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Abstract— We extend lazy propagation for inference in
single-agent Bayesian networks to multiagent lazy inference
in multiply sectioned Bayesian networks (MSBNs). Two
methods are proposed using distinct runtime structures. We
prove that the new methods are exact and efficient when
domain structure is sparse. Both improve space and time
complexity than the existing method, which allow multia-
gent probabilistic reasoning to be performed in much larger
domains given the computational resource. Relative perfor-
mance of the three methods are compared analytically and
experimentally.

I. INTRODUCTION

Multiply Sectioned Bayesian Networks (MSBNs) [20]
extend Bayesian networks (BNs) [8] for modular and flex-
ible knowledge representation and inference. Although
they were originally motivated within the single-agent
paradigm [19], their modularity allows natural extension
into the multiagent paradigm [13]. From a small set of
meta-requirements, (1) exact probability measure of agent
belief, (2) agent communication by belief over small sets
of shared variables, (3) a simpler organization of agents,
(4) a directed acyclic graph (DAG) domain dependence
structure, and (5) the joint belief of agents admitting indi-
vidual belief on internal variables and combining their be-
liefs on shared variables, it has been shown [18] that the
resultant representation of a cooperative multiagent sys-
tem is an MSBN. These meta-requirements distinguish
MSBNs from a number of alternative knowledge rep-
resentations which do not simultaneously satisfy these
meta-requirements [18]. The multiagent paradigm will be
followed in this paper.

The first general inference method in MSBNs [20], [11]
was an extension of a junction tree (JT) based inference
method [5] for single-agent BNs. We shall refer to this
method as theproduct-based inference with linked junc-
tion forest (LJF)and we overview the method later in the

paper. The method allows exact and autonomous infer-
ence in a cooperative multiagent system that is efficient
when the dependence structure is sparse. An agent’s in-
ference isautonomousif it can be performed by the agent
independently without communication with other agents,
and after the inference the agent is able to answer prob-
abilistic queries exactly conditioned on all local knowl-
edge and observations and on all global knowledge and
observations up to the last communication. See [14] for a
comparison of methods regarding autonomy.

The product-based inference with LJF has been com-
pared [14] with extensions of other inference methods for
single-agent BNs, in particular, the loop-cutset methods
and two stochastic sampling methods. The comparison
shows that product-based inference with LJF is superior
than these alternatives. In this paper, we present two
new general inference methods for MSBNs which extend
the lazy propagation [6] for single-agent BNs. The two
methods will be referred to aslazy inference with double-
linked junction forest (DLJF)andlazy inference with LJF,
and we will explain later the corresponding terminologies.
The two new methods are also exact and autonomous, and
they promise to deliver improved run-time inference effi-
ciency, which we will demonstrate with experimental re-
sults.

We assume that readers are familiar with common ter-
minologies used in the literature of Bayesian networks,
such as DAGs, mapping of domain variables and nodes
in a BN, parent, child and family of a node in a BN, d-
separation, moralization, node elimination and fill-ins, tri-
angulation and cliques, junction trees, clusters and separa-
tors in a JT, conditional independence, conditional proba-
bility tables, a potential (non-normalized probability dis-
tribution) and its domain, consistence of potentials, mes-
sage passing in JTs, etc. Definitions of these terminolo-
gies can be found in a number of reference books such as
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[8], [7], [1], [2], [4], [13].
Theremainder of the paper is organized as follows: Ba-

sics of MSBNs are introduced in Section II. Section III
overviews product-based inference with LJF and Sec-
tion IV overviews lazy propagation. Section V presents
lazy inference with DLJF and it is an extension of [17].
Section VI presents lazy inference with LJF and it is an
extension of [16]. Experimental comparison of the three
methods is reported in Section VII. Section VIII draws
conclusions from this work.

II. OVERVIEW OF MULTIPLY SECTIONED BAYESIAN

NETWORKS

An MSBN M is a collection of Bayesian subnets, one
from each agent, that together defines a BN.M repre-
sents probabilistic dependence of adomain partitioned
into multiplesubdomainseach of which is represented by
a subnet. Agents cooperate to reason about the state of
the domain in order to take proper actions. Without con-
fusion, we refer to an agent, its subdomain, and its sub-
net interchangeably. To ensure exact and autonomous in-
ference, subnets are required to satisfy certain conditions
[18] described below:

Given a graphG = (N, E), a partition ofN into N0

andN1 such thatN0 ∪ N1 = N andN0 ∩ N1 6= ∅, and
subgraphsGi of G spanned byNi (i = 0, 1), G is said to
besectionedinto G0 andG1. A multi-subdomain graphi-
cal model is defined based on sectioning:

Definition 1: Let G = (N, E) be a connected graph
sectioned into subgraphs{Gi = (Ni, Ei)}. Let the sub-
graphs be organized into an undirected treeΨ where each
node is uniquely labeled by aGi and each link between
Gk and Gm is labeled by the non-emptyinterface
Nk ∩ Nm such that for eachi and j, Ni ∩ Nj is con-
tained in each subgraph on the path betweenGi andGj in
Ψ. ThenΨ is ahypertree overG. EachGi is ahy-
pernode and each interface is ahyperlink. A pair of
hypernodes connected by a hyperlink is said to beadja-
cent.

Each hyperlink serves as the information channel be-
tween subnets connected and is referred to as an agentin-
terface. Agents communicate by exchanging beliefs over
their interfaces. An interface must be ad-sepset, as de-
fined below:

Definition 2: Let G be a directed graph such that a hy-
pertree overG exists. A nodex (whose parent set in
G, possibly empty, is denotedπ(x)) contained in more
than one subgraph inG is ad−sepnode if there exists at
least one subgraph that containsπ(x). An interfaceI is a
d−sepset if everyx ∈ I is a d-sepnode.

The overall structure of an MSBN is a hypertree MS-
DAG:

Definition 3: A hypertree MSDAG G =
⊔

i Gi, where
eachGi is a DAG, is a connected DAG such that (1) there
exists a hypertreeΨ overG, and (2) each hyperlink inΨ
is a d-sepset.

Graphically, a hyperlink separates the hypertree MS-
DAG into two subtrees. Semantically, this corresponds to
conditional independence given the d-sepset. An MSBN
is then defined as follows:

Definition 4: An MSBN M is a triplet M =
(N , G,P). N =

⋃
i Ni is thedomain where eachNi

is a set of variables.G =
⊔

i Gi (a hypertree MSDAG)
is thestructure where nodes of each DAGGi are la-
beled by elements ofNi. Let x be a variable andπ(x)
be all the parents ofx in G. For eachx, exactly one of
its occurrences (in aGi containing{x} ∪ π(x)) is as-
signedP (x|π(x)), and each occurrence in other DAGs
is assigned a constant table.P =

∏
i Pi(Ni) is thejpd

(joint probability distribution), where eachPi(Ni) is the
product of probability tables associated with nodes inGi.
Each tripletSi = (Ni, Gi, Pi) is called asubnet of M .
Two subnetsSi andSj are said to beadjacent if Gi

andGj are adjacent on the hypertree MSDAG.
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Fig. 1. A trivial MSBN with three subnets and hypertree structure
G1 − G0 − G2. The two d-sepsets are identical and each consists of
{a, b, c}. Each d-sepnode in each subgraph is shown with a dashed
circle.

An example MSBN is shown in Figure 1.

III. PRODUCT-BASED INFERENCE WITHLINKED

JUNCTION FOREST

Product-based inference with LJF conducts probabilis-
tic reasoning in an MSBN by message passing. Each
message is a potential over a subset of variables.Local
inferencewithin each agent passes intra-subnet messages
which bring a subnet into consistency.Communication
among agents passes inter-subnet messages which brings
the multiagent system into global consistency.

To pass these messages efficiently for exact inference,
each agent compiles its subnet into a JT. The compilation



3

is a cooperative process [12]. First, agents perform dis-
tributed moralization and triangulation. Each agent then
constructs its local JT. This is followed by local potential
assignment: For each variable in the agent’s subnet, its
conditional probability table is associated with a cluster
in the JT that contains the variable and its parents in the
subnet. Each cluster in each JT is assigned with a single
potential over its set of member variables, that is the prod-
uct of all conditional probability tables associated with the
cluster. Hence, we name this inference methodproduct-
based.

For communication with adjacent agents, an agent
compiles its d-sepset with an adjacent agent into alinkage
tree. The linkage tree is derived from the agent’s local
JT as detailed in [11]. We outline the key properties of
linkage tree here as they are essential to the results of this
paper. Note that an agent has a single subnet and compiles
it into a single JT. If the agent is adjacent tok agents on
the hypertree, then it is associated withk d-sepsets and
will compile them intok linkage trees.

1) A linkage tree is a JT over a d-sepset, where each
cluster is a subset of the d-sepset, called alinkage,
and each separator is called alinkage separator.

2) Given a JT of an agent and one of its linkage trees,
each cluster in the linkage tree is a subset of at least
one cluster in the JT. One such cluster is designated
as thelinkage hostof the linkage.

3) A linkage tree expresses the same graphical separa-
tion within the d-sepset as its deriving JT. Hence,
a linkage tree encodes identical independence re-
lations within the d-sepset as the corresponding
JT. Furthermore, a d-sepset involves two adjacent
agents, the linkage tree derived by one agent is
equivalent to that derived by the other.

Figure 2 illustrates JTs and linkage trees obtained from
the MSBN in Figure 1.

Once the linkage trees are compiled, the structure of the
MSBN has been compiled into a set of local JTs related by
linkage trees. For each pair of adjacent agents, their local
JTs are linked by a linkage tree. Such a runtime structure
is called alinked junction forest.

The last step of the compilation is belief initialization.
System wide communication is performed for agents to
exchange prior knowledge on shared variables. Commu-
nication consists of one round of inward message propa-
gation along the hypertree and one round of outward prop-
agation. The message sent from an agent to an adjacent
agent consists of a set of linkage potentials as detailed
in [11]. After belief initialization, each agent is able to
perform autonomous inference and to answer probabilis-
tic queries exactly relative to prior knowledge of all agents

and observations of its own.

IV. OVERVIEW OF LAZY PROPAGATION

Lazy propagation [6] is an inference method for single-
agent BNs based on message passing in a JT of the BN.
Each cluster is assigned a set of probability tables from the
BN. Unlike product-based inference in [5], the product of
these tables are not obtained. We refer to these tables as
potentials, refer to the cluster of current focus byC, and
refer to the set of potentials atC by β. When no potential
is assigned to a cluster,β = ∅. Thejoint system potential
of the JT over a domainN is defined as the product of
potentials in all clusters, denoted byB(N). In the follow-
ing, we describe data structures and algorithms for lazy
propagation.

Each separatorS between two adjacent clustersC and
C ′ is associated with two buffers. One buffer stores mes-
sage fromC ′ to C and the other fromC to C ′. For
the given clusterC and separatorS, we refer to the two
buffers asin-bufferandout-buffer, respectively, relative to
C. A cluster executes the following algorithm to compute
and send a message to an adjacent cluster, where\ is the
set difference operator.

Algorithm 1—SendPotential:LetC be a cluster withβ.
Let adjacent clusters beC1, ..., Cm. Let βi be the set of
potentials in the in-buffer fromCi. When SendPotential
relative toCk is called inC, C does the following:

(1) β′ = β ∪i 6=k βi.
(2) Marginalize out variablesC \ Ck from β′. (To

marginalize out variablex, multiply potentials withx in
the domain and apply marginalization to the product.)

(3) Send the resultant set of potentials to the out-buffer
to Ck .

In the following two algorithms,C is a cluster and
caller is an adjacent cluster or the JT. Algorithm 2 is
executed recursively by each cluster during inward mes-
sage passing.

Algorithm 2—CollectPotential:When CollectPotential
is called in clusterC, C does the following:

(1) For each adjacent clusterQ except caller, call Col-
lectPotential inQ and receive potentials fromQ.

(2) SendPotential relative to caller if it is an adjacent
cluster.

Algorithm 3 is executed recursively by each cluster dur-
ing outward message passing.

Algorithm 3—DistributePotential:When Distribute-
Potential is called inC, for each adjacent clusterQ except
caller,C performs the following:

(1) SendPotential relative toQ.
(2) Call DistributePotential inQ.
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Fig. 2. JTs and linkage trees obtained from Figure 1.Ti (i = 0, 1, 2) is the JT obtained from subnetGi. L1 is the linkage tree betweenT0 and
T1 andL2 betweenT0 andT2. Next to each cluster are the probability tables assigned to it. Each linkage host is labeled by *. Each thick link
relates a linkage to its host in a local JT.

Algorithm 4 is executed by a JT, which produces the
exact marginal for each cluster.

Algorithm 4—UnifyPotential:
(1) Select a clusterC arbitrarily.
(2) Call CollectPotential inC.
(3) Call DistributePotential inC.
Proposition 1 summarizes the effect of UnifyPotential,

whereconst denotes a constant:
Proposition 1—Proposition 3.4 in [10]:Let UnifyPo-

tential be performed in a JT. For any clusterC with β and
in-buffer messageβi from separatorRi (i = 1, ..., m), de-
note the product of potentials inβ asβ(C) and the product
of potentials inβi asβi(Ri). Thenβ(C)

∏m
i=1 βi(Ri) =

const
∑

N\C B(N).

V. LAZY INFERENCE WITHDOUBLE-LINKED

JUNCTION FOREST

The advantage of lazy propagation over product-based
inference is the space efficiency gained by replacing
product-based potentials and messages with factorized
ones. We extend single-agent lazy propagation to mul-
tiagent MSBNs for space efficiency and refer to the resul-
tant method aslazy inference. Lazy propagation employs
only two numerical operations on potentials: multiplica-
tion and marginalization, while product-based inference
in single-agent JT and in multiagent LJF also requires di-
vision. In this section, we present a runtime structure for
lazy inference that uses only multiplication and marginal-
ization. It is referred to asDouble-Linked Junction Forest
(DLJF).

A. Cooperative Triangulation

The order in which messages, both intra-subnet and
inter-subnet, are produced during inference can be deter-
mined by triangulation. For agent privacy and flexibil-
ity in operation, a cooperative triangulation (versus cen-
tralized) is preferred. Similar to cooperative triangulation
used for product-based inference in LJF [12], we present

a triangulation consisting of two rounds of fill-in propa-
gation along the hypertree. We first illustrate the process
using the example MSBN in Figure 3 (a) with its hyper-
tree in (c) and its moral graph in (b). The agent organiza-
tion is isomorphic to (c), which is obtained by substituting
eachGi with the agentAi. This example will be used in
subsequent sections.

The first round is the inward triangulation. We assume
the root agentA1. Instead of using different notations
for local DAG, moral graph and chordal graph, we de-
note all of them byG and differentiate them by context.
Processing starts from leaf agentsA3 andA0. To trian-
gulate local moral graphG3, A3 eliminates nodes outside
d-sepset withA2, namely, nodesn andm. Suppose the
order is (n, m), which produces fill-ins{{j, k}, {j, l}}
shown in (d) as dashed links. The resultant chordal graph
is labeledG3→2 to signify that it is used to compute
message fromA3 to A2 during inference. Completion
of d-sepset{j, k, l} indicates that during lazy inference,
message fromA3 to A2 may contain a potential over
{j, k, l}. Elimination order(n, m) is one possible order
for marginalization in computing that message. To en-
sure thatA2 have the proper data structure to process this
message,A3 sends the above fill-ins toA2. Similarly,
A0 eliminates{o, p} in order (o, p). This produces fill-
in {f, j} shown in (e), whichA0 sends toA2.

After receiving fill-ins fromA3 andA0, A2 performs
triangulation of G2 augmented with incoming fill-ins.
It eliminates nodes outside d-sepset withA1, namely,
{i, j, k, l} in the order(l, k, j, i). This produces fill-ins
{{h, j}, {f, h}} shown in (f). A2 sends fill-in{f, h} to
A1 (how A1 makes use of the fill-in is discussed in Sec-
tion V-C). SinceA1 is the root, inward triangulation ends.

The second round is outward triangulation starts from
A1. It eliminates nodes outside the d-sepset withA2 from
G1 in the order(a, b, c, d, e). The resultantG1→2 is shown
in (g). No fill-ins are produced and none is sent toA2.
Note that the d-sepset{f, g, h} is not complete (compare
with G2→1). Hence, message fromA1 to A2 never con-



5

(g)

 0 2

i

k

G
l

jf

h

g

(i)(h)(f)(e)(d)

 2 1G

e f

h

g

ba

c

d

c

d

mn

l

k

a

G

i

0po (b)

e

h

g

ba

c

d

(a)

jf

mn

l

k

e

h

g

b

k

G

jf i

G0po

 2 3G

j

mn

l

G0po

3G

i

(c)

0G

G3G21G

2G

1G

G3G2

1G

jf

 0 G
l

k

jf

h

g

i

 3 2 2  1 2G

i

l

k

jf

h

g

Fig. 3. Cooperative triangulation. (a) An example MSBN whose hypertree is shown in (c). (b) The moral graph of the MSBN in (a). (c) The
hypertree structure of the MSBN. (d) The local graph after inward triangulation atG3. (e) The local graph after inward triangulation atG0.
(f) The local graph after inward triangulation atG2. (g) The local graph after outward triangulation atG1. (h) The local graph after outward
triangulation atG2 relative toG3. (i) The local graph after outward triangulation atG2 relative toG0.

tains a potential over the entire d-sepset.
Next, A2 triangulatesG2 with respect toA3 andA0.

The two operations can be paralleled. With respect to
A3, after adding the fill-in{f, j} from A0, A2 elimi-
nates{f, g, h, i} in the order(h, g, f, i) producing fill-ins
{{g, k}, {f, k}, {j, k}} as shown in (h). The fill-in on d-
sepset,{j, k}, is sent toA3. Note that the d-sepset is again
not complete.

With respect toA0, after adding fill-ins{{j, k}, {j, l}}
from A3, A2 eliminates{g, h, k, l} in the order(l, h, g, k)
producing fill-ins{{g, k}, {f, k}, {f, j}} as shown in (i).
A2 then sendsA0 the fill-in {f, j}. SinceA0 and A3

are leaf subnets in the hypertree, cooperative triangulation
ends.

Next, we present general algorithms of which the above
illustration is a trace. We say that a graphG over N is
triangulated in orderO, if N is eliminated inO with fill-
ins added toG. Given a setF of links over a setN of
nodes, a subsetE ⊆ F is called arestriction of F to
X ⊂ N if

E = {{x, y}|x ∈ X, y ∈ X, {x, y} ∈ F},

and we denoteE = F ↓X . Algorithm 5 is executed re-
cursively by each agent during inward triangulation. The
agent who executes is referred to asA0. Ac denotes the
caller which is either the system coordinator or an ad-
jacent agent ofA0. Other adjacent agents ofA0 are de-
noted asA1, ..., Am.

Algorithm 5: [CollectFillin] Let Gi = (Ni, Ei) be the
local moral graph ofAi. WhenA0 is called byAc to per-
form CollectFillin,A0 does the following:

initialize accumulatorF = φ;
for i = 1 to m, do in parallel

call CollectFillin in Ai and receive fill-insFi on
d-sepsetNi ∩ N0;

updateF = F ∪ Fi;
if Ac is an adjacent agent, do

eliminateN0 \Nc from G′
0 = (N0, E0 ∪ F ) in an

orderO0→c and add fill-ins toF ;
denoteG0→c = (N0, E0 ∪ F ) and sendF ↓N0∩Nc

to Ac;
CollectFillin does not restrict orderO0→c. Proposi-

tion 2 shows that fill-ins passed between agents are in-
dependent of elimination order.

Proposition 2: Fill-ins F ↓N0∩Nc produced by Collect-
Fillin is independent of orders in which eliminations are
performed.
Proof: We prove by induction. SupposeA0 is a leaf
on hypertree. Thefor loop is skipped and elimination
is performed directly inG0. Consider a pair of nodes
x, y ∈ N0 ∩ Nc that are not directly connected inG0.
WhenN0 \ Nc is eliminated, fill-in{x, y} will be added
iff there is a path betweenx andy such that all nodes on
the path (exceptx andy) are inN0 \ Nc [9] (Lemma 4).
Hence the proposition holds.

If A0 is not a leaf, assume that the proposition holds for
Fi (i = 1, ..., m). ThenG′

0 is independent of the order in
which eliminations are performed in each subtree rooted
at Ai. Using the same argument above to elimination in
G′

0, the proposition is proven. �

Algorithm 6 is executed recursively by each agent dur-
ing outward triangulation.
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Algorithm 6: [DistributeFillin] Let Gi = (Ni, Ei) be
the local graph produced by CollectFillin atAi, andFi

be fill-ins thatA0 received fromAi. WhenA0 is called
by Ac to perform DistributeFillin with fill-insFc, A0 does
the following:

for i = 1 to m, do
denoteF = Fc ∪m

k=1 (k 6=i) Fk;
eliminateN0 \ Ni from (N0, E0 ∪ F ) in an order

O0→i and add fill-ins toF ;
denoteG0→i = (N0, E0 ∪ F );
call DistributeFillin inAi with fill-ins F ↓N0∩Ni;

Fill-ins passed between agents during DistributeFillin
are also independent of the elimination orders as stated in
Proposition 3. It can be proven similarly to Proposition 2.

Proposition 3: Fill-ins F ↓N0∩Ni produced by Dis-
tributeFillin is independent of the orders in which elim-
inations are performed.

Algorithm 7 combines the above algorithms for coop-
erative triangulation of an MSBN.

Algorithm 7: [CommunicateFillin]
(1) Select an agentA arbitrarily.
(2) Call CollectFillin inA.
(3) Call DistributeFillin inA with empty fill-ins.
The illustration presented early in this section is the

trace of CommunicateFillin withA = A1. Any agent
may be selected as the root in CommunicateFillin. Will
the choice of root agent affect the outcome? Theorem 1
answers this question.

Theorem 1:Fill-ins F ↓N∩Ni sent by each agent during
CommunicateFillin is independent of the root agent being
selected.
Proof: During CommunicateFillin, each agent sends fill-
ins to each adjacent agent exactly once. Consider an agent
Ag with an adjacent agentAg′. Denote the sub-hypertree
rooted atAg away fromAg′ by T and denote the sub-
hypertree rooted atAg′ away fromAg by T ′. If A is in
T , fill-ins sent fromAg to Ag′ are produced during Dis-
tributeFillin. If A is in T ′, fill-ins sent fromAg to Ag′ are
produced during CollectFillin.

In either case, only subnets inT are relevant. From
Propositions 2 and 3, the result follows. �

B. Run Time Structure for Message Computation

The chordal graphs produced above provideimplicit
structures for computing messages in lazy inference. Each
chordal graph is then organized into a set of JTs, called a
junction forest (JF), for message computation. We illus-
trate by continuing with the example.

ConsiderG3→2 in Figure 3 (d). Since the d-sepset is
complete, we organize cliques ofG3→2 into a JTT3→2

shown in Figure 4 (1). That is, each cluster ofT3→2 is a

(3)
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Fig. 4. Message JFs when d-sepset is complete. (1) The JT obtained
from G3→2 in Figure 3 (d). (2) The JT obtained fromG0→2 in Fig-
ure 3 (e). (3) The JT obtained fromG2→1 in Figure 3 (f). (4) The JT
obtained fromG2→0 in Figure 3 (i).

clique in G3→2. During inference, message fromA3 to
A2 will be obtained from cluster{j, k, l,m}. Similarly,
JTsT0→2 (in Figure 4 (2)),T2→1 (in (3)) andT2→0 (in
(4)) are created fromG0→2 (in Figure 3 (e)),G2→1 (in
(f)) andG2→0 (in (i)), respectively.

Next, considerG1→2 in Figure 3 (g). Since the d-sepset
is incomplete, message fromA1 to A2 may contain poten-
tials over{f, g} or {g, h}, but not{f, g, h}. A JF of two
JTs is then created, shown (one at the upper right and the
other at the lower left) in Figure 5 (1), and message will
be obtained from clusters{e, f, g} and{g, h}.
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Fig. 5. Message JFs when d-sepset is incomplete. (1) The JF obtained
from G1→2 in Figure 3 (g). (2) The intermediate JF used to build the
JF in (1). (3) The JF obtained fromG2→3 in Figure 3 (h).

To build this JF, we create the JF shown in Figure 5
(2). For each clique in the subgraph ofG1→2 spanned
by the d-sepset, create a cluster. This produces two iso-
lated clusters at the bottom. Complete the d-sepset in
G1→2 and create the JT shown on the top of (2). Delete
cluster{f, g, h} made of the d-sepset, breaking the JT
into subtrees. In one subtree, cluster{b, h} was adja-
cent to{f, g, h}. Since the isolated cluster{g, h} satisfies
{g, h} ∩ {b, h} = {g, h} ∩ {f, g, h}, we connect{g, h}
with {b, h}. For the other subtree, cluster{e, f, g} was
adjacent to{f, g, h}. Since the isolated cluster{f, g} is a
subset of{e, f, g}, we remove{f, g}. The resultant JF is
in (1). Similarly, JFT2→3 (Figure 5 (3)) is created from
G2→3 (Figure 3 (h)).

Below is the general algorithm. A subset of nodes is
eliminableif they can be eliminated without fill-ins.

Algorithm 8: [BuildMessageJF] LetA0 be an agent
and A1 an adjacent agent overN1. Let G0→1 be the
chordal graph atA0 over N0 such thatN0 \ N1 is elim-
inable. WhenA0 is called to BuildMessageJF relative to
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A1, A0 does the following:
identify setL0→1 of cliques in subgraph ofG0→1

spanned byN0 ∩ N1;
if L0→1 is a singleton, create a JTT0→1 from cliques

of G0→1 and halt;

completeN0 ∩ N1 in G0→1 and denote resultant
graph byG′;

create a JTT ′ from G′;
create a JFT0→1 consisting ofT ′ and cliques

(disconnected) inL0→1;
remove clusterN0 ∩ N1 from T ′, breakingT ′ into

subtrees;
for each subtree ofT ′ originally rooted at cluster

N0 ∩ N1 with adjacent clusterC ′, do
find a cliqueC from L0→1 such that

C ′ ∩ C = C ′ ∩ (N0 ∩ N1);
if C ⊂ C ′, removeC from T0→1;
else connectC to C ′;

Proposition 4 shows that a message JF can always be
constructed by BuildMessageJF.

Proposition 4: Junction forestT0→1 from BuildMes-
sageJF is well defined.
Proof: G0→1 is obtained from CommunicateFillin.
Hence, it is chordal andN0 \ N1 is eliminable. Thus,
if L0→1 is a singleton, a JT can be constructed and
BuildMessageJF ends at the first half.

If L0→1 is not a singleton,G0→1 with completion of
N0 ∩ N1 is chordal sinceN0 \ N1 is eliminable. Hence,
T ′ exists andN0 ∩ N1 is a cluster inT ′. We only have to
show that for eachC ′ aC can be found.

C ′ contains at least one node outsideN0∩N1. Comple-
tion of N0∩N1 does not affect connectivity of such nodes.
Hence,C ′ is a clique inG0→1 whereC ′ ∩ (N0 ∩ N1) is
complete. It follows that a cliqueC ⊂ (N0 ∩ N1) exists
in G0→1 such thatC ′ ∩ C = C ′ ∩ (N0 ∩ N1). �

C. Run Time Structure for Local Inference

Message JFs created in the last section are used to com-
pute inter-subnet messages. For an agent to reason locally,
an inference JT is constructed to process messages from
adjacent agents, as specified in Algorithm 9.

Algorithm 9: [BuildInferenceJT] LetA0 be an agent
with local moral graphG0 = (N0, E0). Let adjacent
agents beA1, ..., Am andFi be fill-ins thatA0 received
from Ai during CommunicateFillin. WhenA0 is called to
BuildInferenceJT, it does the following:

(1) EliminateN0 from G′
0 = (N0, E0 ∪m

i=1 Fi).
(2) Add fill-ins obtained toG′

0.
(3) Construct a JTT0 from the resultantG′

0.

Figure 6 shows the result of BuildInferenceJT for the
example.

e,f,g

c,d d,e

f,g,h

k,l,m,n

j,k,m

 3T TT 1  2  0T
b,h a,b

h,i,j,k

(4)(3)(2)(1)
f,g,h,i

f,h,i,j

j,k,l f,o

d,i,j,p

Fig. 6. Inference JTs. (1) The inference JT for agentA1. (2) The
inference JT forA2. (3) The inference JT forA3. (4) The inference JT
for A0.

A JT is a special case of JF. We refer to both message
JFs and inference JTs as JFs when difference of their roles
are unimportant to the presentation.

D. Linking Message JFs and Inference JTs

Message passing during lazy inference, similarly to
product-based inference in LJF, consists of a round of
inward propagation and a round of outward propagation
along the hypertree. Between each pair of adjacent agents,
one message is passed in each direction using a given mes-
sage JF. For example, a message is passed fromA1 to A2

using the message JFT1→2 and one fromA2 to A1 using
T2→1.

Since a message is obtained from clusters of sending
JF and absorbed into clusters of receiving JF, a channel
calledlinkage, similar to that in LJF, is created between a
sending cluster in a JF and a receiving cluster in another
JF. The two clusters are called thehostsof the linkage.
Unlike its counterpart in LJF, a linkage here is directed.
That is, the sending host only has an out-buffer and the
receiving host has only an in-buffer. Multiple linkages
may exist between a pair of JFs.

As an example, consider linkages from agentA2 to leaf
agentA1 on the hypertree. The sending JF is message JF
T2→1 and receiving JF is inference JTT1. Figure 7 (a)
shows the linkage as a dashed arrow.

Next, consider linkages fromA1 to A2. The sending
JF is message JFT1→2. SinceA2 is an internal agent on
the hypertree, it has 3 receiving JFs ofT1→2: inference
JT T2, message JFsT2→0 andT2→3. Figure 7 (b) shows
the linkages fromT1→2 to T2→3. Note that no linkage is
connected to the cluster{k, l}.

We now define linkages in general.
Definition 5: Let A0 be an agent overN0 andA1 be an

adjacent agent overN1. LetG0→1 be the chordal graph at
A0 resultant from CommunicateFillin. Then each clique
in the subgraph ofG0→1 spanned byN0∩N1 is alink-
age from A0 to A1.
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b,h

(a)

h,i,j,k

f,g,h

(b)

k,lf,i,j,k

f,g,i,k

g,h,i,k
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j,k,l

f,h,i,j
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f,g
d,e

 2T  1

 2T  3
 1T  2T 1

a,bb,h
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c,d d,e

f,g,h

Fig. 7. (a) The linkage from message JFT2→1 at agentA2 to inference JTT1 at agentA1. (b) The linkages from message JFT1→2 at A1 to
message JFT2→3 atA2.

From BuildMessageJF, linkages fromA0 toA1 are cliques
in L0→1. Next, we define linkage hosts.

Definition 6: LetT0→1 be a message JF fromA0 to A1,
andT ′

1 be a message JF fromA1 to a third agent or the
inference JT ofA1. For each linkageQ from A0 to A1, a
clusterC in each of the above JF is selected as thehost
of Q if C ⊇ Q.

Proposition 5: Linkage host in Definition 6 is well de-
fined.
Proof: From BuildMessageJF, each clique inL0→1 either
becomes a cluster in the message JF or is removed due to
existence of a superset cluster. Hence, a host exists for
this linkage inT0→1.

Next, considerT ′
1 as a message JF. It is constructed

from a chordal graphG′ produced by CommunicateFillin
andG′ contains all fill-insA0 sent toA1. Hence, for each
linkage fromA0 to A1, a host exists inT ′

1. The similar
argument holds ifT ′

1 is an inference JT. �

Once linkages are determined, the set of message JFs
and inference JTs forms adouble-linked junction forest,
wheredoublerefers to the two message JFs between each
pair of adjacent agents.

E. Belief Assignment

At each agent, for each cluster in its inference JT, a
set of probability tables from its subnet is assigned with
no multiplication performed. Each table in the subnet is
assigned to exactly one cluster that contains its domain.
Such belief assignment is also performed for each mes-
sage JF at the agent.

The joint system beliefof the DLJF is defined as

B(N ) =
∏

i

∏

j

∏

k

βi,j,k,

where i indexes inference JTs,j indexes clusters in a
given JT,βi,j denotes the set of potentials (tables) as-
signed tojth cluster inith JT, andβi,j,k is thekth poten-
tial in the set.B(N ) is identical to the jpd of the MSBN.
Note that if the inference JT at a given agent is replaced
by a message JF at the agent,B(N ) remains unchanged.

F. Extending Lazy Propagation over Linkages

Lazy inference in DLJFs must process message over
linkages, which requires extending operations of Sec-
tion IV.

To incorporate potentials over linkages, we extend
SendPotential by extending the notion of adjacency: Two
clusters areadjacentif (1) they are directly connected in
a JT, or (2) they are hosts of the same linkage. We refer to
the extended SendPotential as SendPotential∗.

We redefine CollectPotential and DistributePotential to
process messages over linkages. They use extended ad-
jacency. In the algorithms,C is a cluster in a JT and
caller is the local agent or an adjacent cluster not con-
nected through a linkage.

Algorithm 10—CollectPotential∗: When Collect-
Potential∗ is called in clusterC, C does the following:

(1) For each adjacent clusterQ not connected through
a linkage except caller, call CollectPotential∗ in Q and get
incoming potentials fromQ.

(2) SendPotential∗ relative to caller if it is an adjacent
cluster.

Note that CollectPotential∗ only receives messages
from linkage in-buffers and does not send to linkage
out-buffers because calling CollectPotential∗ across link-
ages is disallowed. Under the multiagent paradigm,
CollectPotential∗ is a local operation of an agent, while
sending messages across linkages involves a remote
agent. CollectPotential∗ can be executed autonomously
to answer local queries, while message passing across
linkages requires coordination and incurs communica-
tion cost. Next, we redefine DistributePotential as
DistributePotential∗ below. We can then redefine Algo-
rithm 4, using CollectPotential∗ and DistributePotential∗,
which we refer to as UnifyPotential∗.

Algorithm 11—DistributePotential∗: When Distribute-
Potential∗ is called in clusterC, for each adjacent cluster
Q not connected through a linkage except caller,C does
the following:

(1) C performs SendPotential∗ relative toQ.
(2) C calls DistributePotential∗ in Q.
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G. Lazy Inference in DLJF

2  3T
2  0T

0  2T

T1  2

T2  1 T3  2

A0

3A2A1 A

Fig. 8. Lazy communication initiated by agentA1. The inward mes-
sage passing is shown by solid arrows using the message JFs associ-
ated with the arrows. The outward message passing is shown by dotted
arrows using a different set of message JFs.

Lazy inference with DLJF consists of lazy communi-
cation among agents using message JFs followed by lo-
cal lazy propagation at each agent using its inference JT.
Figure 8 illustrates lazy communication initiated by agent
A1. The first round of inward message passing is shown
by solid arrows using the message JFs associated with the
arrows. The second round of outward message passing is
shown by dotted arrows using a different set of message
JFs. Algorithm 12 is used recursively by agents for inward
lazy communication.

Algorithm 12—CollectBeliefLDLJF:When Ac calls
A0 to CollectBeliefLDLJF,A0 does the following:

(1) For each adjacent agentAi exceptAc, A0 calls Col-
lectBeliefLDLJF inAi and gets message fromAi.

(2) If Ac is an adjacent agent,A0 calls CollectPotential∗

in each linkage host ofT0→c, followed by SendPotential∗

along the linkage.

f,g,h,i

φ

φ

B(f,i)

f,h,i,j

h,i,j,k

P(i|f,g),P(h)

j,k,l

φ
P(o|f)P(p|f),P(j|i,p)

B(f,i,j)

P(k|h,i)

P(l|k)

B(f,g),P(h)

 1

T  2 0

k,l,m,n

j,k,l,m

P(l|k)

P(m|j)

P(n|k,l,m),P(l|k)

 3  2T

f,of,i,j,p

T 2

Fig. 9. Inward lazy communication CollectBeliefLDLJF initiated by
A1. The three message JFs involved are shown. Beside each cluster is
the set of potentials assigned to it. Solid arrows indicate intra-subnet
messages and dashed arrows show inter-subnet messages. Message
outgoing fromT2→1 goes toA1. B() denotes a newly produced po-
tential.

Figure 9 illustrates CollectBeliefLDLJF initiated by

A1. Algorithm 13 performs outward lazy communication
on the hypertree.

Algorithm 13—DistributeBeliefLDLJF:WhenAc calls
A0 to DistributeBeliefLDLJF, for each adjacent agentAi

exceptAc, A0 performs the following:
(1) Call CollectPotential∗ in each linkage host ofT0→i,

followed by executing SendPotential∗ along the linkage.
(2) Call DistributeBeliefLDLJF inAi.
Algorithm 14 combines CollectBeliefLDLJF and Dis-

tributeBeliefLDLJF for lazy communication. It is exe-
cuted by the system coordinator.

Algorithm 14—CommunicateBeliefLDLJF:
(1) Select an agentA arbitrarily.
(2) Call CollectBeliefLDLJF inA.
(3) Call DistributeBeliefLDLJF inA.
Theorem 2 establishes that CommunicateBeliefLDLJF

is exact.
Theorem 2:For each agentAi overNi, after Commu-

nicateBeliefLDLJF, its inference JTTi satisfies the fol-
lowing, wherej indexes inference JTs:

BTi(Ni) =
∑

N\Ni

[
∏

j

BTj (Nj)]

Proof: The hypertree of MSBN is isomorphic to a JTΥ
overN , where each cluster is the subdomainNi. Let Θi

denote the set of potentials assigned to inference JTTi.
We associate each clusterNi of Υ with Θi. Hence we
have ∏

θ∈Θi

θ = BTi(Ni),

whereBTi(Ni) denotes the assigned belief of agentAi.
Due to equivalent belief assignment to inference JT and
message JFs, the equation also holds for each message
JF BTi→j (Ni) wherej indexes an adjacent agent ofAi.
Hence, the joint system belief ofΥ is identical to that of
the DLJF.

Suppose lazy propagation is performed inΥ. Let Θi→j

denote the message that clusterNi sends to an adjacent
clusterNj . Potentials inΘi→j are dependent on the order
in which marginalization is performed during lazy prop-
agation. However, any instance ofΘi→j is equivalent to
any other, as the product of its potentials is identical.

Now it suffices to show that there exists a marginaliza-
tion order such that the resultantΘi→j is identical to the
set of potentials sent fromTi→j to Aj during Communi-
cateBeliefLDLJF. In other words, the union of potentials
over all linkages fromTi→j to Aj is identical to the mes-
sageΘi→j during lazy propagation inΥ.

The message fromTi→j to Aj is generated through
a sequence of marginalizations guided by the message
JF. LetO be the order used. BecauseTi→j is created
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from chordal graph obtained in cooperative triangulation,
O must be consistent with a node elimination order that
can lead to construction ofTi→j . Due to the parallel be-
tween node elimination and marginalization, the same or-
der can be applied to marginalization during lazy propa-
gation inΥ. The resultantΘi→j will be identical to the
set of potentials sent byTi→j to Aj during Communicate-
BeliefLDLJF. �

Note that after CommunicateBeliefLDLJF terminates,
an agent can call UnifyPotential∗ in a cluster in its in-
ference JT. Then, exact marginal probability distribution
over each cluster will be be available at the cluster.

H. Complexity Analysis

We use the following parameters:
• n: the total number of agents.
• c: the maximum number of clusters in an inference

JT or message JF.
• r: the maximum number of linkages between a pair

of message JFs.
• q: the cardinality of the largest cluster.
• f: the cardinality of the largest family.
• m: the total number of variables.
First, consider the time complexity of UnifyPotential∗:

Each cluster sends a message to and receives a message
from each adjacent cluster. Hence, the complexity is lin-
ear in c. In the simplest case, the message is empty and
its computation is trivial. In the most complex case, the
potential over the cluster needs to be obtained by product
which is then marginalized into the potential over the sep-
arator. Therefore, the time complexity of UnifyPotential∗

is between O(2c) andO(2c 2q).
Next, consider the time complexity of lazy communi-

cation: A total of2(n− 1) inter-subnet messages are sent
during CommunicateBeliefLLJF with two along each hy-
perlink. Each message requires a round of inward lazy
propagation in a message JF of the complexity between
O(c) andO(c 2q). After CommunicateBeliefLLJF, each
agent needs to execute UnifyPotential∗ to obtain cluster
marginals. Hence, time complexity is betweenO(4n c)
andO(4n c 2q).

For space complexity, each agent maintains an infer-
ence JT and as many message JFs as the number of adja-
cent agents. A total ofn JTs and2(n − 1) message JFs
are maintained. In the simplest case, one copy of con-
ditional probability tables is maintained and no new po-
tential is generated during inference, which results in the
space complexity ofO(m 2f ). In the most complex case,
cluster potentials are multiplied in each cluster of each JF
during inference, which yields the overall space complex-
ity of O(3n c 2q + m 2f).

The above result can be compared with that of product-
based inference with LJF. Local inference in each agent
has time complexity ofO(2c 2q). Two rounds of such
inference is needed during agent communication, hence
the time complexity ofO(2n c 2q). To store a total ofn
JTs and2(n − 1) linkage trees, the space complexity is
O(n (c + 2 r) 2q). Both time and space complexity of
product-based inference with LJF are much higher than
the lower bound result of lazy inference with DLJF.

VI. L AZY INFERENCE WITH LINKED JUNCTION

FOREST

Lazy inference with DLJF is more efficient than
product-based inference with LJF as shown by the above
analysis. However, agents maintain a total of2(n − 1)
message JFs (each over a subdomain), while agents with
LJF maintain2(n−1) linkage trees (each over a d-sepset,
which is generally much smaller than the subdomain). We
present an alternative method for lazy inference with LJF
that explores this opportunity for further space savings.
It uses the same runtime structure as product-based infer-
ence, except that potentials assigned to each cluster are
not multiplied. It turns out although lazy inference with
DLJF uses only marginalization and multiplication of po-
tentials, as lazy propagation does, the alternative method
also requires division as defined below:

Algorithm 15—Lazy Division:Let α andγ be two sets
of potentials. Thelazy division of α by γ, denoted
α/Lγ is performed as follows:

1) If a potential appears in bothα andγ, delete it from
both.

2) For each potentialf in γ, deletef from γ, multiply
the setθ of potentials inα whose domains overlap
with that off , divide the product byf , and replace
θ in α by the result of the division.

For example, letα = {P (a), P (b|a), P (c|b), P (d|c)}
and γ = {P (a), P (b)}. Then α/Lγ = {P (b|a) ∗
P (c|b)/P (b), P (d|c)}. Note that the product of poten-
tials in α/Lγ is identical to the product of potentials inα
divided by the product of potentials inγ.

A. Lazy Communication in LJF

Communication also consists of an inward round and
an outward round of message passing on the hypertree.
Figure 10 illustrates inward propagation in the LJF of Fig-
ure 2, initiated by agentA0.

First, UnifyPotential∗ is performed byA1 andA2. Con-
siderA1. At linkage host{b, c, f}, potentials over linkage
{b, c} is computed from local potentials plus potentials
from cluster{b, c, h}. The resultant isB(b, c). At link-
age host{a, b, e}, potentialsP (a) andB(b) over linkage
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{a, b} are computed. As a result, both linkages inL0,1

pass information onb: a duplication. To remove the du-
plication, A1 examines potentials at linkage{a, b} and
identifiesB(b) as duplicated information. AfterB(b) is
deleted, potentials fromL0,1 to T0 becomeB(b, c) over
linkage{b, c} andP (a) over linkage{a, b}. After a simi-
lar operation atA2, inward communication ends.

Outward communication follows, during whichA0

sends messages toA1 and A2. To obtain message to
A1, A0 performs UnifyPotential∗ using linkage potentials
from A2 but not those fromA1. To compute message to
A2, A0 performs another UnifyPotential∗ using linkage
potentials fromA1 but not those fromA2. Again, dupli-
cated information on variableb needs removed. This ends
lazy communication.

During communication, potentials are sent from one
agent with JTT to an adjacent agent with JTT ′ through
the linkage tree. The potentials are obtained from linkage
hosts inT . To ensure that each linkage host has the neces-
sary information, UnifyPotential∗ must be performed be-
fore these potentials are computed. This rendersT locally
consistent. As a result, for every two linkages adjacent in
linkage tree, same information on their shared variables
are sent by their hosts. If such potentials are directly
passed toT ′, the new belief inT ′ will be incorrect due
to duplication. We present below in general how to use
lazy division to compute cross-linkage potentials without
duplication.

First, the linkage treeL from T to T ′ is directed. For
each linkageQ in L, the following message buffers are
created.

• in-buffer1: in-buffer from host cluster inT .
• in-buffer2: in-buffer from parent linkage inL. If Q

has no parent linkage, its in-buffer2 is null.
• out-buffer1: out-buffer to host cluster inT ′.
• out-buffer2, out-buffer3, ... : out-buffers to child link-

ages inL.

Potentials fromQ to T ′ are computed as follows:
Algorithm 16—SendLinkageMsg:For each linkageQ,

Q requests its linkage host to fill in-buffer1 by
SendPotential∗ relative toQ. After both in-buffers are
filled, Q does the following:

(1) For each child linkageQ′, marginalize out variables
Q \ Q′ from potentials in in-buffer1, and send resultant
potentials to the out-buffer toQ′.

(2) Divide the setα of potentials in in-buffer1 by the set
γ of potentials in in-buffer2 with lazy division and send
α/Lγ to out-buffer1.

Note that sending to out-buffer1 involves inter-agent
message passing. Using SendLinkageMsg, algorithms
below perform lazy communication in LJF. CollectBe-

liefLLJF defines inward communication.
Algorithm 17—CollectBeliefLLJF:When CollectBe-

liefLLJF is called in agentA, A does the following:
(1) If caller is not the only adjacent agent, call Collect-

BeliefLLJF in each adjacent agent except caller. After all
calls are completed, receive linkage potentials from each
adjacent agent except caller.

(2) If caller is an adjacent agent, do UnifyPotential∗

using linkage potentials from each adjacent agent except
caller, followed by SendLinkageMsg relative to caller.

DistributeBeliefLLJF defines outward lazy communi-
cation.

Algorithm 18—DistributeBeliefLLJF:When Dis-
tributeBeliefLLJF is called inA, for each adjacent agent
A′ except caller,A does the following:

(1) A does UnifyPotential∗ using linkage potentials
from each adjacent agent exceptA′.

(2) A does SendLinkageMsg relative toA′.
(3) A calls DistributeBeliefLLJF inA′.
CommunicateBeliefLLJF combines the above algo-

rithms for lazy inference with LJF and is executed by the
system coordinator.

Algorithm 19—CommunicateBeliefLLJF:
(1) Select an agentA arbitrarily.
(2) Call CollectBeliefLLJF inA.
(3) Call DistributeBeliefLLJF inA.
An agentA calls UnifyPotential∗ before sending mes-

sages to each adjacent agent. IfA hask adjacent agents,
then one call is made during CollectBeliefLLJF,k−1 calls
are made during DistributeBeliefLLJF. Hence, a total ofk
rounds of local lazy propagations are needed during Com-
municateBeliefLLJF.

B. Soundness

We useconst to denote a positive constant. Proposi-
tion 6 shows that message sent over a linkage tree defines
marginal potential over d-sepset.

Proposition 6: LetT overN be a local JT,T ′ be a local
JT adjacent toT , I be their d-sepset, andL be the linkage
tree overI . Let UnifyPotential∗ be performed inT fol-
lowed by SendLinkageMsg relative toT ′. Let B(N) be
the potentialB(N) =

∏
C∈T β(C)

∏
Q′ 6∈L β(Q′), where

β(C) is the product of potentials assigned to a clusterC,
β(Q′) is the product of potentials received from a linkage
Q′, and only linkages other than those inL are included.
For each linkageQ ∈ L, let α(Q) be the product of po-
tentials thatQ sends toT ′ by SendLinkageMsg. Then

∏

Q∈L

α(Q) = const
∑

N\I

B(N).
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Fig. 10. Inward communication in the LJF of Figure 2, initiated by agentA0.

Proof: First, we consider effect of UnifyPotential∗ us-
ing Proposition 1. To do so, for each clusterC in
T , we define equivalent cluster potentialβ′(C) =
β(C)

∏
Q′→C β(Q′), whereQ′ → C indexes linkageQ′

that feeds message toC. We can then ignore suchQ′ in
the remaining proof and Proposition 1 is applicable.

Next, for any linkageQ ∈ L, consider its hostX . From
Proposition 1, after UnifyPotential∗, the set of potentials
(including those from its in-buffers) associated withX de-
fines the marginal ofB(N) ontoX . This set, marginal-
ized ontoQ, is sent to in-buffer1 of Q. Denote the product
of potentials in in-buffer1 by α′(Q) and the product of po-
tentials in in-buffer2 by θ′(Z), whereZ is the separator
betweenQ and its parent linkage. Since a linkage tree is
a JT,

∏

Q∈L

α′(Q)/
∏

Q∈L

θ′(Z) = const
∑

N\I

B(N).

The proposition follows because the message thatQ sends
to out-buffer1 is obtained by lazy division, which is equiv-
alent toα(Q) = α′(Q)/θ′(Z). �

Theorem 3 shows that local potentials of an agent and
linkage tree messages it receives define the marginal of
joint system potential:

Theorem 3:Let F over N be LJF of an MSBN
with joint system potentialBF (N ) and CommunicateBe-
liefLLJF be performed inF . Let T be any local JT over
N andB(N) denote potential

∏
C∈T β(C)

∏
Q→T β(Q),

where β(C) is product of potentials assigned to clus-
ter C, β(Q) is product of potentials received from link-
ageQ into T (denoted byQ → T ). Then, B(N) =
const

∑
N\N BF (N ).

Proof: LetA denote the agent associated withT . Direct
the hypertree ofF with A as the root. During Commu-
nicateBeliefLLJF, only inter-subnet messages directed to-

wardsA has an impact onB(N). These messages are sent
in semi-parallel order from leaves to root. We analyze the
impact of these messages by making agents send one by
one starting from any leaf agentA′.

SinceA′ (over subdomainN ′) is a leaf, it is adjacent
to one agentA′′ (over subdomainN ′′). By Proposition 6,
messageA′ sent toA′′ defines marginal ofB(N ′) onto
their d-sepset. Since the message is the only impact that
A′ has onB(N) and it is received byA′′, agentA′ is effec-
tively removed from the system. The new joint system po-
tential defined by the local potentials in remaining agents
and messagesA′′ received isconst

∑
N ′\N ′′ BF (N ).

By applying the above argument recursively to each
leaf agent, eventually, all other agents inF will be re-
moved exceptA. The result follows.�

Corollary 1 states that local potentials of a cluster and
its in-buffer potentials define marginal of joint system po-
tential. Here, in-buffers include those from adjacent clus-
ters in the same JT and those from linkages.

Corollary 1: Let F overN be LJF of an MSBN with
joint system potentialBF (N ) and let CommunicateBe-
liefLLJF be performed inF . Let A be any agent that
performs UnifyPotential∗, after termination of Communi-
cateBeliefLLJF, using linkage potentials from its adjacent
agents. LetC be any cluster in the local JT ofA andB(C)
be the potential

B(C) = β(C)
∏

R→C

β(R)
∏

Q→C

β(Q),

whereβ(C) is product of potentials assigned toC, β(R)
is product of potentials received from in-buffer associated
with a separatorR, andβ(Q) is product of potentials re-
ceived from a linkageQ.

Then,B(C) = const
∑

N\C BF (N ).
Proof: It follows from Theorem 3 and Proposition 1. The-
orem 3 ensures the marginal ofBF (N ) onto the subdo-
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TABLE I
PERFORMANCECOMPARISON

Digital System MSBN (a) Simulated MSBN (b) Simulated MSBN (c)
PLJF LDLJF LLJF PLJF LDLJF LLJF PLJF LDLJF LLJF

Comm. Time (s) 1.6 2.0 1.5 4.0 2.55 2.0 128.4 16.9 127.0
Mem. Usage (kb) 1150 1213 1160 1352 1320 1272 7693 3553 2698
Data/Code Mem. (kb) 190 253 200 392 360 310 6733 2593 1738

main of the local JT and Proposition 1 ensures further
marginalization ontoC. �

C. Complexity Analysis

First, consider the time complexity: During Communi-
cateBeliefLLJF, a total of2(n − 1) SendLinkageMsg is
performed twice along each hyperlink. Before each per-
formance, UnifyPotential∗ is executed. After Communi-
cateBeliefLLJF, UnifyPotential∗ may be executed by each
agent. Since communication is dominated by the compu-
tation of UnifyPotential∗, the time complexity is between
O(4n c) andO(4n c 2q). It is comparable with that of
lazy inference with DLJF.

For space complexity, each agent maintains an infer-
ence JT and as many linkage trees as the number of adja-
cent agents. A total ofn JTs and2(n−1) linkage trees are
maintained. In the simplest case, one copy of conditional
probability tables is maintained and no new potential is
generated during inference, which results in the space
complexity ofO(m 2f). In the most complex case, cluster
potentials are multiplied during inference, which produces
the overall space complexityO(n (c + 2r) 2q + m 2f ).
The space complexity is lower than that of lazy inference
with DLJF.

VII. EXPERIMENTAL COMPARISON

As the complexity analysis for each lazy inference
method (Sections V-H and VI-C) can only provide widely
separated complexity bounds, it is informative to compare
their performance experimentally.

All three inference methods are implemented in Web-
Weavr [3] in Java. We report the experimental results
using three MSBNs. The first (a) is the digital system
MSBN in [13] with a domain size of 91 variables, the sec-
ond (b) is a simulated MSBN [15] with a domain size of
201, and the third (c) is also simulated with a domain size
of 998. Figure 11 shows the subdomain profiles of the
three MSBNs.

The five agents are run on 4 computers connected
through a local network: one Sun-Blade-1000 station
with 750MHz Ultra-SPARC-3 processor, two HP-X2100
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Fig. 11. Profiles of MSBNs: (a) digital system,(b) simulated and (c)
simulated. Beside each agent is the number of variables contained in
its subdomain. Each hyperlink is labeled with the size of the d-sepset.

workstation with 2.4GHz Pentium-4 processor, and one
Acer-Travel-Mate-630 Laptop with 1.4GHz Pentium-4
Mobile CPU.

For each inference method, we record down the total
communication time of the multiagent system and mem-
ory usage of the agent with the largest subdomain. Ta-
ble I shows the experimental data, where PLJF refers to
product-based inference with LJF, LDLJF refers to lazy
inference with DLJF, and LLJF refers to lazy inference
with LJF. All memory usage includes roughly about 960
kb Java virtual machine (JVM) and GUI related classes.
As an example, for the digital system agent with the
largest subdomain, its subnet data and additional code
take 1150 - 960 = 190 kb under PLJF.

For digital system MSBN, LDLJF takes longer time
and uses more memory than PLJF. LLJF is slightly faster
than PLJF and also uses more memory than PLJF. This
result seems surprising. Our analysis is the following:
LDLJF and LLJF take more code memory than PLJF due
to more sophisticated control in lazy inference1 than in
product-based inference. LDLJF needs more data mem-
ory than LLJF as a message JF (over subdomain) takes

1In lazy inference, it is necessary to determine whether marginaliza-
tion relative to a variable can be performed by a trivial deletion of a
potential or by multiplication plus marginalization. To allow such de-
cisions to be made effectively, the head and tail of a potential needs
to be maintained. The control to make such decisions is not needed in
product-based inference.
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more memory than a linkage tree (over d-sepset). The
advantage of factorization in general should reduce data
memory in lazy inference. However, the advantage is not
sufficiently high in the digital system MSBN since the do-
main is small and sparse (the largest cluster of LJF has size
6). This analysis also explains the comparison in commu-
nication time.

The comparison changes in the simulated MSBN (b),
where LDLJF and LLJF are faster than PLJF and use less
memory. LDLJF uses 25% less time and LLJF uses 50%
less time than PLJF. Without counting the memory used
by JVM and GUI, LDLJF uses 8% less memory and LLJF
uses 21% less memory than PLJF. This is because the sim-
ulated MSBN has a much larger domain and is less sparse
(the largest cluster has size 9). The advantage of factor-
ization in lazy inference has overridden the negative effect
of extra code.

Experiment with the simulated MSBN (c) confirms the
same pattern but with more significant performance dif-
ference. LDLJF uses 39% of memory compared to PLJF
and LLJF uses only 26%. Time-wise, LLJF and PLJF per-
formed at the same level. However, LDLJF used only 13%
of the time used by PLJF: 7.6 times faster. We attribute
the significant speed up to the direction-dependent trian-
gulation with LDLJF which can produce more sparse run-
time structure than that of LLJF. The results demonstrate
that as the domain size further increases and dependence
structure becomes denser, more significant computational
savings can be expected for LDLJF and LLJF.

VIII. C ONCLUSION

We extend lazy propagation for single-agent inference
in BNs to lazy inference in multiagent MSBNs. We pre-
sented two methods, one based on runtime DLJF and an-
other on LJF. Lazy inference with DLJF employs message
direction dependent triangulation. It produces sparser tri-
angulation and uses only multiplication and marginaliza-
tion in inference. However, each agent needs to main-
tain a message JF for each adjacent agent. Lazy inference
with LJF uses direction independent triangulation. Less
sparse triangulation may be produced and lazy division is
needed during inference. However, each agent needs only
to maintain a linkage tree for each adjacent agent. These
methods, like product-based method with LJF, are exact2.
When the domain structure is sparse, they are efficient.

2Our analysis of soundness only considered communication of prior
belief. Since effect of an observation on variablex is equivalent to
multiplying potentialP (x|π(x)) by an observation functionf(x), our
analysis can be extended to posterior in a straightforward way. To keep
the paper concise, we have chosen not to elaborate.

Both new methods use more sophisticated control than
product-based inference and hence take more memory
space for code. If the domain is not sufficiently large
and the dependence structure is not sufficiently dense, the
advantage of new methods over product-based method is
limited. However, when the domain is large and especially
dependence structures are reasonably dense, new methods
gain efficiency in both space and time. Hence, the new
methods allow multiagent uncertain reasoning to be per-
formed in much larger domains given the computational
resource.
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