
DISTRIBUTED STRUCTURE VERIFICATION

IN MULTIPLY SECTIONED BAYESIAN NETWORKS

Y. Xiang
Department of Computer Science, University of Regina

Regina, Saskatchewan, Canada S4S 0A2, yxiang@cs.uregina.ca

Abstract

Multiply sectioned Bayesian networks (MSBNs) pro-
vide a framework for probabilistic reasoning in a sin-
gle user oriented system in a large problem domain
or in a cooperative multi-agent distributed interpre-
tation system. During the construction or dynamic
formation of a MSBN, an automatic verification of the
acyclicity of the overall structure is desired. Although
algorithms for testing acyclicity are well known, they
assume a centralized storage of the graphical structure
to be tested. We discuss why a centralized represen-
tation of the overall structure is undesirable. We then
propose a set of distributed operations that are per-
formed by individual subnets/agents in the system to
cooperatively verify the acyclicity of the overall struc-
ture.

1 INTRODUCTION

Multiply sectioned Bayesian networks (MSBNs) is an
extension of Bayesian networks (BNs) [4, 3, 1]. A
MSBN consists of a set of interrelated Bayesian subnets
[12, 11]. Each subnet shares a non-empty set of vari-
ables with at least one other subnet. Subnets are orga-
nized into a hypertree structure such that probabilis-
tic inference can be performed coherently in a modular
and distributed fashion. The modularity improves in-
ference efficiency in a single user oriented system in a
large problem domain [10]. It also extends MSBNs into
a framework for probabilistic reasoning in cooperative
multi-agent distributed interpretation systems [7].

As the structure of a BN is a directed acyclic graph
(DAG), the overall structure of a MSBN, the compo-
sition of subnet structures, is also a DAG. To ensure
the correct composition, an automatic verification of
the acyclicity of the composed structure is desired. Al-
though algorithms for testing acyclicity are well known
[6], they assume a centralized storage of the graph to be
tested. In this paper, we propose a set of distributed
operations used by individual subnets/agents to test
cooperatively the acyclicity of the composed structure.

Section 2 briefly reviews the theory and applications
of MSBNs. The concepts necessary for the rest of the
paper are formally defined. Section 3 discusses rea-
sons why a distributed verification of acyclicity is pre-
ferred over a centralized test. Section 4 shows that
some ‘obvious’ solutions to the distributed verification
do not solve the problem. Section 5 derives the graph-
theoretic fundation for the proposed operations and
Section 6 presents these operations for cooperative ver-
ification.

2 OVERVIEW OF MSBNS

In this section, we briefly overview the theory of MS-
BNs and their applications. More details on MSBNs
can be found in [12, 10, 7, 8].

A BN S is a triplet (N, D, P ) where N is a set of
variables, D is a directed acyclic graph (DAG) whose
nodes are labeled by elements of N , and P is a joint
probability distribution (jpd) over N . We shall call
N the domain of S, D the structure of S and P the
distribution or jpd of S.

Let Gi = (N i, Ei) (i = 1, 2) be two graphs (directed
or undirected). We shall refer to the graph G = (N1 ∪
N2, E1∪E2) as the union of G1 and G2, denoted G =
G1 t G2.

A MSBN M is a collection of Bayesian subnets that
together define a BN. These subnets are required to
satisfy certain conditions that permit the construction
of distributed inference algorithms. One of these con-
ditions requires that nodes shared by different subnets
form a d-sepset, as defined below.

Definition 1 (d-sepset) Let Di = (N i, Ei) (i =
1, 2) be two DAGs such that D = D1 t D2 is a DAG.
The intersection I = N1 ∩ N2 is a d-sepset between
D1 and D2 if for every Ai ∈ I with its parents πi in D,
either πi ⊆ N1 or πi ⊆ N2. Each node in a d-sepset
is called a d-sepnode.

It can be shown that when a pair of subnets are
isolated from M , their d-sepset renders them condi-
tionally independent. Figure 1 (left) shows the three
DAGs Di (i = 1, 2, 3) of a MSBN for diagnosis of three
neuromuscular diseases, Median nerve lesion (Medn),
Carpal tunnel syndrome (Cts) and Plexus upper trunk
lesion (Plut).1 Each d-sepnode is highlighted by a dot-
ted circle. The d-sepset between each pair of DAGs is
{Medn, Cts, P lut}. In general, d-sepsets between dif-
ferent pairs of DAGs of M may be different.

Just asthe structure of a BN is a DAG, the structure
of a MSBN is a multiply sectioned DAG (MSDAG) of
a hypertree structure, or simply a hypertree MSDAG
defined as follows.

Definition 2 (Hypertree MSDAG)
A hypertree MSDAG D =

⊔
i Di, where each Di is a

1The example is taken from a fraction of PAINULIM [10] with
modification.



D D

D

D

D

D

D

1

{Medn,Cts,Pxut}

{Medn,Cts, Pxut}

3

2apbprtbcps

Pxut CtsMedn

76

5

4

3

D
wkarpnsd

Pxut CtsMedn

pnhd

2D
1D

acci ocup

D

mmcb muplmcmpmf2a

Pxut 3

2D

1D

CtsMedn

Figure 1: Left: The DAGs of an example MSBN for neural muscular diagnosis. Middle: The hypertree
organization of the DAGs in the left. Right: A general hypertree MSDAG. Each d-sepnode is highlighted by a
dotted circle.

connected DAG, is a DAG that is built by the following
procedure:

Start with an empty graph (no node). Recursively
add a DAG Dk, called a hypernode, to the existing
MSDAG

⊔k−1
i=1 Di subject to the constraints:

[d-sepset] For each Dj (j < k), the intersection
Ijk = N j ∩ Nk is a d-sepset.

[Local covering] There exists Di (i < k) such that,
for each Dj (j < k; j 6= i), we have Ijk ⊆ N i.

Ijk is called the hyperlink between hypernodes Dj

and Dk, and Di and Dk are said to be adjacent.

The DAGs in Figure 1 (left) can be organized into
the hypertree MSDAG in Figure 1 (middle). Figure 1
(right) depicts a general hypertree MSDAG. Although
DAGs of subnets of a MSBN M are organized into
a tree as defined above, each DAG may be multiply
connected (more than one path exist between a pair
of nodes), e.g., D1. Moreover, there can be multiple
paths between a pair of nodes in different DAGs in a
hypertree MSDAG. For instance, multiple paths are
formed between apb and mcmp after D2 and D3 are
unioned. A hypertree structured M ensures that each
hyperlink render the two parts of M that it connects
conditionally independent. An intuitive justification of
this structure is given in [9].

A MSBN is defines as follows. Readers are referred
to [12] for more details.

Definition 3 A MSBN M is a triplet (N ,D,P). N =⋃
i N i is the total universe where each N i is a set

of variables. D =
⊔

i Di (a hypertree MSDAG) is
the structure where nodes of each DAG Di are la-
beled by elements of N i. P =

∏
i P i(N i)/

∏
k P k(Ik)

is the joint probability distribution (jpd). Each
P i(N i) is a probability distribution over N i such that
whenever Di and Dj are adjacent in D, the marginal-
izations of P i(N i) and P j(N j) onto the d-sepset I ij

are identical. Each P k(Ik) is such a marginal dis-
tribution over a hyperlink of D. Each triplet Si =
(N i, Di, P i) is called a subnet of M .

Without confusion, we shall say that two subnets Si

and Sj are adjacent if Di and Dj are adjacent. We

shall refer to the computational entity that holds the
representation of a single subnet as an agent.

A MSBN can be used as a framework for probabilis-
tic reasoning in a single user oriented system in a large
problem domain. Using a MSBN is most beneficial if
subdomains of the problem domain are loosely coupled
(the size of each d-sepset is reasonably small relative
to the size of the subdomain) and evidence and queries
are focused on one subdomain for a period of time be-
fore shifting to a different subdomain. For example
in Figure 1 (right), the user may focuses attention on
the subnet of the structure D1, denoted by S1. Af-
ter several pieces of evidence are entered and queries
are issued to this subnet, the user may shift attention
to the subnet S3. The inference operations of MSBNs
will then propagate evidence from S1 to S2 and then
to S3. The user can then enter evidence on variables
contained in S3. It can be shown that with such a re-
stricted belief propagation during attention shift, the
answers to queries obtained in S3 are always consistent
to all evidence accumulated in the entire MSBN. Com-
putational complexity, however, is reduced by not hav-
ing to update any subnets not on the hyperpath from
the current subnet to the next target subnet. Applica-
tion domains of single-user MSBNs include diagnosis
of natural systems [10] and model-based diagnosis of
artificial systems [5].2

MSBNs can be extended into a framework for
probabilistic reasoning in cooperative multi-agent dis-
tributed interpretation systems. Each agent holds its
partial perspective of a large problem domain, accesses
a local evidence source, consumes its own computation
resource, communicates with other agents infrequently,
and answers queries. It can be shown [8] that if all
agents are cooperative (vs self-interested), and each
pair of adjacent agents are conditionally independent
given their shared variables and have common initial
belief on the shared variables, then a joint system belief
is well defined which is consistent with each agent’s be-
lief. Even though multiple agents may acquire evidence
asynchronously in parallel (compare with the single

2Although MSBNs are not referenced directly, the represen-
tation formalism used is a special case of MSBNs. For example,
the set of input nodes I, output node O, mode node M , and
dummy node D [5], which forms an interface between a higher
level and a lower level in the hierarchy, is a d-sepset [12]. The
‘composite joint tree’ [5] corresponds to the ‘hypertree’ [12]. The
way in which inference is performed in the composite join tree
corresponds to the operation ShiftAttention [12].



user case where evidence is always entered into the
current subnet), the corresponding communication op-
erations of MSBNs ensure that the answers to queries
from each agent are consistent with evidence acquired
in the entire system after each communication. Since
communication is infrequent, the operations also en-
sure that between two successive communications, the
answers to queries for each agent are consistent with
all local evidence gathered so far and are consistent
with all evidence gathered in the entire system up to
the last communication. Therefore, a MSBN can be
characterized as one of functionally accurate, cooper-
ative distributed systems [2]. Potential applications
include decision support to cooperative human users
in uncertain domains and troubleshooting a complex
system by multiple knowledge based subsystems [8].

3 WHY DISTRIBUTED VERIFICATION?

As defined in Section 2, the structure of a MSBN is
a MSDAG which is a DAG. Automatic verification of
acyclicity of this structure is desirable in the construc-
tion of large MSBNs. Algorithms that test whether a
directed graph is a DAG based on topological sorting
are well known [6]. These algorithms, however, assume
a central representation of the graphical structure to
be tested.

A central representation of all DAGs in a MSBN
is not desirable for at least two reasons. First, the
construction of a multi-agent MSBN requires only the
knowledge of the interface (d-sepset) between subnets
(BNs) and does not require the knowledge of the inter-
nal structure of each subnet. Therefore, each subnet
may be developed by an independent vendor who may
not be willing to disclose the structural details. The as-
sumption of a central representation of all DAGs will
rule out the possibility to cooperate agents built by
such vendors.

Secondly, a MSBN can potentially be dynamic.
That is, subnets may join or leave the MSBN as the
system is functioning. It is desirable to verify the cor-
rectness of the structure of the system whenever the
member subnets change. It is also desirable that the
verification does not require the communication of all
DAGs to a central location or does not depend upon
a single agent to maintain a repository of all DAGs in
the current system.

In this paper, we propose a distributed algorithm
for verification of the acyclicity of a MSBN structure.
During the verification process, each agent does not
need to reveal its internal structure. We shall refer to
the structure to be tested as a DAG union since it may
not qualify to be a MSDAG.

4 ISSUES IN DISTRIBUTED VERIFICATION

Recall that a MSDAG is built subject to the d-sepset
and local covering conditions. It should be noted that
these two conditions do not rule out the possibility of
a directed cycle in the resultant DAG union.

Figure 2 shows two DAGs D1 and D2 with their
d-sepset being {a, b}. If we union the two DAGs, it
clearly satisfies the local covering condition. However,
the union contains the directed cycle (a, c, d, b, g, a)and
thus is not a DAG.

a

b

c

d

D

D

1

2

e

g

h

i
f

Figure 2: Two DAGs whose union is not a DAG.

The above cycle can be detected if we union the
pair of DAGs and test the acyclicity. Although the
pairwise verification may detect some directed cycles,
pairwise acyclicity in a DAG union does not guarantee
the global acyclicity.

c

d

f

e

D

k 

l

n o

D3

m

j 

1

g

i

Db

a
h

2

Figure 3: Three DAGs which are pairwise acyclic but
whose union is cyclic.

Consider the three DAGs in Figure 3. The union of
D1 and D3 is acyclic and so is the union of D3 and D2.
However, when the three DAGs are unioned, a directed
cycle {a, c, d, b, n, k, g, j, l, a} is formed. Clearly, a dis-
tributed verification of acyclicity requires cooperation
beyond pairs.

5 VERIFICATION BY MARKING NODES

In this section, we show that acyclicity of a DAG
union can be verified by marking non-d-sepnodes and
d-sepnodes separately and recursively. Once it is estab-
lished, we can mark non-d-sepnodes locally and mark
d-sepnodes by cooperation as presented in the next
section. A node x is marked if x and arcs connected
to x are ignored from further verification process. The
following two propositions show that marking of non-
d-sepnodes can be performed separately.

Proposition 4 Let D be a DAG in a DAG union U .
Let x be a root in D and be not in any d-sepset. Then
the acyclicity of U remains the same after x is marked.

Proof:
If U is acyclic, then marking x cannot create a di-

rected cycle in U . Suppose U is cyclic. Then there
exists a non-empty set O of cycles in U . Since x is
a root in D, it does not have any incoming arc in D.
Since x is not a d-sepnode, it cannot have any incoming
arc from any other DAGs in U . Therefore, x cannot
participate in any cycles in O, which implies that none
of the cycles in O will be changed after x is marked.
2

For example, the node f in Figure 3 is such a root
node. Note that the condition that the node must not
be in a d-sepset is necessary. For example, the node j



is a root node in D3, but it should not be marked since
it is part of an inter-DAG cycle.

Proposition 5 Let D be a DAG in a DAG union U .
Let x be a leaf in D and be not in any d-sepset. Then
the acyclicity of U remains the same after x is marked.

The proof is similar to that of Proposition 4. For
example, the node o in Figure 3 is such a leaf node.
Again, the non-d-sepnode condition is necessary. For
instance, the leaf node j in D2 should not be marked.

Once a non-d-sepnode root or leaf is marked, other
non-d-sepnodes may become roots or leaves. For ex-
ample, after the leaf i is marked, the node h becomes a
leaf and can also be marked. Hence marking of non-d-
sepnode roots and leaves can be performed recursively.

The following two propositions show that marking
of d-sepnodes can also be performed separately. Their
proof are similar to that of Proposition 4.

Proposition 6 Let x be a d-sepnode in a DAG union
U . If x is a root in every DAG that it participates,
Then the acyclicity of U remains the same after x is
marked.

Proposition 7 Let x be a d-sepnode in a DAG union
U . If x is a leaf in every DAG that it participates,
Then the acyclicity of U remains the same after x is
marked.

Similar to non-d-sepnodes, d-sepnode roots and
leaves can also be marked recursively.

Next, we show that if a DAG union is acyclic, every
node in it will be marked by recursive application of
Propositions 4, 5, 6 and 7.

Proposition 8 Let a DAG union U be acyclic. For
each node x in U , x can be marked after a finite rounds
of recursive marking of non-d-sepnode roots and leaves
and d-sepnode roots and leaves.

Proof sketch:
Without lossing generality, we assume that at each

round of marking, all current non-d-sepnode roots and
leaves are marked first, followed by the marking of all
d-sepnode roots and leaves.

If x is either a root or a leaf, then x can be marked
in the first round. Suppose x is neither a root nor a
leaf. Since U is acyclic, there exists a longest directed
path p started at a root r1 at one end and a leaf v1
at the other end such that x is in p. We denode p by
(r1, r2, . . . , rm, x, vn, . . . , v2, v1), where m, n > 0.

Since r1 is a root, it can be marked either as a non-
d-sepnode or as a d-sepnode in the first round. Af-
ter the first round, r2 must become a root. We show
the opposite cannot be true. If r2 does not become
a root, it must be the case that r2 has at least one
other parent r not being marked in the first round.
But this implies that r has at least one parent s,
which in turn implies that there exists a directed path
t = (. . . , s, r, r2, . . . , rm, x, vn, . . . , v2, v1) that is longer
than p. This contradicts the assumption that p is the
longest path that contains x.

Using the same argument repeatedly, we conclude
that x will be marked no later than the m + 1 rounds.
2

Finally, we show that if a DAG union is cyclic, some
nodes will remain unmarked.

Proposition 9 Let a DAG union U be cyclic. At least
three nodes cannot be marked after recursive marking
of non-d-sepnode roots and leaves and d-sepnode roots
and leaves.

Proof sketch:
Since U is cyclic, there exists at least one directed

cycle o in U . Since U is a DAG union, o consists of at
least three nodes.

Let x be a node in o. We denote o by
(x, y1, . . . , yn, x) where n > 1, y1 is the parent of x and
yn is the child of x in o. Without lossing generality, we
assume that at each round of marking, all current non-
d-sepnode roots and leaves are marked first, followed
by the marking of all d-sepnode roots and leaves.

We claim that x can never be marked as a root.
Suppose x is marked in a particular round m as a root,
then y1 must be marked in round m−1 or earlier. But
this implies that y2 must be marked in round m− 2 or
earlier. Repeating this argument, yn must be marked
in round m − n or earlier, which implies that x must
be marked in round m − n − 1 or earlier. Now the
marking of x becomes the precondition for x to be
marked, which is impossible. Hence we conclude that
x can never be marked as a root. Similarly, x can never
be marked as a leaf either.

Since the argument is applicable to any node x in
o, none of the nodes in o can be marked by recursive
marking of of non-d-sepnode roots and leaves and d-
sepnode roots and leaves. 2

6 COOPERATIVE VERIFICATION

As demonstrated in Section 4, in order to verify the
acyclicity of a DAG union, agents must cooperate.
Since cooperation requires communication which in-
curs overhead, it is desirable to simplify the task for co-
operation as much as possible. According to Proposi-
tions 4 and 5, non-d-sepnode roots and leaves in a DAG
union can be marked separately and recursively. We
define a preprocessing operation to mark these nodes.

Let a DAG in the DAG union be arbitrarily chosen.
If we treat this DAG as the root of the hypertree and
direct the hyperlinks of the hypertree away from it,
then the hypertree is converted into a directed tree.
For each given DAG, we can then refer to each adjacent
DAG as its child or its parent in the normal sense.

Operation 10 (PreProcess) When PreProcess is
called in a DAG D, the following are performed:

1. D recursively marks each non-d-sepnode root or
leaf.

2. D calls PreProcess in each child DAG.

After PreProcess is completed in a DAG union,
nodes left unmarked in each DAG are either isolated
d-sepnodes, or nodes that form directed pathes ended
with d-sepnodes. Cooperation among DAGs is needed
to further the verification process. Figure 4 shows the
three DAGs in Figure 3 after PreProcess is initiated
in any of them. Marked nodes are shown as grey. Only
directed pathes are left in this case.

Based on Propositions 6 and 7, the operation
CollectFamilyInfo is used by a DAG to find out if
a d-sepnode x can be marked. The operation passes a
triple (x, p, c) around all child DAGs which contain x.



c

d

f

e

D

k 

l

n o

D3

m

j 

1

g

i

Db

a
h

2

Figure 4: Three DAGs in Figure 3 after local prepro-
cessing. Marked nodes are shown as grey.

The purpose is to record the parent/child information
for x, where p is a count of the number of DAGs that
contain parents of x and c is a count of the number
of DAGs that contain children of x. The caller in the
following definition refers to either a parent DAG or
the next highter level of operation which initiated this
operation.

Operation 11 (CollectFamilyInfo)
When CollectFamilyInfo(x) is called in a DAG D,
the following are performed:

1. D forms a triple t0 = (x, p0, c0), where p0 = 1 if
D contains a parent of x and p0 = 0 otherwise,
and c0 = 1 if D contains a child of x and c0 = 0
otherwise.

2. If D has no child DAG to which x is a d-sepnode,
then D returns t0 to caller.

3. Otherwise, D calls CollectFamilyInfo(x) in
each child DAG to which x is a d-sepnode.

4. After each child DAG being called has re-
turned their triples (assuming k DAGs are
called), t1, t2, . . . , tk, D returns a triple t =
(x,

∑k
i=0 pi,

∑k
i=0 ci) to caller.

Once a d-sepnode is determined to be a root or a
leaf, the operation DistributeMark is used to mark it
in every DAG that it participates.

Operation 12 (DistributeMark)
When DistributeMark(x) is called in a DAG D, the
following are performed:

1. D marks the node x.

2. D recursively marks any non-d-sepnode root or
leaf.

3. If D has any adjacent DAG to which x
is a d-sepnode except caller, then D calls
DistributeMark(x) in each of them.

The op-
eration MarkNode combines CollectFamilyInfo and
DistributeMark to recursively check and mark all d-
sepnodes that are markable down the hypertree.

Operation 13 (MarkNode) When MarkNode is
called in a DAG D, the following are performed:

1. D returns false if it has no child DAG, otherwise
continues.

2. For each unmarked d-sepnode x with a child DAG
of D, D calls CollectFamilyInfo(x) in itself.
When the trible (x, p, c) is returned to D, D calls
DistributeMark(x) in itself if p = 0 or c = 0.

3. D calls MarkNode in each child DAG.

4. If any
child DAG returns true or DistributeMark(x)
was called in D, then D returns true to caller.
Otherwise, D returns false (no node is marked).

The operation MarkedAll checks if all nodes in a
DAG union have been marked after roots and leaves
have been recursively marked. The DAG union is
acyclic if it returns true.

Operation 14 (MarkedAll) When MarkedAll is
called in a DAG D, the following are performed:

1. If there exists a node in D that has not been
marked, then D returns false.

2. Otherwise, if D has no child DAG, it returns
true. If D has children DAGs, D calls MarkedAll
in each child DAG.

3. If any child DAG returns false (with unmarked
nodes), then D returns false. Otherwise, D re-
turns true.

Finally, TestAcyclicity combines three previously
defined operations to provide the top level operation
for the verification of acyclicity of a DAG union.

Operation 15 (TestAcyclicity)
When TestAcyclicity is initiated in a DAG union,
the following are performed:

1. A DAG D is arbitrarily chosen as the root of the
hypertree.

2. D calls PreProcess in itself.

3. D calls MarkNode in itself repeatedly until false
is returned (no node is marked in the last call).

4. D calls MarkedAll in itself. If true is returned,
then TestAcyclicity is terminated with acyclic
returned (the union is acyclic). Otherwise, the
operation is terminated with cyclic returned.

The following theorem establishes the correctness of
the above operations.

Theorem 16 The operation TestAcyclicity deter-
mines correctly if a DAG union U is acyclic or not.

Proof sketch:
According to Propositions 4 and 5, non-d-sepnode

roots and leaves can be marked separately and recur-
sively. PreProcess does the first round of such mark-
ing and DistributeMark (step 2) performs the recur-
sive marking.



According to Propositions 6 and 7, d-sepnode
roots and leaves can be marked separately and
recursively. MarkNode identifies these nodes by
CollectFamilyInfo (either p = 0 or c = 0) and then
mark them by DistributeMark (steps 1 and 3).

According to Proposition 8, if U is acyclic, all nodes
can be marked by recursive marking of non-d-sepnode
roots and leaves and d-sepnode roots and leaves. Each
call of MarkNode in TestAcyclicitymarks at least one
root or one leaf, until all nodes are marked at which
time false is returned. MarkedAll in step 4 will iden-
tify that all nodes have been marked and return true
to signify that U is acyclic.

According to Proposition 9, if U is acyclic, at least
three nodes are unmarked when MarkNode returns
false. MarkedAll will then identify this and return
false to signify that U is cyclic. 2

7 REMARKS

In this paper, we presented a distributed algorithm, in
terms of a set of distributed operations, for verification
of acyclicity of the overall structure of a MSBN. The
algorithm does not require each agent in the system to
reveal its internal structure. It only provides informa-
tion as whether a d-sepnode has a parent or a child in
the DAG that the agent is responsible for. Therefore,
the algorithm supports the construction of MSBNs
constructed from multiple computational agents built
by multiple vendors while providing the automatic ver-
ification of the correctness of the overall structure.

Acknowledgements

This work is supported by the Research Grant OGP0155425
from NSERC. Helpful comments from anonymous reviewers
are acknowledged.

References

[1] E. Charniak. Bayesian networks without tears. AI
Magazine, 12(4):50–63, 1991.

[2] V.R. Lesser and D.D. Corkill. Functionally accurate,
cooperative distributed systems. IEEE Trans. on Sys-
tems, Man and Cybernetics, SMC-11(1):81–96, 1981.

[3] R.E. Neapolitan. Probabilistic Reasoning in Expert
Systems. John Wiley and Sons, 1990.

[4] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
1988.

[5] S. Srinivas. A probabilistic approach to hierarchical
model-based diagnosis. In Proc. 10th Conf. Uncertainty
in Artificial Intelligence, pages 538–545, Seattle, Wash-
ington, 1994.

[6] D.F. Stubbs and N.W. Webre. Data Structures with
Abstract Data Types and Modula-2. Brooks/Cole, 1987.

[7] Y. Xiang. Distributed multi-agent probabilistic reason-
ing with Bayesian networks. In Z.W. Ras and M. Ze-
mankova, editors, Methodologies for Intelligent Sys-
tems, pages 285–294. Springer-Verlag, 1994.

[8] Y. Xiang. Optimization of inter-subnet belief updating
in multiply sectioned Bayesian networks. In Proc. 11th
Conf. on Uncertainty in Artificial Intelligence, pages
565–573, Montreal, 1995.

[9] Y. Xiang. Semantics of multiply sectioned Bayesian
networks for cooperative multi-agent distributed inter-
pretation. In G. McCalla, editor, Advances in Artificial
Intelligence, pages 213–226. Springer, 1996.

[10] Y. Xiang, B. Pant, A. Eisen, M. P. Beddoes, and
D. Poole. Multiply sectioned Bayesian networks for
neuromuscular diagnosis. Artificial Intelligence in
Medicine, 5:293–314, 1993.

[11] Y. Xiang, D. Poole, and M. P. Beddoes. Exploring
localization in Bayesian networks for large expert sys-
tems. In Proc. 8th Conf. on Uncertainty in Artificial
Intelligence, pages 344–351, Stanford, 1992.

[12] Y. Xiang, D. Poole, and M. P. Beddoes. Multiply sec-
tioned Bayesian networks and junction forests for large
knowledge based systems. Computational Intelligence,
9(2):171–220, 1993.


