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Abstract

A key component of a vehicle monitoring system is
uncertainty management. Bayesian networks (BN)
emerged as a normative and e�ective formalism for
uncertain reasoning in many AI tasks. Since a priori
modeling of the domain into a BN is impractical due
to the vast interpretation space, the BN formalism
has been considered inapplicable to this type of task.
We propose a framework in which the BN formalism
can be applied to vehicle monitoring. The frame-
work explores domain decomposition, model separa-
tion, model approximation, model compilation and
re-analysis. Experimental implementation demon-
strated good performance at near-realtime.
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1 Introduction

Vehicle monitoring (also known as tracking) takes as
input the measurements from a surveillance region
which is populated by a number of moving objects
(vehicles), and estimates the number of vehicles as
well as their type and movement. Measurements en-
tering into a vehicle monitoring system are the out-
put of a signal processing system which directly pro-
cesses the sensor output. Uncertainty involved in
the task includes the unknown number and types of
vehicles, the unknown association of measurements
and vehicles, the inaccuracy of measurements, po-
tential missing measurements, environmental noise,
and \ghost" measurements.
Traditional engineering approach [2; 1] applies

Kalman �ltering, which normally requires linearity
and Gaussian assumptions in modeling. Traditional
AI approach [3] is based on incremental vehicle track
construction and ad-hoc measures of uncertainty.
Bayesian probability theory has been applied to

uncertain reasoning in many AI problems in the form
of Bayesian networks (BNs) [10; 8]. The formalism
allows representation of uncertain dependence rela-
tions that go beyond linearity and Gaussian assump-
tions. For most problems tackled, a domain model in
the form of a BN is constructed before observations
are available and inference takes place. For vehicle
monitoring, due to the unknown number of vehicles
and the almost in�nite number of track patterns by
multiple vehicles, construction of a BN model a pri-
ori is impractical. This di�culty has led to the issue
whether the BN formalism is applicable to vehicle
monitoring type of problems [3]. Recently, the for-
malismhas been applied to guide automated highway
vehicles [6] and to identify individual vehicles appear-
ing on highway surveillance cameras [7], although the
issues addressed are di�erent from those in our task,
which focuses on identifying vehicle tracks in open
regions.

We explore several general ideas: decomposition of
the problem into quasi-independent subproblems, ap-
proximation in modeling to reduce complexity, model
compilation to speed up runtime computation, and
focused re-analysis for error reduction. We show that
by exploring these ideas, the BN formalism can be
applied to vehicle monitoring, and our experiment
with randomly simulated vehicle scenarios (�g 1)
showed good performance.

Figure 1: Top: A scene of 20 vehicles over 6 time
instants. Bottom: Interpretation. Tracks di�er in
color with each labeled by a vehicle type code.

2 Bayesian formulation

We consider the measurements obtained from an
open surveillance region at k discrete instants t =
1; :::; k. We assume k > 3 so that accelerations of ma-
neuvering vehicles can be extracted. Denote the set
of measurements at t = i by Di = fdijjj = 1; :::;mig:
The total set of measurements is then D = fDiji =
1; :::kg, which we refer to as a scene. Each measure-
ment is either produced by a vehicle of a particular
type or is due to noise. Noisy measurements may



be unrelated to any vehicles, or may correspond to
vehicle movement as in the case of a \ghost".

A full trajectory is a set of k measurements r =
fd1j1; :::; dkjkg. A partial trajectory is a proper subset
of a full trajectory. If all measurements in r are pro-
duced by the movement of a vehicle w and no other
measurement in D are also produced by w, then r
is the track of w. We assume1 that there are no ve-
hicles entering and leaving the region between t = 1
and t = k. Hence when there are no missingmeasure-
ments, each vehicle track is a unique full trajectory
from D. Otherwise, each track is a unique full or
partial trajectory from D. A ghost track is similarly
de�ned. Two vehicles may be very closely located at
time t so that they are perceived by the sensors as
a single measurement. Without losing generality, we
regard the measurement as being generated by one
of them and regard the measurement at t as missing
for the other vehicle.

An interpretation T of D is a partition of D into
a set Y of full or partial trajectories and a set N
of measurements. Each trajectory in Y represents
a believed track and measurements in N represent
believed noise unrelated to any tracks.

The task is then to �nd T such that P (T jD) is
maximal among all interpretations, where P (T jD)
reads \the probability of T being the interpretation
of D". This task corresponds to the track forma-

tion in the tracking literature as opposed to track

maintenance where each new measurement is to be
associated with an already established track.

In the literature some researchers (e.g., [9]) assume
multiple measurements for a vehicle at each time in-
stant while others (e.g., [2]) assume a single measure-
ment. In this work, we assume a single measurement
for a vehicle at each time instant. Such restriction
does not compromise the generality as multiple mea-
surements can usually be grouped by their closeness
and summerized as a single measurement.

Figure 1 (top) shows a simulated scene of 20 vehi-
cles with k = 6. The total number of measurements is
123. Some vehicles have missing measurements, e.g.,
the track at the middle bottom of the scene. Envi-
ronmental noise is present in the scene. An easily
identi�able one is at about the center of the scene. A
less obvious one is near the lower end of the track at
the right edge of the scene. Figure 1 (bottom) shows
the interpretation with the highest P (T jD) (See Sec-
tion 10), where each identi�ed track is drawn with a
di�erent color (shown at a di�erent gray level) and
noise has been identi�ed and removed.

3 Direct method

A direct method would be to compute P (T jD) for
each T and then choose the one with the maximal
value. An interpretation T is feasible if for every pair
of trajectories r and s in T , r \ s = ;. Otherwise,
T is infeasible. If T is infeasible, then P (T jD) = 0.

1How to address the cases where the assumption does
not hold is discussed in Section 9.

A feasibility test hence rules out interpretations with
certainty.
How do we go about computing P (T jD) for a feasi-

ble interpretation T? We can model the problem in a
fashion of hypothesis-causes-features: If T is the cor-
rect interpretation, then each trajectory in T must
behave like a track. Using Bayesian networks as a
representation of probabilistic causal models, it sug-
gests the following: Create a binary hypothesis vari-
able T 2 ftrue; falseg with the semantics \T is the
correct interpretation of D". For each trajectory r
in T , create a binary child variable r of T with the
semantics \r represents a track".

T
Dsize

Nsize
mr2r

r1 ...

...

Figure 2: Interpretation model as a Bayesian net.

Furthermore, the set N of measurements must be-
have like noise. How can this be represented in a
Bayesian network? We may think of N as (1) not
supporting any trajectories that behave like tracks,
and (2) occupying an expected portion of the total
measurements. The behavior (2) can be represented
as a discrete child variableN size (cardinality of N )
conditioned on some parents. One obvious parent is
T. Other parents may include D size (cardinality
of D) or other parameters that may a�ect the noise
model. The structure of a BN thus constructed is
shown in �g 2. Note that the structure is interpre-

tation speci�c. The number of children of T varies
for each interpretation. The behavior (1) does not
seem to lend itself to an explicit representation. We
claim that it has been encoded in the above struc-
ture implicitly. Consider interpretations T1 and T2,
which are identical except a trajectory r1 in T1 is
entirely contained in N2 of T2. Suppose r1 behaves
well like a track and N1 has a well expected pro-
portion of D based on expected frequency of noisy
data. Using the above representation, T2 will have
one less positive support (r1) for being a correct in-
terpretation and one additional negative support (N2

out of portion). Consequently, probabilistic infer-
ence using the two corresponding BNs will result in
P (T1jD) > P (T2jD).
To summerize, P (T jD) can be computed using the

BN in �g 2, which we refer to as the interpretation

model.

4 Modeling trajectory

In the BN of �g 2, variables ri are not directly ob-
servable. Hence each of these variables must be elab-
orated with a trajectory model. Each measurement
contains the measured location of a vehicle at a given
time. It may also contain the energy level of the mea-
surement, the frequency range (in the case of pas-
sive sensing of acoustic signals), and other relevant
feature information. We refer to the corresponding
components of trajectory model as movement model,
frequency model, and so on.



First, we consider the location information in the
measurements (the movement model). To simplify
discussion, we restrict it to 2D locations. Denote the
location of a vehicle by (x; y). Denote the magni-
tude and angle of velocity vector by v and !, and
the magnitude and angle of acceleration vector by
a and �. The movement of a vehicle can be repre-
sented as a dynamic Bayesian network in �g 3 (left).
The upper layers of each slice models the acceleration
(a; �), velocity (v; !) and location (x,y) of the vehi-
cle at a particular time instant. Arcs from a slice to
the next models how the state of the vehicle depend
on the previous state. The location of vehicle is not
directly observable but through the potentially inac-
curate measurements. This is modeled by the mea-
surements (x0; y0) which are dependent on the true
location (x; y) as well as the measurement error e. In
the model, measurement errors are assumed to be in-
dependent, but correlated errors can also be modeled
(with increased inference computation cost).
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Figure 3: Vehicle model (left) and trajectory move-
ment model (right).

A trajectory may or may not correspond to a true
vehicle track. We convert the above vehicle model
into a trajectory movement model by adding the root
variable r, which models whether the trajectory be-
haves as a vehicle track. We make r the parent of
each variable a and variable v. The conditional prob-
ability distribution P (ajr = true) models the accel-
eration of a vehicle. The distribution P (ajr = false)
models an arbitrarily generated trajectory. We do
not model the angles ! and � as the children of r
due to the the following assumptions:
We assume that each vehicle of a particular type

can only move in a given range of v values. It can
however move at any directions. Within the v range,
at any time it may freely choose acceleration value
a in another range with no restriction on the angle
�. Strictly speaking, the freedom on � is an approx-
imation as vehicles may have di�erent acceleration
ranges for tangential directions and lateral directions.
However, the approximation helps to simplify our
model and it seems to be quite reasonable: A run-
ning car cannot make a very sharp turn, but neither
can it speed up or slow down abruptly. We allow to-
tal freedom in � values in our simulated vehicles (see
�g 1) and they do not seem unrealistic.
Given the assumptions, the values of ! and � pro-

vide no di�erentiating power between a track and a
non-track, and hence are not dependent on r in our
model.
In addition to the movement, other information

contained in the measurements can also help eval-
uate if a trajectory behaves like a track. For exam-
ple, measurements corresponding to a true track may
have similar energy levels and closely related signal
frequencies. For each feature at each time instant, a
child variable of r can be created in the trajectory
model in �g 3 (right) if these features are indepen-
dent when they are produced by the same vehicle.
In principle, given an interpretation of m trajec-

tories, we can complete the interpretation model in
�g 2 by extending each ri node with a trajectory
model. Then belief propagation can be used to com-
pute P (T jD).

5 Decomposition of scene into islands

The direct method discussed in Sections 3 and 4 re-
quire the explicit evaluation of all interpretations.
Unfortunately, it is intractable even for a scene of
a few tracks.
Consider a scene with k = 6 where 4 measurements

per time instant are obtained. The total number of
full trajectories is 46 = 4096. The total number of
partial trajectories with one missing measurement is
45 � 6 = 6144. Hence the total number of trajecto-
ries with one possible missing measurement is 10240.
To �nd the most probable interpretation, a total of
210240 interpretations need be evaluated. Note that
although many of these interpretations are infeasi-
ble, a feasibility test (Section 3) has to be explicitly
performed for each.
Our �rst basic idea for making the computation

tractable is to decompose the problem into indepen-
dent or semi-independent subproblems which are eas-
ier to solve. In particular, we decompose a scene into
smaller independent or semi-independent groups of
measurements. Only interpretations within a single
group are explicitly evaluated, while interpretations
across multiple groups are ignored as much as possi-
ble.
We apply two levels of decomposition. The �rst

level decomposes a scene into independent groups
which we refer to as islands de�ned below. The sec-
ond level is presented in Section 6. Given two (loca-
tion) measurements d and e, jd� ej denotes the dis-
tance between them. Let MAXD denote the max-
imum distance any vehicle may travel in one time
interval plus twice the maximum location error.

De�nition 1 An island in a scene is a subset L
of measurements such that for each l 2 L and each

d 2 D n L, jl � dj > MAXD.

The decomposition is only quadratic on jDj, but
the computational savings by using islands can be
tremendous. Consider the previous scene of 24 mea-
surements. If the scene can be decomposed into two
islands with 2 measurements per time instant per
island as shown in �g 4, then for each island the to-
tal number of full and partial trajectories with one



missing measurement is 64 + 192 = 256 (512 for
the scene), a signi�cant reduction from the previous
10240.

Figure 4: A scene of 4 tracks decomposed into two
islands (divided by the straight line).

What will be the error introduced by island decom-
position? If there is no missing measurements in the
scene, then every trajectory corresponding to a true
track is contained in a unique island. Hence island
decomposition introduces no error at all. In fact,
use of islands introduces no error even when limited
missing measurements are present as formalized in
the following proposition.

Proposition 2 In a scene with at most missing

measurements at t = 1 or t = k, an exhaustive eval-

uation based on islands yields the identical result as

one without using islands.

Proof:

Since no measurements are missing at t 2
f2; :::; k� 1g, each true track is contained in one is-
land and will be evaluated.

On the other hand, without using islands, each in-
terpretation T containing trajectories crossing mul-
tiple islands will be evaluated. For each such
trajectory r, P (r is a trackjD) will be very
low due to impossible velocity/acceleration values.
This in turn will produce very low P (T jD), re-
sulting rejection of T as the �nal interpretation.
2

When measurements are missing at t 2 f2; :::; k�
1g, a track with one measurement missing may be
split into two islands and not be evaluated at all.
Let the probability of a missing measurement be q.
The probability that an isolated track is split in the
middle due to one missing measurement is (k � 2)q.
Although its value increases with k, we assume that k
is a small integer in track formation. Measurements
obtained after k time instants will either be used one
instant at a time (as in track maintenance) or pro-
cessed as additional k length scenes. For k = 6 and
q = 0:02, we have (k � 2)q = 0:08.

In fact, the above estimation is a very conservative
upper bound. The threshold MAXD is determined
by the fastest possible vehicles to be expected. For
a slower vehicle, the distance traveled in two time
intervals may still be less than MAXD and hence
the missing measurement does not cause the track
to be separated into two islands. Furthermore, when
multiple tracks are present, two sections of a broken
track may be included in an island if other tracks are
close enough to both. In Section 9, we discuss how to
further reduce the error under island decomposition
due to missing measurements.

Assuming that each island can be independently
interpreted, we obtain

P (T jD) = P (T1; T2; : : : ; TmjL1; L2; : : : ; Lm)

= P (T1jT2; : : : ; Tm; L1; : : : ; Lm) : : : P (TmjL1; : : : ; Lm)

= P (T1jL1) : : : P (TmjLm)

where each Li is an island and Ti is the interpretation
of Li. Hence, we only need to �nd interpretation Ti
for each island such that P (TijLi) is maximal. We
will then have T = [iTi. Algorithm 1 outlines the
top level control of our scene interpretation system.

Algorithm 1 (Scene interpretation)
Input: A scene D.

decompose D into islands;

for each island Li containing at least one trajectory

process Li to get the island interpretation Ti;
add Ti to the scene interpretation T;

return T;

6 Decomposing islands to peninsulas

Although islands are easier to deal with than the
original scene, due to possible track crossing, near-
parallel tracks, or other types of adjacency, a large
island may still contain measurements of several
tracks. When this is the case, the combination explo-
sion illustrated earlier occurs again at the island level.
We apply a second level of decomposition within each
large island to make the evaluation of large islands
more manageable:

De�nition 3 A peninsula is a subset S of mea-

surements in an island L such that the following con-

ditions hold:

1. For time t = 1, S has exactly one measurement d1
called initiator.

2. For each t � 2, S contains each dt 2 L such that

there exists dt�1 2 S and jdt � dt�1j < MAXD.

Intuitively, if the initiator of a peninsula belongs
to a track, then the entire track is contained in the
peninsula. As an example, consider an island made
of two tracks that are nowhere close except at time
t = k (k = 6). Based on the previous calculation,
2256 interpretations should be evaluated. The island
produces two peninsulas and each contains only k
measurements. Hence the total number of full trajec-
tories and partial trajectories with one missing mea-
surement in each peninsula is 1+6 = 7, and the total
number of interpretations to be evaluated for the is-
land becomes 2(27) = 256. Although this represents
the best scenario, in general, whenever the starting
segment (t is close to 1) of a track is \clear" (no
nearby measurements from other tracks at the same
time frames), decomposition into peninsulas will re-
duce the number of interpretations to be evaluated.
We may extend the de�nition of peninsula to allow

the initiator to be a measurement at time t = k. The
corresponding peninsula is then a backward peninsula
(versus the forward peninsula as de�ned above).
What error might be introduced by using penin-

sula? When there are no missingmeasurements, each



track is contained in at least one peninsula and will
be evaluated. Hence, evaluation using peninsula in-
troduces no error at all. However, error may occur
when missing measurements are present. Consider
the island shown in �g 5 (a). It contains measure-
ments from two tracks, one of which is drawn in
squares and the other in ovals. The time of each
measurement is also shown. The upper track has
the measurement at t = 2 missing. The two forward
peninsulas found are shown in (a) as rounded areas.
The two backward peninsulas are shown in (b). None
of the peninsulas contains all measurements of the
upper track. Hence this track will not be evaluated.
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Figure 5: (a) Forward peninsulas in an island. (b)
Backward peninsulas in the island.

The following proposition identi�es an error-free
condition when using peninsulas.

Proposition 4 If an island only has missing mea-

surements at t = 1 or t = k, each track is either

contained in a forward peninsula or a backward one.

Proof:
Let r be a track with measurements fd1; :::; dkg n

fdig (i = 1 or i = k). If i = 1, all measurements are
contained in the backward peninsula with initiator
dk. If i = k, all measurements are contained in the
forward peninsula with initiator d1. 2

Proposition 4 suggests that we may generate both
forward and backward peninsulas for all measure-
ments at t = 1 and t = k. Evaluation using these
peninsulas is resistant to at least a percentage of 2=k
of errors due to one missing measurement in a track.
The value 2=k is a lower bound because a track with
a missing measurement at t such that 1 < t < k may
still be contained in a peninsula due to the presence
of measurements from other tracks in the same is-
land.
Our decomposition using islands and peninsulas

can be equivalently formulated using an adjacency
graph where there is a link from a point to an-
other if the distance in between is less than MAXD.
Whether to maintain and search such a graph explic-
itly or implicitly is a design choice.

7 Model separation

After using peninsulas to generate trajectories for an
island, we can evaluate each interpretation T (we
overload the notation T here for the island) using
a completed interpretation model (Sections 3 and 4).
Since a trajectory may participate in multiple inter-
pretations, this method will duplicate evaluation of
a given trajectory multiple times.

To reuse the evaluation of each trajectory, we eval-
uate T using a set of BNs: a top level BN as in Sec-
tion 3 and one trajectory BN for each trajectory as
in Section 4. The evaluation of each trajectory BN is
performed separately. After evaluation of each tra-
jectory in T is completed, the results are used in the
evaluation of the top level BN to produce P (T jD).
The evaluation result of a trajectory r can then be
reused for the evaluation of each interpretation that
r participates.
Evaluation computation can be performed in sev-

eral ways. We briey describe the cluster tree
method [8]. The method groups variables in a BN
into overlapping subsets called clusters. The clusters
are organized into a tree. Probabilistic inference is
performed by message passing (belief propagation)
along the tree. With one round of inward propaga-
tion towards an arbitrary cluster followed by another
round of outward propagation away from the cluster,
the updated probability for each variable can then
be obtained in any cluster containing it. More de-
tails can be found in the above reference.
Since each trajectory BN shares a single variable

ri with the top level BN, if we convert each BN into
a cluster tree and join each trajectory tree with the
top level tree at the cluster containing ri, the resul-
tant cluster tree is equivalent to that created with-
out model separation (�g 6). Since we are only in-

T,r1 T,rm

cluster tree 
top level

...

...

cluster tree

rm,...r1,...

...

for trajectory r1
cluster tree

...

for trajectory rm

T,Nsize,Dsize, ...

Figure 6: Belief propagation in cluster trees. Each
oval represents a cluster. The tree on the top is con-
verted from Figure 2.

terested in the posterior distribution on variable T
which is contained in the top level tree, belief propa-
gation consists of only inward propagation toward a
cluster containing T (as shown by arrows in �g 6).
Most trajectories in a scene are not due to actual

tracks and will receive very low evaluation. The sep-
aration of trajectory evaluation and interpretation
evaluation also allows those trajectories to be elim-
inated so that the interpretations they participate
in are e�ectively discarded without being explicitly
evaluated.
An additional advantage of model separation is

that it allows variables shared by di�erent models
to be represented at the right degree of coarseness
at each model. Each variable r is shared by the



interpretation model and a trajectory model. In
the trajectory model, r can be given the domain
fnot track; type0 track; type1 track; :::g. The di�er-
entiation of vehicle types is not only an interesting
result, but also facilitates model building.
On the other hand, in the interpretation model, it

is su�cient for r to convey only whether the corre-
ponding trajectory is a track. The type of the vehi-
cle is not important. In fact, having to di�erentiate
vehicle types in the interpretation model will be an
unnecessary burden in model building. Separation of
model evaluation allows each r in the interpretation
model to be represented as a binary variable. During
inference, the trajectory model can sum its posterior
distribution �rst before feeding to the interpretation
model.
Based on island decomposition and model separa-

tion, the island level control of our scene interpreta-
tion system is outlined in Algorithm 2.

Algorithm 2 (Island interpretation)
Input: An island L.

if L is not too large

evaluate each trajectory;

get interpretation T of L from highly evaluated trajectories;

else

decompose L into peninsulas;

for each peninsula S

evaluate each trajectory;

get interpretation T of L from highly evaluated trajectories;

return T ;

The interpretation generation/evaluation is out-
lined in Algorithm 3.

Algorithm 3 (Interpretation evaluation)
Input: A set R of trajectories.

for each interpretation T from R
perform feasibility test on T;

if T passed

construct interpretation BN model;

compute P (T jD) using the BN;

if P (T = correctjD) is the highest so far, store T;

return stored interpretation;

8 Movement model reduction

Each feasible trajectory in each peninsula can be
evaluated using the trajectory model (Section 4).
P (rjD) can be computed using any one of several
common inference algorithms (see [4] for a recent sur-
vey). We consider the complexity using the cluster
tree method [8]. For k = 6, a good cluster tree has
about 31 clusters. About one third of them each has
a size of 7 variables. If the domain size for acceler-
ation (a), velocity (v), location (x; y) and measure-
ment (x0; y0) is at least 10, then the belief state space
of many clusters will be huge. Even if the inference
computation is a�ordable, when it must be repeated
for each of hundreds or more of feasible trajectories,
it is very expensive and near real-timemonitoring be-
comes impossible. Although a query DAG [5] can be
used to speed up the inference, its complexity is com-
parable to the original algorithmused to generate the
query DAG. Hence, a query DAG does not provide
the magnitude of computational savings needed.
Instead, we explore the following alternative: since

we are primarily interested in P (r), we try to re-
duce the model such that only r and observables are

left. However, using x0 and y0 as observables will
end up with a model where every variable is strongly
dependent on every other. The cluster tree of the
model will have a cluster of huge state space. The
alternative is to use observed velocity/acceleration.
Each observed velocity is computed using two adja-
cent location measurements and each acceleration is
computed using three as follows (assuming unit time
interval):

v
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After replacing location and measurement variables
(x; y; x0; y0), we have the reduced model in �g 7 (a).
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Figure 7: (a) Replacing location measurements
in movement model. (b) Approximate movement
model. (c) Clique chain for movement model eval-
uation.
Each observed velocity is dependent on two mea-

surement errors and each observed acceleration is de-
pendent on three measurement errors. Due to this
dependence, a1 and a3 are not independent given
r; !2; v2; a2 (using d-separation to (a)). However, if
the value of velocity and acceleration (jvj and jaj)
are large enough than the value of measurement er-
ror (jej), this dependence is not strong. If we ignore
this dependence, then we obtain the Markov prop-
erty: a1 and a3 are independent given r; !2; v2; a2,
and v1 and v3 are independent given r; !2; v2; a2. By
approximating the true value of velocity/acceleration
with the observed value (e�ectively clumping v with
v0 and a with a0) and removing other unobservables,
we obtain the model in �g 7 (b). From (b), we ob-
tain the cluster chain (c) which can be evaluated ef-
�ciently as derived below:
Conceptually, we follow the cluster tree method [8].

After initialization, the cluster C1 is associated with
the distribution table P (v01; a

0
1; v

0
2; r). Other clusters

have its table similarly assigned. After observations
v0i = �i, a0j = �j (i; j = 1; 2; :::; k) are obtained,
they are entered into the corresponding cluster be-
lief tables. For example, the table with C1 becomes
P (r; v01; a

0
1; v

0
2j�1; �1; �2). For each observation, in-

stead of entering it to one cluster as normally per-
formed [8], we enter into every cluster table that con-
tains the corresponding variable. For example, �2
will be entered into tables in both C1 and C2.
To compute P (rj�1; :::; �k�1; �1; :::; �k�2); we per-

form belief propagation from cluster C1 downwards.
The message from C1 to C2 is

[
X

v0
1
;a0
1

P (r; v01; a
0

1; v
0

2j�1; �1; �2)]=P (r; v02):



This is a distribution over r and v02. At C2, its local
table is updated into the product with the message
P

v0
1
;a0
1

P (r; v01; a
0

1; v
0

2j�1; �1; �2)

P (r; v0
2
)

P (r; v02; a
0

2; v
0

3j�2; �2; �3):

Since �2 has been entered into C2, the message from
C1 to C2 could be just

[
X

v0
1
;a0
1
;v0
2

P (r; v01; a
0

1; v
0

2j�1; �1; �2)]=
X

v0
2

P (r; v02j�2);

which is a distribution over r only. That is, we have
P

v0
1
;a0
1

P (r; v01; a
0

1; v
0

2j�1; �1; �2)

P (r; v0
2
)

P (r; v02; a
0

2; v
0

3j�2; �2; �3)

=

P
v0
1
;a0
1
;v0
2

P (r; v01; a
0

1; v
0

2j�1; �1; �2)

P
v0
2

P (r; v0
2
j�2)

P (r; v02; a
0

2; v
0

3j�2; �2; �3):

Note that if we had not entered �2 into C2, the above
equality would not hold. Second, since v02 has a large
domain size (we used 12 in our experiments) while
the new message is a distribution over r only, the size
of the message from C1 to C2 is reduced signi�cantly
and correspondingly the amount of computation as-
sociated with the message passing.
Finally, we observe that

X

v0
1
;a0
1
;v0
2

P (r; v01; a
0

1; v
0

2j�1; �1; �2) = c P (rj�1; �1; �2)

and
P

v0
2

P (r; v02j�2) = d P (rj�i);

where c and d are normalizing constants. Hence we
have the following e�cient algorithm for computing
P (rj�1; :::; �k�1; �1; :::; �k�2) :

Algorithm 4 (Trajectory evaluation by movement)
Input: �1; :::; �k�1; �1; :::; �k�2 of a full trajectory.

B(r) = P (rj�1; �1; �2)
for i = 2 to k � 2

B(r) = B(r)P (rj�i; �i; �i+1)=P (rj�i)
normalize B(r) to get P (rj�1; :::; �k�1; �1; :::; �k�2)
return P (rj�1; :::; �k�1; �1; :::; �k�2)

Using this algorithm, it is no longer necessary for
the on-line inference computation to actually main-
tain the cluster chain. This contributes signi�cantly
to realtime or near-realtime evaluation as a large
number of evaluations must be performed. To ob-
tain the parameters required by Algorithm 4, we o�-
line compute P (rjv0i; a

0
i; v

0
i+1) and P (rjv

0
i+1) using the

accurate model in �g 7 (a). For our experiment (re-
ported in Section 10), the o�-line computation took
about 12 hours using a SUN Ultra60.
Note that Algorithm 4 can be easily extended to

include processing of other observations (e.g., fre-
quency). It can also be easily modi�ed to evaluate
partial trajectories. The extension and modi�cation
are straightforward and we omit the details.

9 Re-analysis

In Algorithm 2, the operation \evaluate each trajec-
tory" was performed for each small island and each
peninsula in a large island. The operation can be per-
formed to evaluate every full and partial trajectory.

Normally, there are more partial trajectories than full
ones (see examples in earlier sections). When there
are no missing measurements, processing of partial
trajectories is completely wasted. Even when they
are infrequent, most of the processing on partial tra-
jectories is still wasted. To achieve near real-time
scene interpretation, it is desirable to reduce such
processing as much as possible.
To this end, we explore re-analysis in the follow-

ing way: For each small island and each peninsula,
we only evaluate full trajectories initially. We then
select highly evaluated trajectories and get the best
possible interpretation T for the island L. If P (T jL)
is not satisfactory measured by some predetermined
threshold, then the trajectory evaluation is consid-
ered inadequate and partial trajectories are evaluated
before a second round of interpretation evaluation is
performed.
As an example, consider Figure 5. If we search

for peninsulas as de�ned in De�nition 3 (e�ectively
assuming no missing measurement at 1 < t < k), a
mistake will be made since the four measurements in
the upper track will be considered as noise (as they
are not quali�ed as a partial track). This will enlarge
the noise set N to an unexpected level, which in turn
lowers P (T jL) for the best interpretation obtained.
The low P (T jL) will trigger a re-analysis looking for
peninsulas with a missing measurement, which will
identify the partial trajectory.
The re-analysis can be applied to a more general

context: Due to the intractability of an exhaustive
analysis, as we perform a bottom-up analysis (e.g.,
from trajectory to island to scene), we only ana-
lyze according to the most likely cases initially (e.g.,
the full trajectories) to make the analysis tractable.
As we move up the abstraction levels, we watch for
signs of failure of early analysis (e.g., the low P (T jL)
above) since the reality may happen to be one of
those unlikely cases. When such signs are identi�ed,
we go back to a lower abstraction level, re-analyze
more thoroughly and go up the abstraction levels
again. Such re-analysis allows the initial analysis to
be performed e�ciently and allows mistakes made
to be corrected with limited and focused additional
computation.
In Section 2, we assumed that no entering/leaving

vehicles between t = 1 and t = k. These vehicles
produce tracks that are partial trajectories, some of
which can already be interpreted correctly. However,
if such a trajectory is too much shorter than a full
one, it is likely to be interpreted as noise. Using
re-analysis, the corresponding measurements can be
combined with the previous or next scene to allow
correct interpretation.

6

2 3
4

5 6 7 8

t=1

t=5
7 8 9 10 11 12

Figure 8: Two tracks across two scenes.

Consider the two tracks in �g 8 which span two



scenes: s with t = 1; :::; 6 and s0 with t = 7; :::; 12.
The upper track corresponds to a vehicle stopping in
s0 and the lower track corresponds to a vehicle start-
ing in s. The measurements from the upper track at
t = 7; 8 are likely interpreted as noise for s0. Using
the upper track r in s (from t = 1 to 6) as expecta-
tion, these measurements can be re-analyzed with fo-
cused processing. The measurements from the lower
track at t = 5; 6 in s can be similarly re-analyzed
using the lower track r0 in s0 as expectation.

10 Experimental results

To test the framework, we implemented a scene sim-

ulator and a scene interpretor. The simulator gener-
ates randomly a scene on a 200x200 grid region2 as
input to the interpretor. The interpretor is evaluated
by comparing its interpretation with the simulated
tracks. Each measurement contains a 2D location
plus a signal frequency as would appear in passive
sensing. The simulator allows us to specify the size
of the region, the number of tracks in a scene, the
velocity/acceleration distribution of each type of ve-
hicles, the amount of measurements due to environ-
ment noise, and the chance of missing measurements.
A total of 280 scenes of di�erent di�culty were

simulated. The scenes were divided equally into 14
batches. Scenes in the same batch has identical size
(number of tracks). The larger the size, the higher
the density of measurements and the more di�cult
to interpret the scene. Each track consists of at most
k = 6 measurements. Hence the total number of
measurements per scene ranges from about 30 to 108
plus measurements due to noise (about 8% on av-
erage) and minus missing measurements (each mea-
surement may be missing with a 0.02 probability).
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Figure 9: Summary of experimental results.

The implementation is in Java and the experiment
was run using jdk1.1.8 in a Pentium II 400 under
Window98. No additional runtime optimization was
applied. For scenes up to 15 tracks, the average CPU
time for each scene is less than 7 sec. Hence near-
realtime performance was obtained for a wide range
of scene sizes. For scenes with 16, 17 and 18 tracks,
the CPU time are 14, 37, 46 sec, respectively, as very
larger islands are frequently detected in the scenes.
An interpreted track r0 fully matches a simulated

track r (which may have missing measurements) if
r0 matches each measurement in r. An interpreted
track r0 partially matches a simulated track r if r0

2Note that the size of the grid is insigni�cant to the
performance, but the density of the vehicles is.

matches each measurement in r except one. Fig-
ure 10 shows the percentage of fully and partially
(stacked on the top) matching tracks in each batch.
As the number of tracks per scene increases from 5
to 18, the percentage decreases gradually from 100%
to 91%. The errors may be further reduced by com-
bining interpretations of successive scenes, which we
discuss in a longer paper.
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