
A Simple Method to Evaluate Inuence Diagrams

Y. Xiang and C. Ye
Dept. of Computing and Information Science

University of Guelph, Guelph, Ontario, Canada N1G 2W1

(Published in Third International Conference On Cognitive Science, 2001)

August 9, 2001

Abstract

Inuence diagrams (IDs) provide a concise graphical formulation for decision mak-
ing in intelligent agents. In this work, we propose a simple method to evaluate IDs
by �rst converting IDs into BNs and then applying a junction tree-based inference
algorithm. The methods are more e�cient than methods in [1, 5] and are simpler than
[6]. (Keywords: Arti�cial intelligence, intelligent decision support systems, inuence
diagrams, Bayesian networks, uncertain reasoning.)

1 Introduction

Inuence diagrams (IDs) [3] provide a concise graphical formulation of many decision prob-
lems and has been actively studied as a tool for decision making in intelligent systems. An
ID represents a decision problem by three types of varialbes. Chance variables represent the
uncertainty of the problem domain. Decision variables represent the alternative actions of
the decision maker. A single value variable represent the preference of the decision maker for
each possible consequence. The dependence among the variables are expressed as an acyclic
graph where each node corresponds to a variable. The strength of the dependence between
a chance variable and others is represented by a conditional probability distribution (CPT)
associated with the chance node. The decision maker's preference is represented by a utility
distribution associated with the value node. Once an ID is constructed, it can be used to
derive a policy which speci�es what action the decision maker should take for each decision
in order to obtain the maximum expected utility (MEU). We refer to the computation of
the optimal policy for an ID as evaluating the ID.

IDs are extensions of Bayesian networks (BNs) [4] which consist of chance nodes only.
BNs provide a concise graphical representation for reasoning about uncertain domains. A
set of algorithms have been developed for probabilistic inference in BNs. As BNs and IDs
share many commonalities, methods have been proposed to use BN inference algorithms to
evaluate IDs [1, 5, 6].

1

In this work, we propose a simple method to evaluate IDs by �rst converting IDs into
BNs and then applying a junction tree-based inference algorithm [2]. The methods are more
e�cient than methods in [1, 5] and are simplier than [6].

2 Evaluating IDs with a single decision

First, we consider the problem of evaluating an ID where there is a single decision node d1.
We denote the space of d1 by Dd1 = fd1;1; d1;2; :::g. We denote the parent nodes of d1 in the
ID by �d1. The �d1 includes those variables whose values are observed before the decision d1
is made. A single value node v is associated with a utility function v(�v), where �v refers to
the parent nodes of v. That is, Max(v(�v)) = 1 and Min(v(�v)) = 0.

To evaluate an ID using a BN inference algorithm, the ID needs be converted into a BN.
We denote a BN by (V;G; P) where V is the set of variables, G = (V;E) is a DAG, and P
is a set of conditional probability distributions one associated with each node in G. Using
the method proposed by Shachter and Peot [5], we convert an ID into a BN as follows:

� All existing chance nodes remain the same.

� Convert the decision node d1 into a chance node. It has the same space Dd1 and the
same set of parent nodes �d1. It is associated with a uniform distribution P (d1j�d1) =
const, where const stands for a normalizing constant such that

P
i P (d1;ij�d1) = 1 for

each con�guration of �d1.

� Convert the value node into a binary chance node u with a space f0; 1g, the same
parents �u = �v, and a distribution P (u = 1j�u) = v(�v).

The following proposition establishes how computation of posterior probability in a con-
verted BN corresponds to the evaluation of expected utility in its deriving ID. It forms the
basis of our method.

Proposition 1 Let (V;G; P) be a BN converted from an ID with a single decision node d1.
For each con�guration c of �d1 and each value d1;i of d1, we have

P (u = 1jc; d1;i) = E(vjc; d1;i);

where P (u = 1jc; d1;i) is a probability determined by the BN, and E(vjc; d1;i) is the expected

utility given c and d1;i determined by the ID.

Proof:
Denote V 0 = V n fu; di; �d1g and V 00 = V 0 n �u. We have

P (u = 1jc; d1;i) =
X
V 0

P (u = 1jV 0; c; d1;i)P (V
0jc; d1;i) (marginalization)

=
X
�u

X
V 00

P (u = 1jV 00; �u; c; d1;i)P (V
00; �ujc; d1;i)

=
X
�u

X
V 00

P (u = 1j�u)P (V
00; �ujc; d1;i) (conditional independence)

=
X
�u

P (u = 1j�u)
X
V 00

P (V 00; �ujc; d1;i)

=
X
�u

P (u = 1j�u)P (�ujc; d1;i) =
X
�u

v(�v)P (�ujc; d1;i) 2

2

Given Proposition 1, it follows that the action d1;� 2 Dd1 that maximizes P (u = 1jc; d1;i)
is the best action when c is observed, and P (u = 1jc; d1;�) is then the maximum expected
utility (MEU). This is the conclusion derived in [1] (using a slightly di�erent ID conver-
sion). However, neither [1] nor [5] shows Proposition 1 which is more general than the MEU
conclusion itself.

According to [1], this method can be applied for each con�guration of �d1 and each
action d1;i to obtain the optimal policy �1(�d1) for decision d1. Denote the family of d1 by
fam(d1) = fd1g [�d1 , and denote the cardinality of the space of fam(d1) by n. Then the
total number of inference computations of P (u = 1jc; d1;i), one for each con�guration of
fam(d1), is n. Hence the complexity of this method is 2jfam(d1)j. To avoid the exponential
number of computations, we consider an alternative computation:

For each value d1;i of d1 and for each con�guration c of �d1, we have

P (u = 1jc; d1;i) =
P (c; d1;iju = 1)P (u = 1)

P (d1;ijc)P (c):
(1)

Given c, P (c) is a constant. P (d1;ijc) is a constant due to the uniform distribution assigned.
P (u = 1) is also a constant. Therefore, to �nd d1;� that maximizes P (u = 1jc; d1;i) for a
given c, we can alternatively maximizes P (c; d1;iju = 1).

Computation of P (c; d1;iju = 1) is more advantageous than that of P (u = 1jc; d1;i) due
to the following. We can convert the BN into a junction tree representation [2]. Given a BN
over the set V of variables, a junction tree (JT) representation is a tree where each node
is labeled by a subset of V , called a cluster. The conditional probability distributions in
the BN are converted into the distribution over each cluster. An important property of the
JT is that for each node in the BN, its family is contained in at least one cluster in the
JT. Computation of posterior distributions over each cluster can be performed e�ectively
by message passing between clusters, called belief propagation. For more details on the JT
representation and belief propagation, see [2]. Since fam(d1) is contained in a single cluster,
P (�d1; d1ju = 1) can be computed by just one belief propagation with observation u = 1.
Then the optimal policy for d1 is obtained by �nding d1;� that maximizes P (c; d1;iju = 1)
for each c, and repeat the processing for each con�guration c of �d1. This is the method
suggested in [5]. Since only one belief propagation is needed, this is much more e�cient than
Cooper's method.

For each con�guration c of �d1, the MEU of d1;� is P (u = 1jc; d1;�). According to Equa-
tion 1, it can be obtained if, in addition to P (c; d1;iju = 1), we have P (d1; �d1) and P (u = 1).
Both can be obtained from the junction tree representation of the BN by one belief propa-
gation without any observation. We denote the maximum expected utility distribution for
the optimal policy �1(�d1) as meu(�d1; �1(�d1)).

3 Evaluating IDs with sequential decisions

In [5], the dynamic programming is suggested for evaluation of IDs with sequential decisions.
We propose a new method that does not need dynamic programming and hence is simpler
to implement and is more e�cient to execute.

We denote the decision varialbes in an ID as

d1; d2; :::; dn�1; dn;

3

where d1 is the �rst decision and dn is the last decision. We denote the parent of di as �i
instead of �di for simplicity. A common assumption for IDs is non-forgetting : For each
decision di, fam(dj) � �i holds for each j < i. This implies that the parent set �n of the
last decision dn contains all other decision variables plus their parent sets.

Before presenting our method, we �rst review briey how to evaluate an ID using dynamic
programming [5]. To evaluate an ID using the junction inference algorithm, we convert the
ID into a BN. The conversion is similar to the above except each decision node di is converted
into a chance node. It has the same space Ddi and the same set of parent nodes �i. It is
associated with a uniform distribution P (dij�i) = const. Afterwards, we convert the BN
into a JT representation.

To evaluate the ID, the dynamic program approach works backwards from the last de-
cision to the �rst decision. We �rst compute the optimal policy for the last decision dn as
before by computing P (dn; �nju = 1), P (dn; �n), P (u = 1), the policy �n(�n), and the max
expected utility meu(�n; �n(�n)). To derive the optimal policy for dn�1, we �rst replace the
uniform distribution P (dnj�n) at dn in the BN by a conditional probability distribution that
is consistent with the policy �n(�n):

P 0(dnj�n) =

(
1 if dn = �n(�n)
0 otherwise

We denote any distribution obtained from the new BN by P 0(). We then convert the new
BN into a JT representation and compute the optimal policy for dn�1 in the same way as for
dn. This process is repeated until the optimal policy for d1 is obtained. This is the approach
of dynamic programming.

The dynamic programming approach requires a modi�cation of the converted BN, the
compilation of the BN into a JT, and two belief propagations in the JT for each decision
node. In the following, we present a new method that computes �n�1(�n�1); :::; �1(�1) directly
from P (dn; �nju = 1), as described below:

In order to compute �n�1(�n�1), we need to obtain P 0(dn�1; �n�1ju = 1). Using the
product rule, we have

P (dn; �nju = 1) = P (dn; �n)P (u = 1jdn; �n)=P (u = 1)

= P (dnj�n)P (�n)P (u = 1jdn; �n)=P (u = 1):

We consider the impact of replacing P (dnj�n) with P 0(dnj�n) in the dynamic programming.
Since �n contains ancestors of dn, P (�n) is not a�ected by the replacement (P 0(�n) = P (�n)).
P (u = 1jdn; �n) is also not a�ected (P 0(u = 1jdn; �n) = P (u = 1jdn; �n)). P (u = 1) is a
normalizing constant. Therefore, after the replacement, we have

P 0(dn; �nju = 1) = P 0(dnj�n)P (�n)P (u = 1jdn; �n)=P
0(u = 1):

Since P 0(dnj�n) is either 0 or 1, to obtain P 0(dn; �nju = 1) from P (dn; �nju = 1), we have

P 0(dn; �nju = 1) =

(
P (dn;�nju=1)P (u=1)
P (dnj�n)P 0(u=1) if dn = �n(�n)

0 otherwise
(2)

4

Since P (dnj�n) is a uniform distribution, we have

P 0(dn; �nju = 1) =

(
const � P (dn; �nju = 1) if dn = �n(�n)
0 otherwise

(3)

where const is a normalizing constant. Since

P 0(dn; �nju = 1) = P 0(dn; dn�1; �n�1; �
�
n ju = 1);

where ��
n = �n n f�n�1; dn�1g, we have

P 0(dn�1; �n�1ju = 1) =
X
dn;�

�

n

P 0(dn; �nju = 1):

From P 0(dn�1; �n�1ju = 1), we can obtain �n�1(�n�1). Repeating the above process for
dn�2; :::; d1, we can obtain �n�2(�n�2); :::; �1(�1).

In order to compute meu(�n�1; �n�1(�n�1)) for �n�1(�n�1), we use

P 0(u = 1j�n�1; dn�1) =
P 0(�n�1; dn�1ju = 1)P 0(u = 1)

P 0(�n�1; dn�1)
: (4)

Since P 0(�n�1; dn�1) = P (�n�1; dn�1), it can be obtained from the original BN. Comparing
Equations 2 and 3, we can obtain P 0(u = 1) from const, P (dnj�n) and P (u = 1) as follows:

P 0(u = 1) = P (u = 1)=(const � P (dnj�n)): (5)

Note that P (dnj�n) = 1=jDdn j where Ddn is the space of dn, since P (dnj�n) is uniform. We
de�ne

P �(dn; �nju = 1) =

(
P (dn; �nju = 1) if dn = �n(�n)
0 otherwise

(6)

which can be obtained by setting some terms of P (dn; �nju = 1) to zero without normal-
ization. By combining Equations 3 through 6, we can compute P 0(u = 1j�n�1; dn�1) as
follows:

P 0(u = 1j�n�1; dn�1) =
P �(�n�1; dn�1ju = 1)P (u = 1) jDdn j

P (�n�1; dn�1)
: (7)

For each decision di, although �i(�i) speci�es the action for each con�guration of �i,
some con�gurations of �i will never be used due to the policies for �i�1(�i�1); :::; �1(�1). After
�n(�n); :::; �1(�1) have been obtained, we compute the optimal execution policy �01(�1); :::; �

0
n(�n)

as follows:
Let �01(�1) = �1(�1). For the second decision d2,

�02(�2) = �2(d1; �1; �
�
2) if d1 = �1(�1) :

Otherwise, �02(�2) is unde�ned.
For the i'th decision di (i > 1),

�0i(�i) = �i(di�1; �i�1; �
�
i)

if �0i�1(�i�1) is well-de�ned and di�1 = �0i�1(�i�1). Otherwise, �0i(�i) is unde�ned.

5

Acknowledgement

This work is supported by NSERC. Assistance in implementation from X. An, Y. Wang and
Q. Chao is acknowledged.

References

[1] G.F. Cooper. A method for using belief networks as inuence diagrams. In R.D. Shachter, T.S. Levitt,
L.N. Kanal, and J.F. Lemmer, editors, Proc. 4th Workshop on Uncertainty in Arti�cial Intelligence,
pages 55{63, 1988.

[2] F.V. Jensen. An Introduction To Bayesian Networks. UCL Press, 1996.

[3] R.M. Oliver and J.Q. Smith, editors. Inuence Diagrams, Belief Nets and Decision Analysis. John
Wiley, 1990.

[4] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-
mann, 1988.

[5] R.D. Shachter and M.A. Poet. Decision making using probabilistic inference methods. In D. Dubois, M.P.
Wellman, B. D'Ambrosio, and P. Smets, editors, Proc. 8th Conf. on Uncertainty in Arti�cial Intelligence,
pages 276{283, Standford, CA.

[6] N.L. Zhang. Probabilistic inference in inuence diagrams. In G.F. Cooper and S. Moral, editors, Proc.
14th Conf. on Uncertainty in Arti�cial Intelligence, pages 514{522, Madison, Wisconsin, 1998.

6

