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Abstract—Conditional independence encoded in Bayesian net-
works avoids combinatorial explosion on the number of variables.
However, Bayesian networks are still subject to exponential
growth of space and inference time on the number of causes
per effect variable in conditional probability tables. A number
of space-efficient local models exist that allow efficient encoding
of dependency between an effect and its causes, and can also
be exploited for improved inference efficiency. We focus on the
Non-Impeding Noisy-AND Tree (NIN-AND Tree or NAT) models
because of multiple merits. We present a novel framework,
trans-causalization of NAT-modeled Bayesian networks, by which
causal independence embedded in NAT models is exploited for
more efficient inference. We show that trans-causalization is exact
and yields polynomial space complexity. We demonstrate signifi-
cant efficiency gain on inference based on lazy propagation and
sum-product networks. (Keywords: Bayesian networks, Causal
independence models, Probabilistic inference)

I. INTRODUCTION

Bayesian networks [1] have been widely used in intelligent
systems for inference in complex, partially observable, and
stochastic environments, e.g., [2]. A discrete Bayesian network
(BN) encodes probabilistic knowledge about an application
environment whose states are described by a set V of variables.
Traditional probabilistic approach encodes such knowledge by
a joint probability distribution (JPD) over V . Since the JPD has
a size exponential in |V |, inference with a JPD is intractable
when |V | is large. BNs overcome this difficulty by encoding
the dependency and conditional independency among variables
through a directed acyclic graph (DAG). Relative to the DAG,
we shall refer to a child variable and its parents as an effect
and its causes1. The dependency of an effect on its causes in
the DAG is quantified by a conditional probability table (CPT).
The CPT specifies how probable the effect takes on a value,
when the causes take on each possible configuration. Once the
DAG and the CPTs (one per variable) are specified, the JPD
over V is uniquely defined. The total number of CPTs in a
BN is |V |, and each CPT has a size exponential in the size of
the variable family (the effect plus its causes). Hence, when
each family is small, the number of probability parameters in a
BN is significantly less than a JPD. By exploiting conditional
independence encoded in the DAG, inference with BNs can
be performed much more efficiently than using JPDs.

However, when a BN contains large families, the expo-
nential parameter growth occurs at the family level, and can
diminish the computational advantage of BNs over JPDs. To
address this issue, a number of space-efficient local models
have been proposed. Rather than quantifying the dependency
of an effect on its causes by a CPT, how causes interact in
causing the effect is characterized, which allows quantification

1We use causality loosely and interchangeably with asymmetric depen-
dency.

of the dependency by specifying probability parameters that
are much less than exponential in the family size. They include
noisy-OR [1], noisy-MAX [3], [4], context-specific indepen-
dence (CSI) [5], noisy-AND [6], recursive noisy-OR [7], Non-
Impeding Noisy-AND Tree (NIN-AND Tree or NAT) [8],
[9], DeMorgan [10], tensor-decomposition [11], cancellation
model [12], among others. Among these local models, noisy-
OR, noisy-MAX, noisy-AND, recursive noisy-OR, DeMorgan,
and NAT belong to a class of causal independency models
(CIMs). They assume that the strength of a cause in causing
the effect to occur is independent of whether other causes of
the effect are active.

This work focuses on representing BN CPTs through NAT
models [8] due to several merits: First, causes of the same
effect may interact qualitatively differently by reinforcing or
undermining each other. Widely utilized models such as noisy-
OR, noisy-AND, and noisy-MAX can express only reinforcing
interactions, while NAT models can express both reinforcing
and undermining causal interactions.

Second, reinforcing and undermining may be between in-
dividual causes, or between subsets of causes. DeMorgan
model can express both reinforcing and undermining, but only
between individual causes, while NAT models can express
these interactions both between individual causes and between
subsets of causes. For instance, a subset of causes may
reinforce each other and so do the causes in another subset, but
the two subsets may undermine each other. NAT models can
express such interaction while DeMorgan cannot. Furthermore,
NAT models can express such mixture of reinforcing and
undermining recursively among subsets of causes.

Third, noisy-OR and noisy-AND are applicable to binary
variables only, while NAT models are applicable to multi-
valued variables. Fourth, most other CIMs have been defined
over ordinal variables (also referred to as graded variables).
NAT models are defined over both ordinal and nominal vari-
ables [13]).

Fifth, NAT models strictly generalize noisy-OR, noisy-
MAX [14], and DeMorgan [8], and at the same time have
the same space complexity. That is, the number of parameters
required by a NAT model is linear in the number of causes,
which is the same as noisy-OR, noisy-MAX, and DeMorgan.
In Section X, we discuss several representational issues that
relate NAT models with other CIMs.

Sixth, reinforcing or undermining causal interactions that
NAT models express are inequality based, while CSI are
equality based. Hence, NAT models are orthogonal and hence
complimentary to CSI.

Seventh, through multiplicative factorization (MF) of NAT-
modeled BNs, inference based on lazy propagation (LP) [15]
can be two orders of magnitude faster for a range of sparse
BNs [14], [16]. A NAT-modeled BN is a BN where each multi-
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parent family is represented as a NAT model. The sparseness
is signified by the lower number of arcs beyond a tree DAG.
Inference complexity of a BN is exponential in its tree-width.
The tree-width of a BN is one less than the size of the
largest cluster, when its DAG structure is transformed into
a best junction tree. Inference with a NAT-modeled BN is
significantly more efficient than the equivalent BN based on
tabular CPTs, when its DAG structure is sparse but has a large
tree-width (due to large variable families).

Although MF has achieved impressive performance in im-
proving the efficiency of inference in NAT-modeled BNs,
it has a limitation. A NAT model (encoding a BN CPT)
consists of several NIN-AND gates. The MF of each gate
has one numerical potential (among others) that is exponential
in the domain size of the effect variable. In this work, we
develop a framework alternative to MF, referred to as trans-
causalization of NAT-modeled BNs, which eliminates such
exponential components.

In general, trans-causalized BNs are homogenous in rep-
resentation: All variables have small families (no more than
2 parents) and hence a small tabular CPT. This eliminates
heterogeneity of NAT-modeled BNs, where CPTs of large
families are encoded by NAT models. It allows inference with
trans-causalized BNs to be conducted using any BN inference
algorithm, while significantly reducing the space complexity.
As the result, the space complexity of trans-causalized BNs is
polynomial. At the same time, trans-causalized BNs preserve
exactly the probability distributions of NAT-modeled BNs.
We demonstrate superior inference performance of trans-
causalized BNs through inference by LP and inference by
sum-product networks (SPNs) [17], [18], [19].

A significant part of the effort (and contribution) of
this work is to rigorously establish the exactness of trans-
causalized BNs. This effort is complicated by the rich struc-
tural details of NAT models (alternative gate types, their
alternations in the NAT tree, and their levels in the NAT tree,
etc.) that are necessary for their expressiveness. To that end,
the paper applied formal analysis and proofs. Due to space
limit, proofs of most formal results (theorems and lemmas)
are included in Supplementary Materials.

The remainder is organized as follows. Section II reviews
the background on NAT modeling. This is followed by the
motivation of this research and an overview of main computa-
tional steps of trans-causalization in Section III. In Sections IV
and V, we present how to trans-causalize dual and direct
NIN-AND gate models. Further reduction of tree-width of
the trans-causalized representation is presented in Section VI.
The trans-causalization is extended to general NAT models
in Section VII and to NAT-modeled BNs in Section VIII.
The impact of trans-causalization is empirically evaluated in
Section IX.

II. BACKGROUND ON NAT MODELS

This section briefly reviews background on NAT models.
More details can be found in [8], [13]. A NAT model is defined
over an effect e and a set of n causes C = {c1, ...,cn} that
are multi-valued, where e ∈ De = {e0, ...,eη} (η ≥ 1) and

ci ∈ {c0
i , ...,c

mi
i } (i = 1, ...,n,mi ≥ 1). C and e form one family

(a child variable plus its parents) in a BN, whose dependence
is quantified by a tabular CPT by default. Values e0 and c0

i
are inactive. Other values (may be written as e+ or c+i ) are
active. A higher index often means higher intensity (graded
or ordinal variables), but that is not necessary (see [13] for
generalization to nominal variables).

A causal event is a success or failure depending on if e is
active up to a given value, is single- or multi-causal depending
on the number of active causes, and is simple or congregate
depending on value range of e. For instance, P(ek ← c j

i ) =

P(ek|c j
i ,c

0
z : ∀z 6= i) ( j > 0) is probability of a simple single-

causal success, and

P(e≥ ek← c j1
1 , ...,c jq

q ) = P(e≥ ek|c j1
1 , ...,c jq

q ,c0
z : cz ∈C \X)

is probability of a congregate multi-causal success, where
j1, ..., jq > 0, X = {c1, ...,cq} (q > 1). The latter may be
denoted as P(e ≥ ek ← x+). Interactions among causes may
be reinforcing or undermining as defined below.

Definition 1: Let ek be an active effect value, R =
{W1, ...,Wω} (ω ≥ 2) be a partition of a set X ⊆C of causes,
S ⊂ R, and Y = ∪Wi∈SWi. Sets of causes in R reinforce each
other relative to ek, iff ∀S P(e≥ ek← y+)≤ P(e≥ ek← x+).
They undermine each other iff ∀S P(e ≥ ek ← y+) > P(e ≥
ek← x+).

Fig. 1. (a) Direct NIN-AND gate. (b) Dual NIN-AND gate. (c) NAT.

A NAT consists of multiple NIN-AND gates. A direct gate
involves disjoint sets of causes W1, ...,Wω . Each input event is
a success e≥ ek←w+

i (i= 1, ...,ω), e.g., Fig. 1 (a) where each
Wi is a singleton. The output event is e≥ ek←w+

1 , ...,w
+
ω . The

probability of output event of a direct NIN-AND gate is

P(e≥ ek← w+
1 , ...,w

+
ω ) =

ω

∏
i=1

P(e≥ ek← w+
i ). (1)

Direct gates encode undermining causal interactions. Each
input event of a dual gate is a failure e < ek ← w+

i , e.g.,
Fig. 1 (b). The output event is e < ek ← w+

1 , ...,w
+
ω . The

probability of output event of a dual NIN-AND gate is

P(e < ek← w+
1 , ...,w

+
ω ) =

ω

∏
i=1

P(e < ek← w+
i ). (2)

Dual gates encode reinforcement causal interactions.
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A NAT encodes complex causal interactions beyond a single
direct or dual gate. For example, consider a surface enhancer
application. Acidic enhancers h1 and h2 are more effective
when both are applied. Basic enhancers b1 and b2 work
similarly. However, when enhancers from both groups are
combined, their effectiveness is reduced. Formally, h1, h2, b1,
and b2 are causes, and surface enhancement is their effect e.
Causes h1 and h2 reinforce each other, and so do b1 and b2.
However, the two groups undermine each other. The NAT in
Fig. 1 (c) encodes their causal interactions.

To quantify causal strength of each cause, probabilities of
simple single-causal success, P(ek← c j

i ) ( j,k > 0), also called
single-causals, are specified. Suppose that surface enhancer
h1 has 2 alternative grades h1 = h1

1 and h1 = h2
1. We have

h1 ∈ {h0
1,h

1
1,h

2
1}, where h0

1 expresses that h1 enhancer is not
applied. Similarly, suppose that we have h2 ∈ {h0

2,h
1
2,h

2
2},

b1 ∈ {b0
1,b

1
1,b

2
1}, b2 ∈ {b0

2,b
1
2,b

2
2}, and e ∈ {e0,e1,e2}. We

need to specify 2×2×4 = 16 single-causals. From Fig. 1 (c)
and single-causals, P(e≥ e1← h1

1,h
1
2,b

1
1,b

1
2) can be obtained.

From the single-causals and all derivable NATs [20], CPT
P(e|h1,h2,b1,b2) is uniquely specified [8]. A NAT model is
specified by the topology and a set of single-causals with a
space linear in n.

A BN, where the CPT of every family of size 3 or larger is a
NAT model, is a NAT-modeled BN. A discrete BN where every
CPT is tabular has a space complexity of O(N κn), where N
is the number of variables, κ is the size of largest variable
domains, and n is the largest number of parents per variable.
On the other hand, a NAT-modeled BN has a linear space
complexity of O(N κ n). The space efficiency of NAT-modeled
BNs can extend to efficiency in inference time through MF
[14]. With MF of NAT-modeled BNs, inference based on LP
can be two orders of magnitude faster for a range of sparse
BNs [14], [16].

Before closing this section, we demonstrate, using the en-
hancer example, that while NAT models have the same linear
space complexity as other CIMs, they are more expressive.
In particular, we compare with noisy-OR, noisy-AND, noisy-
MAX, and DeMorgan, relative to the 1st five advantages of
NAT models stated in Section I, which we refer below as the
1st point, the 2nd point, etc. To do so, we first specify the 16
single-causals. Although they generally differ, for simplicity,
we assume following values for cause c = h1,h2,b1,b2:

P(e1← c1) = 0.3, P(e2← c1) = 0.4,

P(e1← c2) = 0.4, P(e2← c2) = 0.5.

These single-causals and the NAT in Fig. 1 (c) allow compu-
tation of a unique NAT model CPT P(e|h1,h2,b1,b2).

On the 1st point, NAT model CPT has

P(e≥ e2|h1
1,h

0
2,b

0
1,b

0
2) = 0.4, P(e≥ e2|h0

1,h
1
2,b

0
1,b

0
2) = 0.4,

P(e≥ e2|h1
1,h

1
2,b

0
1,b

0
2) = 0.64,

expressing reinforcing between h1 and h2. NAT CPT also has

P(e≥ e2|h1
1,h

0
2,b

0
1,b

0
2) = 0.4, P(e≥ e2|h0

1,h
0
2,b

1
1,b

0
2) = 0.4,

P(e≥ e2|h1
1,h

0
2,b

1
1,b

0
2) = 0.16,

expressing undermining between h1 and b1. On the other hand,
noisy-OR, noisy-AND, and noisy-MAX can only express
reinforcing, but not undermining.

On the 2nd point, NAT model CPT expresses reinforcing
between h1 and h2 as above, and has

P(e≥ e2|h0
1,h

0
2,b

1
1,b

0
2) = 0.4, P(e≥ e2|h0

1,h
0
2,b

0
1,b

1
2) = 0.4,

P(e≥ e2|h0
1,h

0
2,b

1
1,b

1
2) = 0.64,

expressing reinforcing between b1 and b2. NAT CPT also has

P(e≥ e2|h1
1,h

1
2,b

1
1,b

1
2) = 0.4096,

expressing undermining between both groups. On the other
hand, DeMorgan cannot express such complex mixture of
causal interactions.

On the 3rd point, since all enhancer causes and the effect
are ternary, noisy-OR and noisy-AND cannot model this
application. On the 4th point, the enhancer NAT model does
not require that variables be graded, e.g., h0

1 ≺ h1
1 ≺ h2

1. To
do the some, alternative CIMs need to adopt the paradigm of
NAT models in [13]. On the 5th point, if we limit enhancers
to h1 and h2 only, then the restricted application can be
modeled by noisy-MAX, and DeMorgan. If we further restrict
h1, h2, and e to binary, then it can be modeled by noisy-
OR. If we limit enhancers to h1 and b1 only, then it can be
modeled by DeMorgan. However, the enhancer application, as
we specified, cannot be modeled by any of noisy-OR, noisy-
MAX, and DeMorgan.

III. TRANS-CAUSALIZATION: MOTIVATION & OVERVIEW

Although MF has achieved impressive inference perfor-
mance in NAT-modeled BNs, it has a limitation. The MF of a
NAT model over an effect e converts each NIN-AND gate into
a hybrid network segment with both directed and undirected
links. Nodes in the segment are located at 3 levels: 0, 1, and
2. Level 0 consists of a single variable x (corresponding to
e). Level 1 consists of variables one per active value of e (a
total of |De|−1). Each of them is connected to x by a directed
link. Hence, the set π of nodes at level 1 are parents of x and
{x}∪π form a family. Level 2 consists of variables one per
input event of the NIN-AND gate. Each node at level 2 is
connected to each node in level 1 by a undirected link. There
are no links between nodes at the same level, and nor between
level 2 and 0. Each undirected link between levels 2 and 1 is
quantified by a link potential. The single family is quantified
by a potential over {x}∪ π . Since |π| is linear in |De|, the
family potential is exponential in |De|.

We present a framework alternative to MF, which does not
suffer from such exponential components. In NAT models,
input and output of each gate are causal events (Fig. 1 (c)). The
new framework transforms casual events in the NAT model
into regular variables (as those in a BN). Hence, we refer to
the framework as trans-causalization.

The framework consists of three levels of computations: gate
level, NAT level, and BN level. The gate level computation
converts each NIN-AND gate into a BN segment by intro-
ducing a probabilistic auxiliary variable for each input event
of the gate. These auxiliary variables become children of the
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causes in the input events, and parents of the effect variable.
The CPT of each auxiliary variable is probabilistic, while the
CPT of the effect is deterministic.

The NAT level computation operates on each NAT Model
over a BN family. After a BN segment is created for each NIN-
AND gate in the NAT, the segments are merged into the BN
segment of the NAT model, such that it encodes CPT of the
NAT model exactly. If an NIN-AND gate feeds into another
in the NAT, its effect variable is replaced with a quasi-effect
variable. To ensure exactness of the BN segment CPT while
maximizing efficiency, the domain of quasi-effect may differ
from that of effect e, depending on location of the gate in the
NAT. CPT of the quasi-effect is altered accordingly.

The BN level computation operates on a NAT-modeled BN.
For each BN family over an effect e and parents c1, ...,cn
whose dependency is encoded as a NAT model, create the BN
segment as above. Delete the link from each ci to e in the
BN, and reconnect the family by the BN segment of the NAT
model. The resultant is a trans-causalized BN, which encodes
the JPD of the NAT-modeled BN exactly.

In subsequent sections, we elaborate the computation at each
level, and establishes the exactness.

IV. TRANS-CAUSALIZATION OF DUAL GATE MODELS

First, we trans-causalize a dual NIN-AND gate model, a
building block of NAT models, into a BN segment whose
general BN structure is shown in Fig. 2 (a). The leaf node is
the effect variable e. The root nodes are cause variables divided
into ω groups, according to the cause partition W1, ...,Wω of
the dual gate model. Each group Wi forms the parent set of
a probabilistic auxiliary variable zi with domain De. The zi
represents impact of Wi to effect e.

Fig. 2. (a) General DAG structure of a SBDu (see Def. 2), where the parent
set of z1 is W1. (b) When each zi has a single parent (θ = 1).

Each Wi includes θi ≥ 1 causes: Wi = {ci1, ...,ciθi}. We
denote θ = maxi θi. When θ = 1, each Wi is a singleton, the
structure degenerates to Fig. 2 (b), and we refer to the BN
segment as the segment with θ = 1. The CPT at zi is

P(zi|ci1, ...,ciθi) =
1, i f zi = e0 and ∀x cix = c0

ix,
P(e j← ci1, ...,cik), i f zi = e j, j > 0,k ≥ 1,

ci1, ...,cik are active, and
ci,k+1, ...,ciθi are inactive.

(3)

The 1st formula says that when all causes in the ith group
are inactive, they cannot render e active. The 2nd formula
expresses the impact to e when some causes in the ith group
are active, where P(e j ← ci1, ...,cik) is from the dual gate
model. Note that given P(e j← ci1, ...,cik) for j > 0, the value

for j = 0 is uniquely derived. When θ = 1, the CPT at zi
becomes the single-causal (SC) CPT:

P(zi|ci) =

{
1, i f zi = e0 and ci = c0

i ,
P(e j← ci), i f zi = e j, j > 0, and ci > c0

i .
(4)

A gate in a NAT has θ = 1, if there exists no upstream
gate in the NAT. However, whenever a gate has one or more
upstream gates, some input event of the gate will involve a
subset Wi of upstream causes, and therefore θ > 1. Hence,
the generality of θ ≥ 1 is needed in the analysis of trans-
causalization of NAT models. This is the case for all BN
segments presented below.

The CPT at e, referred to as a MAX CPT, encodes a MAX
function, where the domain of every variable is De and the
number of αi variables is finite:

P(τ|α1,α2, ...) =

{
1, i f τ = MAX(α1,α2, ...),
0, otherwise. (5)

For the MAX CPT at e, τ is substituted by e and α1,α2, ...
by z1, ...,zω .

Definition 2: Given a dual NIN-AND gate model over e and
C = W1 ∪ ...∪Wω , let G be the DAG derived as Fig. 2, and
CP be the set of CPTs specified by Eqns. (3) and (5). Then
Φ = (C,e,G,CP) is the BN Segment Base for the Dual gate
model, or SBDu.

Theorem 1 shows that the SBDu is probabilistically equiv-
alent to the deriving dual gate model, e.g., that in Fig. 1 (b).

Theorem 1: Let Φ = (C,e,G,CP) be the SBDu of a dual
NIN-AND gate model. Then the CPT PΦ(e|W1, ...,Wω) defined
by marginalized product

∑
z1,...,zω

(
PΦ(e|z1, ...,zω)

ω

∏
i=1

PΦ(zi|ci1, ...,ciθi)
)

is identical to that of the dual gate model.
As presented, Theorem 1 is applicable to the SBDu where

θ ≥ 1. When θ = 1, it says that the SBDu is equivalent to a
dual gate model such as that in Fig. 1 (b). Note that events in
Fig. 1 are causal events, while variables in Fig. 2 are regular
variables. Hence, the name trans-causalization.

V. TRANS-CAUSALIZATION OF DIRECT GATE MODELS

Next, we trans-causalize a direct NIN-AND gate model, the
other building block of NAT models, into a BN segment. The
structure of the BN segment is similar to Fig. 2, with cases
θ > 1 and θ = 1 illustrated in Fig. 3 (a) and (b), respectively.
However, the domain of each zi is Da = {e0, ...,eη ,aaci},

Fig. 3. (a) General DAG structure of a SBDi. (b) When θ = 1.

where an extra value aaci (all above causes inactive) is
added to De. The value aaci is used to signify that all cause
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parents of zi are inactive. It is necessary for implementing
the non-impeding behavior of direct gate (inactive causes do
not impede the function of active causes), as is evident in
Eqn. (8) below. When values of zi are compared, the notational
convention e0 < ... < eη < aaci is assumed.

The CPT at zi is

P(zi|ci1, ...,ciθi) =
1, i f zi = aaci and ∀x cix = c0

ix,
P(e j← ci1, ...,cik), i f zi = e j, j > 0,k ≥ 1,

ci1, ...,cik are active, and
ci,k+1, ...,ciθi are inactive.

(6)

The 1st formula explicitly signifies that all causes in Wi are
inactive. The 2nd formula covers cases where some causes are
active. When θ = 1, the CPT at zi becomes a single-causal-
plus (SC+) CPT, where + signifies the enlarged domain of zi
beyond De:

P(zi|ci) =

{
1, i f zi = aaci and ci = c0

i ,
P(e j← ci), i f zi = e j, j > 0, and ci > c0

i .
(7)

The CPT at e, referred to as PMIN CPT, encodes a pseudo-
MIN (PMIN) function over a finite set of arguments, where
each argument has domain Da (hence, pseudo) and the func-
tion range is De:

PMIN(α1,α2, ...) ={
e0, i f ∀iαi = aaci,
MIN(α ′1, ...,α

′
m), i f α ′1, ...,α

′
m 6= aaci (m > 0).

The PMIN CPT at e is the following:

P(τ|α1,α2, ...) ={
1, i f ∀i αi = aaci∧ τ = e0,
1, i f α ′1, ...,α

′
m 6= aaci (m > 0)∧ τ = MIN(α ′1, ...,α

′
m).

(8)

For the PMIN CPT at e, τ is substituted by e and α1,α2, ...
by z1, ...,zω . We define the BN segment below and establish
its soundness.

Definition 3: Given a direct NIN-AND gate model over e
and C =W1∪ ...∪Wω , let G be the DAG derived as Fig. 3, and
CP be the set of CPTs specified by Eqns. (6) and (8). Then
Φ = (C,e,G,CP) is the BN Segment Base for the Direct gate
model, or SBDi.

Theorem 2 shows that SBDi is probabilistically equivalent
to the deriving direct gate model, e.g., that in Fig. 1 (a).

Theorem 2: Let Φ = (C,e,G,CP) be the SBDi of a direct
NIN-AND gate model. Then the CPT PΦ(e|W1, ...,Wω) defined
by marginalized product

∑
z1,...,zω

(
PΦ(e|z1, ...,zω)

ω

∏
i=1

PΦ(zi|ci1, ...,ciθi)
)

is identical to that of the direct gate model.
Towards the end of proof, if the domain of zi does not

contain value aaci, we would have ∑zi≥ek PΦ(zi|w0
i ) = 0 for

k > 0 and i = m+ 1, ...,ω . As the result, the related product
would be zero (impeding) and be incorrect. This demonstrates
that the standard noisy-MIN is insufficient. Instead, to realize

the non-impeding behavior of the direct NIN-AND gate model,
the enlarged domain of zi and the PMIN CPT are necessary.

Theorem 2 is applicable to the SBDi where θ ≥ 1. When
θ = 1, it says that the SBDi is equivalent to a direct gate model
such as that in Fig. 1 (a).

VI. REDUCTION OF TREE-WIDTH FOR BN SEGMENTS

The cost of inference using a BN is critically dependent on
its tree-width. By reducing tree-widths of BN segments, the
overall tree-width of a BN may also be reduced. We consider
the SBDu first, followed by the SBDi.

A SBDu with θ = 1 has a tree-width of ω (since the tree-
width is one less than the largest cluster size in the best
junction tree, and the cluster size is ω + 1). Below, we take
advantage of the deterministic CPT P(e|z1, ...,zω) by Eqn. (4),
and apply divorcing [21] to reduce tree-width of the segment
from ω to 2. Fig. 4 shows the modified DAG structure. A total
of ω − 2 deterministic auxiliary variables yi are introduced.
When θ = 1 (Fig. 4 (b)), each node has no more than two
parents, and its tree-width is 2.

Fig. 4. (a) General DAG structure of a divorcing segment. (b) When θ = 1.

DSDu We refer to the modified SBDu as the Divorcing
BN Segment for the Dual gate model, or DSDu. The domain
of each zi and each y j is De. The CPT at each zi is specified
by Eqn. (3). The CPT at e and each yi (i = 1, ...,ω − 2) is a
MAX CPT defined by Eqn. (5).

Assume that all cause variables have domain size η +1 as
e. The CPT P(e|z1, ...,zω) of a SBDu has a size of (η+1)ω+1.
On the other hand, for the DSDu, the total size of all CPTs at e
and each yi (i= 1, ...,ω−2) is (ω−1)(η+1)3. For ω =η = 4,
the two sizes are 3125 and 375, respectively.

Although divorcing yields significant space efficiency, it
remains to be shown that P(e|z1, ...,zω) defined by the CPTs
at e and each yi (i = 1, ...,ω − 2) is equivalent to that of the
SBDu. Therefore, we formally justify the equivalence below,
through several lemmas and a theorem. The formal analysis
is extended later to analyze the modified SBDi.

In Lemmas 1 through 4, Φ denotes a SBDu, with MAX CPT
PΦ(e|z1, ...,zω). Ψ denotes the DSDu, associated with CPT

PΨ(e|z1, ...,zω) = ∑
y1,...,yω−2

Q(z1, ...,zω ,y1, ...,yω−2,e), (9)

where the function Q(.) is

Q(z1, ...,zω ,y1, ...,yω−2,e) =

PΨ(y1|z1,z2)

(
ω−2

∏
i=2

PΨ(yi|yi−1,zi+1)

)
PΨ(e|yω−2,zω).
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Lemmas 1 and 2 establish conditions where Q(.) = 1
and Q(.) = 0. Lemmas 3 and 4 justify when probability
PΨ(e|z1, ...,zω) = 1 and when PΨ(e|z1, ...,zω) = 0.

Lemma 1: For any tuple t = (z1, ...,zω ,y1, ...,yω−2,e),
Q(t) = 1 iff y1 = MAX(z1,z2), · · · ,yω−2 = MAX(z1, ...,zω−1),
and e = MAX(z1, ...,zω).

Lemma 2 shows the condition where Q(.) = 0.
Lemma 2: For any tuple t = (z1, ...,zω ,y1, ...,yω−2,e), we

have Q(t) = 0 if one of the following does not hold:

y1 = MAX(z1,z2), ..., yω−2 = MAX(z1, ...,zω−1),

e = MAX(z1, ...,zω).

The condition where probability PΨ(e|z1, ...,zω) = 1 is es-
tablished in Lemma 3.

Lemma 3: For any tuple (z1, ...,zω ,e), we have
PΨ(e|z1, ...,zω) = 1, if and only if e = MAX(z1, ...,zω).

Lemma 4 justifies when probability PΨ(e|z1, ...,zω) = 0.
Lemma 4: For any tuple (z1, ...,zω ,e) such that e 6=

MAX(z1, ...,zω), we have PΨ(e|z1, ...,zω) = 0.
Theorem 3 establishes that a DSDu is probabilistically

equivalent to the deriving dual gate model.
Theorem 3: Let Ψ be the DSDu of a dual NIN-AND gate

model, and PΨ(e|z1, ...,zω) be defined by CPTs in Ψ. Then
the CPT PΨ(e|W1, ...,Wω) defined by marginalized product

∑
z1,...,zω

(
PΨ(e|z1, ...,zω)

ω

∏
i=1

PΨ(zi|ci1, ...,ciθi)
)

equals P(e|W1, ...,Wω) of the dual gate model.
DSDi Next, we apply divorcing to the SBDi. We refer

to the modified segment as the Divorcing BN Segment for the
Direct gate model, or DSDi. Its DAG structure is the same
as Fig. 4. However, the domain of each zi and each y j is Da
(including aaci). The CPT P(e|z1, ...,zω) of a SBDi has a size
of (η +1)(η +2)ω . For the DSDi, the total size of all CPTs
at e and each yi (i = 1, ...,ω − 2) is (ω − 2)(η + 2)3 +(η +
1)(η +2)2. For ω = η = 4, the two sizes are 6480 and 612,
respectively.

The CPT at each zi is the same as SBDi, i.e., by Eqn. (6).
The CPT at e is a PMIN CPT defined by Eqn. (8), where
condition variables are yω−2 and zω . When one of yω−2 and
zω is not aaci, the MIN function is trivialized.

The CPT at each yi (i= 1, ...,ω−2), referred to as a PMIN+

CPT, encodes the pseudo-MIN-plus (PMIN+) function:

PMIN+(α1,α2) ={
aaci, i f αi = aaci (i = 1,2),
MIN(α ′1,α

′
m), i f α ′1,α

′
m 6= aaci (m > 0),

where + signifies function range with aaci. When m = 1, the
MIN function is trivial. The PMIN+ CPT at each yi is the
following, where τ is substituted by yi, and αi are substituted
by parents of yi:

P(τ|α1,α2) ={
1, i f αi = aaci (i = 1,2)∧ τ = aaci,
1, i f α ′1,α

′
m 6= aaci (m > 0)∧ τ = MIN(α ′1,α

′
m).

(10)

The 1st formula signifies that all causes above yi are
inactive, so that the non-impeding behavior of a direct gate
model is enabled.

Next, we analyze soundness of a DSDi Ψ, applying tech-
niques in proving Lammas 1 through 4 and Theorem 3 on dual
gate models. We consider PΨ(e|z1, ...,zω) defined by divorcing
CPTs at e and yi according to Eqn. (9) (similarly as DSDu).
Theorem 4 establishes that PΨ(e|z1, ...,zω) is equivalent to that
of the SBDi, and hence a DSDi is probabilistically equivalent
to the direct gate model.

Theorem 4: Let Ψ be the DSDi of a direct NIN-AND gate
model, and PΨ(e|z1, ...,zω) be defined by CPTs in Ψ. Then
the CPT PΨ(e|W1, ...,Wω) defined by marginalized product

∑
z1,...,zω

(
PΨ(e|z1, ...,zω)

ω

∏
i=1

PΨ(zi|ci1, ...,ciθi)
)

equals P(e|W1, ...,Wω) of the direct gate model.

VII. TRANS-CAUSALIZATION OF NAT MODELS

A. Interfacing BN Segments of Gate Models

A NAT model generally consists of multiple NIN-AND
gates organized into a tree. To trans-causalize a general NAT
model, we create a BN segment for each gate and merge the
segments into the BN segment of the NAT model, such that it
encodes exactly the CPT of the NAT model. If an NIN-AND
gate feeds into another in the NAT model, its effect variable
is replaced with a quasi-effect variable.

Consider the NAT in Fig. 5 (a), where labels of causal events
have been simplified (e.g., input events to gates) or omitted
(e.g., output events). Suppose that the leaf gate g2 is dual.
Then g1 is direct (since types of gates alternate by levels in
a NAT). The BN segment of the NAT is shown in (b). The
BN segment of g1 consists of cause variables ci (i = 1,2,3),
probabilistic auxiliary variables zi (i = 1,2,3), deterministic
auxiliary variable y1, and quasi-effect variable q. This segment
is a DSDi (θ = 1), except that the variable e is renamed as q.

Fig. 5. (a) A NAT. (b) BN segment produced by trans-Causalization.

The BN segment of g2 consists of cause variables ci (i =
4,5), quasi-effect variable q as an input from g1, probabilistic
auxiliary variables z j ( j = 4,5), deterministic auxiliary variable
y2, and effect variable e. This segment is a DSDu (θ = 1),
except that the quasi-effect variable q is treated in the same
way as probabilistic auxiliary variables z j ( j = 4,5).

Next, suppose that the leaf gate g2 is direct and g1 is dual.
The BN segment of the NAT is also structured as Fig. 5 (b).
However, the DSDu cannot be directly applied to dual gate
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g1 and must be modified: In the DSDu, auxiliary variables zi
and yi, as well as the effect e, have the domain De. This is
no longer applicable, since g1 is not the leaf gate, and feeds
into the direct gate g2. To support non-impeding behavior of
the direct gate, domains of zi, yi, and quasi-effect q have to be
enlarged into Da. Due to this enlargement, SC CPTs cannot
be applied to zi (i= 1,2,3), and MAX CPTs cannot be applied
to y1 and q.

DEDu The above situation arises whenever a dual gate
feeds into a direct gate in a NAT. Hence, a new BN segment
is needed. We refer to the segment as the Divorcing Enhanced
BN segment for the Dual gate model, or DEDu. Its auxiliary
variables zi and yi have the domain Da. Since its leaf variable
is always a quasi-effect (instead of effect), we denote by q in
general, and the domain of q is also Da.

In a DEDu, auxiliary variables zi adopt CPTs by Eqn. (6).
For instance, zi,z2,z3 in the example adopt SC+ CPTs
(Eqn. (7)). A new form of CPT is needed for y1 and q. It
is referred to as PMAX+ CPTs, and encodes the following
pseudo-MAX-plus (PMAX+) function, where domains of each
argument and the function range are Da:

PMAX+(α1,α2) ={
aaci, i f αi = aaci (i = 1,2),
MAX(α ′1,α

′
m), i f α ′1,α

′
m 6= aaci (m > 0).

The PMAX+ CPTs at y1 and q are the following:

P(τ|α1,α2) ={
1, i f αi = aaci (i = 1,2)∧ τ = aaci,
1, i f α ′1,α

′
m 6= aaci (m > 0)∧ τ = MAX(α ′1,α

′
m).

(11)

The BN segment of the direct leaf gate g2 is a DSDi (θ = 1),
except that the quasi-effect q is treated in the same way as
auxiliary variables z4 and z5.

B. Enhanced BN Segments for Gate Models

We establish soundness of a DEDu Ψ, where PΨ(q|z1, ...,zω)
is defined similarly to Eqn. (9). Lemma 5 asserts the behavior
of divorcing CPTs in a DEDu.

Lemma 5: Let Φ be a SBDu, PΦ(e|z1, ...,zω) be its MAX
CPT, and Ψ be the corresponding DEDu. The following CPT
defined by Ψ satisfies

PΨ(q|z1, ...,zω) ={
1, i f q = aaci ∧ ∀i zi = aaci,
PΦ(e|z1, ...,zω), i f ∃i zi 6= aaci.

Theorem 5 establishes probabilistic equivalence between a
DEDu and the dual gate model.

Theorem 5: Let Ψ be the DEDu of a dual NIN-AND gate
model, and PΨ(q|z1, ...,zω) be defined by CPTs in Ψ. Then
the CPT PΨ(q|W1, ...,Wω) defined by marginalized product

∑
z1,...,zω

(
PΨ(q|z1, ...,zω)

ω

∏
i=1

PΨ(zi|ci1, ...,ciθi)
)

equals P(e|W1, ...,Wω) of the dual gate model when some Wi
are active, and PΨ(q = aaci|W1, ...,Wω) = 1 when all Wi are
inactive.

DEDi Similarly to the need for DEDu when dual gates
feed into direct gates, a BN segment other than DSDi is needed
when a direct gate feeds into a dual gate expressed as DEDu.
The domain of zi variables in DEDu is Da, while the domain
of leaf variable in DSDi is De: incompatible.

We refer to the new segment as the Divorcing Enhanced
BN segment for the Direct gate model, or DEDi. Its auxiliary
variables zi and yi have the domain Da. Its leaf variable is
always a quasi-effect (instead of effect), and we denote by q
in general, and the domain of q is also Da.

In a DEDi, zi variables adopt CPTs of Eqn. (6), and when
θ = 1, SC+ CPTs of Eqn. (7). Variables yi and q adopt PMIN+

CPTs of Eqn. (10).
Theorem 6 establishes probabilistic equivalence between a

DEDi and the dual gate model.
Theorem 6: Let Ψ be the DEDi of a direct NIN-AND gate

model, and PΨ(q|z1, ...,zω) be defined by CPTs in Ψ. Then
the CPT PΨ(q|W1, ...,Wω) defined by marginalized product

∑
z1,...,zω

(
PΨ(q|z1, ...,zω)

ω

∏
i=1

PΨ(zi|ci1, ...,ciθi)
)

equals P(e|W1, ...,Wω) of the direct gate model when some Wi
are active, and PΨ(q = aaci|W1, ...,Wω) = 1 when all Wi are
inactive.

C. BN Segments for NAT Models and Their Soundness

As seen from above, BN segments of NIN-AND gates need
to be assigned based on their relative location in the NAT. The
leaf gate of the NAT is at level 1. A gate that feeds into the
leaf gate is at level 2, and so on. In Fig. 5 (a), g2 is at level
1 and g1 is at level 2.

In general, we set the BN segment of a gate model by
Table I. It also summarizes domains of auxiliary (probabilis-
tic and deterministic), quasi-effect, and effect variables. The
quasi-effect column refers to effect at level 1.

TABLE I
SUMMARY OF VARIABLE DOMAINS

Level Gate Seg. Aux. var. Quasi-effect
1 Dual DSDu De De

Direct DSDi Da De
2 Dual DEDu Da Da

Direct DSDi Da De
3+ Dual DEDu Da Da

Direct DEDi Da Da

Note that variable domains in DSDu (level 1) and DSDi
(levels 1 and 2) are smaller (De ⊂Da). It is possible to adopt
the larger domain Da for all zi, yi, q, e variables in all gate BN
segments. We would have only two types of BN segments,
one for each type of NIN-AND gates. We have chosen to
keep the variable domains as small as possible, while ensuring
non-impeding behavior of NIN-AND gates. Although it leads
to two extra types of BN segments and more sophisticated
analysis, it ensures the best possible space efficiency and the
inference efficiency (evaluated below).

The CPTs for auxiliary, quasi-effect, and effect variables
in relation to type and level (L) of the gate, and its BN
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segment are summarized in Table II. As shown in the above
analysis, these CPTs are chosen to maintain exactness of CPTs
relative to the corresponding gate model, including ensuring
non-impeding behavior of NIN-AND gates downstream in the
NAT.

TABLE II
SUMMARY OF VARIABLE CPTS

L Gate Seg. Prob. aux. Deter. aux. Quasi-effect
1 Dual DSDu SC CPT MAX CPT MAX CPT

Direct DSDi SC+ CPT PMIN+ CPT PMIN CPT
2 Dual DEDu SC+ CPT PMAX+ CPT PMAX+ CPT

Direct DSDi SC+ CPT PMIN+ CPT PMIN CPT
3+ Dual DEDu SC+ CPT PMAX+ CPT PMAX+ CPT

Direct DEDi SC+ CPT PMIN+ CPT PMIN+ CPT

We show below that the BN segment of the NAT model so
integrated ensures the exact P(e|c1, ...,cn) of the NAT model.
We demonstrate the exactness empirically in Section IX.

Theorem 7: Let Ψ be the BN segment of a NAT model
over e and c1, ...,cn, integrated from DSDu, DSDi, DEDu,
and DEDi of gate models with θ = 1. Let PΨ(e|c1, ...,cn)
be obtained by marginalizing out all auxiliary and quasi-
effect variables from the product of all CPTs in Ψ. Then
PΨ(e|c1, ...,cn) equals P(e|c1, ...,cn) of the NAT model.

Proof: We prove by induction on the number of levels L of
the NAT. As base cases, we consider L = 1 and L = 2. When
L = 1, the NAT has a single gate. If the gate is dual, Ψ is a
DSDu, and the result follows from Theorem 3. If the gate is
direct, Ψ is a DSDi, and the result follows from Theorem 4.

Suppose L = 2. If the leaf gate is dual, every gate at level 2
is direct. The leaf gate is assigned a DSDu (Table I), denoted
by Λ. Each direct gate is assigned a DSDi (Table I). We prove
the result by converting Ψ into an equivalent single DSDu.

Without losing generality, let ∆ be the DSDi of a direct
gate model over causes c1, ...,cm (m < n), where θ = 1 by
assumption. Denote the leaf variable of ∆ by q. As ∆ feeds
into Λ through quasi-effect q, we replace ∆ in Ψ by making
c1, ...,cm the root parents of q, and assigning q the CPT
P∆(q|c1, ...,cm). This is illustrated in Fig. 6, where the BN
segment of NAT in Fig. 5 is reproduced in Fig. 6 (a), and
replacement relative to the BN segment of g1 is shown in (b).

Fig. 6. (a) BN segment of NAT in Fig. 5. (b) Replacing gate BN segment.

By Theorem 4, P∆(q|c1, ...,cm) equals P(e|c1, ...,cm) of the
direct gate model. Hence, this replacement does not alter
PΨ(e|c1, ...,cn). Repeating the above for each DSDi in Ψ,
eventually Ψ becomes a single DSDu where θ > 1, and

PΨ(e|c1, ...,cn) is invariant. By the above argument on L = 1,
the result follows.

Continue with L = 2. If the leaf gate is direct, every gate
at level 2 is dual. The leaf gate is assigned a DSDi, denoted
by Λ. Each dual gate is assigned a DEDu (Table I). Let ∆

be the DEDu of a dual gate model over c1, ...,cm (m < n),
where θ = 1, and its leaf variable be q. We replace ∆ in Ψ

by making c1, ...,cm the root parents of q, and assigning q the
CPT P∆(q|c1, ...,cm).

Since Λ is a DSDi, when c1, ...,cm become root parents of q,
to maintain PΨ(e|c1, ...,cn), PΛ(q|c1, ...,cm) should be specified
according to Eqn. (6). By Theorem 5 on DEDu, if some cause
in c1, ...,cm are active, P∆(q|c1, ...,cm) equals P(e|c1, ...,cm)
of the dual gate model. If all c1, ...,cm are inactive, P∆(q =
aaci|c1, ...,cm) = 1. Hence, P∆(q|c1, ...,cm) behaves exactly as
specified by Eqn. (6). It follows that the above replacement
does not alter PΨ(e|c1, ...,cn). Repeating the replacement for
each DEDu in Ψ, eventually Ψ becomes a single DSDi where
θ > 1, and PΨ(e|c1, ...,cn) is invariant. By the above argument
on L = 1, the result follows.

Assume that the theorem holds for L≤ k, where k≥ 2. We
consider L = k+1, i.e., L≥ 3.

If gates at level L are dual, by Table I, each is assigned a
DEDu where θ = 1, and feeds into a DSDi (L = 3) or DEDi
(L> 3). Consider one pair, where the DSDi or DEDi is denoted
by Λ, and the DEDu is denoted by ∆. Let ∆ feed into Λ by
quasi-effect q.

We replace ∆ (in Ψ) by making its cause variables,
say, c1, ...,cm, the root parents of q, and assigning q the
CPT P∆(q|c1, ...,cm). Since Λ is a DSDi or DEDi, when
c1, ...,cm become root parents of q, to maintain PΨ(e|c1, ...,cn),
PΛ(q|c1, ...,cm) should be specified according to Eqn. (6).
By Theorem 5 on DEDu, P∆(q|c1, ...,cm) behaves exactly as
specified by Eqn. (6). Hence, the replacement does not alter
PΨ(e|c1, ...,cn). Repeating the above for each DEDu at level
L in Ψ, eventually the number of levels of Ψ is reduced to k,
and PΨ(e|c1, ...,cn) is invariant. By the inductive assumption,
the result follows.

If gates at level L are direct, each is assigned a DEDi where
θ = 1, and feeds into a DEDu (Table I). Consider one pair,
where the DEDu is denoted by Λ, the DEDi by ∆, and ∆ feeds
into Λ by quasi-effect q.

We replace ∆ by making its cause variables, say, c1, ...,cm,
the root parents of q, and assigning q the CPT P∆(q|c1, ...,cm).
Since Λ is a DEDu, when c1, ...,cm become root parents of q,
to maintain PΨ(e|c1, ...,cn), PΛ(q|c1, ...,cm) should be specified
by Eqn. (6). By Theorem 6 on DEDi, P∆(q|c1, ...,cm) behaves
exactly as specified by Eqn. (6). Hence, the replacement
does not alter PΨ(e|c1, ...,cn). Repeating the above for each
DEDi at level L in Ψ, eventually the number of levels of
Ψ is reduced to k, while PΨ(e|c1, ...,cn) is invariant. By the
inductive assumption, the result follows. �

VIII. TRANS-CAUSALIZATION OF NAT-MODELED BNS

Consider a NAT-Modeled BN over a set V of variables with
the DAG D. Each variable with up to 2 parents is assigned a
Tabular CPT, collected in a set TC. The family of each variable
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with 3 or more parents is a NAT Model, collected in set NM.
We denote the NAT modeled BN by Γ = (V,D,TC,NM).

To trans-causalize Γ, for each NAT model in NM (child
e plus parents c1, ...,cn), delete the link from each ci to e
in D, reconnect the family by the BN segment of the NAT
model, and assign CPT to each variable in the segment (except
c1, ...,cn) by Table II. Let W be the set of all auxiliary and
quasi-effect variables added through the operation. Let D′ be
the resultant DAG over the set V ∪W of nodes. Let NC be
the set of all New CPTs assigned by Table II. We denote the
trans-causalized BN by Ω = (V ∪W,D′,TC,NC).

Consider an example NAT-modeled BN Γ in Fig. 7, where
the NAT model over family of v8 is shown with simplified
labeling, and all variables are ternary. The gate g3 is direct,
and g1 and g2 are dual.

Fig. 7. (a) DAG of NAT-model BN. (b) NAT-model over family of v8.

The trans-causalized BN Ω from Γ is shown in Fig. 8. For
causes vi (i = 1, ...,7) in that order, the probabilistic auxiliary
variables are x10, x16, x11, x20, x17, x21, x18, respectively. For
gate g2, the quasi-effect is q13. For gate g1, the deterministic
auxiliary variable is y19 and the quasi-effect is q12. For gate
g3, the deterministic auxiliary variables are y14 and y15.

Suppose that all variables in Γ are ternary. If for each NAT
model in Γ, variable e is assigned an equivalent tabular CPT,
the resultant BN has 6642 numerical parameters (values in all
CPTs). On the other hand, Ω has 489 parameters.

Theorem 8 establishes that the trans-causalized BN is an
exact representation of the NAT modeled BN.

Theorem 8: Let Γ = (V,D,TC,NM) be a NAT modeled BN,
and Ω = (V ∪W,D′,TC,NC) be the trans-causalized BN from
Γ. Let PΓ(V ) be the joint probability distribution (JPD) of Γ,
and PΩ(V,W ) be the JPD of Ω. Then

∑
w∈W

PΩ(V,W ) = PΓ(V ).

Fig. 8. Trans-causalization of NAT-modeled BN in Fig. 7 (a).

Theorem 8 shows that trans-causalization of a NAT-modeled
BN is a systematic way to introduce hidden variables, which
improves space efficiency, eliminates representational hetero-
geneity in NAT-modeled BNs, while preserving the JPD over
variables of the BN. Therefore, probabilistic inference with
trans-causalized BNs can be performed using any standard
inference algorithm. As long as only observations over vari-
ables in V are entered (as W is made of hidden variables that
are unobservable), any posteriors over unobserved variables
in V are exact. In Section IX, we demonstrate that posterior
marginals thus computed are exact as computed from the
original NAT-modeled BNs.

We consider space complexity of trans-causalized BNs. Let
Γ = (V,D,TC,NM) be a NAT modeled BN, and Ω be the
trans-causalized BN from Γ. Denote the number of variables
by N = |V |, the largest domain size of variables by κ , and the
largest number of parents per variable by n.

The number of NAT models in Γ is O(N). After trans-
causalization with divorcing, a variable of n parents is replaced
by n− 1 variables each of two parents and n variables each
of one parent. For example, the BN in Fig. 7 (a) has a single
NAT model over the family of v8 with 7 parents. Hence, v8
is replaced by 6+7 variables of smaller families, growing the
total number of variables in the BN from 10 to 10−1+13= 22
in Fig. 8. The total size of all CPTs in the BN segment is
O((n− 1) κ3 + n κ2) = O(n κ3). The space complexity of
Ω is then O(N n κ3). In comparison, if a BN is obtained
from Γ by converting each NAT model into a tabular CPT, its
space is O(N κn). For N = 100, κ = 4, and n = 10, we have
N n κ3 = 64,000, and N κn = 104,857,600.

IX. EXPERIMENTS

We evaluated trans-causalization empirically through several
experiments. Each experiment is conducted on an extensive
collection of NAT models or NAT-modeled BNs. To keep
this section concise, we report results from a subset of cases
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evaluated in each experiment, which are representative of the
corresponding collection.

The 1st experiment compares space of a NAT model CPT
expressed as table, against total spaces of all CPTs when it is
trans-causalized with and without parent divorcing. The spaces
are measured by the number of numerical parameters, and are
labeled as TAB, TPD (with), and TRC (without), respectively.
TAB refers to TABular, TRC refers to TRans-Causal, and TPD
refers to Trans-causalization with Parent Divorcing. We report
results when numbers of causes per NAT model are n = 5,11,
and uniform domain sizes of causes and effect per NAT model
are κ = 5,7, with 30 random NAT topologies per combination
of (n,κ). These amount to evaluation of 2 ∗ 2 ∗ 30 = 120
distinctly structured NAT models.

Figs. 9 and 10 show spaces in log10. TAB space is com-
pletely determined by (n,κ), and is constant. TRC space is
sensitive to NAT topology, and is often less than TAB space.
This demonstrates the effectiveness of trans-causalization. For
some NATs, TRC space is slightly more than TAB space. For
instance, the 11th TRC space for (n = 11,κ = 7) is more than
the TAB space, whose NAT has two gates and one of them
has 10 inputs. TPD space is only slightly sensitive to NAT
topology and further improves upon TRC space. In Section X,
we discuss further the relation between trans-causalization and
parent divorcing.

Fig. 9. TAB, TRC, and TPD spaces with κ = 5.

Fig. 10. TAB, TRC, and TPD spaces with κ = 7.

TPD space is always the most efficient among the three.
When κ is fixed, TPD space becomes more efficient than
TAB as n grows (compare their difference in Fig. 10 in the
left with that in the right). The same trend holds when n is
fixed and κ grows. This can be seen by comparing TAB-
TPD difference in Fig. 9 (left) with that in Fig. 10 (left). On
average, the TAB/TPD ratio for (n = 5,κ = 7) is 3.19 times
as high as that for (n = 5,κ = 5). For n = 11 ( Fig. 9 (right)
versus Fig. 10 (right)), on average, the TAB/TPD ratio for
(n= 11,κ = 7) is 1.62 times as high as that for (n= 11,κ = 5).
Hence, TPD becomes more advantageous as (n,κ) scale up.
For (n = 11,κ = 7), TPD space is 5 orders of magnitude more
efficient than TAB space. In the remaining experiments, our

implementation of trans-causalization is always enhanced with
parent divorcing.

The 2nd experiment evaluates the impact of trans-
causalization on inference efficiency, where the inference
method is LP. We simulated NAT-modeled BNs with 100
variables per BN. We report results where the maximum
number of parents per variable in each BN is bounded at m =
10,12, respectively. The uniform domain size of all variables
is controlled as κ = 2,3, respectively. The structural density
of BNs is controlled by adding w = 5,15,25,35,45,55% of
links to a singly connected network, respectively. For each
(m,κ,w) combination, we simulated 10 BNs. This amounts to
2×2×6 = 24 distinct (m,κ,w) combinations and 240 NAT-
modeled BNs. We limit the structural density to w = 55 as
inference times of the two alternative methods (see below)
tend to converge beyond w = 55.

For each NAT-modeled BN, we created a normalized BN
(NM-BN) where each NAT model is expanded into a tabular
CPT, and a trans-causalized BN (TC-BN). Both NM-BN
and TC-BN are compiled for LP, conditioned on the same
observation over 10% of randomly selected variables. For
each pair of NM-BN and TC-BN, LP resulted in identical
posterior marginals, which empirically verifies exactness of
trans-causalization. LP runtimes using a desktop of 3.4 GHz
clock speed, are summarized in Fig. 11, where legends are
identical.

Fig. 11. LP runtimes (msec in log10) for NM-BNs and TC-BNs.

The inference computation becomes more expensive as
m, κ and w grow. For sparse BN structures, as inference
becomes harder, TC-BNs become more advantageous than
NM-BNs. For instance, with w = 5, as m and κ grow, the
runtime by TC-BNs become significantly less than NM-BNs.
At (m = 12,κ = 3,w = 5), LPs with TC-BNs are two orders
of magnitude fasters than NM-BNs.

Furthermore, as m and κ grow, the range of structural
densities where TC-BNs are more efficient than NM-BNs
grows as well. For instance, for (m = 10,κ = 3), TC-BNs and
NM-BNs tie in runtime around w = 45. As m grows to 12, the
corresponding structural density grows to w = 55.
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The 3rd experiment evaluates the impact of trans-
causalization on inference efficiency, where the inference is
performed through SPNs [17], [18]. Each simulated NAT-
modeled BN has 100 variables. We report results where the
maximum number of parents per variable m, the uniform
domain size of all variables κ , and the structural density
w are controlled as m = 6,8,10,12, κ = 2,3, and w =
5,10,15,20,25,30%, respectively. For each (m,κ,w) combi-
nation, we simulated 10 BNs. This amounts to 4×2×6 = 48
distinct (m,κ,w) combinations and 480 NAT-modeled BNs.

Each NAT-modeled BN is converted into a trans-causalized
BN (TC-BN), and a multiplicatively factorized NAT-modeled
BN (MF-BN) [14]. The TC-BN is compiled for inference by
LP, and also compiled into a SPN for inference. The MF-BN is
only compiled for LP. Hence, each NAT-modeled BN is subject
to 3 alternative combinations of runtime representation and
inference method, all conditioned on the same observation over
10% of randomly selected variables. We refer to corresponding
runtimes as TC-LP, TC-SPN, and MF-LP, respectively. We
control the structure density at w = 30 due to an exponential
growth of SPN compilation time. For instance, other parame-
ters being identical, when w = 35, compilation of the BN into
SPN often took over two hours, whereas the compilation times
for TC-LP and MF-LP took at most a minute.

Fig. 12. Runtimes of MF-LP (mf), TC-LP (tc), and TC-SPN (spn), where
κ = 2.

Figs. 12 and 13 show runtimes (msec) in log10. For sparse
BN structures (e.g., w = 5,10), MF-LP and TC-SPN runtimes
are comparable, but each is generally less than TC-LP runtime.

Fig. 13. Runtimes of MF-LP, TC-LP, and TC-SPN, where κ = 3.

As BN structures become denser, TC-SPN inference becomes
more efficient than MF-LP and TC-LP inference. Furthermore,
as κ grows from 2 to 3, variability in runtime grows for
all methods, and TC-SPN inference gains further advantage
against the competing methods. At (m= 12,κ = 3,w= 30), the
upper runtime of TC-SPN inference is an order of magnitude
less than that of TC-LP inference, and two orders of magnitude
less than that of MF-LP inference.

As the focus of the experiment is to compare performance
of trans-causalized BNs with competitive alternatives, we did
not include MF-SPN and NM-BN in the experiment, which
should not affect the results. For readers interested in relative
performance of MF-SPN and MF-LP, it is expected that MF-
SPN will be more efficient than MF-LP. The reason is that
potentials introduced during multiplicative factorization of
NAT-modeled BNs contain a sufficient amount of extreme
probability values, and can be explored by MF-SPN. For
comparison between TC-SPN and NM-BN by LP, from the
superior performance of TC-SPN over TC-LP, and that of TC-
BN over NM-BN in the 2nd experiment, it follows that TC-
SPN expects a superior performance over NM-BN by LP. For
NM-BN by SPN, a performance similar to NM-BN by LP is
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expected, since NM-BN does not contain a sufficient amount
of extreme probability values.

The 4th experiment compares efficiency of inference with
trans-causalized BNs and that with multiplicatively factorized
NAT-modeled BNs. Since the space complexity for the later is
exponential on the domain size of the effect variable [14], the
main parameter we control in the experiment is domain size κ .
NAT-modeled BNs are simulated with 100 variables each. We
fix m = 8,w = 15 and vary κ in the range κ = 2,4,6. For each
(m,κ,w) combination, we simulated 10 BNs. This amounts to
a total of 30 BNs.

Each NAT-modeled BN is converted into a trans-causalized
BN (TC-BN), and a multiplicatively factorized NAT-modeled
BN (MF-BN). The TC-BN is compiled into a SPN for infer-
ence, and the MF-BN is compiled for LP, which we refer
to below as TC-SPN inference and MF-LP inference. For
each NAT-modeled BN, the 2 alternative inference methods
were run, conditioned on the same observation over 10% of
randomly selected variables. This amounts to a total of 60
inference runs.

Fig. 14. Runtimes of MF-LP and TC-SPN, where m = 8,w = 15.

Fig. 14 shows runtimes (msec) in log10. At κ = 2, runtimes
are similar between MF-LP and TC-SPN. As κ increases to
κ = 4,6, the advantage of TC-SPN over MF-LP becomes clear.
At κ = 6, TC-SPN is on average 7.2 times as fast as MF-LP.
This demonstrates that trans-causalizing NAT-modeled BNs is
superior than multiplicatively factorizing NAT-modeled BNs
when effect variables have larger domains. Since the space
complexity of TC-BN is polynomial (Section VIII) while that
of MF-BN is exponential on the domain size of the effect
variable [14], the result confirms that the qualitative difference
extends to the time complexity of inference.

Although we did not include MF-SPN in this experiment,
the polynomial versus exponential space complexity between
TC-BN and MF-BN expects a weaker performance of MF-
SPN relative to TC-SPN, at least during SPN compilation,
and likely also during inference.

X. DISCUSSION AND CONCLUSION

A. Discussion on Representational Issues

We discuss issues on how NAT models relate to other CIMs
which are of interest to readers. First, we consider the repre-
sentation of uncertain causal relations. At least 3 alternative
approaches can be identified. Pearl [1] presents noisy-OR with

deterministic causes whose activeness guarantees activation of
the effect. The uncertainty lies in the inhibitor associated with
each cause. The inhibitor is active probabilistically and when
it is active, the causation is blocked. A second approach is to
introduce auxiliary variables one per cause as the intermediate
effect, and to combine them into the final effect, e.g., [22].
The third approach is to model causes directly as being
uncertain, which render the effect active probabilistically, and
to use causal events as the basis of representation. This is
the approach taken by recursive noisy-OR [7] and the NAT
models.

There are often alternative formalisms for representing a
given entity. For instance, factorized probabilistic knowledge
can be represented by BNs, Markov networks, chain graphs,
among others. Even BNs can be encoded through DAG
structures, junction tree structures, or sum-product networks.
Each of the formalism has its advantages and limitations. This
is the same regarding representational approaches of CIMs:

An essential strength of NAT models is to be able to express
both reinforcing and undermining causal interactions, as well
as their recursive mixture, thus generalizing the commonly
applied noisy-OR, noisy-MAX, and DeMorgan. Using uncer-
tain causes, causal success, and causal failure as the basis of
representation are not only intuitive, but also transparent with
respect to the reinforcing and undermining causal interactions.
For instance, in Fig. 7 (b), it is immediately clear that V2
and V6 are undermining each other since their common gate
is g3 which is direct. Similarly, V2 and V7 are reinforcing
since their common gate is g1 which is dual. Furthermore, no
inhibitors nor auxiliary variables are needed, making the NAT
model representation arguably easier to comprehend. However,
the NAT models are not directly compatible with the BN
structures, which motivates this work on trans-causalization.

On the other hand, the approach based on auxiliary variables
(2nd approach above) is compatible with the normal BN
structure and d-separation. As can be seen, trans-causalization
is based on introducing such auxiliary variables. Therefore,
trans-causalization can be viewed as bridging the 2nd and 3rd
approaches in NAT model representation. However, although
trans-causalization makes a NAT-modeled BN compatible with
a normal BN, some representational advantages of native NAT
models are lost. For instance, it is impossible to use Fig. 8
to decide the causal interaction between V2 and V6. More
importantly, the semantics of causal interactions by reinforcing
and undermining will be completely lost from the trans-
causalized structure. It is also unintuitive that auxiliary and
quasi-effect variables sometimes have the same domain as the
effect, but other times must add the aaci value to the domain
(Table I).

As our analysis shows, NAT-modeled BNs are equivalent to
their trans-causalization. One may ask whether NAT-models
should be defined in the trans-causalized version. As the native
representation, we believe that intuitiveness and comprehen-
sibility are more important, and NAT-models are defined in a
way that serves these purposes well.

We presented trans-causalization and its enhancement by
divorcing. An interesting question arises whether divorcing
should be an essential element of trans-causalization rather
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than an enhancement. The 1st experiment in Section IX
shed some light. The result clearly demonstrates that trans-
causalization, as we defined, works on its own, and divorcing
is indeed an enhancement.

B. Conclusion

The main contribution of this work is the novel trans-
causalization framework, by which a NAT-modeled BN is
converted into a trans-causalized BN for inference computa-
tion. We formally establish that trans-causalization of BNs is
exact. While the space complexity of BNs with tabular CPTs
is exponential on the number of causes per effect variable (BN
family sizes), and the space complexity of multiplicatively fac-
torized NAT-modeled BNs is exponential on the domain size
of effect variables, the space complexity of trans-causalized
BNs is polynomial.

Trans-causalization gains the space efficiency by causal
independence between causes of the same NIN-AND gate, as
well as causal independence between causes of different gates
in the same NAT. The space efficiency is further enhanced with
divorcing by exploiting the deterministic CPTs at quasi-effect
variables.

The above formal contributions are further enhanced by
several empirical results. First, the superior space property of
trans-causalized BNs is demonstrated as both BN family sizes
and variable domain sizes scale up. Second, we demonstrated
that inference with trans-causalized BNs is significantly more
efficient than regular BNs (up to 2 orders of magnitude
faster) for a range of sparse structural densities. Third, our
comparison of TC-SPN, TC-LP, and MF-LP inference showed
that, for denser BN structures and larger variable domains,
SPN inference with trans-causalized BNs is more efficient than
LP based inference, which is in turn more efficient than MF-LP
inference. Finally, we confirmed empirically that the superior
space complexity of trans-causalized BNs (polynomial) over
that of multiplicatively factorized NAT-modeled BNs directly
extend to their time complexities in inference, as variable
domain sizes scale up.

The contributions of this work have several implications.
They provide evidence that NAT-modeled BNs form a class
of sufficiently expressive while efficient probabilistic graphical
models (of polynomial space). For a range of sparse struc-
tures, the space efficiency of NAT-modeled BNs translates
to significantly improved inference efficiency. As probabilis-
tic reasoning in general BNs are NP-hard, e.g., [23], NAT-
modeled BNs form a promising subclass of BNs for tractable
inference, which may serve as the target representation for
either knowledge acquisition or machine learning.
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SUPPLIMENTARY MATERIALS

Proof of Theorem 1

To prove that Φ and the gate model have the identical
P(e|W1, ...,Wω), we show that they have the identical cumula-
tive distribution. Without losing generality, we assume that all
causes in W1, ...,Wm are active and those in Wm+1, ...,Wω are
inactive, where m ≤ ω . The dual gate model is characterized
by Eqn. (2), reproduced below:

P(e < ek← w+
1 , ...,w

+
m) =

m

∏
i=1

P(e < ek← w+
i ), (k = 1, ...,η).

Since e < ek is equivalent to e ≤ ek−1, we rewrite the above
as

P(e≤ ek←w+
1 , ...,w

+
m)=

m

∏
i=1

P(e≤ ek←w+
i ),(k= 0, ...,η−1),

which is a cumulative causal distribution. If Φ has the identical
cumulative distribution (shown below), then PΦ(e|W1, ...,Wω)
is also identical to P(e|W1, ...,Wω) of the dual gate model.

Since only W1, ...,Wm are active, and the CPT by Eqn. (5)
encodes the MAX function, we have

PΦ(e≤ ek← w+
1 , ...,w

+
m)

= ∑
MAX(z1,...,zω )≤ek

PΦ(z1, ...,zω |w+
1 , ...,w

+
m ,w

0
m+1, ...,w

0
ω).

Since MAX(z1, ...,zω)≤ ek iff zi≤ ek for i= 1, ...,ω , the above
is equal to

∑
z1≤ek,...,zω≤ek

PΦ(z1, ...,zω |w+
1 , ...,w

+
m ,w

0
m+1, ...,w

0
ω)

= ∑
z1≤ek

... ∑
zω≤ek

PΦ(z1, ...,zω |w+
1 , ...,w

+
m ,w

0
m+1, ...,w

0
ω).

By the DAG structure of Φ, zi is independent of z j for i 6= j
given Wi. Hence, the above equals

∑
z1≤ek

... ∑
zω≤ek

PΦ(z1|w+
1 ) ... PΦ(zm|w+

m)

PΦ(zm+1|w0
m+1) ... PΦ(zω |w0

ω)

= ∑
z1≤ek

PΦ(z1|w+
1 ) ... ∑

zm≤ek

PΦ(zm|w+
m)

∑
zm+1≤ek

PΦ(zm+1|w0
m+1) ... ∑

zω≤ek

PΦ(zω |w0
ω).

Since ∑zi≤ek PΦ(zi|w0
i )= 1 for i=m+1, ...,ω , the above equals

∑
z1≤ek

PΦ(z1|w+
1 ) ... ∑

zm≤ek

PΦ(zm|w+
m) =

m

∏
i=1

PΦ(zi ≤ ek← w+
i ).

From Eqn. (3), the above equals ∏
m
i=1 P(e≤ ek←w+

i ). Hence,
we have

PΦ(e≤ ek← w+
1 , ...,w

+
m) =

m

∏
i=1

P(e≤ ek← w+
i ). �

Proof of Theorem 2

We show that Φ and the gate model have the identical cu-
mulative distribution, and hence the identical P(e|W1, ...,Wω).
Without losing generality, we assume that all causes in
W1, ...,Wm are active (m ≤ ω) and those in Wm+1, ...,Wω are
inactive. The direct gate model is characterized by Eqn. (1):

P(e≥ ek← w+
1 , ...,w

+
m) =

m

∏
i=1

P(e≥ ek← w+
i ), (k = 0, ...,η).

It is a cumulative distribution because, for k = 1, ...,η , we have

P(e≥ ek−1← w+
1 , ...,w

+
m) =

P(e = ek−1← w+
1 , ...,w

+
m)+P(e≥ ek← w+

1 , ...,w
+
m),

and in addition P(e ≥ e0 ← w+
1 , ...,w

+
m) = 1. If Φ has

the identical cumulative distribution (shown below), then
PΦ(e|W1, ...,Wω) is also identical to P(e|W1, ...,Wω) of the
direct gate model.

Since only W1, ...,Wm are active and, when they do, the CPT
by Eqn. (8) encodes the MIN function, we have

PΦ(e≥ ek← w+
1 , ...,w

+
m) =

∑
MIN(z1,...,zω )≥ek

PΦ(z1, ...,zω |w+
1 , ...,w

+
m ,w

0
m+1, ...,w

0
ω).

Since MIN(z1, ...,zω)≥ ek iff zi ≥ ek for i = 1, ...,ω , the above
equals

∑
z1≥ek,...,zω≥ek

PΦ(z1, ...,zω |w+
1 , ...,w

+
m ,w

0
m+1, ...,w

0
ω)

= ∑
z1≥ek

... ∑
zω≥ek

PΦ(z1, ...,zω |w+
1 , ...,w

+
m ,w

0
m+1, ...,w

0
ω).

By the DAG structure in Φ, zi is independent of z j for i 6= j
given Wi. Hence, the above equals

∑
z1≥ek

... ∑
zω≥ek

PΦ(z1|w+
1 ) ... PΦ(zm|w+

m)

PΦ(zm+1|w0
m+1) ... PΦ(zω |w0

ω)

= ∑
z1≥ek

PΦ(z1|w+
1 ) ... ∑

zm≥ek

PΦ(zm|w+
m)

∑
zm+1≥ek

PΦ(zm+1|w0
m+1) ... ∑

zω≥ek

PΦ(zω |w0
ω).

By the 1st formula of Eqn. (6) and relation eη < aaci, we
have ∑zi≥ek PΦ(zi|w0

i )= 1 for i=m+1, ...,ω . Hence, the above
equals

∑
z1≥ek

PΦ(z1|w+
1 ) ... ∑

zm≥ek

PΦ(zm|w+
m) =

m

∏
i=1

PΦ(zi ≥ ek← w+
i ).

From the 2nd formula of Eqn. (6), the above is equal to
∏

m
i=1 P(e≥ ek← w+

i ). Hence, we have

PΦ(e≥ ek← w+
1 , ...,w

+
m) =

m

∏
i=1

P(e≥ ek← w+
i ). �
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Proof of Lemma 1
Proof: [Sufficiency] We prove by induction on ω . When

ω = 2, the only factor PΨ(e|z1,z2) = 1 by Eqn. (5). Assume
that the product has value 1 when ω = k ≥ 2.

Consider the case ω = k+1, where the number of factors is
ω−1 = k. Denote product of the first k−1 factors by T , and
the overall product by T ∗PΨ(e|yω−2,zω). Since domains of yi
and e are identical, factors of T are exactly the k−1 factors for
the case ω = k. By inductive assumption, we have T = 1. Since
yω−2 = MAX(z1, ...,zω−1) and e = MAX(z1, ...,zω), we have
e = MAX(yω−2,zω). Hence, PΨ(e|yω−2,zω) = 1 by Eqn. (5).
Therefore, T ∗PΨ(e|yω−2,zω) = 1.

[Necessity] Assume that the product of ω − 1 factors has
value 1. We prove by induction on ω that the ω − 1 MAX
conditions hold. When ω = 2, the product is PΨ(e|z1,z2) = 1.
By Eqn. (5), e = MAX(z1,z2) holds.

Assume that the MAX conditions hold when ω = k ≥ 2.
Consider the case ω = k+1, where the number of factors is
ω−1 = k. Denote product of the first k−1 factors by T , and
the overall product by T ∗PΨ(e|yω−2,zω). Since domains of yi
and e are identical, factors of T are exactly the k−1 factors for
the case ω = k. Since PΨ(e|yω−2,zω)≤ 1, T ∗PΨ(e|yω−2,zω)=
1 implies T = 1 and PΨ(e|yω−2,zω) = 1.

From T = 1 and inductive assumption, the k− 1 = ω − 2
MAX conditions below hold:

y1 = MAX(z1,z2), ...,yω−2 = MAX(z1, ...,zω−1).

From PΨ(e|yω−2,zω) = 1 and Eqn. (5), the ω − 1th MAX
condition e = MAX(z1, ...,zω) holds. �

Proof of Lemma 2
By Eqn. (5), each factor in the product equals to either 1

or 0. Since some MAX conditions do not hold, by Lemma 1,
the product does not equal to 1. That is, some factors of the
product equal to 0, and so does the product.

�

Proof of Lemma 3
[Sufficiency] Assume a given tuple (z1, ...,zω ,e) such that

e = MAX(z1, ...,zω) holds. The sum of Eqn. (9) is over
multiple terms, each of which is relative to a distinct tuple
(z1, ...,zω ,y1, ...,yω−2,e) of Ψ. By Lemma 1, exactly one term
has the value 1, where

y1 = MAX(z1,z2), ..., yω−2 = MAX(z1, ...,zω−1).

By Lemma 2, all other terms have the value 0. Hence,
PΨ(e|z1, ...,zω) = 1.

[Necessity] Assume a given tuple (z1, ...,zω ,e) such that
PΨ(e|z1, ...,zω) = 1. Each term in the sum is a product relative
to a distinct tuple (z1, ...,zω ,y1, ...,yω−2,e) of Ψ. By Lemma 2,
a term has the value 0 unless all of the following hold:

y1 = MAX(z1,z2), ..., yω−2 = MAX(z1, ...,zω−1),

e = MAX(z1, ...,zω).

Since PΨ(e|z1, ...,zω) = 1, not all terms are 0. By Lemma 1,
exactly one may have value 1, whose tuple satisfies all MAX
conditions above. Hence, e = MAX(z1, ...,zω). �

Proof of Lemma 4
Each term in the sum is relative to a distinct tuple

(z1, ...,zω ,y1, ...,yω−2,e) of Ψ. By Lemma 2, a term has the
value 0 unless all of the following hold:

y1 = MAX(z1,z2), ..., yω−2 = MAX(z1, ...,zω−1),

e = MAX(z1, ...,zω).

As the last MAX condition fails, the result follows. �

Proof of Theorem 3
Let Φ be the SBDu of the dual gate model with MAX CPT

PΦ(e|z1, ...,zω). By Eqn. (5), PΦ(e|z1, ...,zω) equals to 1 when-
ever e=MAX(z1, ...,zω). By Lemma 3, if e=MAX(z1, ...,zω),
then PΨ(e|z1, ...,zω) = 1 = PΦ(e|z1, ...,zω).

By Eqn. (5), PΦ(e|z1, ...,zω) equals to 0 whenever e 6=
MAX(z1, ...,zω). By Lemma 4, if e 6= MAX(z1, ...,zω), then
PΨ(e|z1, ...,zω) = 0 = PΦ(e|z1, ...,zω).

Hence, the CPT of DSDu Ψ satisfies PΨ(e|z1, ...,zω) =
PΦ(e|z1, ...,zω). From Theorem 1, the result follows. �

Proof of Theorem 4
Let Φ be the SBDi of the direct gate model with PMIN CPT

PΦ(e|z1, ...,zω) by Eqn. (8). We need to show PΨ(e|z1, ...,zω)=
PΦ(e|z1, ...,zω).

Theorem 4, relating SBDi and DSDi, is similar to The-
orem 3, relating SBDu and DSDu. The main difference is
that MAX CPTs (Eqn. (5)) in SBDu and DSDu are replaced
by PMIN CPTs (Eqn. (8)) and PMIN+ CPTs (Eqn. (10))
in SBDi and DSDi. The difference involves replacing MAX
by MIN, and handling aaci values. Without aaci values,
Theorem 3 would be trivially extended to direct gate model,
due to symmetry between MAX and MIN. Hence, we focus on
justifying that PΨ(e|z1, ...,zω) behaves according to Eqn. (8)
when some zi equals aaci.

First, we show that if each zi = aaci and e = e0, then
PΨ(e|z1, ...,zω) = 1. Similarly to Lemma 1, consider the tuple
(z1, ...,zω ,y1, ...,yω−2,e), where each zi and yi equal aaci. It
determines value of one term in the sum of Eqn. (9). By
Eqn. (10), we have PΨ(y1 = aaci|z1 = aaci,z2 = aaci) = 1,
and PΨ(yi = aaci|yi−1 = aaci,zi+1 = aaci) = 1. By Eqn. (8),
we have PΨ(e = e0|yω−2 = aaci,zω = aaci) = 1. Hence, this
term equals 1. Similarly to Lemma 2, by Eqns. (10) and (8), all
other terms of the sum equal 0. Hence, similarly to Lemma 3,
we conclude PΨ(e|z1, ...,zω) = 1.

Second, we show without losing generality that, if
z1, ...,zm = aaci (1 ≤ m < ω), zm+1, ...,zω 6= aaci, and e =
MIN(zm+1, ...,zω), then PΨ(e|z1, ...,zω) = 1. We consider m =
1 and m > 1 separately.

Suppose m= 1. Consider the tuple (z1, ...,zω ,y1, ...,yω−2,e),
where z1 = aaci, y1 = z2, and yi = MIN(zi,zi+1) (i =
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2, ...,ω − 2). Similarly to Lemma 1, by Eqn. (10), we have
PΨ(y1|z1,z2) = 1 and PΨ(yi|yi−1,zi+1) = 1 (i = 2, ...,ω −
2). By Eqn. (8), we have PΨ(e|yω−2,zω) = 1. Hence,
PΨ(e|z1, ...,zω) = 1.

Next, suppose m > 1. Consider (z1, ...,zω ,y1, ...,yω−2,e),
where yi = aaci (i = 1, ...,m − 1), ym = zm+1, and
yi = MIN(zi,zi+1) (i = m + 1, ...,ω − 2). By Eqn. (10),
PΨ(y1|z1,z2) = 1 and PΨ(yi|yi−1,zi+1) = 1 (i = 2, ...,ω − 2).
By Eqn. (8), PΨ(e|yω−2,zω) = 1. Hence, PΨ(e|z1, ...,zω) = 1.

Therefore, we have PΨ(e|z1, ...,zω) = PΦ(e|z1, ...,zω). From
Theorem 2, the result follows. �

Proof of Lemma 5
We prove each of the two cases. In the 1st case, we

have q = aaci and each zi = aaci. Consider tuple t =
(z1, ...,zω ,y1, ...,yω−2,q), where each yi = aaci. By PMAX+

CPT in Eqn. (11), P(y1|z1,z2) = 1, P(yi|yi−1,zi+1) = 1 (i =
2, ...,ω − 2), and P(q|yω−2,zω) = 1. Hence, Q(t) = 1 by
Eqn. (9). From Eqn. (11), for each tuple t ′ where not every yi
equals aaci, Q(t ′) = 0. Hence, PΨ(q|z1, ...,zω) = 1 in the 1st
case.

In the 2nd case, without losing generality, assume that
z1, ...,zm 6= aaci (1 ≤ m ≤ ω) and zm+1, ...,zω = aaci.
Consider tuple t = (z1, ...,zω ,y1, ...,yω−2,q), where yi =
MAX(z1, ...,zi+1) (i = 1, ...,m−1), y j = MAX(z1, ...,zm) ( j =
m, ...,ω−2), and q = MAX(z1, ...,zm). Applying Eqn. (11) to
each factor of function Q(t), where the aaci argument has
no effect, we have Q(t) = 1. For every other tuple t ′ where
some of the above conditions on t does not hold, we have
Q(t) = 0. Hence, PΨ(q|z1, ...,zω) = 1 in the 2nd case when
q = MAX(z1, ...,zm).

By Eqn. (5), when e = MAX(z1, ...,zm), we have
PΦ(e|z1, ...,zω) = 1. Hence, PΨ(q|z1, ...,zω) = PΦ(e|z1, ...,zω)
in the 2nd case. �

Proof of Theorem 5
Let Φ be the SBDu of the dual gate model. Assume that

some Wi are active. By Lemma 5, PΨ(q|z1, ...,zω) is equivalent
to the MAX CPT of SBDu Φ. From Theorem 1, it follows that
PΨ(q|z1, ...,zω) equals P(e|W1, ...,Wω) of the dual gate model.

Next, assume that all Wi are inactive. PΨ(q|W1, ...,Wω)
sums multiple products. Each product is relative to a tu-
ple (z1, ...,zω ,q). Consider the tuple t where each zi =
aaci and q = aaci. By Eqn. (6), PΨ(zi = aaci|ci1, ...,ciθi) =
1 holds for each zi since Wi is inactive. By Lemma 5,
PΨ(q = aaci|z1, ...,zω) = 1. Hence, the product relative to t
equals 1. For each t ′ where some zi 6= aaci, by Eqn. (6),
PΨ(zi|ci1, ...,ciθi) = 0. Hence, the product relative to t ′ equals
0. Therefore, PΨ(q = aaci|W1, ...,Wω) = 1. �

Proof of Theorem 6
We prove by extending Theorem 5. Variables zi, yi, and q in

DEDu and DEDi have the same domain. CPTs of zi variables
in both follow Eqn. (6). In a DEDu, yi and q have PMAX+

CPTs of Eqn. (11). In a DEDi, yi and q have PMIN+ CPTs
of Eqn. (10). The two equations are symmetric.

Theorem 5 concerns dual gate models and is derived through
Theorem 1. From the symmetry between dual gate models
and direct gate models, and that between Theorem 1 and
Theorem 2, the result follows from Theorem 5. �

Proof of Theorem 8
We show the equation from the left-hand side to the right-

hand side. Denote V = X ∪Y , where X ∩Y = /0, X consists of
root and child variables whose CPTs are in TC, and Y consists
of effect variables of NAT models in NM. By the chain rule
of BN, we have

PΩ(V,W ) =
(
Πx∈X PΩ(x|π(x))

)(
Πv∈Y∪W PΩ(v|π(v))

)
.

Denote Y = {e1, ...,ek}, where k= |NM| counts NAT models
in Γ. Auxiliary and quasi-effect variables over BN segments
of different NAT models are disjoint. Hence, we index subsets
of variables in W as W1, ...,Wk, where Wi∩Wj = /0 (i 6= j) and
∪iWi =W , such that Wi is the set of auxiliary and quasi-effect
variables in the BN segment for NAT model over ei.

It follows that

PΩ(V,W )=
(
Πx∈X PΩ(x|π(x))

)(
Π

k
i=1
(
Πv∈{ei}∪WiPΩ(v|π(v))

))
.

The left-hand side of equation in the theorem becomes

∑
w∈W

PΩ(V,W )

=
(
Πx∈X PΩ(x|π(x))

)
∑

w∈W

(
Π

k
i=1
(
Πv∈{ei}∪WiPΩ(v|π(v))

))
=
(
Πx∈X PΩ(x|π(x))

)
Π

k
i=1

(
∑

w∈Wi

(
Πv∈{ei}∪WiPΩ(v|π(v))

))
.

The first equality holds since X ∩W = /0. The second equality
holds since Wi ∩Wj = /0 (i 6= j). In the last expression, each
summation is the marginalized product of CPTs in the BN
segment for NAT model over ei. By Theorem 7, the summation
is equal to PΓ(ei|π(ei)): the CPT of the NAT model over ei
defined by Γ.

Since TC in Γ and TC in Ω are identical, we have

∑
w∈W

PΩ(V,W ) =
(
Πx∈X PΓ(x|π(x))

)
Π

k
i=1PΓ(ei|π(ei))

= Πv∈V PΓ(v|π(v)) = PΓ(V ). �


