
Tractable Optimal Multiagent Collaborative Design
Yang Xiang, University of Guelph, Canada

Abstract

Optimal design is intractable in general. We identify
a tractable class of design problems and propose the first
framework for efficient, decision-theoretically optimal, col-
laborative design.

1 Introduction
Collaborative design networks (CDNs) [6] provide

decision-theoretic graphical models for design in supply
chains. Based on CDNs, a multiagent coordination protocol
[7] enables an exponential complexity reduction in optimal
design. Since local design at individual agents is assumed
exhaustive, the overall complexity of the protocol is still in-
tractable. We extend the single-agent division tree [5], and
propose a multiagent design-time representation and an al-
gorithm suite that allow optimal and efficient collaborative
design.

2 Background
An agent for the design of a component encodes design

knowledge and preference into a design network. A design
network is a triple S = (V,G, P ). The domain is a set of
discrete variables V = D ∪ T ∪M ∪U , where D,T,M,U
are disjoint. D is an non-empty set of design parameters. T
is a set of environmental factors representing uncertain life-
time conditions of the product under design. M is an non-
empty set of objective performance measures of the prod-
uct. U is an non-empty set of subjective utility functions ex-
pressing the preference of the agent’s principal. G = (V,E)
is a DAG and encodes dependence relations in V . P is a set
of potentials, one per node. A potential either quantifies
the uncertain dependency or the preference. From P , the
expected utility of each design is well defined. However,
computing the optimal design is intractable in general.

Division tree is a data structure for tractable optimal de-
sign [5]. A division tree has a top level junction tree (JT),
called association tree, where each separator is made of de-
sign parameters only and each cluster is called a division.
Variables in each division are organized into a nested JT,
termed division subJT.

Knowledge representation of a multiagent design system
can be specified as a collaborative design network (CDN).

Definition 1 From a set of design subnet {Si = (Vi, Gi, Pi)}, a CDN
S is defined as a tuple (V, G, P, W ). V =

⋃
i Vi is the domain where

each Vi is a subdomain. G =
⋃

i Gi is a DAG structure and a
hypertree over G exists. Each interface Vk ∩ Vm on the hypertree is a
subset Dk ∩ Dm. Let x be a variable and π(x) its parents in G. P is the

set of potentials one for each variable in V in the form P (x|π(x)). If
x is contained in Vi only, P (x|π(x)) is identical to its occurrence in Pi.
Otherwise, P (x|π(x)) is identical to its occurrence in a Pj such that Gj

contains {x} ∪ π(x). W is a set {wi} of weights one per subnet and∑
i wi = 1.

Weights for subnets express how preference from multi-
ple stakeholders should be compromised. From P , the ex-
pected utility of each design is well defined and so is the
optimal design. Figure 1 shows a simple CDN.

d2

u6

t

m

u

d m

u

1

1

1

m
d

t 3 4 5

543
9

2

d3 dd4 5

G

G

0

1

m

2

2

8

m7

m6 u

m8

8

m
m

t

10

3

11

uuu

m

2G

d6
d1

d11

G3

d10
7d u10

m9u9
u7

Figure 1. A CDN whose hypertree is a star
with center G3. Letter in each node label indi-
cates its type.

3 Design Subnet Compilation
A CDN is syntactically an MSBN [4]. Compilation of a

CDN to design time representation shares initial steps with
compilation of an MSBN to its run-time representation (for
multiagent probabilistic inference). For completeness, we
review these common steps in the next paragraph. Details
and formal analysis can be found from reference.

First, agents cooperate to triangulate dependence struc-
tures of design subnets into chordal graphs. Each chordal
graph is then converted into a local JT. For each adjacent
agent on the hypertree, an agent derives, from its local JT,
another JT that contains only variables in the agent inter-
face. The derived JT is called a linkage tree (LT). Given
local JT T and interface I with another agent, the LT is de-
rived by repeating following procedure in T until no action
is possible: (1) Remove x �∈ I if x is contained in a unique
cluster C. (2) After removal, if C becomes a subset of an
adjacent cluster D, merge C into D. Each cluster in the LT
is called a linkage. A cluster in T that contains a linkage

1



(breaking ties arbitrarily) is its linkage host. Figure 2 shows

5d ,      ,     , 11md76d5d

3T

,

m

,     ,       , 11m10md76d

,        ,      , 3t11d11

2

6u6m

,
, 5d4d

4d

,

u2m

,    ,d76d5d

, 8u8m

m

1

0

T

T

,

,      ,      ,

,

L

L1

0

76d5d

2T , 10u10

d

L2

, 9u9m

,    ,

3

2d1d
,      , 10d1d 7m

, 9

,2d1d

1t3d 1m2d

1u1m

m

8m5d4d

,     ,      , 4d6m3d2d

d7
,7m 7u

,     , 6d5d4d

,     ,

,

4m3d

, 3u3m , 5u5m

d

d

,      , 5m5d4d
,      ,4

,

d

, 3d2d

,      , 1d2m8d

1

4u4m

,      ,      ,9d 2t3m3d

2d

Figure 2. Local JTs (each bounded by a
dashed box) compiled from CDN in Figure 1
and LTs derived (outside dashed boxes). A
linkage host is connected to the linkage by a
thick link.

local JTs and LTs compiled from CDN in Figure 1. The
remainder of this section is novel to CDN compilation.

As with non-DT-based MA, collaborative design in-
volves rooted inter-agent message passing along hypertree,
during which communication between a pair of adjacent
agents is always initiated by agent closer to the root, which
we refer to as caller agent. Once root agent is determined,
each agent has a unique caller agent, except the root. To
fully explore the efficiency gain due to division-tree based
local design, each agent compiles its local JT into multiple
division trees one for each linkage with the caller agent as
follows:

Let T be the local JT described above and L be the LT
derived from T . Because of the above procedure used to
compile L from T , separators of L are also separators in T .
For instance, in Figure 2, L0 is the LT derived from T3 (also
from T0), L0 has a separator {d2}. It is also a separator in
T3. Deleting such separators from T splits T into subtrees.
These subtrees map one-to-one into linkages in L and each
subtree contains all variables of the corresponding linkage.
For instance, deleting separator {d2} from T3 (see Figure 2)
splits it into two. One of them has three clusters, maps to
linkage {d1, d2} in L0, and contains the two variables. An-
other subtree has eight clusters, maps to linkage {d2, d3},
and contains the two variables.

Since each subtree is itself a JT, by identifying its sep-
arators that are made of design parameters only, its divi-
sions, association tree and division subJTs can be defined.

The resultant is a division tree. For example, the above
mentioned three-cluster subtree can be compiled into divi-
sion tree DT31 shown in Figure 3. It consists of two divi-
sions. One of them has a division subJT with two clusters
{m7, u7} and {d1,m7, d10}. The other division has a de-
generated division subJT with a single cluster {d1, d2}. Re-
peating the process for each subtree, multiple division trees
are defined with one corresponding to each linkage. The
collection of these division trees are called a division forest
relative to L.

d11m5d ,      ,     , 11md76d5d11

u10m ,     ,       , 11m10md76d

,        ,      , 3t

,

5d

,     , 6d5d4d

,7m 7u

d

9u9m

, 9md7

L2

,    ,d76

10

,      ,      ,

,

L1

0

,      ,

0
1DT

1
1

1
3DT

0
3DT

0
0DT

,      ,      ,

,

L

DT

2
0DT

,

,      ,
,    ,d76d5d

, 6u6m

,
,

m

d

, 5u5m, 3u3m

, 4u4

,     , 8m5d4d

,     ,      , 4d6m3d2dd

5d4d
4d3d

2d1d

, 3d2

4

, 2u2m ,      , 1d2m8d

, d
10d1d 7m

, 8u8m

, 2d12

3d
9d 2t3m3d ,      , 5m5d

m

d1d

1t3d 1m2d

1u1m

4d 4

Figure 3. Division forests from CDN in Fig-
ure 1. Each division is indicated by a closed
dashed spline. Each division separator is in-
dicated by a thick link.
We refer to the above compilation of local JT T to a di-

vision forest as operation MakeDivisionForest relative
to L. Figure 3 illustrates the result, where the jth division
tree in agent Ai is labeled DT j

i . For A1, division forest
from MakeDivisionForest relative to L1 consists of two
division trees DT 0

1 and DT 1
1 since L1 has two linkages,

where DT 0
1 has a single division but DT 1

1 has two divisions.
For A2, the division forest from MakeDivisionForest
relative to L2 consists of a single division tree since L2

has a single linkage. For A3, the division forest from
MakeDivisionForest relative to L0 consists of two di-
vision trees. DT 0

3 has five divisions and DT 1
3 has two divi-

sions.
An agent may be adjacent to multiple other agents on the

hypertree, e.g., A3. It is sufficient for each agent to perform
MakeDivisionForest relative to its caller agent. Since
root agent has no caller (e.g., A0 in Figure 3), it performs
MakeDivisionForest without a given L. The resultant
division forest has a single division tree DT 0

0 .
Formally, we define MakeDivisionForest as a recur-

2



sive operation. Without losing generality, we denote agent
executing the algorithm as A0 with local JT T0. Execution
is activated by a caller, denoted as Ac, which is either an
adjacent agent of A0 or the system coordinator1. Note that
coordinator activates root agent. The linkage tree between
Ac (if an agent) and A0 is denoted as Lc. If A0 has addi-
tional adjacent agents, they are denoted as A1, A2, ... and
their interface with A0 are denoted as L1, L2, ..., respec-
tively.

Algorithm 1 (MakeDivisionForest) When A0 is called by Ac, it does
the following:

1. If Ac is coordinator, A0 compiles its local JT into a division forest
with a single division tree. Otherwise (Ac is adjacent agent), A0

compiles its local JT into a general division forest relative to Lc.

2. A0 calls each adjacent agent, except Ac, to MakeDivisionForest.

We refer to, collectively, the set of division forests (one
per agent) and the set of linkages (one for each pair of ad-
jacent agents) obtained through the above compilation as a
linked division forest. Theorem 2 states that the linked divi-
sion forest is well defined. We omit proof due to space for
all formal results.

Theorem 2 Let T be a JT compiled from a design subnet
and L be a LT derived from T . Then a division forest iso-
morphic with L is well defined (an one-to-one mapping ex-
ists between division trees and linkages and between deleted
separators in T and linkage separators).

We note, without formal proof, that a linked division for-
est is an I-map under h-separation, if the CDN is an I-map
under d-separation.

4 Collaborative Design
Next, we present the multiagent algorithm suite for opti-

mal collaborative design using linked division forest. Col-
laborative design starts by local design. It is performed by
each agent, at each division in each of its division trees.
This is achieved by system coordinator calling DesignBy-
Division on any agent A.

Algorithm 2 (DesignByDivision) When agent A0 is called by Ac, it does
the following:

for each adjacent agent Ai except Ac,
call Ai to DesignByDivision;

for each division tree DT in A0’s division forest,
for each division Div in DT ,

for each configuration d of the set D′ of design
parameters in Div,

enter d into the subJT in Div;
perform belief updating in the subJT;
compute EU(d) =

∑
i ki (

∑
m ui(m) P (m|d)),

where i indexes utility nodes in Div, m
is a configuration of parents of ui in G0,
and ki is weight associated with ui;

1The system coordinator may well be an elected agent.

As the result of DesignByDivision, for each agent, in
each of its division trees, at each division, a utility distri-
bution EU(D′) is obtained over partial designs of the divi-
sion. Subsequently, agents collaborate to update these dis-
tributions through CollectUtility, which is called by system
coordinator on agent A. The algorithm uses CollectDivi-
sionUtility described in [5].

Algorithm 3 (CollectUtility) When agent A0 is called by Ac to Collec-
tUtility, it does the following:

if A0 is not a leaf agent on the hypertree,
for each adjacent agent Ai except Ac,

call Ai to CollectUtility;
for each linkage Qi with Ai,

receive from Ai utility distribution MEU(Qi);
find division tree DT in A0’s division forest

that contains variables in Qi;
find division Div in DT that contains

variables in Qi;
add adjacent division Div′ to Div in DT ;
set subJT of Div′ with a single cluster Qi;
associate MEU(Qi) with Div′;

if Ac is an adjacent agent,
call CollectDivisionUtility at the host division Div

of each linkage Qc with Ac;
retrieve utility distribution EU ′(D′) from Div,

where D′ is the set of design parameters in Div;
send MEU(Qc) = maxD′\Qc

EU ′(D′) to Ac;
else

call CollectDivisionUtility at any division Div0 in
A0’s unique division tree;

We illustrate using linked division forest in Figure 3
where CollectUtility is first called on A0. A0 executes first
if section and calls CollectUtility on A3. In turn, A3 calls
CollectUtility on A1 and A2.

In response, A1 executes second if section, calls Col-
lectDivisionUtility at the two divisions containing linkage
hosts, computes the maximum expected utility distributions
MEU(d3, d4) and MEU(d4, d5), and sends them to A3.
The similar is performed by A2.

After receiving MEU(d3, d4) from A1, A3 continues
in first if section, identifies the division in division tree
DT 0

3 that contains {d3, d4}, adds a new division {d3, d4}
adjacent to it, and associate MEU(d3, d4) with the new
division. The similar will be performed by A3 relative
to MEU(d4, d5) received from A1 and MEU(d5, d6, d7)
from A2. Subsequently, A3 executes second if section and
eventually sends MEU(d1, d2) and MEU(d2, d3) to A0.

After receiving the message from A3, A0 continues in
first if section and eventually performs else section.

After CollectUtility terminates, agents collaborate to de-
termine the optimal design through DistributeOptimalDe-
sign which is called by system coordinator on agent A. In
DistributeOptimalDesign below, Div0 refers to the same di-
vision in CollectDivisionUtility. The algorithm uses Dis-
tributeOptimalDivisionDesign as described in [5].

3



Algorithm 4 (DistributeOptimalDesign) When agent A0 is called by
Ac, it does the following:

if Ac is coordinator,
call DistributeOptimalDivisionDesign at division

Div0 in A0’s unique division tree;
else

for each linkage Qc with Ac,
receive partial design qc for Qc;
call DistributeOptimalDivisionDesign at host

division of Qc in corresponding division tree
relative to qc;

if A0 is not a leaf agent on the hypertree,
for each adjacent agent Ai except Ac,

for each linkage Qi with Ai,
find division tree DT in A0’s division forest

that contains variables in Qi;
find division Div in DT that contains

variables in Qi;
project the optimal partial design of Div to

Qi and denote by qi;
send qi to Ai;

assemble design d∗
0 over design parameters in A0

from the optimal partial design at each division
in each division tree;

For the example in Figure 3, DistributeOptimalDesign is
called in A0. A0 executes first if section to determine its
globally optimal local design. It is followed by second if
section, which propagates the globally optimal partial de-
signs over two linkages to A3. Finally, A0 assembles d∗

0.
Next, A3 executes else section. It computes its own glob-

ally optimal local design and uses the message from A0 to
constrain the computation. It then executes rest of the al-
gorithm similar to A0. When A1 and A2 receive messages
from A3, they only execute else section and assemble their
d∗

0.
The following algorithm combines the above algorithms

and is executed by system coordinator. Its optimality is es-
tablished in Theorem 3.

Algorithm 5 (CollaborativeDesign) Select agent A arbitrarily. Call De-
signByDivision in A. Call CollectUtility in A. Call DistributeOptimalDe-
sign in A.

Theorem 3 After CollaborativeDesign terminates, the
overall design defined by local design d∗ at each agent is
optimal.

The following proposition shows that Collabora-
tiveDesign is efficient when δ is upper-bounded.

Proposition 4 The complexity of CollaborativeDesign is
O(g θ κδ), where g is the number of agents, θ the maximum
number of divisions in an agent, δ the maximum number of
design parameters per division, and κ the maximum number
of possible values of a design parameter.

5 Conclusion
The main contribution is the first general framework that

allows efficient, decision-theoretically optimal, multiagent,
collaborative design, where the domain is represented as
a CDN. In doing so, we have identified a tractable class
of design problems, namely, those expressible by sparse
CDNs. Experimental result on designing customized PCs
with CDNs is presented in [1]. The key enabling property
of this class is CI rendered by design parameters through
agent interfaces and division separators. Hence, the frame-
work formally justifies a corresponding guideline for de-
composing a product into components to facilitate collabo-
rative design.

The following work are most closely related. In MAIDs,
e.g., [2], an agent encodes knowledge on other agents with
an influence diagram. Distributed algorithms based on
backtracking or iterative improvement have been proposed
to solve DCSPs, e.g., [8]. DCSP is generalized in DCOP
and has been solved by algorithms such as ADOPT [3].
In our proposed framework, agents cooperate more closely
than in MAIDs. Unlike DCSP, it addresses uncertainty
in product life-cycle while satisfying design constraints.
Unlike ADOPT, it computes the optimal design decision-
theoretically.

Acknowledgements
Financial support from NSERC, Canada is acknowledged.

References

[1] J. Chen. Collaborative design in supply chains: Representa-
tion and optimization. Master’s thesis, Univ. of Guelph, 2004.

[2] S. Maes, K. Tuyls, and B. Manderick. Modeling a multi-
agent environment combining influence diagrams. In Proc.
Inter. Conf. on Intelligent Agents, Web Technology and Inter-
net Commerce, pages 379–384, 2001.

[3] P. Modi, W. Shen, M. Tambe, and M. Yokoo. An asyn-
chronous complete method for distributed constraint opti-
mization. In Proc. 2nd Inter. Joint Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 03), pages 161–168,
Melbourne, Australia, 2003. ACM Press.

[4] Y. Xiang. Probabilistic Reasoning in Multi-Agent Systems:
A Graphical Models Approach. Cambridge University Press,
Cambridge, UK, 2002.

[5] Y. Xiang. Optimal design with design networks. In Procs.
3rd European Workshop on Probabilistic Graphical Models,
pages 309–316, Prague, Czech, 2006.

[6] Y. Xiang, J. Chen, and A. Deshmukh. A decision-theoretic
graphical model for collaborative design on supply chains. In
A. Tawfik and S. Goodwin, editors, Advances in Artificial In-
telligence, LNAI 3060, pages 355–369. Springer, 2004.

[7] Y. Xiang, J. Chen, and W. Havens. Optimal design in collab-
orative design network. In Proc. 4th Inter. Joint Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS’05), pages
241–248, 2005.

[8] M. Yokoo. Distributed Constraint Satisfaction. Springer,
2001.

4


