
Comparison of multiagent inference
methods in multiply sectioned

Bayesian networks

Y. Xiang *

Department of Computing and Information Science, College of Physical and Engineering

Science, University of Guelph, Guelph, Ont., Canada NIG 2W1

Received 1 August 2002; accepted 1 December 2002

Abstract

As intelligent systems are being applied to larger, open and more complex problem

domains, many applications are found to be more suitably addressed by multiagent

systems. Multiply sectioned Bayesian networks provide one framework for agents to

estimate what is the true state of a domain so that the agents can act accordingly.

Existing methods for multiagent inference in multiply sectioned Bayesian networks are

based on linked junction forests. The methods are extensions of message passing in

junction trees for inference in single-agent Bayesian networks.

Many methods other than message passing in junction trees have been proposed for

inference in single-agent Bayesian networks. It is unclear whether these methods can

also be extended for multiagent inference. This paper presents the first investigation on

this issue. In particular, we consider extending loop cutset conditioning, forward sam-

pling and Markov sampling to multiagent inference. They are compared with the linked

junction forest method in terms of off-line compilation, inter-agent messages during

communication, consistent local inference, and preservation of agent privacy. The re-

sults reveal issues to be considered in investigating other single-agent oriented inference

methods. The analysis provides those who implement multiagent probabilistic inference

systems with a guide on the pros and cons of alternative methods.

� 2003 Elsevier Inc. All rights reserved.

www.elsevier.com/locate/ijar

International Journal of Approximate Reasoning 33 (2003) 235–254

*
Tel.: +1-519-824-4120x52824; fax: +1-519-837-0323.

E-mail address: yxiang@cis.uoguelph.ca (Y. Xiang).

0888-613X/03/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0888-613X(03)00017-3

Keywords: Multiagent uncertain reasoning; Exact and approximate reasoning; Bayesian

networks; Agent autonomy; Agent privacy

1. Introduction

As intelligent systems are being applied to larger, open and more complex

problem domains, many applications are found to be more suitably addressed

by multiagent systems [14,16]. Consider a large uncertain problem domain

populated by a set of agents. The agents can be charged with many possible
tasks depending on the nature of the application. One common task is to es-

timate what is the true state of the domain so that they can act accordingly. In

general, each agent has only a partial perspective of the domain (with only

knowledge on a local subdomain and can only obtain local observations). Such

a task, often referred to as distributed interpretation [6], arises in many appli-

cations including trouble-shooting complex equipment, building/area surveil-

lance, battle field/disaster situation assessment, and distributed design.

Multiply sectioned Bayesian networks (MSBNs) [17,23] provide one frame-
work to conduct such a task. How to use the MSBN framework for equipment

monitoring and diagnosis is illustrated in [21]. An MSBN consists of a set of

interrelated Bayesian subnets each of which encodes an agent�s knowledge on a

subdomain. Probabilistic inference can be performed in a distributed fashion

while answers to queries are exact with respect to probability theory.

Existing methods for multiagent inference inMSBNs are extensions of a class

of methods for inference in single-agent Bayesian networks (BNs): message

passing in junction trees [5,8,12]. The linked junction forest (LJF) method [19]
compiles the subnet at each agent into a junction tree (JT). Inter-agent message

passing is performed through a linkage tree between a pair of adjacent agents.

The distributed Shafer–Shenoy propagation and distributed lazy propagation

[22] compile the subnet at an agent into a set of JTs, one for each adjacent agent.

The JT is then used for message passing with the agent.

Inference methods, other than message passing in JTs, have been proposed

for reasoning in single-agent BNs. Loop cutset conditioning [9,13] converts a

general BN into a number of tree-structured BNs. Efficient inference can then
be performed in each of them and the results are combined. Direct factoring,

such as [7], and variable elimination, such as [1], marginalize out variables not

in the query, one by one, from a product of a small subset of probability dis-

tributions. Search based inference, such as [3,10], approximates the posteriors

by summing a small subset of joint probability values that contains most of the

probability mass. Simulation based inference, such as [2,9,11], uses Monte

Carlo sampling techniques to simulate a sufficient number of cases and com-

pute posteriors from them. Researchers have raised questions whether these

236 Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254

inference methods can also be extended for multiagent inference in MSBNs.

However, to our knowledge, no such investigation has been attempted.
This paper presents the first investigation on this issue. Because of the wide

variety of methods for single-agent inference in BNs, we do not attempt to

consider them all. In particular, we consider extensions of an exact method,

loop cutset conditioning [9], and two approximate methods, forward sampling [2]

and Markov sampling [9] for multiagent inference in MSBNs. We compare

their performance with the LJF method with a focus on agent autonomy and

agent privacy.

The three chosen methods are some of the earliest methods proposed for
inference in BNs. Many newly proposed methods are their variations. For

instance, likelihood weighting [11] was developed to improve the performance

of forward sampling. The two chosen approximate methods are sufficiently

distinct in that forward sampling follows the topological order of the BN while

Markov sampling relies on the Markov blanket. Investigation on how these

methods may be extended to multiagent inference will provide valuable lessons

to investigating the extensions of the variations of these methods. We have left

out variable elimination methods as they are mostly used for answering a single
probabilistic query and appear unsuited to multiagent applications, where

agents would need to answer different queries in parallel. We have also left out

search based inference methods. Since these methods tend to make use of to-

pological order of the BN, we expect that our investigation of forward sam-

pling will shed light on their extensions to MSBNs.

Section 2 introduces MSBNs and the LJF inference method. Section 3 first

briefly reviews the method of loop cutset conditioning for single-agent BNs,

and then presents a distributed version with its properties analyzed. Similarly,
Sections 4 and 5 briefly review the single-agent forward sampling and Markov

sampling, and then present and analyze their distributed versions, respectively.

Conclusions are drawn in Section 6 based on these analyses.

2. MSBNs and inference with LJFs

An MSBN [17] M is a collection of Bayesian subnets that together defines a

BN. To ensure exact inference, subnets are required to satisfy certain condi-

tions. First we introduce terminologies to describe these conditions. Let

Gi ¼ ðVi ;EiÞ (i ¼ 0; 1) be two distinct graphs (directed or undirected). G0 and

G1 are said to be graph-consistent if the subgraphs of G0 and G1 spanned by

V0 \ V1 are identical. Given consistent graphs Gi ¼ ðVi ;EiÞ (i ¼ 0; 1), the graph

G ¼ ðV0 [V1;E0 [E1Þ is called the union of G0 and G1, denoted by G ¼ G0 t G1.
Given a graph G ¼ ðV ;EÞ, V0, and V1 such that V0 [V1 ¼ V and V0 \ V1 6¼ ;,
and subgraphs Gi of G spanned by Vi (i ¼ 0; 1), we say that G is sectioned into

G0 and G1. Fig. 1 shows an example.

Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254 237

The subnets in an MSBN must satisfy a hypertree condition:

Definition 1. Let G ¼ ðV ;EÞ be a connected graph sectioned into subgraphs

fGi ¼ ðVi ;EiÞg such that the Gi�s can be associated with a tree W with the

following property: Each node in W is labeled by a Gi and each link between Gk

and Gm is labeled by the interface Vk \ Vm such that for each i and j, Vi \ Vj

is contained in each subgraph on the path between Gi and Gj in W. Then W is a
hypertree over G. Each Gi is a hypernode and each interface is a hy-

perlink.

Fig. 2 shows an example. For this example, V2 \ V1 ¼ ; (hence the hypertree

condition is trivially satisfied). But in general, Vi \ Vj can be non-empty.

(b)

GGG

(a)

g

qj

k t

c

d

s
c

v

u

i

wb

a

b

a

hr

ef

j

a

s

d

t

g

c

v

u

f e

r h

k

q

b w

i

0 1

Fig. 1. The graph G in (a) is sectioned into G0 and G1 in (b).

{a, b, c}{j, k}
Ψ

(c)

(a)

(b)

GGG

GG

G

G

f

r h

s

d

tk

j

e

q

x

j

k tk

c

d

s
c

v

u

i

wb

a

b w

i

u

v

c

g

q

g

a

b

a

hr

ef

j

m

o

n

z

y

l

x

m

o

n

z

y

l

102

12 0

Fig. 2. The graph G in (a) is sectioned into G0, G1 and G2 in (b). W in (c) is a hypertree over G.

238 Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254

The interface between subnets in an MSBN must form a d-sepset:

Definition 2. Let G be a directed graph such that a hypertree over G exists. Let x
be a node that is contained in more than one subgraph and pðxÞ be its parents
in G. Then x is a d-sepnode if there exists one subgraph that contains pðxÞ.
An interface I is a d-sepset if every x 2 I is a d-sepnode.

Each of a, b, c, j, k in the interfaces of Fig. 2(b) is a d-sepnode. Hence, the

interfaces {a; b; c} and {j; k} are d-sepsets. If the arc from j to l were reversed,
however, the node j would no longer be a d-sepnode and {j; k} would no longer
be a d-sepset. The hypertree and d-sepset conditions together ensures syntac-
tically that agents can inform each other by passing their believes on interfaces

only.

In a multiagent system, a d-sepnode is shared by more than one agent and is

called a public node. A node internal to a single-agent is called a private node.
The structure of an MSBN is a multiply sectioned DAG (MSDAG) with a

hypertree organization:

Definition 3. A hypertree MSDAG G ¼
F

i Gi, where each Gi is a DAG, is a

connected DAG such that (1) there exists a hypertree W over G, and (2) each

hyperlink in W is a d-sepset.

Fig. 2(b) and (c) show a hypertree MSDAG. An MSBN is then defined as

follows, where a potential over a set of variables is a non-negative distribution

of at least one positive parameter, and a uniform potential consists of 1�s only.

Definition 4. An MSBN M is a triplet ðV ;G;PÞ. V ¼
S

i Vi is the domain where

each Vi is a set of variables, called a subdomain. G ¼
F

i Gi (a hypertree

MSDAG) is the structure where nodes of each DAG Gi are labeled by

elements of Vi . Let x be a variable and pðxÞ be all parents of x in G. For each x,
exactly one of its occurrences (in a Gi containing fxg [pðxÞ) is assigned

P ðxjpðxÞÞ, and each occurrence in other DAGs is assigned a uniform potential.

P ¼
Q

i Pi is the joint probability distribution (jpd), where each Pi is the

product of the potentials associated with nodes in Gi. A triplet Si ¼ ðVi ;Gi; PiÞ is
called a subnet of M . Two subnets Si and Sj are said to be adjacent if Gi and

Gj are adjacent.

Fig. 3 shows a trivial MSBN. It is trivial because it does not reflect the large
scale of a practical MSBN and only serves for the purpose of illustration. In

(a), a trivial digital system of three units is shown. It is modeled into an MSBN

with the hypertree MSDAG in (b) (a duplication of Fig. 2(b) for reader�s
convenience), where the hypertree has the topology G2 G0 G1. Ignore (c)
for the moment.

Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254 239

An MSBN can be used as the knowledge representation of a cooperative

multiagent system, where each subnet encodes the partial knowledge of an

agent on the domain. How to use the MSBN framework for equipment

monitoring and diagnosis is illustrated in [21]. We denote by Ai the agent whose

knowledge is encoded in subnet Si. Each Ai can only observe locally. Once a

multiagent MSBN is constructed, agents may perform probabilistic inference

by computing the query P ðxjeÞ, where x is any variable within the subdomain of

an agent, and e denotes the observations made by all agents. The key com-
putation is to propagate the impact of observations to all agents, which is

termed as communication. It is performed by inter-agent message passing.

Hence communication requires system-wide inter-agent message passing or

simply system-wide message passing. As agents are autonomous, constant

system-wide message passing is either unavailable or undesirable. Most of the

time, each agent Ai computes the query Pðxjei; ei0Þ, where ei is the local ob-

servations made by Ai and ei0 is the observations made by other agents up to

the latest communication. Note that ei0 is not explicitly available to Ai and only
its impact is propagated to Ai. This computation is termed local inference.

Each subnet may be multiply connected. Multiple undirected paths may

also exist across different subnets (e.g., those between d and q in Fig. 3(b)).

(c)

U U

(b)

(a)

L

G

L

G

T

T

T

U

G

m

x

j

k tk

c

d

s
c

v

u

i

wb

a

b

a

hr

ef

j

m

o

n

z

y

l

w

t

s v

a

y

x

z uhr

g

o

n

q

l

k

j
iq

f e

d

c

b

g

0
12

2 0 1

2

0

11

2

a,b

b,c
b,c,q,v

e,f,r

a,b,e,h

d,j,k,t

b,c,d,s

a,b,g,u
j,k,l,x

l,m,o,y
i,q,w

l,n,z

j,k

Fig. 3. A trivial MSBN.

240 Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254

To facilitate exact inference with message passing, the LJF method compiles

each subnet into a JT, called a local JT, and converts each d-sepset into a
JT, called a linkage tree. Fig. 3(c) illustrates the three local JTs and two

linkage trees of the monitoring system. Each oval in a JT or a linkage

tree represents a subset of variables. For instance, {l;m; o; y} is a cluster in the

JT T2 and {b; c} is a cluster in the linkage tree L1. Local inference is performed

by message passing in the local JT as in the case of a single-agent BN. Inter-

agent message passing during communication is performed using the linkage

trees. A communication requires passing Oð2gÞ inter-agent messages, where g
is the number of agents. The size of the message is linear on the number of
clusters in the linkage tree and is exponential on the cardinality of the largest

cluster.

During construction [18] of an MSBN, whether a public node has any

parent or child in a subnet (but not how many or what they are) needs to be

revealed. The conditional probability distribution of a public node may be

negotiated among relevant agents to pool the diverse expertise together. Other

than these, construction of an MSBN [18], its compilation into an LJF [20],

and communication using LJF [19] reveal no additional information regarding
the internals of each agent. Respect of agent privacy promotes agent auton-

omy, eases independent agent development, and facilitates integration of

agents from different vendors into a coherent system.

In the following sections, we consider extending three common inference

methods in single-agent BNs to inference in multiagent MSBNs. Based on

agent autonomy and privacy, we assume (1) that constant system-wide message

passing is not available, (2) that the d-sepnodes are public, but all other vari-
ables in each subnet and their associated distributions are private to the cor-
responding agent, and (3) that only peer-to-peer coordination is available with

no centralized control.

3. Loop cutset conditioning

3.1. Single-agent oriented

Given observed values of some variables in a BN, the posterior probabilities

of other variables may be computed. Pearl [9] proposed a method, called k p
message passing, that performs this computation efficiently. Local probability

distributions are propagated through the BN from the leaf nodes towards the

root nodes (called k messages) as well as from the root nodes towards the leaf

nodes (called p messages). Each node in the BN receives a k message from each
child node and a p message from each parent node. It computes its own k and p
messages based on its local distribution and messages received. After k p
message passing, the probability distribution of each variable conditioned on

Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254 241

the observation is available at the corresponding node. Unfortunately, the

method is not applicable (with the same effect) directly to a non-tree BN.
The method of cutset conditioning [9] converts a multiply connected BN into

multiple tree-structured BNs, which allows k p message passing to be applied

to each of them. The results are then combined to obtain the correct posteriors.

The key step of the method is to hypothetically observe a set C of nodes, the loop
cutset, in the multiply connected BN so that all loops are broken.

Formally, the posterior probability distribution of a variable x given ob-

servation e1 on another variable is computed by

P ðxje1Þ ¼
X

c

Pðxjc; e1ÞP ðcje1Þ; ð1Þ

where c ¼ ðc1; . . . ; cnÞ is any configuration of C. For each c, Pðxjc; e1Þ is ob-
tained by k p message passing in a corresponding tree-structured BN. P ðcje1Þ
can be calculated as

P ðcje1Þ ¼ aP ðe1jcÞP ðcÞ; ð2Þ
where a is a normalizing constant and P ðe1jcÞ is obtained by k p message

passing. If the observations consist of values e1, e2 of two variables, Pðxje1; e2Þ
can be obtained by

P ðxje1; e2Þ ¼
X

c

P ðxjc; e1; e2ÞPðcje1; e2Þ; ð3Þ

where P ðxjc; e1; e2Þ can be obtained by k p message passing, and

P ðcje1; e2Þ ¼ aP ðe2jc; e1ÞP ðcje1Þ; ð4Þ
with P ðcje1Þ computed by Eq. (2) and P ðe2jc; e1Þ by k p message passing.

To obtain P ðcÞ in Eq. (2), an ancestral ordering of variables is used to

compute the following factors [13] whose product is P ðcÞ:
P ðc1Þ; P ðc2jc1Þ; . . . ; Pðcnjc1; . . . ; cn1Þ: ð5Þ

If the observations consist of m values e1; . . . ; em, the above can be gener-

alized to compute in sequence

P ðe1jcÞ; P ðe2jc; e1Þ; . . . ; P ðemjc; e1; . . . ; em1Þ ð6Þ
to obtain

P ðcje1Þ; P ðcje1; e2Þ; . . . ; P ðcje1; . . . ; emÞ; ð7Þ

and compute

P ðxjc; e1; . . . ; emÞ ð8Þ

to obtain

P ðxje1; . . . ; emÞ: ð9Þ

242 Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254

3.2. Inference in MSBNs by distributed cutset conditioning

In an MSBN, loops can exist both within local DAGs and across multiple

local DAGs. Finding a loop cutset C that can break all loops requires a dis-
tributed search. It can be performed using a variation of TestAcyclicity [18], a

polynomial algorithm for verifying acyclicity of the structure of an MSBN.

A simple variation works as follows:

Each agent starts by recursively marking terminal nodes (with no more than

one adjacent node). After all such nodes have been marked, one agent marks a

node s and adds s to C (through message passing as there is no centralized

control). At least one loop is now cut open. Repeat the above until all nodes

are marked. See [18] for details on multiagent node marking. Note that because
a node s added to C could be a private node, communicating C to other agents

reveals private information.

In Fig. 4, C ¼ ff ; h; j; og is a loop cutset. Note that f is private to A1, h is

private to A2, o is private to A0, and j is shared by A2 and A0.

After such a cutset is found, the multiply connected DAG union needs to be

converted to Oð2jCjÞ tree-structured DAG unions, one for each configuration c

of C, and distributed k p message passing needs to be performed in each of

them. 1 We consider the computation of sequences (5)–(9) where the obser-
vations e1; . . . ; em are those obtained since the last communication. Note that

e1; . . . ; em as well as variables in C are distributed among agents. No single-

agent has access to all of them.

First, consider the computation of sequence (5). This computation needs to

be performed following an ancestral ordering of variables in the domain. The

ordering can be defined through another simple variation of TestAcyclicity

[18], described as follows. Recall from Section 2, the total number of agents is

denoted by g and the agents are indexed 0; 1; . . . ; g 1.
Recursively mark root nodes in all g agents in multiple rounds. At most one

node per agent can be marked at each round. At the ith round, a node marked

c

d

f

e

G

g

i

G

l

o

G
a

b

j

k

a

b

j

k

1

2

h

n

m

0

Fig. 4. The structure of a trivial MSBN.

1 Equivalently, one could process the same DAG union Oð2jCjÞ times once for each distinct c.

It is a matter of implementation.

Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254 243

by the kth agent is assigned the index i � g þ k. The indexes then define an

ancestral ordering.

Fig. 5 shows an example. The available indexes for A0 are 0, 3, 6, . . . and
those for A1 are 1, 4, 7, . . . In round 0, A0, by cooperating with A2, recognizes

that the public node j is a root and indexes it with 0. A1 indexes f with 1. A2 is
notified by A0 with the index of j, but otherwise it has no root node to index. In

round 1, A0 indexes l with 3 and A1 indexes a with 4. The process continues

until all nodes are indexed.

The above method can be improved such that more than one node can be

marked per agent per round. This will result in less number of inter-agent

messages. Since the computation can be performed off-line and its complexity

is polynomial, we will not pursue the refinement here.

Using the ancestral ordering, sequence (5) can be obtained by extending the
method of Suermondt and Cooper [13]. For the example in Fig. 5 and the loop

cutset C ¼ ff ; h; j; og, the sequence

P ðjÞ; P ðf jjÞ ¼ P ðf Þ; P ðojf ; jÞ; P ðhjf ; j; oÞ

can be computed. Because there is no centralized control, it is quite involved to

coordinate the computation so that the ancestral ordering is followed.

First, for each configuration c arranged in the given ancestral ordering

ðc1; . . . ; cnÞ, the agent with ci must instantiate the corresponding variable (ef-

fectively cutting one or more loops open) according to the order, and messages

need to be passed among agents after the instantiation if ciþ1 is contained in a

distinct agent. Second, message passing must be performed partially within

each agent because part of its local DAG may still belong to loops where cutset
variables are yet to be instantiated. For instance (Fig. 5), after instantiating

variable j, A0 can only propagate its impact to l but not to m, because m still

belongs to a loop in which no variable has been instantiated. Third, the mes-

sage passing may involve each agent multiple times and hence activities of

agents must be carefully coordinated. For example, after A0 instantiated j, its
impact needs to be propagated to l and a locally, then to c, d and b in A1, and

finally back to n and o within A0 again.

G0G1
a,4 a,4

G 2

j,0 j,0 f,1 l,3

c,7

d,10

b,12b,12

e,13
n,15

o,18
k,20

k,20
m,21

g,23

h,26

i,29

Fig. 5. Ancestral ordering where the index of each node is shown beside the label.

244 Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254

The sequence (5) needs to be computed for each configuration c and the

results need to be propagated to at least one agent to compute P ðCÞ. The agent
can then send P ðCÞ to every other agent for their local usage.

Next, consider the computation of sequence (6). Given c, sequence (6) can

be obtained by m message propagations in each corresponding DAG union.

Since e1; . . . ; em are distributed and the sequence needs to be computed in

order, agents must coordinate the computation. After the first propagation over

the system, the agent with e1 obtains Pðe1jcÞ. It then enters e1, followed by the

second propagation over the system. The agent with e2 obtains P ðe2jc; e1Þ, and
the process continues. Note that results for sequence (6) are distributed because
each ei may be contained in a different agent. For each c, probability (8) can

be obtained through one round coordinated computation with each agent se-

lecting its local x.
From sequences (6) and (7) can be obtained similarly to Eq. (4). Since the

results for sequence (6) are distributed, this computation needs to be coordi-
nated. The agent with P ðe1jcÞ computes P ðcje1Þ through Eq. (2). Note that to

derive the normalizing constant, the computation cannot be performed until

sequence (6) has been computed for each c. It then sends P ðcje1Þ to other
agents. The agent with P ðe2jc; e1Þ will then compute P ðcje1; e2Þ and sends it.

The process continues then at the next agent.

From the last probability of sequence (7) and probability (8), each agent will

be able to compute probability (9). Note that although the computation for

sequences (6) and (7) can be performed in any order of e1; . . . ; em, the order

must be agreed and followed consistently by all agents for both sequences.

Local evidential inference cannot be performed when the system-wide

message passing is absent. For instance, A0 cannot perform local cutset con-
ditioning using its subnet only, since the dependence through subdomains in

other agents cannot be counted for. Between communications, approximate

local inference using only the local subnet is possible, but the posteriors ob-

tained is not exact, and can be significantly different from what will be obtained

after global communication.

We summarize the features of distributed loop cutset conditioning:

1. Distributed search for loop cutset and ancestral ordering can be performed

off-line. The rest of the computation must be performed on-line since the
computation depends on the observations e1; . . . ; em. Note that PðCÞ must

be computed on-line as well since it is a different distribution at the begin-

ning of each communication.

Alternatively, because observations may cut some loops open, the cutset C
may be redefined for each communication. Including observations in the

cutset can cut down the amount of computation. The tradeoff is that

computation for defining a new cutset must be performed on-line.

2. The computation of P ðCÞ for each c requires OðjCjÞ rounds of system-wide
message passing since a message passing is needed after the instantiation of

Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254 245

each variable in C. If computations for all c�s are performed sequentially,

OðjCj2jCjÞ rounds of message passing are needed. To reduce inter-agent mes-
sage passing, the Oð2jCjÞ messages, one for each c, may be batched, making

OðjCjÞ rounds of message passing sufficient with each message Oð2jCjÞ times

long.

The computation of sequences (6) and (7) requires one round of system-wide

message passing for each element in sequences (6) and (7). Hence OðmÞ
rounds of message passing are needed, with message batching.

Overall, OðjCj þ mÞ rounds of system-wide message passing are needed.

Compared with the LJF method that requires two rounds of message
passing, distributed cutset conditioning incurs much higher inter-agent

transmission cost.

3. Local evidential inference cannot be performed exactly using cutset condi-

tioning, although approximation using the local subnet provides a subopti-

mal alternative.

4. At least the number of nodes in the loop cutset and the number of variables

observed system-wide must be revealed. Partial information regarding the

ancestral ordering of domain variables is also revealed.

4. Forward sampling

4.1. Single-agent oriented

Forward sampling is also known as logic sampling [2]. The method of for-
ward sampling proceeds in an ancestral ordering of nodes in a BN. For each

node, its value is randomly simulated given the values of its parent nodes ac-

cording to the conditional probability distribution stored in the node. A case is
simulated when the value of each variable in the BN has been simulated. By

repeating the simulation for a large number of cases, a sample is obtained

according to the jpd of the BN. The cases that are incompatible with the given

observations are discarded, and the posterior distributions for unobserved

variables are approximated by frequency counting on the remaining cases. The
larger the sample size, the more accurate the posteriors.

Case simulation in forward sampling does not consider the observations.

When the observed events are rare, a large percentage of cases simulated may

be discarded.

4.2. Inference in MSBNs by distributed forward sampling

According to forward sampling, simulation must be performed in an an-

cestral ordering. That is, the value of a child node is determined after the values

of all its parents have been determined. The ordering can be obtained by a

246 Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254

distributed search similar to that for distributed cutset conditioning. In an

MSBN, the parents of a node may be located in an adjacent agent. To simulate

the value of the node, an inter-agent message must be passed.

Consider the scenario illustrated in Fig. 6. Agent A0 contains a private

variable x. Its parent a is a public variable shared with agent A1 and the parent

pðaÞ of a is private in A1. Thus, to determine the value of x, A0 needs to wait
until A1 sends the value of a to it. Furthermore, A1 contains a private variable y,
A1 shares the parent b of y with A0, the parent pðbÞ of b is private in A0 and x is
an ancestor of pðbÞ. Hence, A1 cannot determine the values for all variables it

shares with A0 and as a result cannot send them in one batch. Instead, A1 must

wait until A0 sends the value of pðyÞ.
Although scenarios such as the above involve mutual wait among the two

agents, it does not lead to a deadlock because the DAG union of an MSBN is

acyclic. However, if a directed path crosses the interface between two agents k
times, then messages must be passed back and forth k times between the two

agents before values for all variables on the path are simulated. Note that a

directed path may pass across multiple agent interfaces. Hence during simu-

lation of each case, the number of messages between each pair of adjacent

agents are upper-bounded by the number of d-sepnodes between them. This

implies that OðgdÞ inter-agent messages are needed to simulate one case, where

g is the number of agents and d is the cardinality of the maximum d-sepset.

If the cases are generated one by one, the above mentioned cost for inter-
agent message passing will be multiplied by the sample size. To reduce this cost,

inter-agent messages can be batched. For example, A1 may generate K values

for a and pass all of them to A0 and later receives K values for each of b and c.
The price to be paid is that all K values for each variable must be saved in some

way until the compatibility of each case with observations is resolved as dis-

cussed below and the contributions of the K cases to the posteriors are counted.

When the cases are generated one by one, the generation of a case can be

terminated early as soon as one agent found the partial case to be incompatible
with its local observations. Because batched sampling is intended to reduce

inter-agent message passing, such finding by an agent cannot be communicated

G G0 1

x

y

a a

b

c c

b

Fig. 6. Two adjacent local DAGs in an MSBN.

Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254 247

to other agents immediately. After a sample of cases is simulated, it is necessary

to determine which cases are compatible with the observations. This can be
achieved by letting each agent label each case that is incompatible with its local

observations. All such labels must then be passed among all agents to weed out

each case that is labeled as incompatible by any agent.

Since parents of a variable may not be contained in an agent, local inference

in the absence of system-wide message passing cannot be performed equiva-

lently. An alternative is that, at the end of each communication, each agent

records down the posterior distribution of each shared variable that is a root

locally, and use the local subnet thus obtained for local inference. For the
example in Fig. 6, A1 may record down P ðbjeÞ and P ðcjeÞ, where e stands for

the observations made by all agents before the last communication. After new

local observations are made, A1 can then perform a local inference with a local

forward sampling. The result, however, is not equivalent to what would be

obtained with system-wide message passing, even when there is no observation

other than that from A0, since the dependence between b and c through the

loops in A0 is not counted for.

We summerize features of distributed forward sampling:
1. Distributed search for an ancestral ordering is needed.

2. With message batching, OðdgÞ inter-agent messages are needed. The length

of each message is in the order OðKdÞ, where K is the sample size. Both val-

ues for shared variables and compatibility labels for cases need to be trans-

mitted between agents. In comparison, communication using a LJF passes

Oð2gÞ inter-agent messages, which requires d=2 times less inter-agent mes-

sage passing.

3. Local inference in the absence of system-wide message passing does not con-
verge to the correct posteriors in general.

4. Partial information regarding the ancestral ordering of domain variables is

revealed.

5. Markov sampling

5.1. Single-agent oriented

Markov sampling [9] is also known as Gibbs sampling [4]. Unlike forward

sampling, Markov sampling starts simulation of each case by instantiating

observed variables to the observed values. Hence, no case simulated will be

discarded before the frequency counting. The simulation begins with some

initial case s0. Each subsequent case si (i > 0) is simulated by conditioning on
the previous case si1. To simulate the value of variable x in si, only the values

of si1 in theMarkov blanket of x are needed. The Markov blanket of x includes
the parents pðxÞ of x, each child v of x and the parents of v, excluding x. The

248 Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254

value of x is simulated using the distributions PðxjpðxÞÞ and P ðvjpðvÞÞ for each
child v, where pðxÞ, v and pðvÞnfxg are instantiated to the values in si1. The
simulation can be performed in arbitrary order of variables. A case is simulated

after the value of each variable is simulated.

Markov sampling is more efficient than forward sampling but the posteriors

may not converge to the true probabilities when local distributions contain

extreme probability values.

5.2. Inference in MSBNs by distributed Markov sampling

In Markov sampling, simulations of any two non-adjacent variables in case

si are independent given the values of their Markov blankets in si1, assuming

none of them is in the Markov blanket of the other. Therefore, simulation
needs not to follow an ancestral ordering. This means that multiple passes

through a single subnet during the simulation of each case (as in distributed

forward sampling) is no longer required. In other words, simulation of each

case requires only OðgÞ inter-agent messages.

On the other hand, in distributed forward sampling, simulations of any two

cases are independent, which makes batching messages possible. In distributed

Markov sampling, at the time the value of x in si is to be simulated, the value of

its Markov blanket in si1 must be known. This renders message batching
impossible. To see this, consider a directed chain u, v, x, y, z in a MSDAG where

u has no parent and z has no child (the first line of Fig. 7). In the figure, solid

arrows represent probabilistic causal dependence. Each subsequent line in-

dexed by i represents the ith simulated case. The dashed arrows represent the

dependence relation among variable values simulated. It can be seen that to

simulate u in the fifth case, the value of all variables at various previous cases

must be known. Hence, it is impossible to simulate, say, the value of u in the

1000th case without completing the simulation of the first 996 cases. The
consequence of this limitation is serious. It implies that cases must be simulated

2: u v x y z

3: u v x y z

4: u v x y z

5: u v x y z

 u v x y z

1: u v x y z

Fig. 7. The dependence relation among simulated variable values in different cases.

Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254 249

sequentially. The number of inter-agent messages will be in the order OðKgÞ,
where K is the intended sample size (normally a very large integer).

To simulate the value of a variable x, an agent must have access to factors in

the following product from its Markov blanket:

P ðxjpðxÞÞ
Y

viðxÞ
P ðviðxÞjpðviðxÞÞÞ;

where each viðxÞ is a child of x. The following proposition ensures that these

factors are available to an agent if x is a private variable.

Proposition 5. Let x be a private node of an agent Ai. Then the Markov blanket
of x is contained in Ai.

Proof. We consider a parent y of x, a child v of x and another parent z of v.
Since x is private to Ai, y and v must be contained in Ai. The child v may be

private or public to Ai. If v is private, then z must be contained in Ai as argued

above. If v is public to Ai, then v is a d-sepnode. By definition, pðvÞ (all parents
of v in the domain) must be contained in at least one agent. Since the parent x
of v is private, the only such agent is Ai. Hence, z is contained in Ai. �

If x is a public node (d-sepnode), the situation is different. Fig. 8 shows an

example. Since x is a d-sepnode, all its parents must be contained in at least one

agent. As is shown, A0 is such an agent. It is possible, however, the members of

Markov blanket of x are private to different agents. That is, {y;w} is private to

A0, {c; z} is private to A1, and {d; v} is private to A2. At least one of them must

be chosen to simulate the value for x, through a distributed election mechanism

[15]. One such mechanism is the bully algorithm in which agents are given

unique ids and the agent with the highest id among those in the election will be
chosen through election message passing.

For the chosen agent to carry out the task, the other two agents must reveal

some private information. For example, if A0 is the chosen agent, then A1 must

x

x x

c d

w y

z v

G 2G1

G0

Fig. 8. Three adjacent local DAGs in an MSBN where x is public.

250 Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254

reveal to A0: (1) that it has a private child c of x, (2) that the private child has a

private parent z in addition to x in A1, (3) the distribution P ðcjx; zÞ, and (4) the
simulated values of c and z for each case. A2 must reveal the similar private

information to A0. Note that if any of these private variables are observed, then

the observed values will have to be revealed as well.

Local inference without system-wide message passing suffers from the same

problem as distributed forward sampling. Namely, dependence due to loops

outside an agent cannot be counted for. Since Markov sampling may not

converge even in the single-agent case if extreme probability values exist, this

limitation of local inference may further increase the error bound.
We summerize features of the distributed Markov sampling:

1. The order in which agents conduct simulation is flexible. No simulated cases

need to be discarded.

2. Batching messages is impossible, resulting in OðKgÞ inter-agent messages.

Since K is a large integer, it requires K=2 times more inter-agent messages

than the LJF method.

3. Local inference does not converge to the same posteriors as system-wide

message passing.
4. Private information on the Markov blanket of each public variable must be

revealed.

6. Conclusion

In this work, we consider extending three common inference methods in

BNs to distributed multiagent inference in MSBNs. We outline how each

method can be performed in a distributed fashion using only peer-to-peer

coordination. We analyze how each method measures with respect to two

important goals of multiagent systems, agent autonomy and privacy. We
compare the three alternatives with the LJF method. In particular, we compare

them along four dimensions: the complexity of off-line compilation, the

amount of inter-agent messages during communication, the support of con-

sistent local inference, and the private information revealed. Table 1 summa-

rizes the comparison.

The LJF method requires off-line compilation of the LJF. Distributed cutset

conditioning (DCC) requires off-line search for a loop cutset and an ancestral

ordering. Distributed forward sampling (DFS) requires off-line search of an
ancestral ordering. Distributed Markov sampling (DMS) requires no off-line

compilation. The amount of off-line compilation can be compared as

LJF > DCC > DFS > DMS;

where LJF has the most sophisticated off-line computation and DMS has none.

Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254 251

For a multiagent system of g agents, communication with the LJF method

can be performed with Oð2gÞ inter-agent messages. The order is OððjCj þ mÞgÞ
for distributed cutset conditioning where C is the cutset and m is the number of

observed variables. Note that jCj is upper-bounded by the number of loops in
the MSDAG. Distributed forward sampling passes OðdgÞ inter-agent messages

where d is the cardinality of the maximum d-sepset. Commonly, we have

jCj þ m > d. Distributed Markov sampling passes OðKgÞ inter-agent messages

where K is the sample size. The amount of inter-agent messages during com-

munication can be compared as

DMS > DCC > DFS > LJF;

where DMS has the most frequent inter-agent message passing while LJF has

the least. In this comparison, we have focused on the number of inter-agent
messages (versus the length of each message). This is based on the assumption

that each message has a cost function aC1 þ C2, where C1 is the connection cost

between a given pair of agents, C2 is the cost depending on the length of the

message, and a is a parameter that quantifies how undesirable it is to pass

messages between agents frequently. It is assumed that aC1 is identical across

methods (which is valid) and is much larger than C2 no matter which method

is used (which is a reasonable approximation).

LJF is the only method among the four that supports consistent local in-
ference in the absence of system-wide message passing. Local inference using

the other three methods may lead to errors of more or less arbitrary size.

The LJF method reveals no private information. DCC reveals the size of

cutset and the number of observed variables, as well as partial information on

ancestral ordering. DFS reveals partial information on ancestral ordering.

DMS reveals private information on the Markov blanket of each d-sepnode.

Our investigation is the first on extending non-junction tree based methods

from single-agent inference to multiagent inference. This analysis and com-
parison provide insight to the issues involved in multiagent probabilistic rea-

soning and facilitate investigation of extensions of many other single-agent

inference methods to which the three chosen methods are representatives. Our

Table 1

Comparison of different multiagent inference methods

Off-line

compilation

Inter-agent

messages

Consistent local

inference

Reveal

private info

LJF **** * Yes No

DCC *** *** No Yes

DFS ** ** No Yes

DMS * **** No Yes

The number of stars indicates the relative amount of computation. More stars signify a higher

amount of computation.

252 Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254

investigation also serves those who implement multiagent inference systems as

a guide about the pros and cons of alternatives.

Acknowledgements

This work is supported by Research Grant OGP0155425 from NSERC of

Canada. I thank anonymous reviewers of my past work for inspiring this in-

vestigation and reviewers of earlier drafts of this paper for helpful comments.

References

[1] R. Dechter, Bucket elimination: a unifying framework for probabilistic inference, in:

E. Horvitz, F. Jensen (Eds.), Proc. 12th Conf. on Uncertainty in Artificial Intelligence,

Portland, Oregon, 1996, pp. 211–219.

[2] M. Henrion, Propagating uncertainty in Bayesian networks by probabilistic logic sampling, in:

J.F. Lemmer, L.N. Kanal (Eds.), Uncertainty in Artificial Intelligence, vol. 2, Elsevier Science

Publishers, 1988, pp. 149–163.

[3] M. Henrion, Search-based methods to bound diagnostic probabilities in very large belief nets,

in: Proc. 7th Conf. Uncertainty in Artificial Intelligence, San Francisco, 1991, pp. 142–150.

[4] F.V. Jensen, An Introduction To Bayesian Networks, UCL Press, 1996.

[5] F.V. Jensen, S.L. Lauritzen, K.G. Olesen, Bayesian updating in causal probabilistic networks

by local computations, Computat. Stat. Quart. 4 (1990) 269–282.

[6] V.R. Lesser, L.D. Erman, Distributed interpretation: a model and experiment, IEEE Trans.

Comput. C-29 (12) (1980) 1144–1163.

[7] Z. Li, B. D�Ambrosio, Efficient inference in Bayes� nets as a combinatorial optimization

problem, Int. J. Approx. Reason. 5 (1994) 55–81.

[8] A.L. Madsen, F.V. Jensen, Lazy propagation in junction trees, in: Proc. 14th Conf.

Uncertainty in Artificial Intelligence, 1998.

[9] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Morgan

Kaufmann, Morgan Kaufmann, 1988.

[10] D. Poole, Probabilistic horn abduction and Bayesian networks, Artificial Intelligence 64 (1)

(1993) 81–129.

[11] R.D. Shachter, M.A. Poet, Proc. 5th Workshop on Uncertainty in Artificial Intelligence, in:

Simulation approaches to general probabilistic inference on belief networks, Windsor, Ontario,

1989, pp. 311–318.

[12] G. Shafer, Probabilistic Expert Systems, Society for Industrial and Applied Mathematics,

Philadelphia, 1996.

[13] J. Suermondt, G. Cooper, Initialization for the method of conditioning in Bayesian belief

networks, Artificial Intelligence 50 (1991) 83–94.

[14] K.P. Sycara, Multiagent systems, AI Magazine 19 (2) (1998) 79–92.

[15] A.S. Tanenbaum, Distributed Operating Systems, Prentice Hall, 1995.

[16] M. Wooldridge, N.R. Jennings, Intelligent agents: theory and practice, Knowledge Eng. Rev.

10 (2) (1995) 115–152.

[17] Y. Xiang, A probabilistic framework for cooperative multi-agent distributed interpretation and

optimization of communication, Artificial Intelligence 87 (1–2) (1996) 295–342.

[18] Y. Xiang, Verification of dag structures in cooperative belief network based multi-agent

systems, Networks 31 (1998) 183–191.

Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254 253

[19] Y. Xiang, Belief updating in multiply sectioned Bayesian networks without repeated local

propagations, Int. J. Approx. Reason. 23 (2000) 1–21.

[20] Y. Xiang, Cooperative triangulation in MSBNs without revealing subnet structures, Networks

37 (1) (2001) 53–65.

[21] Y. Xiang, H. Geng, Distributed monitoring and diagnosis with multiply sectioned Bayesian

networks, in: Proc. AAAI Spring Symp. on AI in Equipment Service, Maintenance and

Support, Stanford, 1999, pp. 18–25.

[22] Y. Xiang, F.V. Jensen, Inference in multiply sectioned Bayesian networks with extended

Shafer–Shenoy and lazy propagation, in: Proc. 15th Conf. Uncertainty in Artificial

Intelligence, Stockholm, 1999, pp. 680–687.

[23] Y. Xiang, V. Lesser, Justifying multiply sectioned Bayesian networks, in: Proc. 6th Inter. Conf.

Multi-agent Syst., Boston, 2000, pp. 349–356.

254 Y. Xiang / Internat. J. Approx. Reason. 33 (2003) 235–254

