
PARALLEL LEARNING OF BELIEF NETWORKS

T. Chu, Y. Xiang
Department of Computer Science, University of Regina

chut@cs.uregina.ca, yxiang@cs.uregina.ca

Abstract

Learning belief networks from a large dataset over a
large domain can be computationally expensive even
with a single-link lookahead search. It has been
shown that a class of probabilistic domain models
cannot be learned correctly by several existing algo-
rithms which employ a single-link lookahead search.
When a multi-link lookahead search is used, the com-
putational complexity of the learning algorithm fur-
ther increases. We study how to use parallelism to
speed up the learning process. A parallel algorithm
for learning belief networks is proposed. Our imple-
mentation in a parallel computer demonstrates the
effectiveness of the algorithm.

1 INTRODUCTION

A belief network represents probabilistic dependence
relationships among variables in a problem domain.
The network structure can be a directed or undirected
graph, where each node corresponds to a variable
in the domain and each link corresponds to depen-
dence between the variables connected. The struc-
ture of a Bayesian network (BN) is a directed acyclic
graph and that of a decomposable Markov network
(DMN) is a chordal graph. As the applicability
of belief networks has been demonstrated in differ-
ent domains, and many effective inference techniques
have been developed, the acquisition of such networks
from domain experts through elicitation becomes a
bottleneck. As an alternative to manual knowledge
acquisition, many researchers have actively investi-
gated methods for learning such networks from data
[3, 4, 5, 6, 7, 8].

Since learning belief networks in general is NP-hard

0

[2], it is justified to use heuristic search in learning.
Many algorithms developed use a scoring metric com-
bined with a search procedure. In these algorithms, a
single-link lookahead search is commonly adopted for
efficiency. In a single-link lookahead search, consec-
utive network structures adopted differ by only one
link. However, it has been shown that there exists
a class of domain models termed pseudo-independent
(PI) models which cannot be learned correctly by a
single-link lookahead search [10, 9].

One alternative for learning PI models is to use
multi-link lookahead search, where consecutive net-
work structures may differ by more than one link.
Increasing the number of links to search, however,
increases the complexity of learning computation.

To speed up the learning process, we propose a par-
allel algorithm focused on learning DMNs, although
our results can be generalized to learning BNs as well.
Section 2 illustrates the needs for parallel learning.
The parallel learning algorithm is presented in section
3. Section 4 discusses job-balancing which is criti-
cal to the efficiency of parallel learning. In section
5, we present our method for balancing jobs among
multiple processors. The experimental results are de-
scribed in section 6.

2 NEED FOR PARALLEL LEARN-
ING

A critical task in learning belief networks is to dis-
cover the domain dependence structure. In a system-
atic single-link lookahead search, O(N2) alternative
structures are checked before one link is added, where
N is the number of variables in the domain. Ex-
amining each alternative structure takes O(n) time
in computing the score of the structure, where n is
the total number of cases in the dataset. In general,
O(N2) links can be added. Hence, the complexity of
search is O(N4 n). Therefore, Learning belief net-
works in a large domain using a large dataset can be
computationally expensive.

A class of probabilistic domain models, called the
pseudo-independent (PI) models, has been identified
which displays a special pattern of dependence rela-
tions [9]. It has been shown that several existing al-
gorithms [3, 5, 6, 7], all using a single link lookahead
search, cannot learn the correct structure if the un-
derlying domain is a PI model even though different
scoring metrics were used such as entropy, conditional
independence, the minimal description length and the
Bayesian score. PI models do exist in practice. For
example, the parity problems and the Modulus addi-
tion problems can both be shown to be special cases
of PI models [11].

Table 1: An example of PI models

(X1, X2, X3, X4) P (N) (X1, X2, X3, X4) P (N)
(0,0,0,0) 0.0225 (1,0,0,0) 0.020
(0,0,0,1) 0.2025 (1,0,0,1) 0.180
(0,0,1,0) 0.0050 (1,0,1,0) 0.010
(0,0,1,1) 0.0200 (1,0,1,1) 0.040
(0,1,0,0) 0.0175 (1,1,0,0) 0.035
(0,1,0,1) 0.0075 (1,1,0,1) 0.015
(0,1,1,0) 0.1350 (1,1,1,0) 0.120
(0,1,1,1) 0.0900 (1,1,1,1) 0.080

A PI model with N = 4 variables Xi (i =
1, 2, 3, 4) is shown in Table 1. More examples can
be found in [9]. It can be easily verified that
X1 and X4 are conditionally independent given X2

and X3. Therefore, X1 and X4 should not be di-
rectly connected. In the subset {X2, X3, X4}, each
pair is marginally dependent, e.g., P (X2, X3) 6=
P (X2)P (X3), and is still dependent given the third,
e.g., P (X2|X3, X4) 6= P (X2|X4). The correspond-
ing structure should have each pair directly con-
nected. However, a special dependence relation ex-
ists in the subset {X1, X2, X3}. Although each pair
is dependent given the third, e.g., P (X1|X2, X3) 6=
P (X1|X2), X1 and X2 are marginally independent,
i.e., P (X1, X2) = P (X1)P (X2), so are X1 and X3.
Since each pair is dependent given the third, the pair
should be directly connected in the structure. The
correct DMN structure is shown in Figure 1 (a).

given PI model
(a) Structure defined by (b) Structure learned by

single−link search
(c) Structure learned by

double−link search

X2 X3

X4 X4

X1

X3

X4

X2

X1X1

X3X2

Figure 1: Comparison of learning results

Suppose learning starts with an empty graph (with
all the nodes/variables but without any link). In
single link lookahead search, since X1 and X2 are
marginally independent, they will not be directly con-

nected. The same is true for X1 and X3, which results
in the learned DMN structure in Figure 1 (b). This
illustrates the failure of a single-link search.

On the other hand, double link search can effec-
tively tests the dependence among X1, X2 and X3,
e.g., whether P (X1|X2, X3) = P (X1|X2) holds, and
the two links (X1, X2) and (X1, X3) will be added.
The learned structure is shown in Figure 1 (c).

Although PI models can be learned correctly by
multi-link search as illustrated above, the number
of alternative structures to be checked at each step
will increase quickly with the number of links to
be added at each step. Consider a problem do-
main with 37 variables. In a single-link search start-
ing from an empty structure, only 666 structures of
a single link are to be checked before one link is
added. In a double-link search, it needs to check
666 × 656/2 = 218448 structures. For a triple link
search, the number of structures becomes 47621664.
Clearly, managing the increased computational com-
plexity is critical if we are to learn PI models cor-
rectly and effectively. Some alternative solutions are
discussed in [10, 11]. In this paper, we study the al-
ternative of parallel learning.

3 THE PARALLEL LEARNING AL-
GORITHM

The parallel algorithm presented here is an exten-
sion to the sequential learning algorithm in [10]. The
sequential algorithm learns a DMN from a dataset
of cases. Each case is described by the values of
a set of discrete variables. Learning starts with an
empty structure (graph). Search is organized accord-
ing to the number i of links to add at each step. At
each step, alternative structures that differ from the
current structure by i links are evaluated according
to the cross entropy score. The one with the best
score (decreasing the cross entropy with the largest
amount) will be chosen as the new current structure.
Search continues until no link may be added to de-
crease the cross entropy significantly.

We parallelize the learning process based on the
following observation: At each step of search, the ex-
ploration of alternative structures are coupled only
through the current structure, i.e., given the current
structure, tests of alternative structures are indepen-
dent of each other. Hence the tests can be performed
in parallel.

We focus on a parallel environment where commu-
nication among processors is performed through mes-
sage passing. We configure the processors as follows.
One processor is designated as the search manager
and the others are structure explorers.

Algorithm 1
Input:

A dataset D over a set N of variables, a maximum
size η of clique, a maximum number κ ≤ η(η − 1)/2
of lookahead links, the total number n of explorers,
and a threshold δh for cross entropy decrement.

begin
send D and η to each explorer;
initialize an empty graph G = (N,E);
G′ := G;
for i = 1 to κ, do

repeat
initialize the cross entropy decrement dh′ := 0;
partition all graphs differed from G by i links
into n sets;
send one set Θ of graphs & G to each explorer;
for each explorer

receive dh∗ and G∗;
if dh∗ > dh′ then dh′ := dh∗ , G′ := G∗;

if dh′ > δh, then G := G′ , done := false;
else done := true;

until done = true;
send a termination signal to each explorer;
return G;

end

Algorithm 2
begin

receive a dataset D and a maximum size η of clique
repeat

receive current graph G = (N,E) and a set Θ of
graphs from manager;
if the termination signal is received, then terminate;
initialize the cross entropy decrement dh∗ := 0 and
G∗ := G;
for each graph G′ = (N,L ∪ E) in Θ, do

if G′ is chordal and L is implied by a single
clique of size ≤ η, then compute dh′ ;
if dh′ > dh∗, then dh∗ := dh′, G∗ := G′ ;

send dh∗ and G∗ to the manager;
end

The manager executes Algorithm 1. It is respon-
sible for generating alternative graphs based on the
current graph. It then partitions all possible graphs
into n sets and distributes one set to each explorer.
Each explorer executes Algorithm 2. It first checks
the chordality for each graph received. Furthermore,
to keep the search effective, a graph will be consid-
ered only if the set L of new links are contained in a
subgraph induced by a single clique. When this is the
case, L is said to be implied by a clique. The explorer
then computes the cross entropy decrement for each
valid graph. It chooses the best graph G∗ and reports
to the manager. The manager collects the reported
graphs from all explorers, selects the best, and then
starts the next search step.

Figure 2 illustrates the parallel learning with two
explorers and a dataset of four variables u, v, x and y.
Only a single-link search is performed for simplicity.
The manager starts with an empty current graph in
(a). It sends six alternative graphs in (b) through (g)

to manager

to manager to manager

to manager to manager

manager explorer 1 explorer 2
u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

u v

x y

to manager
(a) (c) (d) (e) (g)

(h) (j) (k) (l) (m)

terminal signal
(n)

(b) (f)

(i)

(0) (p)

termination termination

Figure 2: An example of parallel learning of DMN

to explorers 1 and 2. The explorer 1 checks graphs in
(b), (c) and (d), selects the one in (b), and reports to
the manager. The explorer 2 reports the one in (e)
to the manager. After collecting the two graphs, the
manager chooses the one in (b) as the new current
graph. It then sends graphs in (i) through (m). Re-
peating the above process, the manager finally gets
the graph in (n) and sends graphs in (o) and (p) to
explorers. Since none of them decreases the cross en-
tropy significantly, the manager chooses the graph in
(n) as the final result and terminates the explorers.

4 NEED FOR JOB BALANCING

u

v w

x y

u

v w

u

v w

x yyx

(a) (b) (c)

Figure 3: Two types of alternative structures

In Algorithm 1, even allocation of alternative
graphs to explorers is used. However, the amount
of computation to check each graph tends to switch
between two extremes. If a graph is not chordal, it is
ignored immediately without having to compute the
cross entropy decrement. For example, suppose the
current graph is shown in Figure 3 (a). There are six
graphs that differ from it by only one link. If any of
the dotted links in (b) is added to (a), the resultant
graph is non-chordal. The amount of computation to
check each of them is very small. If any of the dashed
links in (c) is added to (a), the resultant graph is
chordal. The amount of computation to check each
of them is much larger. As a result, even job allo-
cation may require significantly different amount of
computation among explorers. As the manager must
collect reports from all explorers before a decision on
the new current graph can be made, some explorers

will be idle while other explorers are completing their
jobs.

Figure 4 shows the time taken by each of the six
explorers in a particular search step. The dataset con-
tains 37 variables. Explorer 1 takes much longer than
others. This illustrates the needs for more sophisti-
cated job allocation strategy in order to improve the
efficiency of the parallel system.

1
2
3
4
5
6
7

8
9

10
11
12
13

t (s)

1 2 3 4 5 6

Explorer No.

Figure 4: The time needed for each explorer

5 JOB BALANCING STRATEGY

The job balancing problem can be abstracted as fol-
lows: Let L0 be the total number of job units each
corresponding to a graph to be checked, and n be the
total number of explorers. Each job is either type 0
corresponding to the non-chordal case or type 1 cor-
responding to the chordal case. It takes time T0 to
process each unit of type 0 job and T1 for type 1. Af-
ter an explorer has finished a set of jobs, it takes time
Tc to send another set to the explorer. The goal is to
find a strategy to allocate jobs to explorers such that
the sum of idle time of all explorers is reduced during
the completion of L0 job units. Before deriving our
strategy, we state some assumptions.

Assumption 1 T0 and Tc are constants.

T0 is the computation time to detect a non-chordal
graph which can be performed efficiently. Tc is the
time taken to send one set of jobs from the manager
to an explorer. Both vary slightly and can be treated
as constants.

Assumption 2 T1 is a constant and is much larger
than T0 and Tc.

T1 is the computation time to process one unit of
type 1 job which involves computing the cross en-
tropy decrement of a chordal graph. It is much larger
than T0 and Tc. For example, in learning from a
dataset with 37 variables, we recorded T0 between
0.007 to 0.009 seconds and Tc about 0.017 seconds in
our parallel computing environment. T1 is at least
0.06 seconds. However, the assumption that T1 is
a constant is less accurate. A maximal set of nodes
pairwise linked in a graph is called a clique. When the
variation of clique sizes in a chordal graph is small,

T1 tends to be close to a constant. When the varia-
tion is large, T1 tends to vary from job unit to unit.
Still, we found the assumption to be useful in deriv-
ing the following simple and effective strategy, and
we are currently working on relaxing this assumption
as discussed in Section 7.

Suppose the manager first allocates J0 job units to
each of the n explorers. Let Qi and Bi denote the
type 1 jobs and type 0 jobs in the J0 job assignment
to explorer i, respectively. Let Q denote the total
type 1 jobs in the n J0 units. Let βi = Qi/J0 be
the percentage of type 1 jobs in the job assignment
for explorer i. Let β = Q/(n J0) be the percentage
of type 1 jobs in the total n J0 job units. Without
losing generality, suppose β1 = maxn

i=1(βi) and we
denote β1 by βmax.

The time ti for explorer i to process J0 job units is

ti = QiT1 + BiT0 = βiJ0T1 + (1− βi)J0T0

= J0(βi(T1 − T0) + T0). (1)

Let T be the sum of the idle time of explorers 2
through n while explorer 1 is processing its job. We
can derive

T =

n∑

i=2

(t1 − ti)

=

n∑

i=2

J0((βmax(T1 − T0) + T0) − (βi(T1 − T0) + T0))

=

n∑

i=2

J0βmax(T1 − T0) −
n∑

i=2

J0βi(T1 − T0). (2)

Substituting
∑n

i=2
J0βi = Q − Q1 = nJ0β − J0βmax

into equation (2), we get

T = (n − 1)J0βmax(T1 − T0) − (nJ0β − J0βmax)(T1 − T0)

= nJ0(βmax − β)(T1 − T0). (3)

To improve the efficiency, we need to reserve some
job units which can be distributed to explorers who
finish their first J0 job units before explorer 1. Let
L1 = L0 − nJ0 be the number of job units to be
reserved and βr be the percentage of type 1 jobs in
L1 units. Ideally, we would like to distribute the L1

units to explorers 2 through n such that they will be
fully engaged during the t1 time period and all L1

units are completed at time t1.1 This ideal condition
can be expressed as

T = L1(βr(T1 − T0) + T0) + MTc, (4)

where M is the total number of job assignments to be
performed. This value of M is dependent on the job

1Note that we have used t1 to denote both the length of the
time interval from 0 to t1 and the instant t1.

assignment strategy which we shall discuss shortly.
Solving equation (3) and (4), we get

J0 =
L0(βr(T1 − T0) + T0) + MTc

n((βmax − β + βr)(T1 − T0) + T0)
. (5)

In order to compute J0, we need the values for β,
βmax, βr and M . However, these values are unknown
at the beginning of the search step when J0 is to be
computed. We estimate the values of β and βmax

based on the following assumption:

Assumption 3 The difference between the values of
β (βmax) from successive search steps is small.

Assumption 3 usually holds since the graphs in-
volved in successive steps differ by only a few links.
Figure 5 shows the values of β and βmax from search
step 5 to 75 in learning the ALARM network, which
provides an empirical justification of the assumption.

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

steps

beta−max beta

Figure 5: β and βmax with 8 structure explorers

The value of βr usually varies from βmin =
minn

i=1(βi) to βmax. We can replace βr by βmin in
equation 5 in calculating J0. Since βmin ≤ βr and
L0 � n, the value of J0 will be reduced by the re-
placement. This implies that more job units will be
reserved. The consequence is that the reserved jobs
may not be completed by t1 (by all explorers) and ad-
ditional job assignments need to be performed. Since
the time Tc for each job assignment is very small,
a few additional job assignments will not reduce the
efficiency significantly.

Finally, we consider the estimation of M . From the
numerator of equation 5, we can see that the effect
of an inaccurate estimation of M is small. This is
because βmin(T1 − T0) + T0 is larger than Tc and L0

is much larger than M .
Based on Assumption 3 and the above analysis, the

manager can collect the values β′, β′
min, β′

max and M ′

from the last search step to calculate the value for J0:

J0 ≈
L0(β

′
min(T1 − T0) + T0) + M ′Tc

n((β′
max + β′

min − β′)(T1 − T0) + T0)
. (6)

We now discuss the strategy for allocating the re-
maining L1 job units. Consider Figure 4. Suppose
that the histogram depicts the computation time of
the first J0 job units by each explorer. Explorer 4

is the first that finishes. Let J1 be the job units
the manager allocates to explorer 4 at this moment.
The most conservative strategy will be to allocate
J1 = L1/(n−1) units, which effectively assumes that
every explorer finishes at the same moment. In gen-
eral, other explorers will finish later and hence this
strategy will under-allocate to explorer 4. However,
since the under-allocation only slightly increases the
number M of job assignments and the effect to the
overall efficiency is minor as discussed above, we have
adopted this conservative strategy.

In general, let L2 be the remaining job units after
the allocation of J1 units to the explorer that finishes
the first, L3 be the remaining job units after the al-
location of J2 units to the explorer that finishes the
second, and so on. The job units to be allocated to
the explorer that finishes the ith place will be

Ji =

{
Li

n−1
when Li ≥ 2(n − 1)

1 when Li < 2(n − 1)
(7)

where i = 1, 2, . . . , M , and Li+1 = Li − Ji.
Note that in equation (7), if the remaining job is

less than 2(n−1) units, the manager will allocate the
job unit by unit.

6 Experimental results

The parallel algorithm is implemented on a MIMD
parallel computer of 64 processors. Each processor
has its local memory (no shared memory) and com-
munication can only be performed by message pass-
ing.

The performance of a parallel program are com-
monly measured by speed-up (S) and efficiency (E).
Given a task, let T (1) be the execution time of a se-
quential program and T (n) be that of a parallel pro-
gram with n processors. The two measurements are
defined as S = T (1)/T (n) and E = S/n.

Table 2: Experimental results

Even job allocation Balanced job allocation
n time(s) S E time(s) S E
1 3238 1 1 3238 1 1
2 1756 1.84 0.922 1654 1.96 0.979
3 1229 2.63 0.878 1090 2.97 0.990
4 973 3.33 0.832 830 3.90 0.975
5 776 4.17 0.835 686 4.72 0.944

6 720 4.50 0.750 578 5.60 0.934
7 601 5.39 0.770 525 6.17 0.881
8 573 5.65 0.706 471 6.87 0.859
9 531 6.10 0.678 448 7.23 0.803
10 492 6.58 0.658 410 7.90 0.790
11 482 6.72 0.611 381 8.50 0.773
12 467 6.93 0.578 378 8.57 0.714

Table 2 lists the experimental results for learning
ALARM network (37 variables) [1] from a dataset

of 10000 cases. Each row is the results obtained by
using n explorers as indicated in the first column.
The learned structure in each case is identical to the
one learned by using sequential learning. Columns 2
through 4 correspond to the results obtained using
even job allocation and columns 5 through 7 corre-
spond to the results obtained using the job balancing
strategy in Section 5.

Columns 3 and 5 show that as the number of ex-
plorers increases, the speed-up increases as well when
either job allocation strategy is used. It demonstrates
that our parallel algorithm can effectively reduce the
learning time. This provides the positive evidence
that parallelism is an alternative to tackle the com-
putational complexity in learning belief networks.

Comparing column 3 with 6 and column 4 with 7,
it can be seen that the balanced job allocation further
speeds up the learning process and improves the effi-
ciency beyond the even job allocation. For example,
when six explorers are used, the speed-up is 4.5 and
efficiency is 0.75 for even job allocation, and 5.6 and
0.934 respectively for balanced job allocation.

The results also show a gradual decrease in effi-
ciency as the number of explorers increases. We at-
tribute this efficiency decrease mainly to the job allo-
cation cost. The manager must allocate J0 job units
to each explorer sequentially at the beginning of each
search step. Therefore, each explorer is idle after its
report from the previous search step is submitted and
before the next J0 job units are assigned to it.

7 REMARKS

In this paper, we have studied the alternative of par-
allelism in speeding up the computation in learning
belief networks. We have proposed an algorithm to
decompose the learning task such that multiple pro-
cessors can be used in parallel. The learning result
is identical to what will be obtained by a sequential
algorithm. We have developed a balanced job alloca-
tion strategy which can further increase the learning
speed and efficiency. We have implemented our al-
gorithm in a parallel computer and our preliminary
experiment showed positive results.

Several directions for further investigation can be
identified. We have assumed that the computation
time T1 for processing a type 1 job unit is a constant.
This assumption is not valid in general. We are work-
ing towards relaxation of this assumption. It is ex-
pected to further improve the efficiency. We are also
experimenting with a two stage method toward job
balancing, where explorers only check the chordality
and reports to the manager in the first stage, and the
manager distributes all chordal graphs to explorers
for processing in the second stage. Our implementa-

tion has been tested in a relatively small domain (37
variables) that does not contain PI models2. We are
currently extending our experiments on larger and
more complex domains.

Acknowledgement

This work is supported by grants OGP0155425,
CRD193296 from the Natural Sciences and Engineer-
ing Research Council of Canada, and by the Institute
for Robotics and Intelligent Systems in the Networks
of Centres of Excellence Program of Canada.

References

[1] I.A. Beinlich , H.J. Suermondt, R.M. Chavez, and G.F.
Cooper. The ALARM monitoring system: A case study
with two probabilistic inference techniques for belief
networks, Tech. Report KSL 88-84, Knowledge Systems
Lab., Medical Computer Science, Stanford Univ., 1989.

[2] D. Chickering, D. Geiger and D. Heckerman. learning
Bayesian networks: search methods and experimental re-
sults, In Proc. 5th Conf. on Artificial Intelligence and
Statistics, pages 112-128, 1995.

[3] G.F. Cooper and E.H. Herskovits. A Bayesian method for
the induction of probabilistic networks from data, Ma-
chine Learning, (9), pages 309-347, 1992.

[4] D. Heckerman, D. Geiger, and D.M. Chickering. Learn-
ing Bayesian networks: the combination of knowledge
and statistical data. Machine Learning, 20, pages 197-
243, 1995.

[5] E.H. Herskovits and G.F. Cooper. Kutato: an entropy-
driven system for construction of probabilistic expert sys-
tem from database, In Proc. 6th Conf. on Uncertainty in
Artificial Intelligence, pages 54-62, 1990.

[6] W. Lam and F. Bacchus. Learning Bayesian networks:
an approach based on the MDL principle. Computational
Intelligence, 10(3) pages 269-293, 1994.

[7] P. Spirtes and C. Glymour. An algorithm for fast recovery
of sparse causal graphs. Social Science Computer Review,
9(1), pages 62-73, 1991.

[8] S.K.M. Wong and Y. Xiang. Construction of a Markov
network from data for probabilistic inference. In Proc.
Third International Workshop on Rough Sets and Soft
Computing, San Jose, CA, pages 562-569, 1994.

[9] Y. Xiang, S.K.M. Wong, and N. Cercone. Critical remarks
on single link search in learning belief networks. Twelfth
Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI-96), pages 564-571, 1996.

[10] Y. Xiang, S.K. Wong and N. Cercone. A ‘Microscopic’
Study of Minimum Entropy Search in Learning Decom-
posable Markov Networks. Machine Learning, Vol.26,
No.1, pages 65-92, 1997.

[11] Y. Xiang, Learning belief networks in pseudo-independent
domains, Tech. Report, CS-96-07, Univ. of Regina, 1996.

2Whether the domain contains PI models does not affect
how parallelism should be performed as can be seen from Al-
gorithms 1 and 2.

