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Abstract

We consider a homogeneous cooperative multiagent
system organized as a multiply sectioned Bayesian net-
work (MSBN). Earlier work has shown that (1) mul-
tiagent MSBNs can be applied to distributed inter-
pretation tasks; and (2) a distributed communication
operation can be used to ensure the global consistency
among agents.

In this paper, we address the following problem: Dur-
ing a communication operation, each agent is unavail-
able to process new evidence for a time interval (called
off-line time). We consider the minimization of the
total length of off-line time of the entire system. To
concentrate on the factors affecting the off-line time,
we abstract communication in MSBNs into a graphi-
cal model for off-line time study. Using the model, we
present the optimal schedules when communication is
initiated from an arbitrarily selected agent. We show
how the optimal schedules can be constructed in a dis-
tributed fashion.

Topic areas: Distributed artificial intelligence, com-
munication issues.

1 Introduction
Multiply sectioned Bayesian network (MSBN) was
developed originally for probabilistic reasoning in a
single-agent oriented knowledge-based system in a
large domain (Xiang, Poole, & Beddoes 1993; Xiang
et al. 1993). Earlier work (Xiang 1994a) showed that
the modular structure of MSBN allows a natural ex-
tension of its semantics to multiagent distributed inter-
pretation tasks as defined in (Lesser & Erman 1980),
and a communication operation was proposed to regain
the global consistency after multiagents have acquired
local evidence asynchronously in parallel. Infrequent
communication was shown to be necessary and ade-
quate. Thus the framework can be characterized as
one of functionally accurate, cooperative distributed
systems (Lesser & Corkill 1981).

The basic syntactic requirement for MSBNs to be
applicable to a domain is that the information de-
pendency of agents can be organized into a hypertree

structure such that agents A and B mediated in the
hypertree by a third agent C are conditionally inde-
pendent given the information contained in C. When-
ever such a hypertree organization is feasible for a
distributed interpretation domain, the MSBN frame-
work can be applied. Xiang et al. (1993) showed
how such an organization can be achieved in a med-
ical domain (representing a natural system). Srini-
vas (1994) proposed a hierarchical approach for model-
based diagnosis, which can be viewed as a special case
of MSBNs1. His work showed that how probabilistic
knowledge about electronic circuits (an artificial sys-
tem) can be organized into a hypertree structure.

Given the applicability of MSBNs to multiagent dis-
tributed interpretation and the communication opera-
tion that regains the global consistency, there remain
the issues of improving the efficiency of communication
operation. This paper addresses the following issue:
During communication, each agent is not available to
process new evidence for a period of time (called off-
line time). Proper scheduling of communication should
minimize the length of this off-line time. How can we
perform the scheduling in a distributed fashion?

Since different agents have different off-line time,
some measurement for the entire system is necessary.
This paper consider the minimization of the total
length of off-line time for the entire multiagent sys-
tem. To facilitate the study of the optimal communi-
cation schedules, we abstract the activities during com-
munication into a graphical model. We then present
the communication schedules that minimize the total
length of off-line time when communication is initiated

1For example, the set of input node I, output node O,
mode node M , and dummy node D (Srinivas 1994), which
collectively form an interface between a higher level and a
lower level in the hierarchy, is a d-sepset (Xiang, Poole, &
Beddoes 1993). The ’composite joint tree’ (Srinivas 1994)
corresponds to the ’hypertree’ (Xiang, Poole, & Beddoes
1993). The way in which inference is performed in the com-
posite join tree corresponds to the operation ShiftAttention
(Xiang, Poole, & Beddoes 1993).
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Figure 1: Left: A three-agent MSBN in a medical domain. D1: clinical subnet, D2: radiological subnet, D3:
biological subnet. Right: The LJF for the multi-agent MSBN. Sepsets between cliques of each JT are shown in
solid lines. Hyperlink between JTs are shown in dotted bands.

from an arbitrarily selected agent. Finally, we show
how these schedules can be obtained in a distributed
fashion.

Section 2 reviews the communication operation in
MSBNs. Section 3 introduces the off-line time prob-
lem. Section 4 proposes the graphical model used to
focus the study of the problem. Section 5 presents the
algorithms for construction of the optimal communi-
cation schedules. Section 6 shows how to obtain the
optimal schedules by distributed operations of multia-
gents.

2 Communication in Multiagent
MSBNs

Readers are referred to (Pearl 1988; Charniak 1991;
Henrion, Breese, & Horvitz 1991; Neapolitan 1990;
Shachter 1988; Lauritzen & Spiegelhalter 1988; Jensen,
Lauritzen, & Olesen 1990) for the syntax, seman-
tics and common inference algorithms of Bayesian
networks, and to (Xiang, Poole, & Beddoes 1993;
Xiang et al. 1993; Xiang 1994a) for formal presenta-
tion of the syntax, semantics and inference algorithms
in MSBNs. To make this paper self-contained, we
briefly review the communication operation in multia-
gent MSBNs.

A multiagent MSBN consists of a set of interrelated
Bayesian subnets, each of which represents one agent’s
perspective of the entire domain. A set of variables
interfacing a pair of subnets are chosen such that the
two subnets are conditionally independent given the
set (called a d-sepset). The MSBN is compiled into
a linked junction forest (LJF) for run time inference
computation. The forest consists of a set of junction
trees (JTs) each of which is compiled from an origi-
nal subnet. The JTs are linked into a hypertree struc-
ture. Each hypernode is a JT, and each hyperlink cor-

responds to a d-sepset. The LJF is associated with a
probability distribution, equivalent to that of the orig-
inal MSBN, defined in terms of belief tables (BTs) of
individual JTs. The hypertree is so organized that, if
A, B and C are three nodes in the hypertree which
form a chain (with B in the middle), then A and C are
conditionally independent given B.

Example 1 Figure 1 (left) shows a three-agent MSBN
representing diagnostic knowledge of tuberculosis and
lung cancer from three perspectives: clinical, radiolog-
ical, and biological. The clinical agent may need the
help from the other two agents in reaching a diagnosis
since itself does not have the expertise to process ra-
diological and biological evidence. The compiled LJF
are shown in Figure 1 (right).

Example 2 Figure 2 (left) depicts a general hypertree
structured MSBN. Each box represents a subnet. The
boundaries between boxes represent the d-sepsets. Fig-
ure 2 (right) illustrates the compiled LJF. Ignore the
arrows for the moment.

In a multiagent MSBN, each agent/subnet acquires
local evidence asynchronously in parallel, which causes
inconsistency among agents. A distributed operation
CommunicateBelief (Xiang 1994a) is performed from
time to time to regain the global consistency. Readers
are referred to the above reference for the definition of
the operation. A formal treatment about its correct-
ness (i.e., it guarantees the global consistency) can be
found in (Xiang 1994b). We illustrate here informally
how the operation works.

Example 3 Figure 2 (right) shows how belief propa-
gates through a LJF during CommunicateBelief. Sup-
pose the operation is initiated at an arbitrarily selected
agent represented by T 1. CommunicateBelief con-
sists of two steps: The first step CollectNewBelief
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Figure 2: Left: A MSBN with a hypertree structure. Right: The compiled LJF, and directions of belief propagation
during CommunicateBelief.

proceeds by first propagating control from T 1 towards
terminal agents along solid arrows, and then propagat-
ing belief from terminal agents back to T 1 along dotted
arrows. The second step DistributeBelief proceeds
by propagating belief from T 1 towards terminal agents
along solid arrows. Compared with the time for belief
propagation, the time required for the control propa-
gation can usually be ignored. The operation of belief
propagation from one JT to a neighbor JT is called
UpdateBelief.

3 Off-line Time During
Communication

3.1 Off-line time of each agent

Given an arbitrary agent chosen to initiate the com-
munication activity (call it the communication root),
the hypertree LJF can be viewed as a rooted tree. In
Figure 2 (right), for example, T 1 is the root, T 2 has a
child T 4, and T 2’s parent is T 1.

During the operation CommunicateBelief, the
BT of a JT T (denoted B(T )) may be changed
through CollectNewBeliefand DistributeBelief in
the following ways: (1) During CollectNewBelief,
UpdateBelief performed by T relative to its children
may change B(T ); (2) During DistributeBelief,
UpdateBelief performed by T relative to its parent
may change B(T ).

In order to guarantee that CommunicateBelief
regain the global consistency, it is necessary
(see (Xiang 1994b) for proof) that B(T ) be
not modified by new evidence between the first
UpdateBelief (during CollectNewBelief) and the
last UpdateBelief (during DistributeBelief) in
the process of CommunicateBelief. This implies
that T can not process new evidence and answer
queries accordingly between the above mentioned two
UpdateBeliefs. Therefore the length of this time in-

terval should be minimized.
If t is the instant of time when the first

UpdateBelief involved by T is started, and τ is the
instant of time when the last UpdateBelief involved
by T is completed. We define ∆(T ) = τ − t as the
off-line time of T during the communication.

3.2 Off-line time of a multi-agent system
Different JTs in a LJF may have different off-line times
during a communication depending on several factors.
Assuming the communication root is given, this pa-
per considers the following three factors. One factor is
the order in which CollectNewBelief is performed by
each agent relative to its neighbors.

Example 4 Consider T 7 in Figure 2 (right) where the
root is T 1. During CollectNewBelief, T 4 must per-
form UpdateBelief relative to T 6, T 7 and T 8 sequen-
tially. If T 7 is first selected, T 7 must become off-line
before T 6 and T 8, and its off-line time will be prolonged
accordingly.

We refer to the order in which multiple neighbors are
selected by an agent to perform UpdateBelief against,
during CollectNewBelief, as the collection order of
the agent. Similarly, we refer to the order in which
multiple neighbors are selected by an agent to perform
UpdateBelief, during DistributeBelief, as the dis-
tribution order of the agent. It is another factor affect-
ing each agent’s off-line time.

Example 5 Consider T 7 in Figure 2 (right) where the
root is T 1. During DistributeBelief, T 6, T 7 and
T 8 must perform UpdateBelief relative to T 4 sequen-
tially. If T 7 is first selected, T 7 can become available
before T 6 and T 8, and its off-line time will be short-
ened accordingly.

The third factor is the time complexity of
UpdateBelief by a JT T i relative to a neighbor JT



T k. This time complexity is fixed once the two JTs and
their d-sepset are determined. However the time com-
plexity of UpdateBelief by T i relative to T k may not
be the same as the time complexity of UpdateBelief
by T k relative to T i since both the size of the d-sepset
and the size of the belief-receiving JT are relevant (Xi-
ang 1994b).

The difference of off-line time across agents calls for
a measurement of off-line time of the entire system.
This paper considers the following measurement.

Definition 6 (Absolute Off-line Time) Let F be a
LJF. Let t be the instant of time when a first JT in F
becomes off-line during a CommunicateBelief opera-
tion. Let τ be the instant of time when the last JT be-
comes available again. The absolute off-line time
of F is ∆abs = τ − t.

4 A Graphical Model for Off-line
Time Study

To concentrate on the factors that determine the off-
line time, we abstract the communication in a LJF into
a graphical model:

Model 7 (Graphical communication model)

Given an undirected and weighted tree, and an ar-
bitrary node A as the root, the tree is converted to a
rooted tree R.

For each node X of R, if X 6= A, place an in-agent
at X. For each node Y of R, if Y has k children, place
k out-agents at Y .

The agents traverse R according to the following
rules.

1. To start with, each parent node Y with leaf children
selects one child X, according to some order Oin(Y ).
Once selected, X sends its in-agent to move from X
to Y , which takes time win(X) that is the weight
associated with the link (X, Y ) in the inward direc-
tion (leaf towards root). After one child’s in-agent
arrives at Y , the next child, selected according to
Oin(Y ), sends its in-agent to Y .

After a parent Y has received all the in-agents from
its children, Y is ready for selection by its own parent
Z according to Oin(Z). Once selected by Z, Y sends
its in-agent to Z. The inward movement (called col-
lection of in-agents continues in this fashion.

2. After the root A receives all in-agents from its chil-
dren, collection is completed, and an outward move-
ment (called distribution) starts.

A selects one child X, according to some order
Oout(A). A then sends one out-agent to move from

A to X, which takes time wout(X) that is the weight
of the link (A, X) in the outward direction. After an
out-agent of A reaches the destination, A selects an-
other child according to Oout(A) and sends another
out-agent to the child. The process continues until
all out-agents of A reach their destinations.

After an out-agent from A reaches a child X, X
selects its own children, according to Oout(X), and
sends its out-agents to child nodes in sequence. The
process continues in this fashion until the last out-
agent in R reaches its leaf destination.

The model characterizes CommunicateBelief for off-
line time study correctly: The undirected tree corre-
sponds to the LJF. Each node corresponds to a JT of
the LJF. The root A corresponds to the communication
root. Collection corresponds to CollectNewBelief,
and distribution corresponds to DistributeBelief.
Given a parent node Y and a child node X, win(X)
corresponds to the time required for Y to perform
UpdateBelief relative to X, and wout(X) for X rela-
tive to Y . Oin(X) corresponds to the collection order
of X, and Oout(Y ) corresponds to the distribution or-
der of Y . The time instant when the in-agent of a node
X leaves X corresponds to the time instant when the
corresponding JT becomes off-line. The time instant
when the last out-agent of X arrives at its destination
(a child of X) corresponds to the time instant when
the corresponding JT becomes available (on-line) for
entering evidence. The interval between the two in-
stants thus corresponds to the off-line time of the JT
represented by X. Do not confuse the in(out)-agents
with multiagents. The former corresponds to the belief
to be propagated, and the latter corresponds to nodes
of the graphical model.

We shall say that a non-leaf node X is off at the time
instant when the in-agent from the first child selected
by X starts moving to X. We use toff (X) to denote
the instant. If X is a leaf node, then X is off as soon
as its in-agent leaves X.

We shall say that a non-leaf node X is on at the
time instant when its last out-agent arrives at one of
X’s children. We use ton(X) to denote the instant. If
X is a leaf, then X is on when it receives the out-agent
from its parent. We shall say that the off-line time of
the node X is ∆(X) = ton(X) − toff (X).

For collection, we use trdy(Y ) to denote the time
instant when a non-leaf node Y receives the last in-
agent from its children and is ready for its parent to
select. For a leaf node Y , we assign trdy(Y ) to be
the instant when collection starts. We use twat(Y ) to
denote the time instant when Y ’s in-agent arrives at
its parent and Y starts to wait for an out-agent to
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Figure 3: Graphical model for communication in a seven-agent MSBN. The in-weight (out-weight) of a link is
indicated by an upward (downward) arrow and the associated label. Left: The weighted tree R rooted at A.
Middle: Collection schedule in R. Each node X is labeled with (toff (X), trdy(X), twat(X)). Right: Distribution
schedule in R. Each node X is labeled with (tsel(X), tcpt(X), ton(X)).

be sent from its parent. For the root A, we assign
twat(A) = trdy(A).

For distribution, we use tsel(X) to denote the time
instant when a node X is selected by its parent Y such
that Y is about to send an out-agent to X. For the root
A, we assign tsel(A) to be the instant when distribution
starts. We use tcpt(X) to denote the time instant when
X receives the out-agent from Y (distribution relative
to Y is completed). For the root A, we assign tcpt(A) =
tsel(A).

We shall call a complete specification of the above
defined timing of every node during collection (distri-
bution) as a collection (distribution) schedule. Fig-
ure 3 illustrates the graphical communication model
for a seven-agent system (left), a collection schedule
(middle) using a left-to-right order for each node, and
a distribution schedule (right) using a right-to-left or-
der. The absolute off-line time is ∆abs = 40 − 0 = 40.

Our goal is to find schedules with the minimum off-
line time. In both schedules of Figure 3, we have as-
sumed that a node engages in its activity as soon as
the activity is possible without any delay. Since unnec-
essary idling can not contribute positively to our goal,
we will exclude from our consideration those schedules
in which some nodes delay their activities unnecessar-
ily (no-delay assumption). On the other hand, if there
is any practical reason to delay the belief propagation,
e.g., computer network delay, we assume that the delay
has been modeled in the link weights.

The schedule in Figure 3 is not optimal. In the re-
maining part of this paper, we use the graphical model
to study the minimization of off-line time with an ar-
bitrarily given communication root.

5 Minimal Absolute Off-line Time
Schedule

Let collection start at t = t0 and terminate at t = t1.
Let distribution start at t = t1 and terminate at t = t2.
Denote the interval between t0 and t1 by ∆0−1, and
denote the interval between t1 and t2 by ∆1−2. We
have ∆abs = ∆0−1 + ∆1−2. Since ∆0−1 is indepen-
dent of ∆1−2, min(∆abs) = min(∆0−1) + min(∆1−2)
where the minimization in the left-hand side of the
equation is over all collection and distribution sched-
ules, the first minimization in the right-hand side is
over all collection schedules, and the second is over all
distribution schedules. This implies that the optimal
communication schedule can be obtained by indepen-
dently obtaining the optimal collection schedule and
the optimal distribution schedule.

To determine the optimal collection schedule, it is
sufficient to determine the collection order for each
node in the rooted tree, given our no-delay assump-
tion. We therefore present our result in terms of Al-
gorithm 9 that rearranges the left-right order for each
node such that the collection order becomes topologi-
cally explicit. In the algorithm, the depth of root is 0.
Theorem 8 establishes the optimality, whose proof can
be found in (Xiang 1994b).

Theorem 8 (Optimal collection schedule)
Let R be a tree for collection rooted at A.
The absolute off-line time ∆0−1 for collection is min-

imized if R is arranged according to Algorithm 9 and
then collection at each node is performed according to
the left-to-right order.

The minimum value of ∆0−1 is given by trdy(A) as
computed by Algorithm 9.



Algorithm 9 (Order arrangement for collection)

Input: A rooted tree of depth M with the in-weight of each link defined.
begin

D := M;
for each node Z of depth D, do trdy(Z) := 0;
D := D-1;
while D ≥ 0, do

for each node Y of depth D with n child nodes, do
arrange children of Y and index them from left to right as

X1, . . . , Xn such that trdy(X1) ≤ . . . ≤ trdy(Xn);
trdy(Y ) := max(trdy(X1) +

∑n
i=1 win(Xi), . . . , trdy(Xn) +

∑n
i=n win(Xi));

for each leaf Z of depth D, do trdy(Z) := 0;
D := D-1;

end
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Figure 4: R: A rooted tree for collection. R’: R after processed according to Algorithm 9. Each node X is labeled
with (toff (X), trdy(X), twat(X)).

Example 10 The depth of the tree in Figure 4 is M =
2. The trdy for each node as computed by Algorithm 9
as well as the optimal collection schedule determined
by Theorem 8 are shown in the figure. After the first
iteration of the while loop, trdy(B) = 5, trdy(C) = 4,
and trdy(D) = 0. After the second iteration of the
while loop, the children of A is arranged in the order D,
C and B from left to right, and trdy(A) = max(0+8+
2+4, 4+2+4, 5+4) = 14. The minimum absolute off-
line time min(∆0−1) for R is obtained using R′ and the
left-to-right collection order: min(∆0−1) = trdy(A) =
14. It is a 26% improvement over trdy(A) = 19 in
Figure 3 (middle).

Note that the same minimum ∆0−1 as from Exam-
ple 10 can be obtained if the collection order for root
is Oin(A) = (D, B, C) instead of Oin(A) = (D, C, B)
as in the example. Given a rooted tree, the optimal
collection schedule is not unique in general.

Algorithm 13 and Theorem 11 establishes the opti-

mal distribution schedule. The proof of Theorem 11
can be found in (Xiang 1994b).

Theorem 11 (Optimal distribution schedule)

Let R be a tree for distribution rooted at A. The
absolute off-line time ∆1−2 for distribution is mini-
mized if R is arranged according to Algorithm 13 and
the distribution order for each node is right-to-left. The
minimum ∆1−2 is given by v(A) as computed by Algo-
rithm 13.

Example 12 Figure 5 (left) shows the same rooted
tree R for distribution as Figure 3. It is rearranged
into R′ (right) according to Algorithm 13. The optimal
schedule as determined by Theorem 11 is also labeled
in the figure. The distribution starts at t = 0. The
minimum ∆1−2 is ∆1−2 = v(A) = max(0+7+6+3, 5+
6 + 3, (4 + 2) + 3) = 16 which is a 24% improvement
over ∆1−2 = 40 − 19 = 21 in Figure 3 (right).



Algorithm 13 (Order arrangement for distribution)

Input: A rooted tree of depth M with the out-weight of each link defined.
begin

D := M;
for each node Z of depth D, do v(Z) := 0;
D := D-1;
while D ≥ 0, do

for each node Y of depth D with n child nodes, do
arrange children of Y and index them from left to right as

X1, . . . , Xn such that v(X1) ≤ . . . ≤ v(Xn);
v(Y ) := max(e1, . . . , en) where ei = (

∑n
k=i wout(Xk)) + v(Xi);

for each leaf Z of depth D, do v(Z) := 0;
D := D-1;

end
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Figure 5: R: A rooted tree for distribution. R’: R with the left-right order of nodes rearranged according to
Algorithm 12. The distribution schedule determined by Theorem 11 is shown by the label (tsel(X), tcpt(X), ton(X))
at each node X.

6 Distributing Communication
Scheduling

The optimal schedules in Section 5 are presented as
if there is a centralized scheduler. It is not necessary.
The scheduling of collection can be distributed as fol-
lows:

Operation 14 (ScheduleCollection) Let T be a JT
in a LJF. Let caller be either the LJF or a neighbor
JT. When ScheduleCollection is called in T , T per-
forms the following.

1. If T has no neighbor except caller, T returns
trdy(T ) = 0 to caller. Otherwise, T performs the
following.

2. T calls ScheduleCollection in all neighbors except
caller.

3. After each neighbor X being called has returned
trdy(X), T indexes them as X1, . . . , Xn such that
trdy(X1) ≤ . . . ≤ trdy(Xn). T returns trdy(Y ) :=
max(trdy(X1) +

∑n
i=1 win(Xi), . . . , trdy(Xn) +∑n

i=n win(Xi)) to caller. The collection order of
T is Oin(T ) = (X1, . . . , Xn).

ScheduleCollection is equipped at each JT.

Similarly, we can distribute the scheduling of distri-
bution.

Operation 15 (ScheduleDistribution) Let T be a
JT in a LJF. Let caller be either the LJF or a neigh-
bor JT. When ScheduleDistribution is called in T ,
T performs the following.

1. If T has no neighbor except caller, T returns
v(T ) = 0 to caller. Otherwise, T performs the
following.



2. T calls ScheduleDistribution in all neighbors ex-
cept caller.

3. After each neighbor X being called has returned
v(X), T indexes them as X1, . . . , Xn such that
v(X1) ≤ . . . ≤ v(Xn). T returns
v(Y ) := max(v(X1) +

∑n
i=1 wout(Xi), . . . , v(Xn) +∑n

i=n wout(Xi)) to caller. The distribution order
of T is Oout(T ) = (Xn, . . . , X1).

ScheduleDistribution is equipped at each JT.

The optimal communication schedule of the entire
system can then be obtained as follows.

Operation 16 (ScheduleCommunication)
When ScheduleCommunication is initiated at a LJF,
the following are performed.

1. A JT T is selected.

2. ScheduleCollection is called in T .

3. When T has finished ScheduleCollection,
ScheduleDistribution is called in T .

Theorem 17 Let F be a LJF. If the collection
order and distribution order obtained from per-
forming ScheduleCommunication are followed during
CommunicateBelief, the resultant schedule has the
minimum absolute off-line time ∆abs.

Theorem 17 can be proven by compar-
ing ScheduleCollection with Algorithm 9, compar-
ing ScheduleDistribution with Algorithm 13, and
then applying Theorem 8 and Theorem 11.
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