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Abstract—We consider acommon task in multiagent sys-
temswhere agentsneed to estimatethe state of an uncertain
domain so that they can act accordingly. If each agent only
has partial knowledge about the domain and local observa-
tions, how can the agentsaccomplish thetask with alimited
amount of communication? Multiply sectioned Bayesian
networks (M SBNs) provide an effective and exact frame-
work for such a task but also impose a set of constraints.
Arethere simpler frameworkswith the same performance
but with less constraints? We identify a small set of high
level choices which logically imply the key representational
choices leading to MSBNs. The result addresses the neces-
sity of constraints of the framework. It facilitates compar-
isonswith related frameworksand providesguidanceto po-
tential extensionsof theframework. (Keywords. multiagent
system, decentralized interpretation, communication, orga-
nization structure, uncertain reasoning, probabilistic rea-
soning, belief network, Bayesian network)

I. INTRODUCTION

a
As intelligent systems are being applied to larger, ope

among a subset of domain variables, and can only observe
and reason within the subdomain. The agents may be de-
veloped by different designers and the subdomain knowl-
edge may be private to their designers. Hence, maintain-
ing the privacy of the agents while they are cooperating
may be desirable.

In the case of a single agent, the task of estimating the
state of the domain can be achieved by representing the
domain knowledge in a Bayesian network (BN) [20] and
by performing probabilistic inference using the BN given
the agent’s observations. However, as multiple agents are
cooperating on the task, a set of new issues arise: How
should the domain be partitioned into subdomains? How
should each agent represent its knowledge about a sub-
domain? How should the knowledge of each agent relate
to that of others? How should the agents be organized in
their activities? What information should they exchange
and how, in order to accomplish their task with a limited
mount of communication? Can they achieve the same
&el of accuracy in estimating the state of the domain as

and more complex problem domains, many applicatio[}?at of a single centralized agent?

are found to be more suitably addressed by multiagen
systems [25], [27]. Consider a large uncertain problem
domain populated by a set of agents. The agents gre
often charged with many tasks determined by the
One common task is to es
mate what is the true state of the domain so that th

ture of the application.

tl-

tI\/IuItipIy sectioned Bayesian networks (MSBNSs) [28]
rovide one solution to these issues. An MSBN consists
of a set of interrelated Bayesian subnets each of which

na-

encodes an agent's knowledge concerning a subdomain.
Eﬁ?ents are organized into a hypertree structure such that
Iference can be performed in a distributed fashion while

can act accordingly. Such a task, often referred tdigs . . .
. . . ) ) o answers to queries are exact with respect to probability
tributed interpretatiorf15], arises in many applications of . . )
. . . . heory. Each agent only exchanges information with ad-
multiagent systems including equipment/process trouble-

shooting, building/area surveillance, battle field/disast]grcem agents on the hypertree, and each pair of adjacent

o . . ents only exchange their beliefs on a set of shared vari-
situation assessment, and distributed design. We can y g

. L . ables. Both local inference within an agent and communi-
scribe the domain with a set of variables. Some vari- . -
. . cation among all agents are efficient when the agent sub-
ables are not directly observable hence their values ca .

. . .~ hets are sparse. Therefore, MSBNSs provide a framework
only be inferred based on observations of other variables - . .

. In_which multiple agents can estimate the state of a do-

and background knowledge about their dependence rela-. . . o o
. . main effectively with exact and distributed probabilistic
tions. Furthermore, each agent has only a partial perspec-

tive of the problem domain. That is, each agent only haswe shall use the term "effective” to meafficientcomputation
knowledge about a subdomain, i.e., about the dependeiaen agent subnets are sparse.



Fig. 1. Adigital system.

inference. In principle, the framework allows unboundemhaining section identifies some BCs and derives implied
number of agents as well as allows agents to join and leal®ices.
dynamically.
Are there simpler alternatives that can achieve the same II. OVERVIEW OF MSBNs
performance? In other words, are the technical constraintsy BN [20] S is a triplet(V, G, P) whereV is a set of
of MSBN necessary? For example, the hypertree orgafibmain variables(; is a DAG whose nodes are labeled
zation of agents prevents an agent from communicatigg elements o/, and P is a joint probability distribu-
directly and arbitrarily with another agent. Is this necegon (jpd) overV, specified in terms of a distribution for
sary? The agent interface is required to satisfy a conditieach variabler € V conditioned on the parents(z)
calledd-sepsetdetailed in the paper). Is it necessary? of z in G. An MSBN [33], [28] M is a collection of
In this work, we address these issues. We show tiBdyesian subnets that together define a BN. For instance,
given some reasonable fundamental choice/assumpticfifspose that a piece of equipment consists of multiple
the key constraints of an MSBN, such as a hypertree strgemponents built by different designers. As a small ex-
ture and a d-sepset agent interface, follow logically. kmple, Figure 1 shows a piece of digital equipment made
particular, we identify the choice points in the formaeut of five component$/; (i = 0,...,4). Each box in
tion of the MSBN framework. We term the fundamenthe figure corresponds to a component and contains the
tal choices adasic commitment88Cs). Given the BCs, logical gates and their connections with the input/output
other technical choices are entailed. Hence, an MSBNgignals of each gate labeled. A set of five agents,
some equivalent follows once we admit the BCs. (4 = 0,...,4) respectively associated with a component
The contributions of this work are the following: First[J;, cooperate to monitor the system and trouble-shoot it
the analysis provides a high-level (vs. technical levelhhen necessary. Each agettis responsible for a par-
description of the applicability of MSBN and addressefcular component/;, which is likely being developed by
issues regarding the necessity of major MSBN represehe designer of the component. When a gate is enclosed in
tational constraints. Second, the results facilitate comxactly one box, the gate physicallylocated in the cor-
parison with alternative frameworks. Third, the analysigsponding component andlagjically known only to the
provides a guideline for extensions or relaxations of thegent responsible for the component. On the other hand,
MSBN framework as to what can or cannot be traded offthen a gate is enclosed in more than one box, the gate
In Section II, we briefly overview the MSBN frame-is physicallylocated in only one of the components but
work with representational choices summarized. Each is-ogically known to all the corresponding agents. For



Fig. 2. The subnef; for Uy.
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Fig. 3. The subnef; for Us.

example, the AND gategs is known only toA;, the OR in other interfacing components. Hence, each subnet en-
gategg is known to bothA; and Ay, and the signak; codes the agent’s knowledge on both types of devices. The
is known toAgy, A; and A,. The knowledge of an agentfive subnets (one for each component) collectively define
about its assigned component can be represented as a&NMSBN, which form the core knowledge of the multi-
called asubnet. The subnet for ageat (responsible for agent system. Based on this knowledge and limited ob-
component’/;) is shown in Figure 2 and that fof, is servations, agents can cooperate to estimate whether the
shown in Figure 3. Each node is labeled with a varsystem is functioning normally, and if not, which devices
able name. Only the DAGs of the subnets are shownane likely to be responsible. For instance, suppose that
the figures with the conditional probability distribution fothe gatesd; (in Us) and ¢ (in U) in Figure 1 break
each variable omitted. As mentioned above, an agent dotvn and produce incorrect output. Some outputs down-
only knows all devices located in its assigned componestieam are also affected. Equipment inputs and correct
but also knows some devices that are physically locatdevice outputs are shown in Figure 1 by 0 and 1. Incor-



rect outputs are shown underlined. Through limited lcandeach interface is hyper | i nk.

cal observation (each agent observes the values of 3 tBigure 5 illustrates a hypertree for the digital system,
signals incrementally) and communication (two roundsjhere G; and G, are shown in Figures 2 and 3. The
agents can identify the two faulty gates [31], [28] cor-

rectly (with P(dy = faulty|all observations) = 0.98
andP(ts = faulty|all observations) = 0.99).

Subnets in an MSBN are required to satisfy certa

conditions. To describe these conditions, we introdu
the terminologies first. Le&; = (Vi,FE;) (i = 0,1)
be two graphs (directed or undirected), and G, are
said to begraph-consistentf the subgraphs of7, and
G spanned by, N V; are identical. Given two graph-
consistent graph&/; = (V;, E;) (i = 0,1), the graph
G = (VhbuVy, EyU E) is called theunionof Gy andGy,
denoted byG = G, U G;. Given a graphG = (V, E),

a partition of V' into V, andV; such thattb uV; = V
andVy, N'V; # 0, and subgraph&; of G spanned by
V; (i = 0,1), G is said to besectionednto Gy andG}.
See Figure 4 for an example. Note tha&if andG, are
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Fig. 4. The graplG in (a) is sectioned int67p andG, in (b). G is
the union ofGy andG .

sectioned from a third graph, thén, and G, are graph-
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Fig. 5. The hypertree for the digital equipment monitoring system.

hypertree represents an organization of agent communi-
cation, where variables in each hypernode are local to an
agent and variables in each hyperlink are shared by agents.
Agents communicate in an MSBN by exchanging their be-
liefs over shared variables. We usedesand variables in-
terchangeably when there is no confusion. Nodes shared
by subnets in an MSBN must formdasepset, as defined
below:

Definition 2: 2 Let G be a directed graph such that a
hypertree ovei exists. A noder contained in more than
one subgraph with its parent$z) in G is ad- sepnode
if there exists at least one subgraph that conta{ag. An
interfacel is ad- sepset if everyz € I is a d-sepnode.

The interface betweefd; andG5 contains 13 variables
indicated in Figure 5. The corresponding nodes in Fig-
ures 2 and 3 are underlined. It is a d-sepset because these
variables are only shared I8y andG, and each variable
has all its parents contained in one of them. For instance,

consistent. The union of multiple graphs and the sectidfie Parents o, (ts anduwy) are all contained it2, while
ing of a graph into multiple graphs can be similarly dehose ofng (i, g7 andz,) are contained in botf¥; and

fined.
Graph sectioning is useful in defining the dependen

G, (see Figures 2 and 3). The structure of an MSBN is
gdnultiply sectioned DAG (MSDAG) with a hypertree or-

relation between variables shared by agents. It is used@hization:

specify the following hypertree condition which must b
satisfied by subnets in an MSBN:

e Definition 3: A hypertree MBDAG G = |J; G,
where eachF; is a DAG, is a connected DAG such that

Definition 1: Let G = (V, E) be a connected graph(l) there exists a hypertree over GG, and (2) each hyper-

sectioned into subgrapHs7; = (V;, E;)}. Let the sub-
graphs be organized into an undirected tbewhere each
node is uniquely labeled by @; and each link between
Gy and G, is labeled by the non-emptiynt er f ace
Vi, NV, such that for eachandy, V; NV} is contained in
each subgraph on the path betwé€grandG; in ¥. Then
¥ is ahypertree overG. EachG; is ahyper node

link in ¥ is a d-sepset.

Note that although DAGs in a hypertree MSDAG form
a tree, each DAG may be multiply connected.lo@pin
a graph is a sequence of node$, ¢, ..., a such that the
first node is identical to the last node and there is a link

2Note that this definition is an extension of earlier definitions for
d-sepset, such as that in [28], to the most general case.



f ””” G. | G .. e o values inB(z, y) by their sum 10, we obtain the proba-
: ! a}ia/O\Oiii j S bility valuesP(z = 0y = 1) = 0.8 andP(z = lly =
T ® 0\./ 0\ /° ! 1) = 0.2. Hence,B(z,y) contains the same information
3 ¥ m kg o O asP(z|y) with the flexibility of not having to perform the
/ d ; ;\ ‘ K G normalization until it is needed. Aniform potentialis
&e B n ~e o ! 2 one with all its potential values being 1.

An MSBN is then defined as follows. Uniform poten-
tials are used to ensure that quantitative knowledge about
the strength of dependence of a variable on its parent vari-

o o ables will not be doubly specified for the same variable.
(not necessarily in the same direction) between each PG finition 4: An MSBN M is atriplet(V, G, P). V =

of nodes adjacent in the sequence. Such a loop is aLlﬁov is thedomai n where eachy is a set of variables.
referred to as aondirected loop. A DAG isnultiply con- =’ O U, G: (a hypertree MSDAé) is thet r uct ur e
= U, G

necFedif_it _con_tains at least one (undirected) I(_)op._ Otr\?vhere nodes of each DAG; are labeled by elements of
erwise, it is singly connected. For exampig, in Fig- Vi. Letz be a variable and(z) be all the parents of

:f're 2 hgs two IOI?.pT' One of ihzg(“.s’ QI):E’_’ z3’p%’ ZO’ ). in G. For each, exactly one of its occurrences (in
ence by 1S multiply connectedts, in Figure 5 has Sev- ontaining{z} U m(z)) is assigned’(z|w(x)), and each

gral loops and is al_so multiply conr!ected. Moreover, m ccurrence in other DAGs is assigned a uniform potential.
tiple paths may exist from a node in one DAG to anoth% — L. P is thej pd, where eachP; is the product of
1 )

_node na @ffe_rent DAG after the DAGs are u_moned. Fq e potentials associated with nodeg3in A triplet S; =
instance, in Figure 6, there are several (undirected) paE > (i, P,) is called asubnet of M. Two subnetsS;

from nodec in G, to nodeg in G. There is one path go- 54 S; are said to be adjacent@; andG; are adjacent
ing through nodes, [ andj and another path goes throug%n the hypertree MSDAG

d, Z " andk.’ Each p.ath' gois ac:ozs all ttt:ree [;AGS' MSBNSs provide a framework for the task of estimating
n agents quantitative knowledge about the Strengfne state of an uncertain domain in cooperative multia-

ofdet|)o enden(;e gf a"a”am(‘j‘?ﬂ s Iparegt \tﬁr 'at:;f%(ffj) : cgnent systems. Each agent holds its partial perspective (a
can be encoded as a conditional probability distributl ubnet) of a domain, reasons about the state of its sub-

P(z|n(z)). P(z|r(z)) is a special case of potential 0 with local observations and through limited com-
over {z} U m(x). A potential over a set of variables is, i ation with other agents. Each agent may be devel-
an non-negative distribution of at least one positive p8|'oed by an independent designer and the internals of an
ram_eter. For instance, the f_oIIowing tab_le illustrates a pggem (agent privacy) are protected. Agents can acquire
tential B(x,y) over two variables and its pareny. It observations in parallel while their beliefs about the states
of individual subdomains are consistent with observations
acquired by all agents. For the digital system example,
each component/; is assigned an agedt; in charge of

the subnesS; and its local computation.

The representational choices of MSBNs are summa-

Fig. 6. A MSDAG with multiple paths across local DAGs.

TABLE |
A POTENTIAL B(z,y) OVER A SET{z, y} OF VARIABLES THAT
REPRESENTS A PROBABILITY DISTRIBUTIONP (z|y)

T |y | B(z,y) | P(z|y) rized below, where the most important ones are 3 and

0[0 1 0.25 6.

110 3 0.75 1) Each agent’s belief is represented by Bayesian prob-

01 8 0.8 ability.

1)1 2 0.2 2) The domain is decomposed into subdomains. For
each pair, there exists a sequence of subdomains
such that every pair of subdomains adjacent in the

may represent the probability distributid(x|y) in the sequence shares some variables.
last column. One can always convétz, y) into P(x|y) 3) Subdomains are organized into a (hyper)tree struc-

by dividing each potential value with a proper sum: an
operation termechormalization. For instance, after di-
viding the first two values iB(z, y) by their sum 4, we
obtain the probability value®(z = Oly = 0) = 0.25
andP(z = 1lly = 0) = 0.75. After dividing the last two

ture where each hypernode is a subdomain, and
each hyperlink represents an non-empty set of
shared variables between the two hypernodes such
that variables shared by any two hypernodes are
also shared by each hypernode on the path between



them.

4) The dependency structure of each subdomain is re
resented by a DAG.

5) The union of DAGs for all subdomains is a con
nected DAG.

6) Each hyperlink is a d-sepset.

7) The joint probability distribution can be expressed
as in Definition 4.

Below we identify a set of BCs leading to these choices

Fig. 7. The communication graph of the multiagent system for moni-
[1l. ON COMMUNICATION GRAPHS toring the digital system.

We useuncertain knowledgebelief and uncertainty
interchangeably, and make the following basic commit-

ment: L Vo = {ao, by, co, e, f S1,V1, V4, We, T
BC 1: Each agent's belief is represented by Bayesiafl 0,90, €0, €05 J0, 91,92, 93, 94, 51, V1, U4, 106, L3,

probability. 22}

It directly corresponds to the choice 1 of Section Il. W& = {ao, bo, o, €0, fo, 90, 91, 92, 5, 97, g8+ 99, 0, ko, N0,

shall'usecoh_erenceo descri_be any assignment of belief 00, D05 Q05 T0» L1, 12, Vs, W7, T3, Y1, Y2, 215 225 23, 24 }

consistent with the probability theory. Vo = {ag, b, dy,da,d3,dy, ez, f1,90, 97, 98, 99, b2, io,
We consider a domaily of variables populated by T

cooperative agentdy, ..., A,,_;. EachA; has knowledge 11,12, j2, ko, k1, M0, 00, 0, 90, 0, 50, 52, %0, t2, 13,

overV; C V, called thesubdomainof A;. For exam- ta,t5,t6, 17,18, 19, U0, Vs, U7, Wo, W2, W5, W8, Wy,

ple, in equipment monitoring, eadh} corresponds to a X0y Thy Ty Y05 Y25 Yds 205 22, 24, 25

component including all its devices and their inputioutpyt,  — (4, b, d;,dy,ds, ds, dg, d7,ds, 11, n1,01,p1, q1,
signals. Although not required in theory, practically it is
assumed whenevéf N V; # 0, the intersection ismall So’uo’wo’xo’yo’zp} _
relative toV; andV;. From BC 1, the knowledge of; is Vi = {do,dy,ea,g6, ha,i2, j2,l2, M2, 12, 02, G2, La, s,
a probability distribution oveV;, denoted byP; (V;). t7, w2, T4, Y4, 25}

To minimize communication, we allow agents to ex-
change only their beliefs on shared variables (BC 2 be-

low). We take it for granted that for agents to communi-f; = {ag, bo, co, €0, fo, 91,92, %3, 22}

cate directly,V; N V; must be nonempty. Note that BC 2 Iy = {z}

does not restrict therder nor thenumberof communica- .

tions. Lo = {g7,9s, 99,0, ko,n0,00, D0, q0; 705 t2, Y2, 24}
BC 2: A; and A; can communicatelirectly only with Iy = {a2,by,d1,da,ds, s0,u0, wo, Lo, Y0, 20}

P(VinVj;). Iy = ez hoyia, Jo, ta, ts, b7, wo, Tay Ya, 25}

We refer toP(V; N V;) as amessagand refer to direct
communication asnessage passing. We emphasize tha(taneral class of graphs callgghction graphsj9]. Al-
thg fundam_ental property of message passing (as useﬁf@ugh our focus is on communication graphs, many of
t.hls. paper) 'S that the messages normally reveal only Pleir relevant properties are intrinsic to all junction graphs.
tial information known to the sender. In other words, nel

. cperefore, we shall describe these properties in terms of
ther a single message nor all the messages from a sender.. . ! o
unction graphs whenever it is appropriate. Definition 5

collectively disclose all the mf_ormatlon that the sendé efines junction graphs formally. We & to denote the
has. Paths for message passing can be represented ¥
power set of a sét’.

communication grapfCG): In a graph withn nodes, as- Definition 5: A j unction graph is a triplet

sociate each nod_e with an agefit and Iab'el it byV. (V.Q, E). V is an non-empty set called tigener at -
Connect each pair of nodds and V; by a link labeled ng set. Qs a subset 02" such thatUgcn = V.

by_I =Vinvit I # Q)'. Figure 7 shows the communle o ch element) of Q is called acl ust er . F is defined
cation graph of the multiagent system for monitoring th

digital system from Figure 1. The subdomains and their
intersections are shown below: E={(Q1,Q2)|Q1,Q2 € Q,Q1 # Q2,Q1 N Qs # 0},

In fact, a communication graph is an application of a



whereeach unordered pajf);, Q2) is called asepar a- sucha method or the method remains to be discovered,
t or between the two clusterd,; and()s, and is labeled under the constraints that each node in the network is asso-
by the intersectioid); N Q. ciated with only a local distribution and it is never passed
In Figure 7, the generating skt is the set of all vari- to a central location for manipulation.
ables in the digital system domain. Each cluster corre-The answer to this question ties closely to the necessity
sponds to one component subdomain. The separatorsfithe hypertree organization of agents as specified in Def-
a CG represent all potential paths for message passinigon 3 and restated as the choice 3 in Section Il. This tie
among agents. As the belief of one agent can influencan be seen by noting that the hypertree in Definition 3 is
the belief of another agent through a third agent, CG alis@morphic to a subgraph of the communication gréph
represents all potential paths fadirectcommunications. of the same multiagent system: A one-to-one mapping ex-
Each agent’s belief should potentially be influential in arigts between hypernodes in Definition 3 and node& in
other, directly or indirectly. Otherwise the system can dgach hyperlink in Definition 3 is a link i/ but the con-
split into two. Hence, CG isonnected We summarize verse is not true. Compare Figures 5 and 7 as an example.
this in Proposition 6. It is equivalent to Choice 2 in Sedn what follows, we show that in general, coherent mes-
tion Il. Recall that BC stands for basic commitment.  sage passing is impossible in general, multiply connected
Proposition 6:Let H be the communication graphCGs. The result formally establishes the necessity of hy-
overV that observes BC 1 and BC 2. If each agent’s beligertree structure for uncertain domain state estimation by
can in general influence that of each other agent througitultiagent message passing. We first classify loops on a
communication, thei is connected. cluster graph as follows:
A CG contains all possible paths for agent communica- Definition 8: Let H be a cluster graph ovér andp
tion. If we remove some separators from a CG, the agdift @ loop inH. If there exists a separatston p that is
communication is effectively restricted to a proper subsé@ntained in every other separator grnthenp is ade-
of potential paths. The resultant graph is a cluster gragfner at e loop. Otherwisep is anondegener at e

as defined below. loop. _ .
Definition 7: Let (V,Q, E) be a junction graph and A degenerate loop is ast r ong degenerate loop if
E' C E. Then(V,Q, E') is acl ust er graph over/. all separators op are identical. Otherwiseg is aweak

Note that a junction graph is also a cluster graph, bdggenerate loop. _
a cluster graph may not be a junction graph. ClusterAN nondegenerate logpis ast r ong nondegenerate

graphs of a CG represents alternative organizations 8PP If NiSi =, wherei is over every separatc; on p.
agent communication, which will be studied in the neptherwisep is aneak nondegenerate loop.
section.

IV. ON HYPERTREE ORGANIZATION
A. Classification of loops

The difficulty of coherent inference in multiply con-
nected graphical models (those with loops) of probabilis-@
tic knowledge is well known and many inference alga- B
rithms have been proposed. Those based on message pas D)
ing, e.q., [20], [14], [10], [23], [4], all convert a multiply @ @
connected network into a tree. Howevag formal ar-
guments can be found, e.qg., in [20], [9], [18], [3], which
demonstrate convincingly that message passamgotbe Fig. 8. Cluste_r graphs yvhere each cluster is shown as an oval and

. . . each separator is shown in a box.
made coherent in multiply connected netwotksThis
leaves the question whether itirapossibleto construct |5 Figure 8, all loops in (a) and (b) are degenerate. The
3In fact, this issue has never been raised openly to the authd@OPS in (@) are strong degenerate loops, and the loop in
knowledge. Pearl [20] explained that his— = algorithm for mes- (b) is a weak degenerate loop. The loops in (c) and (d) are

sage passing in tree-structured BNs would not work correctly in mU'Frondegenerate. The loop in (c) is a strong nondegenerate

ply connected BNs because the assumptions that lead to the algori 5 . .
would not hold. He did not, however, treat the issue in general. Infa!: ,rap’ and that in (d) is a weak nondegenerate loop. In

an empirical study [17] has been performed recently to applyr to 9€neral, a cluster graph can contain both types of loops
multiply connected BNs for approximate inference. and can contain strong and weak loops for each type.

~
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B. Nondegenerate loops

We show that when nondegenerate loops exist, mes- p (4. ) = P(a)P(bla), Pi(a,c) = P(a)P(cla),
sages araninformative No matter how messages are ma-
nipulated or routed, they cannot becomfrmativeand Py(b,c,d) = P(b,c)P(d|b, c),
it becomes impossible to make message passing cohenghere P(b,c) = > P(a)P(bla)P(cla). After d
dy is observed byAs, its messages aré(b|dy) =

E (0.448,0.552) and P»(c|dp) = (0.477,0.532).
a Consider next a different initial statéthat differs from
b C ) .

s by replacingP(d|b, ¢) with P'(d|b, ¢) as follows:
E PQI(d()V)(),Co) = 0.5336 Pé(d()“)o, Cl) =0.1154

.\\./. Ph(dolbr,co) = 014 Pl(do|b1, c1) = 0.66
d (a) @ (b) Note that Pj(b,c,d) # Py(b,c,d), but Pi(a,b) =
Py(a,b) and P{(a,c) = Pi(a,c). After d = dy is ob-
Fig. 9. (a) A dependence structure over four variables. (b) Thejun%erved’ if the messagdg(b|do)_ and.PQ’(c|d0) are Com'_
tion graph for the variables in (a). puted, they are found to be identical to those obtained
from the states. That is, the messages are insensitive
Consider a domain with the dependence structure tn the difference between the two initial states. As the
Figure 9 (a) where, b, ¢, d are binary (i.e.q € {ag,a1}, consequence, the new beliefsAg and A; will be iden-
b € {by,b1}, and so on). It is populated by three agentical in both cases. Should the new beliefs in both cases
A; i = 0,1,2) with V = {a,b}, Vi = {a,c} and be different? Using the coherent probabilistic inference,
Vo = {b,c,d}. Although the system appears trivial, ithe new beliefP(a;|dy) = 0.666 is obtained froms, and
will be expanded to arbitrary complexity below. Figure 9'(a;|dy) = 0.878 is obtained froms’. The difference is
(b) is the communication graph. The local knowledgsignificant.
of agents arePy(a,b), P;(a,c) and Py(b,c,d), respec- We now show that the above phenomenon is not ac-
tively. We assume that their beliefs are initially consistentidental. Without losing generality, we assume that all
namely, the marginal distributions satidfy(a) = P;(a), distributions are strictly positive. Lemma 9 says that for
Py(b) = P»(b), andP;(c) = P»(c). Due to BC 2, mes- infinitely many different initial states of ageHsb, its mes-
sage passing cannot change any agent’s belief. We refages tod, and A, however, are identical.
to the system aMlas3(meaning a multiagent system of 3 Lemma 9:Let s be a strictly positive initial state of
agents). Any giverPy(a, b), Py (a,c) andPy(b,c,d) sub- Mas3. There exists an infinite s€t Each element’ € S
ject to the above consistency is callediaitial (belief) is an initial state of Mas3 identical toin P(a), P(bla),
stateof Mas3 andP(c|a) but distinct inP(d|b, c) such that the message
Suppose thatl, observes! = dj. If the agents can up- P (b|d = dy) produced froms’ is identical to that pro-
date their beliefs coherently, their new beliefs should Iskiced froms, and so is the messagd(c|d = dp).
Py(a,bld = dy), Pi(a,c|d = dy) andPy(b, ¢, d|d = dy). Proof: We denote the message comporiéiib = bg|d =
For Ay, Py(b,c,d|d = dy) can be obtained locally. How-do) from states by P»(b|dp). We denote the message
ever, forAy and A, to update their beliefs, they must reljcomponent froms’ by P (bg|do). P»(bo|do) can be ex-
on the messag®, (b|d = dy) sent byA, to Ay and the panded as
messageé™, (c|d = dp) sent byA, to A, . In the following, _
we show tha12|40 and A, cannot update their beliefs coher- Po(boldo) = P2(bo, do)/ (P (bo, do) + Pa(bi, do))
ently based on these messages. Before the general result, Pa(b1,do)1—1
we illustrate with a particular initial state. From Figure 9, L+ Podo)
we can independently specify(a), P(bla), P(c|a), and
P(d|b, c) as follows:

=1+ Pz(b1,007d0)+P2(b1,Cl,do)]—1
P> (bo,co,do)+P2(bo,c1,do)

_ [1 Pz(do|b1,00)P2(b1,00)+P2(d0\bl,cl)P2(b1,C1)]71
P> (do |b0,CO)P2 (bo ,Co)+P2 (do ‘bo ,C1 )P2 (bo ,Cl)

P(ag) = .26 P(bolao) = .98 (bola1) = .33 Similarly, the message componeRi(cy|dy) can be ex-
Plcolag) = .02 P(colar) = .67 panded as
P(do|bo,co) = .03 P(dolbo, 1) = .66 Pa(coldo) = [1 + gzggl’jog]*l

(d0|b1,00) =.7 P(d0|b1,01) =.25 21eo.fo

. - . do|bo.c1) Pa(bosc1 )+ Pa (dolb.c1) Pa(by,e1) 1
From these, we define an initial statevhich is consistent: = [1 + p,)Edg}bg,iégpigbg,iégipigdgIbi,iégpjgbi;;] L




By assumption,Py(a,b) = Py(a,b), Pi(a,c) = Notethat the non-coherence bfas3is due to its non-
P/(a,c) and Py(b,c) = Pi(b,c) but P(d|b,c) # degenerate loop. From Egs.(1) and (2), correct inference
Pi(d|b,c). If agentA, at s’ generates the identical mes+equiresP (b, c|dy). To pass such a message, a separa-
sagesP;(bldy) = Pu(bldy) and Py(c|dy) = Pa(c|dy) tor must contain{b, c}, the intersection betweelk, and
(conclusion of the lemma), theR,(d|b,c) must be the UpUUi. The nondegenerate loop signifies the splitting of

solution of the following equations: such a separator (into separatdb$ and{c}). The result
is the passing of marginals (b, c|dy) (the insensitive

P} (do|b1,co)Pa(b1,c0)+Py(dolbi,c1)Pa(bi,c1) _ Pa(by,do) . . .
Pido bo.c0)Pa(bo co) + Pi(dolbo.c) Palbo.c) — Palbo.do) messages) and uIt_lmate_Iy the incorrect mfere_nce.

We can generalize this analysis to an arbitrary, strong
Pj(do|bo,c1) P (bo,c1)+Py(dolbi,e1) Pa(biser) _ Pa(en,do) nondegenerate loop of length 3 (the loop lengtMak3,
P3(dolbo,co) P2 (bo,co)+Ps(dolbr,co) P2 (bi,co) — Pa(co,do) where each of, b, ¢, dis a set of variables. The result in

BecauseP,(d|b, ¢) has four independent parameters bl!nemmas 9, 10 and Theorem 11 can be similarly derived.

is constrained by only two equations, it fianitely many We can further generalize this analysis to an ar_bitrary,
solutions. Each solution defines an initial steltef Mas3 Strong nondegenerate loop of lengdth> 3. By clumping

that satisfies all conditions in the lemma. O K_Q_ adjacent subdomains into one big subdon@,irthe
Lemma 10 says that with the same difference in initiffOP IS reduced to length 3. Any message passing among

states, a coherent inference will produce distinct resulf€+ —2 subdomains can be considered as occurring in the
from Mas3 same way as before the clumping but “insidg”Now the

Lemma 10:Let P and P’ be strictly positive proba- above analysis for an arbitrary strong nondegenerate loop

bility distributions over the DAG of Figure 9 such thaPf length 3 applies. _ _
they are identical inP(a), P(bla) and P(c|a) but dis- Furthermore, the result can be generalized to an arbi-

tinct in P(dJb,c). ThenP(ald = dy) is distinct from trary, weak nondegenerate loppf length K > 3. Let
P'(a|d = dy) in general.
(al 0)ing p=(Qo,Q1, .., Qr—1,Q0),

Proof: The following can be obtained frofand P':
the separator betweép and@; 1 beS; (0 < i < K—1),
Plaldy) = P(al|b,c)P(b,c|d 1
(aldo) bzc: (alb, ) P(b, cldo) (1) the separator betweepx_; andQq be Si_1, andR =
N,'S;. Let the potential of each cluster be

Bg,(Qi) = Po;(Qi \ R|R)Pg,(R).
where P(alb, ¢) is used becaus€’ is identical with P Py, (R) and Py, (R) may be different due to an observa-

in P(a), P(bla) and P(c|a). If P(b,c|dy) # P'(b,c|dy) . . o -
(which we shall show below), then in genefalaldy) tion onr € R available taQ; but not to@;. This is possi

P'(aldg) = > P(alb,c)P'(b,c|dy) 2)
b,c

P'(aldy). We have ble when the object associated witfs physicallylocated
with the agent associated with; andr is only logically
P, cldo) = P(dolb, ) P(b;c) _ _ P(dolb,c)P(b,c known to the agent associated wifl). Message passing
’ P(do) > b P(dolb,c)P(b,c)” in p can be considered as independently passing of two
Pbcldy) = P'(dolb,c)P(b,c) _ _ P'(dolb,c)P(b,c) ~ Message streams, one determined’py(Q; \ R|R) and
’ P'(dy) > b P'(dolb,c)P(b, ) One determined by, (R). For example, the message

from Qg to Q1 is
BecauseP(d|b,c) # P'(d|b, c), in general, it is the case

thatP(b, C|d0) #* Pl(b, C|d0). (| BQO(S[)) = PQO(S[) \R|R)PQ0 (R),

We conclude with the following theorem: . o
o wherePg,(Sy \ R|R) can be obtained by marginalization
Theorem 11:Message passing in Mas3 cannot be co- Qo (S \ B R) y g

herent in general, no matter how it is performed. o Fa, (QO \ BIR). . .
) The first message stream according0 (Q; \ R|R) is

Proof: By Lemma 9,P(b|d = dy) and Px(c|d = dy) ) o Tk

) " o .eqsuwalent to the message passing in a strong nondegener-
are insensitive to the initial states and hence the poster|0{
ate loop
(e.g., Py(a|ld = dy)) computed from the messages can- =0}, 0 Q Q)
not be sensitive to the initial states either. However, by pr= R0 K e W —10 Ko/
Lemma 10, the posteriors should be different in generahere each clustep; = @; \ R. According to the above
given different initial states. Hence, correct belief upda&nalysis, belief updating cannot be achieved by message

ing cannot be achieved Mas3 O passing inp’. The second message stream relative to
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Py, (R) is straightforward. It in general has no impact
on the first message stream. Therefore, belief updating @
cannot be achieved by message passingiingeneral.

To summarize, the difficulty will arise whenever a clus-
ter graph contains nondegenerate loops, whether they jare - -
strong or weak. This is stated in the following Corollary.

Corollary 12: Message passing in a cluster graph with @
nondegenerate loops cannot be coherent in general,| n
matter how it is performed.

C. Degenerate loops -ﬂ
In a strong degenerate loop, all subdomains share th

same separator and it is straightforward to pass the me
sage coherently. Furthermore, the coherent message pga -m_.
ing can be performed with any one separator omitted
That is, it can be performed with the loop cut open into
a chain.

Next, consider a weak degenerate lgophere separa-

tors are not all identical, but there exists a separéititrat
is contained in each other separator. Let the loop be

P = (QO?QI?"'?QK*MQO)? -l
whereK > 3. Let the clusters connected Bybe (o and
Q1. There are two paths betweéhy and(Q1,

(Qo, Q1) and (Qo,Qr—1,QK—2;...,Q2,Q1).

The message that can be passed ftggrto @ alongS

is a potentialBg, (S) = Pg,(S). Because the message -l
passed along any separafir# S can be expressed as a

Fig. 10. The weak degenerate loop in (a) is broken into a chain in (b).

potential
B(S") = P(8"\ SIS)P(S),

which containg”(.5), the path(Qo, Q1) is redundant: the

same information can be propagated through the other (b)

path. Therefore, whether or not coherent message pass-

ing is achievable in a weak degenerate loop can be %T 11. The weak degenerate loop in (a) is broken into a chain in (b).

termined using the cluster chain obtained by breaking the

loop atS. For example, whether coherent message pass-

ing is achievable in the cluster graph in Figure 10 (a) caf a single non-zero probability value (with zero being

be determined by deleting the separdtof to obtain (b). the value of other probabilities). Clearly, the message

Similarly, whether coherent message passing is achievattethe separatofu} is P(u = 1) = 1.0 for each cor-

in the cluster graph in Figure 11 (a) can be determined bgsponding cluster. The message on the sepafatof

deleting a separatdn:} to obtain (b). is P(c = 1,u = 1) = 1.0. Therefore, no matter how mes-
Coherent message passing is achievable in Figure sHle passing is performed, none of the cluster potentials

(b) using any well-known methods [14], [9], [24]. Hencewill change. However, according to the clusfet d, u},

it is also achievable in (a) because one can always ignare haveP(d = 1) = 1.0, but according to the cluster

the existence of the separator that is omitted in (b). Qd,e,u}, we haveP(d = 1) = 0. Because the separator

the other hand, coherent message passimptischiev- between the clustergi, e, u} and{b,c,u} in (a) cannot

able in general in Figure 11 (b) as exemplified in Figrelp solve the problem, coherent message passing is also

ure 12. The potential of each cluster is shown in ternmet achievable in Figure 11 (a).
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Propositionl3 admits many tree organizations. Jensen
P(a=1b=1u=1)=10 P(c=1,d=1,u=1)=1.0 [9] showed that coherent message passing may not be
@ achieved with just any tree. In particular, if two subdo-
mainsV; andV; share a subsdtof variables butl is not
contained in every subdomain on the path between themin
the tree, then coherent message passing is not achievable.
@ In fact, the cluster tree in Figure 11 (b) suffers precisely
this problem. To ensure coherent message passing, the
P(d=0,e=1,u=1)=1.0 P(b=1,c=1,u=1)=1.0 | {ree must be anction tree, where for each pair &} and
Vj, Vi N'V; is contained in every subdomain on the path
betweenV; andV;. Note the similarity between a junction
tree and a hypertree in Definition 1. Hence, we have the
The key conclusion here is that the loopy structure &llowing proposition:
a weak degenerate loop iissignificantjust as that of a  Proposition 14:Let a multiagent system be one that
strong degenerate loop, in the sense that whether it ppiserves BC 1 through BC 3. Then a junction tree or-
vides support to coherent message passing can be stug@gization of agents must be used.
reliably from a derived chain structure. Hence, a cluster
graph with only degenerate loops can always be treated V. ON SUBDOMAIN SEPARATORS

by first breaking the loops at appropriate separators. Thegjyen the commitment to a (hyper) junction tree organi-
resultant is a cluster tree. zation, it follows that each separator must be chosen such
With the understanding of the properties of differenhat the message over itssifficientto convey all the rel-
types of loops, we now make a choice on the organizgyant information from one subtree to the other. et
tional structure for agent communication. Given any cogenote the set of variables in the separatiienote the
nected grapltz, its connected spanning subgraphs (cogmion of all subdomains of one subtree induced by the
taining the same set of nodes @$ with the minimum  separator excluding, andY” denote the union of all sub-
number of links are trees. That is, trees are the simpl@gfmains of the other subtree excludiigBy BC 2,P(Z)
(with the minimum number of links) subgraphs that rgs the only information that can be directly communicated
tain connectedness. Simplicity is conductive to efficienagyetweenX andY. Note that because we are concerned
Consider a weak degenerate loop in a CG, where a s@jth Z as the separator betwedhandY’, we can safely
aratorS is contained in every other separator. If we usgnore the fact thak (orY) is distributed among multiple
the loopy communication organization, there are two iggents.
formation channels between any two clusters in the loop:we consider the condition under which the messages
one throughS and one through the other path in the loopetweenC = X U Z and Q = Y U Z through
Because each separator in the other path is a superseg ¢ire sufficiently informative to ensure coherent mes-
S (by definition of weak degenerate loop), from BC 2, theage passing. Suppoggis associated with a potential
information capacity of the path throughis inferior to Po(X,Z) = Sy P(X,Y,Z) andQ with Po(Y,Z) =
the other path. This implies that not all messages canzlax P(X,Y,Z). For the disjoint setsX, Y, and Z of
passed equivalently from both paths. Hence, agents mygtiables, denotd(X, Z,Y) [20] if X andY are con-
select the path carefully depending on the content of thefitionally independengiven Z. Using the notation, if
messages. Clearly, this requires more sophisticated CaX, Z,Y") holds, then the joint distributio® (X, Y, Z)
putation and coordination than what would be required ihd local distribution® (X, Z), Po(Y, Z) satisfy
a tree organization. We therefore prefer a simpler organi-
zation of agents when degenerate loops existinthe CG:  P(X,Y,2) = Po(X, 2)Po(Y, Z) /P (Z),

BC 3: A simpler agent organization (as a subgraph %here Po(Z) = Sy Po(X,2) = Sy PolY, Z) =
o ; = >« , = >y s =

the communications graph).ls preferred. L Pg(Z). Now suppose some variablesdhare observed
From BC 3, a tree organization follows. This is sum; 4 Po(X, Z) is updated intoPe (X, Z|obs). To up-
marized in the following proposition, which implies the_.. PQ(Y, Z) in Q. pass the mes’sagléc(2|obs) _

choice 3 |n Section Il. .  Pc(X, Z|obs) from C to @, and replace’; (Y, Z)
Proposition 13:Let a multiagent system be one th Q by

observes BC 1 through BC 3. Then a tree organization
of agents should be used. Po(Y, Z|obs) = Po(Y|Z) * Pc(Z]obs).

Fig. 12. Each pair of adjacent clusters are consistent.
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Themessage passing is coherent because DAG models as they are the most concise, with the under-
standing that other models such as decomposable Markov
P(X,Y, Z|obs) = Po(X, Z]obs) P (Y, Z|Obs)_ networks [20], [13], [34] or chain graphs [13] may also be
Pc(Z|obs) used. This corresponds to the choice 4 of Section II.
BC 4: A DAG is used to structure each individual
ent’s knowledge.
DAG model admits an asymmetric and acyclic interpre-
tation of dependence. Once we adopt it for each agent, we
must adopt it for the joint belief of all agents:
Proposition 17:Let a multiagent system ove¥r be

constructed following BC 1 through BC 4. Then each sub-

then in generall (a, b, {c,d}) does not hold. It has beendomainV; is structured as a DAG ovéf, and the union of
hgse DAGs is a connected DAG oviér

shown in Lemmas 9, 10 and Theorem 11 that passing?:’ . : .
message ovérfrom cluster{b, ¢, d} to {a, b} cannot pro- roof: If the union of subdomain DAGs is not a DAG,

duce correct posterior in general. The following propogi?en it has a directed loop. This contradicts the acyclic
tion summerizes the above analysis. interpretation of dependence in individual DAG models.

Proposition 15:Let X, Y and Z be disjoint sets of The connectedness is implied by Proposition 6.7

variables with P(X,Y, 7) defined. LetC = X U The choice 5 of Section Il now follows.
Z be associated withPo(X,Z) = Yy P(X,Y, Z),
and Q = Y U Z be associated withPy(Y,Z) = VII. ON INTERFACE BETWEEN SUBDOMAINS
>x P(X,Y,Z). We show that the interface between subdomains must
1) If I(X,Z,Y) holds, then message passing can lie structured as a d-sepset (Definition 2). This is estab-
performed coherently by passing a potential a¢er lished below through the concept of d-separation [20].
betweenC and@. Theorem 18:Let ¥ be a hypertree over a directed
2) If I(X, Z,Y) does not hold, then message passirggaphG = (V, E'). For each hyperlind which splits¥
cannot be performed coherently in general by padsto two subtrees ovdl C V andW C V respectively,
ing a potential ove? betweenC and(@. U\ I andW \ I are d-separated hyif and only if each
To conclude, when the separator renders the two suityperlink in is a d-sepset.
trees conditionally independent, if new observations areBefore proving the theorem, we explain its rational
obtained in one subtree by the corresponding agents, aod importance. Proposition 16 states that each separator
herent belief update of agents in the other subtree canibea tree organization must render subdomains in the
achieved by simply passing the updated distribution ®wo induced subtrees conditionally independent. Be-
the separator. On the other hand, if the separator doescaise d-separation captures all graphically identifiable
render the two subtrees conditionally independent, passnditional independencies [20], Theorem 18 implies
ing only the separator distribution will not be coherent ithat d-sepset is the necessary and sufficeyritactic
general. Hence, we have the following proposition: condition to ensure conditionally independent separators.
Proposition 16:Let a multiagent system be one thatVe prove Theorem 18 below:
observes BC 1 through BC 3. Then each separator in a
tree organization must render subdomains in the two iRroof:
duced subtrees conditionally independent. [Sufficiency] Assume that each hyperlink is a d-sepset.
This commitment requires the problem domain to B4/ show that for any given hyperlink U \ 7 andW \ I
partitioned among agents such that intersections of s@se d-separated hly
domains form conditional independent separators in a hy-Let p be a path betweeli \ 7 andW \ I such that all
pertree organization. nodes in one side @fbelong tol/\ 7, all nodes in the other
side belong td¥ \ I, and one or more adjacent nodes in
I are in between. It suffices to show that every such path
is blocked byI. Everyp has at least one d-sepnode. If
Given a subdomaifV;, the number of parameters tcone d-sepnode omis tail-to-tail or head-to-tail, thep is
represent the belief ofl; through a potential oveV; is blocked bylI.
exponential on the cardinality;|. Graphical models al- Consider the case whegehas only one d-sepnode
low such belief to be compactly represented. We focus We show thatz cannot be head-to-head gn Suppose

Whatif I(X, Z,Y') does not hold? Consider the depené
dence structure in Figure 9 (a). If a Bayesian network
defined with the dependence structure, &td, b, ¢, d) is
constructed by thehain ruleas

P(a,b,c,d) = P(a)P(bla)P(cla)P(d|b,c),

VI. CHOICE ON SUBDOMAIN REPRESENTATION
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thatx is head-to-head with parengsandz on p. Because main should be structured as a connected DAG (Propo-
z is the only d-sepnode gn neithery nor z is shared by sition 17). The DAGs should be organized into a hy-
U andW,say,y € U andz € W. Thismeangy,z} ¢ U pertree (Proposition 14). The interface between adja-
and{y, z} ¢ W. Becauser is a d-sepnode, there existeent DAGs on the hypertree should be a d-sepset (The-
a subgraplGy, that containsr(z). Becaus&sy is either orem 18). Hence, the multiagent system should be struc-
located in the subtree ovEror the subtree ovél/, either tured as a hypertree MSDAG (Definition 3). O
m(z) C U orm(z) C W holds. Given{y, z} C 7(z), it
follows that eitheqy, z} C U or {y,z} C W must hold:
a contradiction. Hence; is either tail-to-tail or head-to- By Propositions 17, the structure of a multiagent sys-
tail on p. tem is a connected DAG. Hence, a joint probability dis-
Next, consider the case whepecontains at least two tribution (jpd) over the entire domain can be defined by
d-sepnodes. We show that one of them cannot be heapecifying a local distribution for each node and applying
to-head orp. Pick two d-sepnodes andy on p that are the chain rule. In a multiagent system, a node can be in-
adjacent. Such: andy do exist according to how is ternal to an agent or shared by two or more agents. The
defined. Ther andy are connected either Ky, i) or by distribution for an internal node can be specified by the
(y, ). In either case, one of them must be a tail node. corresponding agent designer. When a node is shared, it
[Necessity] Assume that every hyperlink d-separatezay have different parents in different agents (ezgin
the two subtrees. We show that each hyperlink is a Bigure 2 and figure3). Because each shared node is a d-
sepset by contradiction. sepnode, Definition 2 implies that for each shared variable
Suppose that there exists a shared nodech that no z, there exists a subdomain containing all the parenis of
subgraph contains(x) (hence not every hyperlink is a d-in the entire domain as stated in the following lemma:
sepset). Then there exists a hyperlinbn & wherez € I, Lemma 20:Let = be a d-sepnode in a hypertree MS-

VIIl. ON BELIEF ASSIGNMENT

and there exist nonempty subsets DAG G = UG;. Let the parents of in G; ber;(z). Then
there exists7}, such thatr,(z) = |, m(z).
my(z) C w(x) and mw(z) C m(x) If agents are built by the same designer, then once
such thatry (z) € U, mw(z) € W, mp(z) U mw(z) = P(z|m(z)) is specified forz, P(z|m;(x)) for eachi is

7(z), andmy(z) is incomparable withry (z). Because implied. If agents are built by different designers, then it
mu(z) is incomparable withryy (z), there existy € is possible that distributions for a d-sepnode at different
mu(z) buty & my(z), andz € mw (z) butz & my(z). subnets may be incompatible with one another. For in-
The pathp = (y,z,z) betweenU and W is rendered Stance,inFigures2anda; andA,; may differ onP(g7).

open byl because: is head-to-head op. Hence, U7 \ T We make the following basic commitment for integrating

and W \ I are not d-separated h§i a contradiction. independently built agents into a multiagent system:
0 BC 5: Within each agent’s subdomain, the jpd is con-

sistent with the agent’s belief. For shared nodes, the jpd

Theorem 18 implies that d-sepset is the necessary aghplements each agent’s knowledge with others’.
sufficient syntactic condition for conditionally indepen- The key issue is to combine agents’ belief on a shared
dent separators undail possible subdomain structuresvariable to arrive at a common belief. One idea [21] is
and observation patterns. We emphasize that d-sepsebisnterpret the distribution from each agent as obtained
necessary for the most general case, because by restfiom a sample data. The combin®dz|n(z)) can then be
ing subdomain structures (e.g., some agent contains oobtained from the combined data sample. In summary, let
“cause” relative to other agents but no “effect”) or obseagents combine their belief for each shagedThen, for
vation patterns (e.g., some agent has no local observatéath shared, let jpd be consistent wit®(z|m(x)), and
and only relies on others’ observations), the d-sepset fer each internal, let jpd be consistent witl?(z|x(z))
quirement may be relaxed. The choice 6 of Section Il ndweld by the corresponding agent. It's easy to see that the
follows. From Propositions 14 and 17, and Theorem 1&sultant jpd is precisely the one defined in Definition 4,
the following proposition is implied. stated in the following proposition:

Proposition 19:Let a multiagent system be con- Proposition 21:Let a multiagent system be con-
structed following BC 1 through BC 4. Then it must bstructed following BC 1 through BC 5. Then the jpd over
structured as a hypertree MSDAG. V isidentical to that of Definition 4.

Proof: The last choice of Section Il now follows. Pooling Propo-

From BC 1 through BC 4, it follows that each subdasitions 19 and 21 together, the MSBN representation is
main should be structured as a DAG and the entire dentailed by the BCs:
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Theoem 22: Let a multiagent system be constructegrobabilisticreasoning with graphical models, are not in-
following BC 1 through BC 5. Then it must be repretended for multiagent systems. However, one might in-
sented as an MSBN or some equivalent. terpret a cluster in a junction tree as corresponding to an

Before concluding this section, we emphasize that tagent and its subdomain. Under such an interpretation, a
belief consistency between agents that is required by B@uBction tree representation satisfys BC 1 and BC 2. How-
concerns only theharedvariables and concerns only theever, a cluster corresponds to a completely connected set
backgroundr prior knowledge of agents about these varief variables. There is no internal structure and the agent’s
ables. An agent’s belief oprivate variables are not con- belief is essentially represented in terms of a joint proba-
strained directly by the beliefs of any other agents (ality distribution over its subdomain. Clearly, both local
though it will be influenced by what other agents have obiference in an agent and communication among agents
served). For the shared variables, BC 5 requires only theétl be intractable. Hence a junction tree representation
the agents reach an agreement ongher belief. At run under a multiagent interpretation does not admit BC4. On
time, due to local observations, agents’ beliefs on sharée other hand, MSBNSs allow an agent’s internal knowl-
variables can become inconsistent. Bringing their beliefglge to be encoded as a Bayesian subnet. This allows both
back to consistency will be achieved by agent commurdcal inference within an agent as well as communication
cation [29]. to be performed efficiently (when the subnets are sparse).

This analysis addresses issues on representational con-
straints required by MSBNs. In particular, the two key
technical constraints, hypertree and d-sepset interface, are

From the followingbasiccommitments: [BC 1] exact the consequence of BC 1 and BC 2. Efficient methods
probabilistic measure of belief, [BC 2] communication b{Pr verifying these constraints in a multiagent system have
belief over small sets of shared variables, [BC 3] a simplgen developed [32], [30].
organization of agents, [BC 4] DAG for domain struc- One useful consequence of BC 2 and the MSBN frame-
turing, [BC 5] joint belief admitting agents’ beliefs onwork is that the internal knowledge of each agent is never
internal variables and combining their beliefs on shar&@nsmitted and can remain private. This aids construction
variables, we have shown that the resultant representamultiagent systems by agents from independent design-
of a cooperative multiagent system is an MSBN or songés. Multiagent systems commonly stand in two extremes:
equivalent. self-interested versus cooperative. MSBNs stand in the

This result aids comparison with related frameworkgliddle: agents are cooperative and truthful to each other
Multiagent inference frameworks based on default re@hile the internal know-how is protected.
soning (e.g., DATMS [16] and DTMS [8]) do not admit Reasoning and acting in uncertain domains are essential
BC 1, nor does thélackboard[19]. The BDI archi- issues for multiagent systems. A recent trend has focused
tecture [22] has been very influential in building multiaen modeling using Markov decision processes (MDP) [2],
gent systems. It primarily deals with representation of 485]. It has been shown [1] that the computation for solv-
agent’s mental state for practical reasoning [26] althougjtg distributed MDPs is intractable. Hence, heuristics and
it has been extended to deal with communications lapproximation must be applied. On the other hand, prob-
tween agents [7]. Several frameworks for decompositi@ilistic inference in sparse MSBNSs is distributed, exact,
of probabilistic knowledge have been proposAbistract and efficient [29]. Therefore, extending MSBNSs to proba-
network[12] replaces fragments of a centralized BN bhilistic reasoning and decision making over extended time
abstract arcgto improve inference efficiencySimilarity period (as dynamic Bayesian networks [5] extend BNSs)
networkand Bayesian multinef6] represent asymmetric provides an alternative representation to the distributed
independence where each subnet shares almost all VislliPP approach. The distributed MDP approach can be
ables with each other subnet.n&sted junction tregd1] viewed as extending the centralized MDP to multiagent
can exploit independence induced by incoming messagygstems. The alternative approach can be viewed as ex-
to a cluster and it shares all its variables with the nestitgnding multiagent uncertain reasoning from static do-
cluster. They were not intended for multiagent systemgains to dynamic domains. The result presented in this
and do not admit BC 2. Among these alternative frampaper highlights the role of MSBNs in exploring the alter-
works, MSBNs are unique in satisfying both BC 1 andative approach.

BC 2 in one framework. Furthermore, our analysis provides guidance to exten-

Junction tree based message passing algorithms, esigns and relaxations of the MSBN framework. Less fun-
[9], [24], [14], like the above mentioned frameworks fodamental constraints can be relaxed, e.g., BC 4 so that

IX. CONCLUSION
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othergraph models can be used. BC 3 requires that des] C.L. Mason and R.R. Johnson. DATMS: a framework for dis-
generate |Oops be broken open in the agent organization_ tributed assumption based reasoning. In L. Gasser and M.N.
If flexibility in agent communication paths are highly de-
sired, the analysis shows that loopy organizations can@ k p. mMurphy, Y. Weiss, and M.I. Jordan. Loopy belief propa-
used (with a cost in efficiency) when the loops are certain gation for approximate inference: An empirical study. In K.B.
types of degenerate loops. If subdomain structures and Laskey and H. Prade, editogtoc. 15th Conf. on Uncertainty in

observation patterns are less than general, the d-seps
striction can be relaxed.
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