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Abstract

We consider multiple agents who’s task is to deter-
mine the true state of a uncertain domain so they can
act properly. If each agent only has partial knowl-
edge about the domain and local observation, how
can agents accomplish the task with the least amount
of communication? Multiply sectioned Bayesian net-
works (MSBNs) provide an effective and exact frame-
work for such a task but also impose a set of con-
straints. The most notable is the hypertree agent or-
ganization which prevents an agent from communicat-
ing directly with arbitrarily another agent. Are there
simpler frameworks with the same performance but
with less restrictions?

We identify a small set of high level choices which
logically imply the key representational choices made
in MSBNs. The result addresses concerns regarding
the necessity of restrictions of the framework. It fa-
cilitates comparison with related frameworks and pro-
vides guidance to extension of the framework as what
can or cannot be traded off.

(Keywords: Decentralized interpretation, commu-
nication, organization structure, uncertain reasoning,
belief network)

1 Introduction
Consider a large uncertain domain populated by a set
of agents. The agents’ task is to determine what is the
true state of the domain so they can act upon it. We
can describe the domain with a set of variables. Some
variables are not directly observable hence their val-
ues can only be inferred based on observation of other
variables and background knowledge on their depen-
dence. Furthermore, each agent may only have knowl-
edge about a subset of variables, and can only observe
and reason within the subset. How can agents coop-
erate to accomplish the task with the least amount
of communication? We shall term this type of agent
systems as cooperative multi-agent distributed inter-
pretation systems (CMADISs).

In the case of a single agent, the problem can be
solved by representing the domain knowledge in a
Bayesian network (BN) (13) and by performing infer-
ence in the BN given observations. As the domain be-
comes larger and more complex, however, a multiagent

solution will be desirable. How should the domain be
partitioned among agents? How should each agent rep-
resent its subdomain? How should the agents be orga-
nized in their activity? What information should they
exchange and how, in order to minimize the amount
of communication? Can they achieve the same level of
accuracy in interpreting the state of the domain as a
single agent?

Multiply sectioned Bayesian networks (MSBNs) (16)
provide one solution to these issues. A MSBN consists
of a set of interrelated Bayesian subnets each of which
encodes an agent’s knowledge on a subdomain. Agents
are organized into a hypertree structure such that in-
ference can be performed in a distributed fashion while
answers to queries are exact with respect to proba-
bility theory. Each agent only exchanges information
with adjacent agents on the hypertree, and each pair
of adjacent agents only exchange information on a set
of shared variables. The complexity of communication
among all agents is linear on the number of agents and
the complexity of local inference is the same as if the
subnet is a single agent based BN.

Are there simpler alternatives that can achieve the
same performance? In other words, are the techni-
cal restrictions of MSBN necessary? For example,
the hypertree organization of agents prevents an agent
from communicating directly with arbitrarily another
agent. Is this necessary? If the answers to these ques-
tions are negative, then such concerns are counter-
productive and hinders the adoption of MSBN to suit-
able CMADIS applications.

In this work, we try to address these concerns.
We show that given some reasonable fundamental
choice/assumptions, the key restrictions of a MSBN,
such as a hypertree structure and a d-sepset (defined
below) agent interface, are unavoidable. In particu-
lar, we identify the choice points in the formation of
MSBN. We term fundamental choices as basic com-
mitments (BCs). Given the BCs, other choices are en-
tailed. Hence a MSBN or some equivalent follows once
we admit the BCs.

The contributions are the following: First, the anal-
ysis provides a high-level (vs. technical level) descrip-



tion about the applicability of MSBN and addresses
concerns regarding necessity of major restrictions. Sec-
ond, the results facilitate comparison with alternative
frameworks. Third, when needs for extension of MSBN
or relaxation of its restrictions arise, the analysis pro-
vides a guideline as what can or cannot be traded off.

In Section 2, we briefly overview the MSBN frame-
work with representational choices summarized. Each
remaining section identifies some BCs and derives im-
plied choices.

2 Overview of MSBNs

A BN (13) S is a triplet (N, D, P ) where N is a set
of domain variables, D is a DAG whose nodes are
labeled by elements of N , and P is a joint prob-
ability distribution (jpd) over N . A MSBN (18;
16) M is a collection of Bayesian subnets that together
defines a BN. These subnets are required to satisfy
certain conditions. One condition requires that nodes
shared by different subnets form a d-sepset, as defined
below.

Let Gi = (Ni, Ei) (i = 0, 1) be two graphs. The
graph G = (N0 ∪ N1, E0 ∪ E1) is referred to as the
union of G0 and G1, denoted by G = G0 t G1.
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Figure 1: A digital circuit.

Figure 2: The subnet D1 for U1.

Figure 3: The subnet D2 for U2.
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Figure 4: The hypertree.

Definition 1 Let Di = (Ni, Ei) (i = 0, 1) be two
DAGs such that D = D0 tD1 is a DAG. The intersec-
tion I = N0 ∩N1 is a d-sepset between D0 and D1 if
for every x ∈ I with its parents π in D, either π ⊆ N0

or π ⊆ N1. Each x ∈ I is called a d-sepnode.

As a small example, fig. 1 shows a digital circuit
organized into five components Ui (i = 0, ..., 4). It
can be modeled as a MSBN with five subnets, two of
which are shown in figs. 2 and 3, where each node is
labeled by the variable name and an index. The d-
sepset between them contains 13 variables indicated in
fig. 4. For instance, the parents of z4 are all contained
in D2, while those of n0 are contained in both D1 and
D2. The structure of a MSBN is a multiply sectioned
DAG (MSDAG) with a hypertree organization:

Definition 2 A hypertree MSDAG D =
⊔

i Di, where
each Di is a DAG, is a connected DAG constructible
by the following procedure:

Start with an empty graph (no node). Recursively
add a DAG Dk, called a hypernode, to the existing
MSDAG

⊔k−1
i=0 Di subject to the constraints:

[d-sepset] For each Dj (j < k), Ijk = Nj ∩ Nk is a
d-sepset when the two DAGs are isolated.

[Local covering] There exists Di (i < k) such that,
for each Dj (j < k; j 6= i), we have Ijk ⊆ Ni. For
an arbitrarily chosen such Di, Iik is the hyperlink
between Di and Dk which are said to be adjacent.

Note that a hypertree MSDAG is a tree where each



node is a hypernode and each link is a hyperlink. The
DAGs for modeling the above circuit can be organized
into the hypertree MSDAG in fig. 4, where each hyper-
node is labeled by a DAG and each hyperlink is labeled
by a d-sepset. Suppose we add D0, D1, ..., in that or-
der. When k = 2, we have i = 1 since I02 = ∅ ⊆ N1

and I12 ⊆ N1. Although DAGs are organized into a
hypertree, each DAG may be multiply connected (see
figs. 2 and 3). Moreover, multiple paths may exist
from a node in one DAG to another node in a different
DAG after the DAGs are unioned by overlapping their
d-sepsets. A MSBN is then defined as follows:

Definition 3 An MSBN M is a triplet (N ,D,P).
N =

⋃
i Ni is the total universe where each Ni is

a set of variables. D =
⊔

i Di (a hypertree MSDAG)
is the structure where nodes of each DAG Di are la-
beled by elements of Ni. Let x be a variable and π(x)
be all parents of x in D. For each x, exactly one of its
occurrences (in a Di containing {x}∪π(x)) is assigned
P (x|π(x)), and each occurrence in other DAGs is as-
signed a constant table. P =

∏
i PDi is the jpd, where

each PDi is the product of the probability tables associ-
ated with nodes in Di. A triplet Si = (Ni, Di, PDi) is
called a subnet of M . Two subnets Si and Sj are said
to be adjacent if Di and Dj are adjacent.

MSBNs provide a framework for uncertain reasoning
in CMADISs. Each agent holds its partial perspective
(a subnet) of a total universe, reasons with local evi-
dence and through communication with other agents,
and answers queries or takes actions. Agents may be
built by independent vendors with privacy protected
with regard to the internal reasoning of each agent.
Agents can acquire evidence in parallel while answers
to queries are consistent with evidence in the entire
system. For the circuit example, each component Ui

can be assigned an agent Ai in charge of the subnet Di

and its local computation. Applications mostly stud-
ied include monitoring and diagnosis of large, complex
and multi-component equipment (17) and object ori-
ented BNs (7).

To aid the analysis, we list representational choices
of MSBNs below, where the most important ones are
3 and 7.

1. Each agent’s belief is represented by probability.
2. The total universe is decomposed into subdomains.

For each pair, there exists a sequence of subdomains
such that every pair of subdomains adjacent in the
sequence shares some variables.

3. Subdomains are organized into a (hyper)tree struc-
ture where each hypernode is a subdomain, and each
hyperlink represents a non-empty set of shared vari-
ables between the two hypernodes.

4. The hypertree satisfies local covering.

5. The dependency structure of each subdomain is rep-
resented as a DAG.

6. The union of DAGs for all subdomains is a connected
DAG.

7. Each hyperlink is a d-sepset.
8. The joint probability distribution can be expressed

as Def. 3.

Below we identify a set of BCs leading to these choices.

3 On communication graph

We use uncertain knowledge, belief and uncertainty in-
terchangeably, and make the following basic commit-
ment:

BC 1 Each agent’s belief is represented by probability.

It directly corresponds to the first choice of Section 2.
We shall use coherence to describe any assignment of
belief consistent with the probability theory.

We consider a total universe N of variables over
which a CMADIS of n agents A0, ..., An−1 is defined.
Each Ai has knowledge over a Ni ⊂ N , called the sub-
domain of Ai. It is assumed whenever Ni ∩ Nj 6= ∅,
the intersection is small relative to Ni and Nj. For
example, in equipment diagnosis, each Ni is a com-
ponent including all devices and their input/output.
From BC 1, the knowledge of Ai is a probability dis-
tribution over Ni, denoted by Pi(Ni).

To minimize communication, we allow agents to ex-
change only their belief on shared variables (BC 2 be-
low). We take it for granted that for agents to com-
municate directly, Ni ∩ Nj must be nonempty. Note
that BC 2 does not restrict the order nor the number
of communications.

BC 2 Ai and Aj can communicate directly only with
P (Ni ∩ Nj).

We refer to P (Ni ∩ Nj) as a message and to direct
communication as message passing. Paths for message
passing can be represented by a communication graph
(CG): In a graph with n nodes, associate each node
with an agent Ai and label it by Ni. Connect each pair
of nodes Ni and Nj by a link labeled by I = Ni ∩ Nj

(called a separator) if I 6= ∅. CG is a junction graph (4)
over N whose links represent all potential paths of mes-
sage passing. As belief of one agent can influence an-
other through a third, CG also represents all potential
paths of indirect communications. Each agent’s belief
should potentially be influential in any other, directly
or indirectly. Otherwise the system can be split into
two. Hence CG is connected. We summarize this in
Proposition 4,. It is equivalent to the second choice in
Section 2.



Proposition 4 Let H be the communication graph of
a CMADIS over N that observes BC 1 and BC 2. Each
agent’s belief can in general influence that of each other
agent through communication. Then H is connected.

4 On hypertree organization

The difficulty of coherent inference in multiply con-
nected (with loops) graphical models of probabilis-
tic knowledge is well known and many inference al-
gorithms have been proposed. Those based on mes-
sage passing, e.g., (13; 9; 5; 15), all convert a mul-
tiply connected network into a tree. However, no
formal arguments can be found, e.g., in (13; 4; 11;
1), which demonstrate convincingly that message pass-
ing cannot be made coherent in multiply connected net-
works. This leaves the question whether it is impossible
to construct such a method or the method remains to
be discovered.

The answer to this question ties closely to the ne-
cessity of hypertree organization of agents as speci-
fied in Def. 2 and restated as the third choice in Sec-
tion 2. This tie can be seen by noting that the hyper-
tree in Def. 2 is isomorphic to a subgraph of the com-
munication graph H of the same CMADIS: An one-
to-one mapping exists between hypernodes in Def. 2
and nodes in H. Each hyperlink in Def. 2 is a link
in H but the converse is not true. In what follows,
we show that in general, coherent message passing is
impossible in multiply connected CGs. The result for-
mally establishes not only the necessity of hypertree
structure in CMADIS, but also the necessity of tree
topology for message passing based inference in single
agent systems. Since a CG is a junction graph, we use
a junction graph in our analysis. We first classify loops
as follows:

Definition 5 Let G be a junction graph over N . A
loop in G is degenerate if all separators on the loop
are identical. Otherwise, it is nondegenerate.

In fig. 5, all loops in (a) are degenerate, and those in
(b) and (c) are nondegenerate. In general, a junction
graph can have both types of loops.

4.1 Nondegenerate loops

We show that when nondegenerate loops exist, mes-
sages are uninformative. No matter how messages are
manipulated or routed, they cannot become informa-
tive and it becomes impossible to make message pass-
ing coherent.

Consider a domain with the dependence structure
in fig. 5 (d) where a, b, c, d are binary, over which a
CMADIS of three agents Ai (i = 0, 1, 2) with U0 =
{a, b}, U1 = {a, c} and U2 = {b, c, d} is defined.
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Figure 5: (a-c) Junction graphs with nodes shown in
ovals and separators in boxes. (d) A DAG to which (c)
is a junction graph.
Fig. 5 (d) is the junction graph. The local knowl-
edge of agents are P0(a, b), P1(a, c) and P2(b, c, d), re-
spectively. We assume that their belief are initially
consistent, namely, the marginal distributions satisfy
P0(a) = P1(a), P0(b) = P2(b), and P1(c) = P2(c).
Hence, message passing cannot change any agent’s be-
lief. We refer to this CMADIS as Cmas3. Any given
P0(a, b), P1(a, c) and P2(b, c, d) subject to the above
consistency is called an initial state of Cmas3.

Suppose that A2 observes d = d0. If the agents can
update their belief coherently, their new belief should
be P0(a, b|d = d0), P1(a, c|d = d0) and P2(b, c, d|d =
d0). For A2, P2(b, c, d|d = d0) can be obtained locally.
However, for A0 and A1 to update their belief, they
must rely on the message P2(b|d = d0) sent by A2 to
A0 and the message P2(c|d = d0) sent by A2 to A1. In
the following, we show that A0 and A1 cannot update
their belief coherently based on these messages. Before
the general result, we illustrate with a particular initial
state. From fig. 5(d), we can independently specify
P (a), P (b|a), P (c|a), and P (d|b, c) as follows:

P (a0) = .26 P (b0|a0) = .98 P (b0|a1) = .33
P (c0|a0) = .02 P (c0|a1) = .67 P (d0|b0, c0) = .03
P (d0|b0, c1) = .66 P (d0|b1, c0) = .7 P (d0|b1, c1) = .25

From these, we define an initial state s which is con-
sistent:

P0(a, b) = P (a)P (b|a), P1(a, c) = P (a)P (c|a),

P2(b, c, d) = P (b, c)P (d|b, c),

where P (b, c) =
∑

a P (a)P (b|a)P (c|a). After d =
d0 is observed by A2, its messages are P2(b|d0) =
(0.448, 0.552) and P2(c|d0) = (0.477, 0.532).

Consider now a different initial state s′ that differs
from s by replacing P ′(d|b, c) with the following:

P ′
2(d0|b0, c0) = 0.5336 P ′

2(d0|b0, c1) = 0.1154
P ′

2(d0|b1, c0) = 0.14 P ′
2(d0|b1, c1) = 0.66

Note that P ′
2(b, c, d) 6= P2(b, c, d), but P ′

0(a, b) =
P0(a, b) and P ′

1(a, c) = P1(a, c). After d = d0 is



observed, if we compute the messages P ′
2(b|d0) and

P ′
2(c|d0), we will find them to be identical to those ob-

tained from state s. That is, the messages are insensi-
tive to the difference between the two initial states. As
a consequence, the new belief in A0 and A1 will be iden-
tical in both cases. Should the new belief in both cases
be different? Using coherent probabilistic inference, we
obtain P (a1|d0) = 0.666 from s, and P ′(a1|d0) = 0.878
from s′. The difference is significant.

We now show that the above phenomenon is not
accidental. Without losing generality, we assume that
all distributions are strictly positive. Lemma 6 says
that for infinitely many different initial states of agent
A2, its messages to A0 and A1, however, are identical.

Lemma 6 Let s be a strictly positive initial state of
Cmas3. There exists infinitely many distinct state s′,
identical to s in P (a), P (b|a) and P (c|a) but is dis-
tinct in P (d|b, c) such that the message P2(b|d = d0)
produced from s′ is identical to that produced from s,
and so is the message P2(c|d = d0).

Proof: We denote the message component P2(b =
b0|d = d0) from state s by P2(b0|d0). We denote the
message component from s′ by P ′

2(b0|d0). P2(b0|d0)
can be expanded as

P2(b0|d0) = P2(b0, d0)/(P2(b0, d0) + P2(b1, d0))
= [1 + P2(b1,d0)

P2(b0,d0)
]−1 = [1 + P2(b1,c0,d0)+P2(b1,c1,d0)

P2(b0,c0,d0)+P2(b0,c1,d0)
]−1

= [1 + P2(d0|b1,c0)P2(b1,c0)+P2(d0|b1,c1)P2(b1,c1)
P2(d0|b0,c0)P2(b0,c0)+P2(d0|b0,c1)P2(b0,c1)

]−1.

Similarly, the message component P2(c0|d0) can be ex-
panded as

P2(c0|d0) = [1 + P2(c1,d0)
P2(c0,d0)

]−1

= [1 + P2(d0|b0 ,c1)P2(b0,c1)+P2(d0|b1 ,c1)P2(b1,c1)
P2(d0|b0 ,c0)P2(b0,c0)+P2(d0|b1 ,c0)P2(b1,c0)

]−1.

By assumption, P0(a, b) = P ′
0(a, b), P1(a, c) =

P ′
1(a, c) and P2(b, c) = P ′

2(b, c) but P2(d|b, c) 6=
P ′

2(d|b, c). If agent A2 at s′ can generate the identical
messages P ′

2(b|d0) = P2(b|d0) and P ′
2(c|d0) = P2(c|d0)

(conclusion of the lemma), then P ′
2(d|b, c) must be the

solutions of the following equations:

P ′
2(d0|b1,c0)P2(b1,c0)+P ′

2(d0|b1 ,c1)P2(b1 ,c1)

P ′
2(d0|b0,c0)P2(b0,c0)+P ′

2(d0|b0 ,c1)P2(b0 ,c1)
= P2(b1,d0)

P2(b0,d0)
P ′

2(d0|b0,c1)P2(b0,c1)+P ′
2(d0|b1 ,c1)P2(b1 ,c1)

P ′
2(d0|b0,c0)P2(b0,c0)+P ′

2(d0|b1 ,c0)P2(b1 ,c0)
= P2(c1,d0)

P2(c0,d0)

Since P ′
2(d|b, c) has four independent parameters but

is constrained by only two equations, it has infinitely
many solutions. Each solution defines an initial state
s′ of Cmas3 that satisfies all conditions in the lemma.
2

Lemma 7 says that with the same difference in initial
states, a coherent inference will produce distinct results
from Cmas3.

Lemma 7 Let P and P ′ be strictly positive probability
distributions over the DAG of fig. 5 (d) such that they
are identical in P (a), P (b|a) and P (c|a) but distinct in
P (d|b, c). Then P (a|d = d0) is distinct to P ′(a|d = d0)
in general.
Proof: We have the following from P and P ′:

P (a|d0) =
∑

b,c

P (a|b, c)P (b, c|d0) (1)

P ′(a|d0) =
∑

b,c

P (a|b, c)P ′(b, c|d0) (2)

where we have used P (a|b, c) since P ′ is identical
with P in P (a), P (b|a) and P (c|a). If P (b, c|d0) 6=
P ′(b, c|d0) (which we show below), then in general
P (a|d0) 6= P ′(a|d0). We also have

P (b, c|d0) =
P (d0|b, c)P (b, c)

P (d0)
=

P (d0|b, c)P (b, c)∑
b,c

P (d0|b, c)P (b, c)
,

P ′(b, c|d0) =
P ′(d0|b, c)P (b, c)

P ′(d0)
=

P ′(d0|b, c)P (b, c)∑
b,c

P ′(d0|b, c)P (b, c)
.

Since P (d|b, c) 6= P ′(d|b, c), in general P (b, c|d0) 6=
P ′(b, c|d0). 2

We conclude with the following theorem:

Theorem 8 Message passing in Cmas3 cannot be co-
herent in general, no matter how it is performed.

Proof: By Lemma 6, P2(b|d = d0) and P2(c|d = d0)
are insensitive to the initial states and hence the poste-
riors (e.g., P0(a|d = d0)) computed from the messages
cannot be sensitive either. However, by Lemma 7, the
posteriors should be different in general given different
initial states. Hence, correct belief updating cannot be
achieved in Cmas3. 2

Note that the non-coherence of Cmas3 is due to its
non-degenerate loop. From Eqs.(2) and (2), correct
inference requires P (b, c|d0). To pass such a message,
a separator must contain {b, c}, the intersection be-
tween U2 and U0 ∪ U1. The nondegenerate loop sig-
nifies the splitting of such a separator (into separators
{b} and {c}). The result is the passing of marginals
of P (b, c|d0) (the insensitive messages) and ultimately
the incorrect inference.

We can generalize this analysis to an arbitrary non-
degenerate loop of length 3 (the loop length of Cmas3),
where each of a, b, c, d is a set of variables. The re-
sult in Lemmas 6, 7 and Theorem 8 can be similarly
derived.

We can further generalize this analysis to an arbi-
trary nondegenerate loop of length K > 3. By clump-
ing K−2 adjacent subdomains into one big subdomain
Q, the loop is reduced to length 3. Any message pass-
ing among the k − 2 subdomains can be considered as



occurring in the same way as before the clumping but
“inside” Q. Now the above analysis for an arbitrary
nondegenerate loop of length 3 applies. Corollary 9
summarizes the analysis.

Corollary 9 Message passing in a nondegenerate loop
cannot be coherent in general, no matter how it is per-
formed.

4.2 Degenerate loops

In a degenerate loop, all subdomains share the same
separator and it is straightforward to pass the mes-
sage coherently (we omit details for space limit). How-
ever, in practice a CG made of only degenerate loops
are rare, and such loops can always be cut open with
coherent message passing performed in the resultant
tree. Under the assumption that nondegenerate loops
are commonplace, we prefer a uniform organization
for agents which support coherent message passing no
matter what types of loops exist in the CG:

BC 3 A uniform agent organization regarding loops is
preferred.

By Corollary 9, a tree must be used when non-
degenerate loops exist. By BC 3, a tree will be pre-
ferred. We summarize in the following proposition
which implies the third choice in Section 2, with the
understanding that a loopy organization may be used
as long as all loops involved are degenerate.

Proposition 10 Let a CMADIS over N be one that
observes BC 1 through BC 3. Then a tree organization
of agents must be used.

Proposition 10 admits many tree organizations.
Jensen (4) showed that coherent message passing may
not be achieved with just any tree. In particular, if
two subdomains Ni and Nj share a subset I of vari-
ables but I is not contained in every subdomain on the
path between them in the tree, then coherent message
passing is not achievable. To ensure coherent message
passing, the tree must be a junction tree, where for
each pair of Ni and Nj , Ni ∩ Nj is contained in every
subdomain on the path between Ni and Nj . Hence we
have the following proposition:

Proposition 11 Let a CMADIS over N be one that
observes BC 1 through BC 3. Then a junction tree
organization of agents must be used.

5 On local covering condition

In this section, we show that the local covering condi-
tion in Def. 2 is necessary and sufficient to guarantee
that the resultant hypertree is a junction tree. The
proof is omitted due to space.

Theorem 12 Let N0, ..., Nn−1 be a set of subdo-
mains. Start with an empty hypergraph, add each Ni

recursively as a hypernode and connect it with an ex-
isting hypernode with a hyperlink. The resultant hy-
pergraph is a junction tree iff each hypernode is added
according to the local covering condition.

From Theorem 12, the fourth choice of Section 2
follows.

6 On subdomain separators
Given our commitment to a (hyper) junction tree orga-
nization (Theorem 12), it follows that each separator
must be chosen such that the message over it is suffi-
cient to convey all the relevant information from one
subtree to the other. Formally, this means that all vari-
ables in one subtree are conditionally independent of
all variables in the other subtree given the separator.

It can be shown easily that when the separator ren-
ders the two subtrees conditionally independent, if new
observations are obtained in one subtree, coherent be-
lief update in the other subtree can be achieved by sim-
ply passing the updated distribution on the separator.
On the other hand, if the separator does not render the
two subtrees conditionally independent, belief updat-
ing by passing only the separator distribution will not
be coherent in general. Hence we have the following
proposition:

Proposition 13 Let a CMADIS over N be one that
observes BC 1 through BC 3. Then each separator in
a tree organization must render the two subtrees con-
ditionally independent.

This commitment requires the CMADIS designer to
partition the domain among agents such that inter-
sections of subdomains form conditional independent
separators in a hypertree organization.

7 Choice on subdomain representation
Given a subdomain Ni, the number of parameters
to represent the belief of Ai is exponential on |Ni|.
Graphical models allow more compact representation.
We focus on DAG models as they are the most concise
with the understanding that other models such as de-
composable Markov networks or chain graphs can also
be used.

BC 4 A DAG is used to structure individual agent’s
knowledge.

A DAG model admits a causal interpretation of de-
pendence. Once we adopt it for each agent, we must
adopt it for the joint belief of all agents:

Proposition 14 Let a CMADIS over N be con-
structed following BC 1, through BC 4. Then each



subdomain Ni is structured as a DAG over Ni and the
union of these DAGs is a connected DAG over N .

Proof: If the union of subdomain DAGs is not a DAG,
then it has a directed cycle. This contradicts the causal
interpretation of individual DAG models. The con-
nectedness is implied by Proposition 4. 2

The fifth and sixth choices of Section 2 now follows.

8 On interface between subdomains

We show that the interface between subdomains must
be structured as a d-sepset. This is established below
through the concept of d-separation (13).

Proposition 15 Let Di = (Ni, Ei) (i = 0, 1) be two
DAGs such that D = D0 t D1 is a DAG. N0 \ N1

and N1 \ N0 are d-separated by I = N0 ∩ N1 iff I is a
d-sepset.

Proof: Sufficiency has been shown in (18).
[Necessity] Suppose there exists x ∈ I with distinct

parents y and z in D such that y ∈ N0 but y 6∈ N1,
and z ∈ N1 but z /∈ N0. Note that the condition
disqualifies I from being a d-sepset, and this is the
only way that I may become disqualified. Now y and
z are not d-separated given x and hence N0 \ N1 and
N1 \ N0 are not d-separated by I. 2

Since d-separation captures all graphically identifi-
able conditional independencies (13), Proposition 15
implies that d-sepset is the necessary and sufficient
syntactic condition for conditionally independent sep-
arators (Proposition 13) under all possible subdomain
structures and observation patterns. We emphasize
that d-sepset is necessary for the most general case,
since by restricting subdomain structure (e.g., some
agent contains only “cause” relative to other agents but
no “effect”) or observation pattern (e.g., some agent
has no local observation and only relies on others’ ob-
servation), the d-sepset requirement may be relaxed.
The seventh choice of Section 2 now follows. From
Propositions 14, 15 and Theorem 12, the following
proposition is implied. The proof is omitted due to
space.

Proposition 16 Let a CMADIS over N be con-
structed following BC 1 through BC 4. Then it must
be structured as a hypertree MSDAG.

9 On belief assignment

By Propositions 14, the structure of a CMADIS is a
DAG (we emphasize that it is a consequence of BC 1
through BC 4, not an assumption). Hence a joint prob-
ability distribution (jpd) over N can be defined by
specifying local distribution for each node and apply-
ing chain rule. In a CMADIS, a node can be internal to

an agent or shared. Distribution for an internal node
can be specified by the corresponding agent vender.

When a node is shared, it may have different parents
in different agents (e.g., z4 in fig. 2 and fig.3). Since
each shared node is a d-sepnode, Def. 1 implies that
for each shared variable x, there exists a subdomain
containing all the parents of x in the universe as stated
in the following lemma:

Lemma 17 Let x be a d-sepnode in a hypertree MS-
DAG. Let the parents of x in Di be πi(x). Then there
exists Dk such that πk(x) =

⋃
i πi(x).

If agents are built by the same vendor, then once
P (x|πk(x)) is specified for x, P (x|πi(x)) for each i is
implied. If agents are built by different vendors, then
it is possible that distributions on a d-sepnode may be
incompatible with each other. For instance, in figs. 2
and 3, A1 and A2 may differ on P (g7). We make the
following basic commitment for integrating indepen-
dently built agents into a CMADIS:

BC 5 Within each agent’s subdomain, jpd is consis-
tent with the agent’s belief. For shared nodes, jpd sup-
plements each agent’s knowledge with others’.

The key issue is to combine agents’ belief on a shared
variable to arrive at a common belief. One idea (14)
is to interpret the distribution from each agent as ob-
tained from a sample data. The combined P (x|π(x))
can then be obtained from the combined data sample.
In summary, let agents combine their belief for each
shared x. Then, for each shared x, let jpd be consis-
tent with P (x|πk(x)), and for each internal x, let jpd
be consistent with P (x|π(x)) held by the correspond-
ing agent. It’s easy to see that the resultant jpd is
precisely the one defined in Def. 3, stated in the fol-
lowing proposition:

Proposition 18 Let a CMADIS over N be con-
structed following BC 1 through BC 5. Then the jpd
over N is identical to that of Def. 3.

The last choice of Section 2 now follows. Pooling
Propositions 16 and 18 together, the MSBN represen-
tation is entailed by the BCs:

Theorem 19 Let a CMADIS over N be constructed
following BC 1 through BC 5. Then it must be repre-
sented as a MSBN or some equivalent.

10 Conclusion
From the following basic commitments: [BC 1] exact
probabilistic measure of belief, [BC 2] communication
by belief over small sets of shared variables, [BC 3]
uniform organization of agents regarding loops, [BC 4]
DAG for domain structuring, [BC 5] joint belief admit-
ting agents’ belief on internal variables and combining



their belief on shared ones, we have shown that the
resultant representation of a CMADIS is a MSBN or
some equivalent.

This result aids comparison with related frame-
works. Multiagent inference frameworks based on de-
fault reasoning (e.g., DATMS (10) and DTMS (3)) do
not admit BC 1, nor does the blackboard (12). Several
frameworks for decomposition of probabilistic knowl-
edge has been proposed. Abstract network (8) re-
places fragments of a centralized BN by abstract arcs
to improve inference efficiency. Similarity network and
Bayesian multinet (2) represent asymmetric indepen-
dence where each subnet shares almost all variables
with each other subnet. A nested junction trees (6)
can exploit independence induced by incoming mes-
sages to a cluster and it shares all its variables with
the nesting cluster. They were not intended for mul-
tiagent systems and do not admit BC 2. MSBNs are
unique in satisfying both BC 1 and BC 2 in one.

This analysis addresses concerns on restrictions im-
posed by MSBN. In particular, the two key technical
restrictions, hypertree and d-sepset interface, are the
consequence of BC 1 and BC 2.

One useful consequence of BC 2 and MSBN is that
the internal knowledge of each agent is never transmit-
ted and can remain private. This aids construction of
CMADISs by agents from independent vendors. Mul-
tiagent systems commonly stand in two extreme: self-
interested versus cooperative. MSBN stands in the
middle: agents are cooperative and truthful to each
other while the internal know-how is protected.

Our analysis provides guidance to extension and re-
laxations of MSBNs. Less fundamental restrictions can
be relaxed, e.g., BC 4 so that other graph models can
be used. BC 3 requires degenerate loops be handled in
the same way as nondegenerate loops. If loopy organi-
zation of agents are indeed needed, the analysis shows
that it is okay as long as loops are degenerate. If subdo-
main structures and observation patterns are less than
general, the d-sepset restriction can be relaxed.
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