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Abstract

Multiply Sectioned Bayesian Networks (MSBNs) pro-
vide a distributed framework for diagnosis of large sys-
tems based on probabilistic knowledge. To ensure exact
inference, the partition of a large system into subsys-
tems and the representation of subsystems must follow
a set of technical constraints. How to satisfy these goals
for a given system may not be obvious to a practitioner.
In this paper, we address three practical modeling is-
sues.

1 Introduction

Bayesian networks (BNs) (Pea88; Nea90; Jen96) pro-
vide a normative formalism for diagnosis based on prob-
abilistic domain knowledge. In the past decade, re-
searchers have studied how to model diagnostic prob-
lems using BNs (Hec90; DGH92; HBR95; Sri94; KP97),
and many algorithms have been proposed to perform in-
ference in BNs (Pea88; Sha96; CGHI7; Jen96). Most
of these methods are based on a centralized BN repre-
sentation of the system to be diagnosed.

Multiply Sectioned Bayesian Networks (MSBNSs) pro-
vide a distributed framework for diagnosis of large sys-
tems based on probabilistic domain knowledge. It was
motivated in the development of a medical diagnostic
system (XPET93) under the single agent paradigm. It
was later extended to multiagent paradigm (Xia96),
where each agent is equipped with private knowledge
about a subsystem and acts autonomously and coop-
eratively with other agents. To ensure exact inference,
the partition of a large system into subsystems and the
representation of subsystems must follow a set of tech-
nical constraints. To a practitioner, it is important to
satisfy not only these constraints of correctness but also
additional constraints arising from the practice. For ex-
ample, the resultant representation must be computa-
tionally feasible with the given resource. In multiagent
systems, verification of technical constraints must re-
spect privacy of agents. How to achieve these goals for
a given system may not be obvious. In this paper, we
address three practical issues in these regards.

We briefly review the basic theory of MSBN in Sec-
tion 2. In Section 3, we address the issue how to model
a system into a hypertree as required by the MSBN
framework. In Section 4, we address the issue how to
model the interface between subsystems to make the

inference computation efficient. We present a result for
testing the suitability of a system partition without vi-
olating agent privacy in Section 5.

2 Overview of MSBNs

Multiply sectioned Bayesian networks (MSBNs) pro-
vide a framework for flexible modeling and exact infer-
ence in very large problem domains. It is particularly
suited for diagnosis of large, physically distributed sys-
tems where subsystems are loosely coupled. A MSBN
M is a collection of Bayesian subnets that together de-
fines a BN. M represents probabilistic dependence of a
total universe of variables partitioned into multiple sub-
domains. Variables in each subdomain models a sub-
system and is represented by a subnet. Figure 1 (a)
shows a digital circuit as an over-simplified example.
Each component is models by a subnet as shown in (b).

To permit exact distributed inference, however, these
subnets should satisfy certain conditions. One condi-
tion is that for each pair of subnets, the set of variables
in one subnet should be independent of the set of vari-
ables in the other given the set of variables shared by
both. It can be shown (Xia97) that this condition holds
if and only if nodes shared by the two subnets form a
d-sepset, as defined below:

Definition 1 Let D; = (N;, E;) (i = 0,1) be two DAGs
such that D = Dy U Dy is a DAG. The intersection
I = Ny N Ny is a d-sepset between Dy and Dy if for
every x € I with its parents w in D, either 1 C Ny or
m C Ny. Fach x € I is called a d-sepnode.

For example, the interface {f, g}between Dy and D
in Figure 1 (b) is a d-sepset. In a MSBN, a non-d-
sepnode occurs only once, but a d-sepnode has multiple
occurrences, one in each subnet that shares it.

Just as the structure of a BN is a DAG, the structure
of a MSBN is a multiply sectioned DAG (MSDAG) with
a hypertree organization:

Definition 2 A hypertree MSDAG D = | |, D;, where
each D; is a DAG, is a connected DAG constructible by
the following procedure:

Start with an empty graph (no node). Recursively add
a DAG Dy, called a hypernode, to the existing MSDAG
[_|f;01 D; subject to the constraints:
[d-sepset] For each D; (j < k), Ijx = N; N N is a d-
sepset when the two DAGs are isolated.
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Figure 1: (a) A digital circuit partitioned into five components. (b) Each component is represented as a subnet.

[local covering] There exists D; (i < k) such that, for
each D; (j < k;j # i), we have I, C N;. For an ar-
bitrarily chosen such D;, L, is the hyperlink between
D; and Dy, which are said to be adjacent.

@ {f. g}

Figure 2: Hypertree organization of subnets.

The DAGs in Figure 1 (b) can be organized into the
hypertree MSDAG in Figure 2, where each hypernode
is labeled by a DAG and each hyperlink is labeled by a
d-sepset. The semantics of the hypertree is that given a
hyperlink (the value for the d-sepset), the two subtrees
connected through the link are rendered irrelevant to
(conditionally independent of) each other. A MSBN is
then defined as follows:

Definition 3 A MSBN M is a triplet M = (N, D, P).
N = Ul N, is the total universe where each N; is a
set of variables. D = | |, D; (a hypertree MSDAG) is
the structure where nodes of each DAG D; are labeled
by elements of N;. For each node, if its occurrence in
a D; has the most parents, then this occurrence is as-
signed a probability table conditioned on its parents in
D;, with each other occurrence assigned a constant ta-
ble. P =[], Pp,(N;) is the joint probability distribu-
tion (jpd), where each Pp,(N;) is the product of prob-
ability tables associated with nodes in D;. Fach triplet
S; = (N;, D;, P;) is called a subnet of M. S; and S;
are adjacent if D; and D; are adjacent.

Inference in a MSBN is performed using a compiled
representation (XPB93; Xia96). To inference effectively
in each subnet, each D; (hypernode) is converted into a
tree structure. Conversion starts with moralization. A
set of nodes is complete if they are pairwise connected.
Moralization completes the parents of each node and
then drops the direction of links. The resultant is called
a moral graph. Figure 3 (a) shows a moral graph.

Next the moral graph is triangulated into a chordal
graph. A chord is a link connecting two nonadjacent
nodes. A graph is chordal if each cycle of length > 3
has a chord. Triangulation can be performed by node

elimination. A node is eliminated if its adjacency is
completed before it is removed with all incoming links.
Links added during elimination are called fill-ins. Let
the nodes of a graph G = (N, E) be eliminated one
by one with the set F' of fill-ins. Then (N,E U F) is
chordal.

Triangulation in a MSBN can be performed by node
elimination constrained by the hypertree organization
(Xia98a). For the purpose of this paper, it suffices to
say that the moral graph of each subnet must be elim-
inated relative to a d-sepset in order to preserve de-
pendency in the compiled structure. That is, nodes in
the d-sepset must be eliminated after elimination of all
other nodes. Figure 3 (b) shows the chordal graph from
M)y obtained by eliminating all other nodes before the
d-sepset {f, g}.

A maximal set of nodes that is complete is called
a clique. For each subnet, a tree is then constructed
where each node (called a cluster) is labeled by a clique
of the chordal graph for the subnet. The clusters are
so connected that the intersection (called separator) of
any two clusters is contained in each cluster on their
path. Such a cluster tree is called a junction tree (JT).
An example is shown in Figure 3 (c). Now each DAG
D; is converted into a JT T; over N;.

To propagate information between subnets effec-
tively, each d-sepset (hyperlink) is converted into a set
of linkages defined below. This conversion essentially
decomposes a potentially large d-sepset into a set of
smaller subsets such that the probability table over the
d-sepset can be represented compactly and communi-
cated between subnets efficiently.

Definition 4 Let I be the d-sepset between adjacent
JTs T, and Ty. A linkage tree L of T, with respect
to Ty is constructed as follows:

Repeat the following until no variable can be removed:
(1) Remove a variable x & I if x is contained in a single
cluster C'.

(2) If C becomes a subset of an adjacent cluster D after
(1), union C into D.

Each cluster ! in L is a linkage. Define a cluster in
T, that contains | as its linkage host and break ties
arbitrarily.

Figure 3 (d) shows the linkage tree between Ty and Ty
which is trivial in this case. More general cases are pre-
sented in Figures 8 and 9. The set of subnet JTs linked
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Figure 3: (a) The moral graph of Dy. (b) The chordal graph of My. (c) The junction tree from M.

by linkage trees is collectively called a linked junction
forest (LJF).

Diagnostic inference is performed using the LJF.
Each agent/subnet acts autonomously. When evidence
is available at the subsystem, it is entered to the JT
and queries can be answered regarding the state of the
subsystem. Such local inference is performed by dif-
ferent agents asynchronously in parallel. From time to
time, agents can communicate (for details on commu-
nication, see (Xia96)). After each communication, an-
swers to queries at each agent will be consistent with
all evidence collected throughout the system.

3 How to model a system as a
hypertree?

To ensure exact distributed inference, subsystems (sub-
nets) in a MSBN must be organized into a hypertree.
How do we satisfy this constraint when the natural sys-
tem structure does not have an obvious hypertree struc-
ture?

We classify the potential faults in the system as lo-
cal and global. A local fault has a direct impact on a
small number of variables. For example, if a logic gate
is faulty, it can directly affect only the correctness of
its output. If a pipe is jammed, it can directly affect
only the presure at its two ends. On the other hand, a
global fault has a direct impact on a large number of
variables. For example, if a digital equipment is over-
heated, all ICs will have higher probability of failure.
When the solar wind occurs, all radio transmissions will
be jammed.

Figure 4 shows part of an (over-simplified) digital
equipment. All variables, the states and inputs/outputs
of gates, are local except the variable h of overheating
is global.

To build a distributed diagnostic system, we parti-
tion devices of a large system into subsystems which
we shall call components. For the partial equipment in
Figure 4, if we ignore the global fault &, then the com-
ponent partition in Figure 5 will have the structure of a
hyperchain: Uy —Uy—U;. Furthermore, the hypernodes
in the chain has loose coupling: the interface between
Us and Uy is {j, k}, and the interface between U and
Ui is {a, b, c¢}. Loose coupling translates to efficiency in
distributed inference.

However, when the global fault h is taken into ac-
count as shown in Figure 6, the nice chain structure
appears to be destroyed.

We indicate that the apparent dense coupling is only
superficial. The essence of loose coupling is that a small
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Figure 4: Part of a digital equipment. Outputs
{i,9,n,0} connect to other gates but no other paths
exist between {i,g} and {n, o} except those that are
shown. Variable h (overheating) affects each gate (de-
tails are partially shown).

Figure 5: Three components U; (i = 0,1,2) (dotted
box) in a digital equipment. Overheating is omitted.

subset of interface variables can render the two compo-
nents independent. Since {j, k, h} renders Us and Uy
independent and {a, b, ¢, h} renders Uy and U; indepen-
dent, we can modify slightly the previous partition by
adding h to each U; and each d-sepset. Then the hy-
perchain U; — Uy — Uy will again be valid. The resultant
subnet representation is shown in Figure 7.

In general, to partition a large system, we can first
ignore the global faults and partition devices into com-
ponents such that the hypertree constraint holds. Then
we add the global faults into each component maintain-
ing the hypertree structure. For each component, each
global fault will be represented as a variable. It will
be included in each d-sepset between subnets. The re-
sultant representation will be a valid MSBN (assuming
that other constraints are also satisfied).

In practice, faults can form a spectrum from local
to global. For instance, the overheating variable & in
the above example may affect the three components
only but no other components. The above solution is




Figure 6: (a) Partial digital equipment with overheating restored. (b) The causal dependency structure as a DAG.
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Figure 7: Subnets in a MSBN for the digital system.

still valid except that h will not be included in other
components and hence not in the d-sepset among other
subnets except between the three subnets in the figure.

It is clear that as the number of global faults in-
creases, the size of each d-sepset and the complexity
of inference will increase as well. Hence, the systems
suitable for application of the MSBN framework are
those that can be modeled with a small number of
global faults. Otherwise, approximation in modeling
appears necessary in order to apply distributed prob-
abilistic reasoning. One such approximation would be
to treat a global fault as a local one. For example, we
may model the overheating in each component U; by
a variable h;. This will loosen the coupling between
subnets and hence makes inference more efficient. The
price paid is that the actual logical constraint between
h;’s cannot be exploited.

We indicate that the limitation to the number of
global faults is not unique to the MSBN framework.
Inference based on a single Bayesian network (BN) is
subject to the same limitation. This is not surprising
as probabilistic inference in BNs is NP-hard in general
(C0090).

4 How to reduce linkage tree state
space?
The size of the d-sepset between a pair of subnets in a
MSBN may be perceived as the ultimate factor that de-
termines the efficiency of communication. Perhaps such
perception originates from the observation that the size
of a separator in the JT representation of a single BN in-
deed determines the size of the message passed over the
separator and affects directly the inference efficiency.
However, this is only partially true for inference in a
MSBN due to the linkage tree representation for each

d-sepset.

For example, the partial MSBN in the above exam-
ple is represented by the partial linked junction forest
(LJF) as shown in Figure 8. The linkage tree L; be-
tween JTs Ty and 77 has two cliques. Suppose each
variable has four outcomes. Then the size of state space
of Ly is 4% 4 4% = 128, whereas the full state space of
the d-sepset {a,b,c, h} is 4* = 256.

This illustrates that in a MSBN, the size of state
space of the linkage tree is a more direct factor for com-
munication efficiency. In the following, we present a
modeling technique for reducing this size.

Figure 9 (a) shows part of two adjacent subnets in a
MSBN. The d-sepset is {y1, ..., Yn}. Assume that there
is no other paths between the nodes in (a) except those
that are shown. After moralization, the moral graph
looks as (b). Using constrained elimination for trian-
gulation of the subnet in the left, we need to eliminate
a,xi,..., Ty before y; (i = 1,...,n). As a consequence,
the d-sepset will be completed (pairwise connected).
The resultant linkage tree is trivial and has a state space
of size O(2").

In order to reduce the size of state space of the link-
age tree, we enlarge the d-sepset by including variables
a and b. The new subnet for the left part of (a) is
shown in (c). Its moral graph is in (d). Using con-
strained elimination for triangulation, we need to elim-
inate x1, ..., x, before a,b,y1, ..., yn. If we eliminate in
the order (z1,...,%Zn, Y1, -, Yn, @, b), no fill-in is added.
The resultant partial JT for the subnet is shown in the
left in (e) and the corresponding linkage tree is shown
in the right. The linkage tree has reduced its size of
state space from O(2") to O(23 n). We can perform
a similar change to the subnet in the right in (a) and
obtain the same reduction.

In general, to use this technique, the variables added
to the d-sepset should be chosen such that the new d-
sepset partitions the variables in the subnet into con-
ditionally independent groups. For example, z;s in the
left subnet are rendered conditionally independent by
the new d-sepset.

Note that the modification to the subnet as shown in
(c) does not require assessment of a new set of proba-
bility distributions. For example, node y; is assigned
P(y1|x1) in the left subnet in (a). With the new subnet
in the left of (c), there is no need to assess P(y1|z1,a,b)
and reassign y; this distribution. The reason is that
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Figure 9: (a) Two subnets in a MSBN. (b) The moral graph. (c¢) Modified subnet. (d) The moral graph for subnet

in (c). (e) The junction tree and the linkage tree.

our remodeling does not alter any dependence relations
among variables. We simply exploit some existing in-
dependence in the domain partition. As a consequence,
the jpd of the new MSBN is identical to the previous
jpd, and no node needs to change its previously assigned
distribution.

To exploit this technique in multiagent systems, there
is a small price to be paid. Agents have to reveal an
additional piece of internal information, i.e., the vari-
ables added to the d-sepset. A negotiation mechanism
is needed to identify these variables without revealing
the entire internal structure of the agent. More research
is needed on this issue.

5 How to verify domain partition?

A system may be constructed from components sup-
plied by different vendors (Xia98b). Each vendor may
supply also a software agent for diagnosis of a compo-
nent. The internal details of the component as well as
the agent may be private to the agent (as representative
of the vendor). To construct a multiagent MSBN for di-
agnosis of such a system, a system designer/integrator
must ensure satisfaction of technical constraints. How-
ever, to protect the privacy of agents, the designer is
not given the internal details of each agent. One con-
straint is that the union of subnet structures must be
a DAG. This needs to be verified without revealing the
(sub)DAG structure of each agent. The problem has
been solved (Xia98b) with a distributed algorithm.

In this section, we address a different problem: ver-

ification of the suitability of a domain partition. Ac-
cording to the definition of MSDAG, whether a DAG
union is a MSDAG can be verified by checking the
d-sepset and local covering conditions. The verifica-
tion is straightforward once a hypertree DAG union is
specified. However, sometime it is desirable to know
whether it is possible to build a MSDAG given a set
of (sub)DAGs before the hypertree is given. Although
the d-sepset condition can be tested pairwise, the lo-
cal covering is a global condition and cannot be tested
locally. Since the subDAG structure is private, the ver-
ification must be performed with only the information
of the d-sepsets.

We shall call each variable in a d-sepset public. A
variable not contained in any d-sepset is private. Each
subnet S; has a set of public variables denoted by @,
and a set of private variables denoted by V;. We as-
sume that the designer has the knowledge of all public
variables but not for private variables.

The following theorem shows that if each hypernode
in a MSDAG is labeled by its subdomain and each hy-
perlink is labeled by the d-sepset, then the resultant
graph is a junction tree if and only if the graph union
is built according to the local covering condition.

Theorem 5 (Xia97) Let Uy,...,Ux_1 each be a set of
variables. Let G be a tree where each node is labeled by a
U; and each link s labeled by the nonempty intersection
of its endpoints. Then the resultant graph is a junction
tree if and only if G can be built according to the local
covering condition.



Using this relation, we test the suitability of a domain
partition as follows: Based on the given knowledge, the
designer can create an undirected graph G whose nodes
are the set of all public variables. These nodes are con-
nected such that each @; is complete. The following
theorem suggests a simple test using G:

Theorem 6 The set of subDAGs can be organized into
a hypertree such that local covering is satisfied iff G is
chordal.

Proof:

Denote the set of nodes in each subDAG by U;.

Suppose G is chordal. Then a junction tree T' exists
whose clusters are cliques of G. That is, each cluster
of T is labeled by a @Q;. We construct a tree T’ that is
isomorphic to T'. Each cluster of 7" is, however, labeled
by Q; UV; = U;. For any two clusters in 7”, the inter-
section U; NU; = Q; N Q); since V; and V; are private.
Hence T” is also a junction tree. By Theorem 5, the
set of subDAGs can be organized into a hypertree such
that local covering is satisfied.

Next suppose the set of subDAGs can be organized
into a hypertree with local covering. Then a junction
tree T” exists such that each cluster is labeled by a
U;. From T’, we construct a tree T' isomorphic to T
with each cluster labeled by ;. Using the argument
above, T is a junction tree and hence a corresponding
undirected graph G is chordal. O

The Theorem 6 says that to determine if a particular
domain partition is suitable for building a MSBN, it is
necessary and sufficient to test whether the graph G is
chordal. Hence the issue can be resolved with only the
public knowledge about the agents.

6 Conclusions

Although the theory of MSBNs has been put forward a
while ago, how to apply the theory in practice to built
a normative diagnosis system may not be obvious to
practitioners.

In this paper, we addressed three practical issues:

e How to model a system as a hypertree of subsystems
when the natural system topology is not a hypertree?

e How to reduce the state space of the interface be-
tween subsystems such that the communication in-
ference can be efficient?

e How to test the suitability of a domain partition with-
out the private knowledge of each subdomain?

We hope that these results will help to meet the gap
between the MSBN theory and diagnosis practitioners.
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