming 4 operations analyzed be-



low. For accuracy, we require that NAT CPT after bin revi-
sion be consistent with the NAT CPT before revision:

Definition 2 Let M be NAT model on V = {u′1, ..., u′n, w′}
(addends and sum) and N be NAT model after bin revision
on v ∈ V . If sum CPT from N differs only on terms that in-
volve modified bins, the difference is probabilistically sound,
and other terms are invariant, then N is consistent with M .

[Merge sum bins] Let w′ bins bi, bi+1 be merged into
bi,i+1. We have single-causals P (bi ← u′k), P (bi+1 ← u′k),
and NAT CPT terms P (bi|U ′), P (bi+1|U ′) before merging,
where U ′ = {u′1, ..., u′n}. After merging, we set new NAT
model as follows without change to other single-causals:
P (bi,i+1 ← u

′
k) = P (bi ← u

′
k)+P (bi+1 ← u

′
k), (k = 1, ..., n). (4)

Theorem 1 holds, whose proof is omitted due to space.

Theorem 1 Bin merging for sum w′ according to Eqn. (4)
is consistent, satisfies below, and is invariant otherwise:

P (bi,i+1|U ′) = P (bi|U ′) + P (bi+1|U ′). (5)

[Split sum bins] Consider splitting bin bi of sum w′ into
bia and bib, where |bia| = |bib| = |bi|/2. Since it is inverse
of merging that is consistent, we guide splitting by Eqns. (5)
and (4). As we only have left-hand of Eqn. (5), its right-hand
cannot be derived, nor can right-hand of Eqn. (4). Hence, we
split single-causal on w′ bin bi to bia and bib to enable

P (bi ← u′k) = P (bia ← u′k) + P (bia ← u′k), (6)
and set right-hand terms by single-causal density in bins ad-
jacent to bi through 4 cases (Fig. 3), where density fi =
P (bi ← u′k)/|bi|. Case 1: fi−1 ≤ fi ≤ fi+1 (increas-
ing). Case 2: fi−1 ≥ fi ≥ fi+1 (decreasing). Case 3: fi >
max(fi−1, fi+1) (convex). Case 4: fi < min(fi−1, fi+1)
(concave).

Figure 3: Cases of sum bin split.

Case 1: Estimate density over bia and bib as fia = fib =
(fi−1 + fi+1)/2. Set their probability mass tentatively to
tia = tib = fia |bi|/2. Note that fi is not referenced. The
mass distribution may not sum to one, to be handled below.

Case 2: We estimate density over bia and bib as fia =
(fi + fi−1)/2 and fib = (fi + fi+1)/2, respectively.

Case 3: Estimate density over bia and bib so that new bin
adjacent to the bin with density max(fi−1, fi+1) has higher
density. In particular, we estimate density over bia and bib as
fia = (fi−1 + 3fi)/4 and fib = (3fi + fi+1)/4.

Case 4: We estimate density over bia and bib as fia =
(2fi−1 + fi+1)/3 and fib = (fi−1 + 2fi+1)/3. It aims to
avoid erroneous valley in sum distribution by removing the
valley in single-causal distribution. As the result, fia, fib >
min(fi−1, fi+1) where (fi−1, fia, fib, fi+1) is monotonic.

Since mass distribution from above (for P (w′ ← u′k)
where w′ ∈ {b0, ..., bi−1, bia, bib, bi+1, ...}) may not sum to
one, we scale single-causal mass in a window W of bins to
renders new P (w′ ← u′k) summing to one. We omit details
due to space. Note that the 4 case rules are not compelled,
and are approximately consistent due to scaling.

[Merge addend bins] Let bins bi and bi+1 of addend
u′k be merged into bi,i+1. Before merging, we have single-
causals P (w′ ← u′k = bi), P (w′ ← u′k = bi+1), and NAT
CPT items P (w′|u′k = bi, U

′
−) and P (w′|u′k = bi+1, U

′
−),

where U ′− = U ′ \ {u′k}. After merging, set NAT model as
follows without change to other single-causals:

P (w′ ← u′k = bi,i+1)

= ρiP (w
′ ← u′k = bi) + ρi+1P (w

′ ← u′k = bi+1), (7)
where ρj = P (bj)/(P (bi) + P (bi+1)). Theorem 2 holds.

Theorem 2 Bin merging for addend u′k according to
Eqn. (7) is consistent and satisfies

P (w′|bi,i+1, U
′
−)

=
P (w′|bi,U ′

−)P (bi)

P (bi)+P (bi+1)
+

P (w′|bi+1,U
′
−)P (bi+1)

P (bi)+P (bi+1)
. (8)

[Splitting addend bins] We split bin bi of addend u′k into
bia and bib, where |bia| = |bib| = |bi|/2. As it is inverse of
merging which is consistent, we guide splitting by Eqn. (8).
Before splitting, we know only left-hand of Eqn. (8) and
right-hand denominator. Remaining terms cannot be deter-
mined. We set P (w′ ← u′k = bia) and P (w′ ← u′k = bib)
in new NAT model as follows without changing other single-
causals. Suppose we have

P (u′k ∈ bia)/P (u′k ∈ bi) = |bia|/|bi|
P (u′k ∈ bib)/P (u′k ∈ bi) = |bib|/|bi|. (9)

Since |bia| = |bib| and |bia| + |bib| = |bi|, we have |bia||bi| =
|bib|
|bi| = 1/2. We set new NAT model with
P (w

′ ← u
′
k = bia) = P (w

′ ← u
′
k = bib) = P (w

′ ← u
′
k = bi). (10)

Since this setting satisfied Eqn. (7) with ρi = ρi+1 = 1/2, it
follows that Eqn. (8) holds, assuming condition in Eqn. (9).

At the time of bin split, we have P (u′k ∈ bi) from previ-
ous round of DD inference. We do not have P (u′k ∈ bia) and
P (u′k ∈ bib), nor do we guarantee Eqn. (9). Hence, addend
bin split by Eqn. (10) is approximately consistent.

7 Bin Merge & Split for Trans-Causalization
Since NAT-modeled BNs are converted to BNs for infer-
ence, e.g., by trans-causalization, a new trans-causalization
is needed at each DD round, after sum or addend bin revi-
sion. To enhance efficiency, we save trans-causalizing cost
by applying bin revision directly to trans-causalized BN:

From Section 5, best NAT model of sum CPT is dual NIN-
AND gate with persistent leaky cause. For n addends, there
are n+ 1 causes. They form n+ 1 root nodes (Fig. 4 (a)) in
trans-causalized structure, each with 1 probabilistic child (z-
node). Each z-node has 1 deterministic child (y-node). Each
y-node has 2 parents: at least one z-node and at most one
y-node. Each y-node has at most one child (y-node), and yn
stands for sum. Domains of z and y-nodes are the same as
sum w′. Each y-node has a (deterministic) MAX CPT. CPT
of each z-node captures single-causals of its parent cause.

Fig. 4 (b)) shows a BN for sum sum0 of addends
ad1, ..., ad4, and marginal distributions at end of DD. Ad-
dend PDFs are Gaussian, Beta, Triangular, and Uniform, re-
spectively. The persistent leaky cause is plc0. It has n = 4,
5 z-nodes z6, ..., z10, and 4 y-nodes y11, y12, y13, sum0.



After bin revision during DD, we directly modify domains
and CPTs for necessary z-nodes and y-nodes only. For in-
stance, if only two addends revise bins, only CPTs of two
z-nodes are revised. Revision of z-node CPT is per Section 6
and revision of y-node CPT is functional.

Figure 4: (a) Trans-causalized structure. (b) Example struc-
ture for sum of 4 addends.

8 NAT-Modeled DD and Complexity
Algorithm 1 specifies NAT-Modeled DD, integrating above
techniques. Inference at each round uses junction tree (JT)
message passing (Jensen, Lauritzen, and Olesen 1990).
Lines 1 through 5 are performed offline once for all. Re-
maining lines are online for each new set of observations.

Algorithm 1
Input: HBN B0 specifying addend PDFs and observation for some
variables;
1 convert B0 to BN B1 with even bins and Irwin-Hall

distributions for sum CPT;
2 compress sum CPT to dual-gate NAT model M with persistent

leaky cause;
3 convert B1 to NAT-modeled BN B2 using M ;
4 trans-causalize B2 into BN B3;
5 compile B3 into JT T ;
6 for i = 1 to MaxRound, do
7 enter observation into T ;
8 message passing in T for posterior marginals;
9 for each discretized variable u′, do
10 compute approximate KL error on u′;
11 if KL error on u′ > ErrorBound,
12 revise bins for u′;
13 revise B3 and T locally accordingly;
14 if no u′ is found whose KL error > ErrorBound, break;
15 return posterior marginals for all variables in B1 from T ;

Next, we analyze complexity for revising trans-causalized
BN at each DD round (lines 12, 13). When sum bins are
revised, each y-node revises its domain and CPT. At start of
DD (even bins), domain size of each addend is q, and domain
size of sum is n q. Each MAX CPT has size n3 q3. Each z-
node revise its domain and CPT (size n q2), using updated

single-causals. Complexity of revision is S1 = O(n(n3 q3+
n q2)) = O(n4 q3). When bins of an addend are revised,
its child z-node revises CPT, using updated single-causals.
The CPT has size n q2. No change to y-nodes is needed. In
case all addends revise their bins, complexity of revision is
S2 = O(n2 q2). From S1, S2, complexity of bin revision at
both sum and addends is S3 = O(n4 q3).

Finally, we consider inference complexity in a DD round
(line 8). The largest JT cluster has size 3 (see Fig. 4), and
space size n3 q3. Hence, complexity of inference is S4 =
O(n4 q3). From S3, S4, one round of NAT-modeled DD for
sum inference has complexity of S5 = O(n4 q3), reducing
those (exponential) in Section 4 to polynomial.

9 Experimental Study
We implemented DCov, Irwin-Hall based static discretiza-
tion (IHSD), uniform mixture based DD (UMDD), and
NAT-modeled DD (NATDD), with JT based inference. Mac-
Book Pro of 2.5GHz CPU and 16 GB memory was used.

[Priors for sum] For inference with prior sum probability
distribution (PD), we set number of addends n = 3, ..., 10
with 30 HBNs for each n (240 HBNs in total), and each
HBN contains a n-addend family. For n = 3, 4, domain size
of each addend is selected from [0, 3], [0, 4], [0, 5], and [0, 6].
For n = 5, 6, it is from [0, 3] and [0, 4]. For n = 7, ..., 10, it
is set to [0, 3]. All HBNs start with even bin size 1. At end
of DD, typical minimum bin size is 0.125.

Figure 5: Prior inference for n = 4 (top), 6 (middle), and 10.

For n = 3, ..., 7, we run 3 methods per HBN and, for
n = 8, 9, 10, we run 2 methods: 630 inference runs. We
report ED and KL errors of sum PD by NATDD and UMDD
from golden standard IHSD or DCov for n = 4, 6, 10, due to
space. We also report runtime of NATDD, UMDD and IHSD
(DCov does not support posterior inference and is used as
golden standard for accuracy in prior inference).

For n = 4, NATDD, UMDD, and IHSD are applied, with
IHSD as accuracy standard, and NATDD is compared with



UMDD on accuracy and efficiency. For n = 6, NATDD,
UMDD, and DCov are applied, where DCov replaces IHSD
(runs out of memory) as standard. For n = 10, only NATDD
and DCov are run (UMDD runs out of memory).

In Fig. 5, subtitle at top-left denotes ED errors of NATDD
and UMDD, relative to standard. When n increases from 4
to 10, average ED error by NATDD increases from 0.06 to
0.16: not large, but larger than UMDD. Runtime of NATDD
increases from 0.4 sec (n = 4) to 4 sec (n = 10). At n = 7,
NATDD is two orders of magnitude faster than UMDD (not
shown in Fig. 5). At n > 7, UMDD cannot complete.

[Posteriors on addends and sum] For inference with
posterior sum PD, we set n = 3, 4, 5, so that IHSD can be
run with NATDD and UMDD as standard. HBNs are the
same as above with n = 3, 4, 5. For each HBN, we observe
sum and one addend, with random observation for other ad-
dends. Average ED and KL errors of posterior marginals are
measured for NATDD and UMDD. Errors and runtime are
summarized in Fig. 6 (note that Fig. 5 differs in n = 4, 10).

Figure 6: Posterior inference for n = 3 (top) and 5 (bottom).

ED errors for NATDD are slightly higher than UMDD,
and difference is less pronounced than in prior inference.
This is consistent with (Xiang and Baird 2018): Posterior
errors are generally smaller than CPT compression errors.
On the other hand, at n = 5, NATDD is about 30 times
faster than UMDD.

10 Conclusion
We contribute a novel framework of NAT-modeled DD for
inference with HBNs and case study with sum of reals. Key
tasks are creation of initial local models, and their efficient
adaptation during DD. We developed techniques to accom-
plish them efficiently. Experiment showed significant effi-
ciency gain over alternative methods, while incurring low
inference errors. Much of the techniques are generalizable
to NAT-modeled DD with other HBNs, which forms a fur-
ther research direction.
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