Dynamic Multiagent Probabilistic Inference

Xiangdong An*, Yang Xiang’, Nick Cerconé

& Faculty of Computer Science, Dalhousie University
Halifax, Nova Scotia B3H 1W5, Canada

bDepartment of Computing and Information Science, Univeisi Guelph
Guelph, Ontario N1G 2W1, Canada

¢Department of Computer Science and Engineering, York Wsitye
Toronto, Ontario M3J 1P3, Canada

Abstract

Cooperative multiagent probabilistic inference can beliagpn areas such as building
surveillance and complex system diagnosis to reason abewstates of the distributed un-
certain domains. In the static cases, multiply sectionegeBian networks (MSBNSs) have
provided a solution when interactions within each agentsémgctured and those among
agents are limited. However, in the dynamic cases, the gigafgrence will not guarantee

exact posterior probabilities if each agent evolves sélgrasing a single agent dynamic
Bayesian network (DBN). Nevertheless, due to the discotititeopast, we may not have
to use the whole history of a domain to reason about its custate. In this paper, we

propose to reason about the state of a distributed dynami@itoperiod by period using

an MSBN. To reduce the influence of the ignored history on tistqyior probabilities to a

minimum, we propose to observe as many observable variablpessible in the modeled
history. Due to the limitations of the problem domains, itlkcbbe very costly to observe

all observable variables. We present a distributed algoriio compute all observable vari-
ables that are relevant to our concerns. Experimentaltsesul the relationship between
the computational complexity and the length of the reprieskhistory, and effectiveness
of the approach are presented.

Key words: Multiagent uncertain reasoning, Reasoning in dynamicesyst (Dynamic)
Bayesian networks, Agent privacy, Exact and approximaisaeing

1 Introduction

For cooperative multiagent systems, one of the tasks wetoestddy is how mul-
tiple agents can collectively reason about the state of thbl@m domain based

* Corresponding author. Tel.:+1-902-420-5003; fax:+1-808-8101.
Email addressxan@s. dal . ca (Xiangdong An).

Preprint submitted to International Journal of ApproxieBRieasoning

on their local knowledge, local observation (evidenceg, lemited communication
with each other. This task is referred to by some authodisigbuted interpreta-
tion[1], which arises in many areas such as inventory contretgsmetwork grids,
equipment monitoring, smart house, cooperative desidtiehald assessment, and
surveillance.

Multiply sectioned Bayesian networks (MSBNS) [2] provideaerent framework
for probabilistic reasoning in distributed interpretat®ystems with uncertainties,
which have been applied in many areas such as medical diagBhsequipment
monitoring and diagnosis [4], and distributed networkuston detection [5]. How-
ever, problem domains such as medical diagnosis and eqatpmanitoring and
diagnosis are dynamic in general. MSBNSs do not provideifeasito properly man-
age and absorb historical information in distributed dyitashlomains [6]. Actually
in distributed dynamic domains, if we allow the historicablpabilistic messages
from different subdomains to be passed over time separdteydependencies
among these separated messages would be lost. This irgdibaite at least for
probabilistic inference, the spatial distribution of madtent systems conflicts with
the temporal message passing requirement of dynamic denvdehave difficulty
to perform probabilistic inference in dynamic multiageystems ideally on all of
the following aspects: exactness, distribution and affeness.

We cannot sacrifice the distribution since multiagent iefiee has to be done dis-
tributedly. We could make some tradeoffs between the ideadl and either the
exactness or the effectiveness or both.

It has been widely recognized that the recent past is moesaet to the current
state of domain than the distant past [7—9], which is caltieddiscount of the past.
In the probabilistic framework, weak influence means sniédicts on the poste-
rior probabilities. In a stochastic world, the influence lué historical probabilistic

knowledge would be weakened over distance (the length afdnfle chains), time
and quantity (as many influences combine) [10,11]. In thizepawe propose to
reason about the state of a dynamic multiagent domain basé#d ecent history,

instead of its whole history. To reduce the impacts of theoigd history on the

inference results, we propose to observe (gather infoamdtom) the modeled

history as much as possible. In dynamic domains, some aspkttte remote past
are referenced in the recent history. The more variablesamtodeled history we
observe, the less influence the ignored history would havihemposterior prob-

abilities. Observing everything that is observable woeduce the impacts of the
ignored remote past to a minimum. However, each observatahd have a cost. It

could be very expensive to observe everything. For examfiltepugh many med-
ical laboratory tests may help improve the accuracy of aepé$i diagnosis, the
patient may not want to take all of them due to the cost and thenpial side ef-

fects involved. To fully and efficiently take advantage of thformation provided

by the modeled history, we propose to observe all observabiables that are
relevant to the concerned variables.

A suite of algorithms is presented to distributedly commlt®bservable variables
that are relevant to the concerned variables, where agpntsicy is preserved.
The correctness and the complexity of the set of algoritre@nalyzed. To facili-
tate the understanding of the set of algorithms, a singlatagegsion of the set of
algorithms is presented before the multiagent version. §arahm called Bayes-
Ball [12] was once presented to compute tRquisite observationfor a set of
concerned variables in Bayesian networks (BNs). The ré@quabservations for a
setS of variables are those observed variables in the domairghnénie relevant
to the state of5S. Bayes-Ball solves the same problem as our single agenbwers
algorithm in the same computational complexity. Neveeghg| Bayes-Ball is dif-
ferent from our single agent version algorithm in that outhnd computes the
requisite observations based on the explicit observatdeahelant information of
nodes in the BNs. Observable descendant information caeused once obtained.
This makes our method cheaper in both time and space cortiptexihen requisite
observations for multiple sets of concerned variables heée computed.

Experimental results on the relationship between the coatipnal complexity and
the length of the represented period, and the effectiverfabe approach are pre-
sented.

The rest of the paper is organized as follows. In Section 2revew the related
work. The necessary background knowledge is introduce@atiéh 3. In Section
4, the issues involved in the dynamic multiagent probatisliaference and the pro-
posed solution are presented. In Section 5, the set of glgaosifor computing the
observable relevant variables in MSBNs is presented angzeth Experimental
results are provided in Section 6. In Section 7, the conaius made.

2 Related Work

Both the Markov decision processes (MDPs) [13] and the gdgrtobservable
Markov decision processes (POMDPSs) [14] are probabilmtidels for probabilis-
tic reasoning and acting in stochastic systems. They haaedxdended and applied
to probabilistic reasoning and acting in dynamic multiadgssstems recently.

Extended from MDPs, the multiagent MDPs (MMDPs) [15] asswarfell view
of the global state by each agent, whereas the decentrdiidels (Dec-MDPSs)
assume a different partial view of the global state by eadn&fl6]. In either
MMDPs or Dec-MDPs, an agent can fully observe the state ofvttréd in its view.
In Dec-MDPs, agents may be allowed to communicate about tieeerministic
local states with costs. Though solving an MDP is P-compégilving a Dec-MDP
is NEXP-complete [16].

The decentralized POMDPs (Dec-POMDPs) [17], extended fRIDMDPs, are
more related with our work than Dec-MDPs, where each agelyt lnes an in-
complete information about its subdomain. In Dec-POMDRsugh agents exe-

cute their local policies distributedly based on their loglservations, planning
is generally centralized [18]. Agents may be allowed to camitate about their
observations to improve the policy computation. In Dec-HI®g, no probabilistic
messages are passed among agents. Hence, there doestribeakigded tempo-
ral probabilistic message passing problem. Solving a POMDEXP-complete
(PSPACE-complete if the transitions are deterministi®][whereas solving a
Dec-POMDP is NEXP-complete [16].

In POMDPs, the state is encoded in a single random varialbliejws not efficient
in modeling large state spaces with structures. Dynamisigcnetworks (DDNSs)
[20] have been proposed to model and solve sequential degmsbblems with
large structured state spaces. DDNs were extended frormdgrBayesian net-
works (DBNSs) with decision nodes and utility nodes. Fadd?©MDPs [21] were
proposed to represent large structured POMDPs compattyfactored POMDP, a
DBN is used to compactly represent the transition modelsasdrvations models.
In this paper, we investigate how to properly use MSBNSs to actly represent
and reason about the states of the distributed partiallgrobble dynamic domains.

In [22], an approximate inference method for DBNs, which \aé Boyen-Koller
(BK), was investigated. The method works on stochasticgsses that are com-
posed of weakly interacting subprocesses. In the methedjoiht belief on the
DBN interface is approximated by the product of marginadg ttorrespond to re-
spective individual subprocesses. Message passing oweididone approximately
through these marginal products, whereas belief updatirgaeh time instant is
done exactly. It was shown that the approximation error resitaounded over time.
Motivated by BK, a more aggressive DBN approximate infeeesgproach, called
Factored Frontier (FF), has been presented [23]. FF is wailes to BK algorithm,
but instead of doing an exact belief updating at each tim&msit always works
with the factored distributions.

Though the approximation error of BK is bounded over times #till unclear how
tight the bound is [24]. The tightness of the bound is relatéd the strength of the
interactions among subprocesses (agents). There is nargaaron the boundness
of approximation error from FF. It has been shown [24] both@1t{l FF are special
cases of loopy belief propagation (LBP), which is not gutead to converge [25].

3 Background Knowledge

3.1 Notations and Terminology

Let X, Y andZ be disjoint subsets of variableslih We use the notatioh X, Z,Y) p
to denote the conditional independenceXondY givenZ; thus,

I(X,Z,)Y)piff P(X]y,z) = P(X|2)

for any configuratiorx of X, and any configurationsandz of Y andZ such that
P(y,z) > 0.

In a directed graph, when two arcs meet in a path, the shalcam be described
as a node ofail-to-tail, head-to-tailor head-to-head

Definition 1 Let X, Y and Z be disjoint subsets of nodes in a DAG A pathp
between nodes € X andy € Y is closed by Z whenever one of the following
two conditions is true: (1) there existse Z that is a node of either tail-to-tail or
head-to-tail ornp; (2) there exists a node that is a node of head-to-head prand
neitherw nor any descendant af is in Z. If both conditions are false, themis
renderedopen by Z. Nodesr andy are d-separated by 7 if every path between
andy is closed byZ; X andY ared-separated by 7 if for everyxz € X andy € Y,

x andy are d-separated by .

We use the notatiore X|Z|Y > to denote thatX andY are separated (d-
separated) by in graphG.

A dependency modelM over a setU of variables is a model that can determine
whetherl (X, Z,Y),, is true, for all possible triplets of disjoint subsets Y and

Z. A probabilistic model, which is a complete specification of a joint probability
distribution (JPD), is a dependency model.

A graph G is anl-map of a dependency modél/ over a setl” of variables, if
there is a one-to-one correspondence between nodésaimd variables i/ and
for every disjoint subsetX’, Y andZ, we have< X |Z|Y >¢= I(X,Z,Y). A
graph is aminimal I-map if all edges in it are necessary for it to remain an I-map.

3.2 Bayesian Networks

Definition 2 A Bayesian network (BN) is a triplet (V, G, P), whereV is a set

of variables,G is a connected DAG, and there is a one-to-one correspondence
between nodes inr and variables inV. P is a set of probability distributions:

P ={P(v|r(v)) | v € V}, wherer(v) denotes the set of parentswoin G. G is a
minimal I-map ofP (V).

3.3 Dynamic Bayesian Networks

Definition 3 A dynamic Bayesian network (DBN) is a quadruplet
GZ(U%’UEt’UElf_”UPt) (1)
t=0 t=0 t=0 t=0

EachV is a set of nodes labeled by variables, which representsythardic domain
at time instantt (0 < t < k). Collectively,V = U, V; represents the dynamic
domain ovel instants. Eaclt; is a set of arcs among nodeslii which represents

dependencies among domain variables at tinieach £~ is a set of temporal arcs
each of which is directed from a node ¥_; to a node inV; (0 < t < k). The
subsetofV; (0 <t < k) FI; = {z|x € V; & Jy < z,y > E;,} is called the
forward interface of V; where< z,y > is a temporal arc directed from to y. The
subsets oV, (0 <t < k) Bl = [,U{z|z € V; & Jy(y € I, & z € 7(y))} is called
the backward interface of V;, wherel, = {yly € V; & Jz(< z,y >€ E;”)}. Each
Dy = (V,UFI,_1,E,UE)or (V,UBI 1, E,UE;,)is a DAG and eaclP, is a
set of probability distributions

P(Vp), t=0
P = (2)
P(Vi|FI,_1)orP(BI,1|V;), t > 0.

The pairS; = (Dy, P,) is called aslice of the DBN.

Figure 1 shows the structure of a DBNro§lices, wheré’; = {ay,by,c1,d1}, By =
{(al, bl), (bl, Cl), (bl, dl), (dl, Cl)}, E? = {(CLQ, bl), (do, Cl)}, FI, = {0,1, dl} and
BI, = {CLl, bl, C, dl} The slice of DBN attime = 1 is D, = {ViUFI(), E1UE1—>}
whereF'[y = {ag, dy}. Each slice of a DBN is a BN. At any time= j < n — 1,
the slicesSy, S, ..., S;j_1 represent the domain history asg,,, ..., S,_; predict
the future. Evidences may be entered ifto..., S;.

ao a;
bo do b, d
— —
Co Cy

Fig. 1. A simple sample dynamic Bayesian network.

3.4 Overview of MSBNSs

In an MSBN, a set ol > 1 agentsAy, A4, ..., A,_; populates a total universe
V' of variables. Each4; has knowledge over a subdomdih C V encoded as
a Bayesian subnéf;, G;, P,). The collection{Gy, G4, ..., G,_1} of local DAGs
encodes agents’ knowledge of domain dependencies. Loc&sDX an MSBN
should overlap and be organized intbypertree

Definition 4 Let G = (V,E) be a connected graph sectioned into subgraphs
{G; = (V;, E;)}. Let these subgraphs be organized into a tteehere each node,
called ahypernode, is labeled byG; and each link betwee&; and G, called a
hyperlink, is labeled by the interfac®; N V; such that for each pair of nodes,
andG,,, V; NV, is contained in each subgraph on the path betwégand G,,,.
The treeV is called ahypertree overG.

Each hyperlink serves as the information channel betweentagonnected and is
referred to as aagent interfaceWe say all variables in agent interfaces pud-
lic or sharedamong agents involved, and all others prizvate To allow efficient
and exact inference, each hyperlink should render the snhohs connected con-
ditionally independent. It has been shown that this imghesfollowing structural
condition [6].

Definition 5 Let GG be directed graph such that a hypertree o¢eexists. A node
x contained in more than one subgraph with its parents) in G is a d-sepnode
if there exists a subgraph that containéz). An interfacel is a d-sepset if every
x € I is a d-sepnode.

Theorem 1 Let ¥ be a hypertree over a directed gragh = (V, E'). For each
hyperlink which splits¥ into two subtrees over C V andW C V respectively,
U\ I andWW'\ I are d-separated by if and only if each hyperlink i is a d-sepset.

The overall structure of an MSBN is a hypertree MSDAG.

Definition 6 A hypertree MSDAG G = |J; G;, where eacltz; = (V;, E;) is a DAG,
is a connected DAG such that there exist a hypertree 6vand each hyperlink is
a d-sepset.

An MSBN is composed of a hypertree MSDAG and the corresp@ndumerical
probability distributions.

Definition 7 AnMSBN M is a triplet (V, G, P). V = U, V; is thetotal universe
where eacll] is a set of variables, called subdomain. G = |, G; is a hypertree
MSDAG where nodes of each subgraphare labeled by elements bf. Letz be a
variable andr(z) be all parents of in G. For eachz, exactly one of its occurrences
(in a G; containing{z} U 7(z)) is assignedP(z|r(x)), and each occurrence in
other subgraphs is assigned a unit constant potenttat []; P; is the JPD where
each P, is the product of the potentials associated with node&inEach triplet
S: = (V;,G;, P;) is called asubnet of M. Two subnetsS; and S; are said to be
adjacent if G; andG; are adjacent in the hypertree.

4 |Issues and Solution
4.1 Dynamic MSBNs

We first look at how MSBNSs can be extended and applied to dynamuitiagent
probabilistic inference. We propose to use an MSBN to model time instant
of a dynamic multiagent domain. The MSBNs over all time insfaare called a
dynamic MSBNAMSBN).

A dMSBN is defined as in Definition 8.

Definition 8 A dynamic MSBN is a quadruplet
M:(U%7UEt7UE77UPt)
t=0 t=0 t=0 t=0

EachV; = U; V4; (0 < i < n) is the total universe at timg wherel; ; is a set of
variables, called subdomainat timet. EachE; = U; E;; is a set of arcs among
nodes inV;, whereFE; ; is a set of arcs among nodeslif;. EachE;” = U, £y is
a set of temporal arcs directed from noded/in, to nodes inV;, where£;; is the
set of temporal arcs directed from nodesin, ; to nodes inV; ;. The subset of; ,

Flyy=A{z e Vii | (y)(< 2y >€ By}

is called theforward interface of V, ;, whereast'I, = UJ; F'1, ; is called the forward
interface ofV;. The subset df; ;

Bl ={y € V| (Gx)(<z,y>c E;)}U{ze V| Fy(z ey
(3z)(< z,y >€ E))}

is called thebackward interface of V; ;, whereasB 1, = U; B1,, is called the back-
ward interface of;. EachG; = (V, U FI,_,, E; U E;”) is a MSDAG and eacl?,
is a probability distribution

{P(Vo), t=0
P = 3)
P(‘/t|F[t—1)7 t>0.

The tripletM,=(V,UFI,_;, E,UE;”, P;) is an MSBN, called alice of the dynamic
MSBN at time.

Temporal dependencies in a dMSBN only happen within the ssubeomains.
Hence, there exists a DBN corresponding to each subdomgéania where the
uncertain knowledge at each time instant is representecBdy. a

Let D, be the MSDAG ovelV;, Ey). A (stationary) dynamic MSBN can be rep-
resented by a pairsy, S_.), whereS, is an MSBN(Vj, Dy, Py) andS_, represents
how the dynamic MSBN evolves over timg, andS_, together define

P(Vi | Viia) = P(V | FI,_y) = [P(o|r(v)),0 < t,

veVL

whereP(v | w(v)) is defined byP(V;) for thosev € V; with =(v) C V,, and by
S_, for those withrr(v) C FI;_4.

For a forward or a backward interface in a dMSBN, we have Lerima

Lemma 1 In a dMSBN, for a forward interfac&'I,, we have< Vo, | FI;|Vii1.1 >;
for a backward interfacé3 [, we have< Vi, 1| BI|Vir >.

That is, a forward or backward interface in a dMSBN separtitegast from the
future.

Proof: By definition ofF'I;, any pattp between a node in the futufeand a node in
the pasip should be via a node € F'I;. Since the nodg¢’ € V,, that is adjacent
to n on p should be a child of,, no matter how the node € V; that is adjacent to
n on p is connected wit, p should be closed by. Hence,F I, d-separate$.;
andVi 1.7

By definition of BI;, any pathp between a node in the futurgé and a node in
the pastp should be via a node € BI,. Noden should be the child of a node
p’ € V,_; thatis adjacent ta on p. If the nodef’ € V; that is adjacent ta onp is

a child ofn, p is closed byn; otherwise,f’ € BI,. Then, no matter how the node
" € Vi.r that is adjacent tg’ on p is connected wittf’, f” should blocko. Hence,
BI, d-separate$),_; andV,.p. O

G, ap bo 1Gy ag bo ay by
c[/, co 01/,
N AN ~
do e d € @ d 1
C1 @dy @ |1 C do €@ ®d, @
9o 9o 9,
() (b)

Fig. 2. A dynamic MSBN extended from an MSBN: (a) An MSBN owantsubdomains
Go andGy; (b) The first two slices of the dynamic MSBN.

Figure 2 shows a two agent MSBN extended over a distributedmyc domain.

The structure of a slice of the dynamic MSBN is shown as in éay the first

two consecutive slices of the dynamic MSBN are shown as inwhpgre each

dotted box represents a subdomain. A DBN is formed in eackdauhin. The

temporal dependencies are signified by the &igsz,) and(go, g1) respectively as
shown in (b). Either the forward interfa¢é&l/, = {ao, go} or the backward interface
BI, = {a1, 1, g1, d1, f1} Separates the two parts it connects.

Therefore, we can construct a model to represent the distdbuncertain knowl-
edge in a dynamic multiagent system. Next, we discuss thieudtfes we face
when using dMSBNSs to perform inference.

4.2 Issues
4.2.1 Decomposition Issue

The decomposition issue exists in DBNs. However, it becoanfasal problem for
probabilistic reasoning using dynamic MSBNSs.

In DBNs, between any two consecutive slices, there exisiistarface — a forward
interface or a backward interface — that d-separates thslieas. For messages to
be properly passed forward via such interfaces, the eliminahould be done by
eliminating nodes in the previous slice (except interfameas) first. A junction tree
(JT) obtained based on such triangulation would make mted complete (when
forward or backward interfaces are optimal) [26]. This nsaltee size of the slice
interface the lower bound of computational complexity @sening using DBNSs.

This problem becomes fatal for dynamic MSBNs since it rezgiihat all messages
passed from the preceding slice to the current slice be ifotine of a single JPD.
This not only makes the reasoning using dMSBNs expensit&lba results in the
difficulty of the distribution of multiagent inference.

4.2.2 Distribution Issue

Ideally, we would like each agent to be able to maintain its @e&lief on its own
subdomain and all agents to be able to benefit from each otrerwledge up to
the relevant history. However, agents have difficulty togagate their beliefs from
one time instant to next time instant individually. The naggspassing separately
in each subdomain would constitute loopy belief propagafite slice interfaces
at each subdomain and agent interfaces at each time instert dvseparate the
corresponding instants or subdomains.

For example, in the MSBN as shown in Figure 2 (a), the ageetfente{dy, ¢}
separates the two subdomaifis and GG; it connects. Once the MSBN evolves,
the corresponding interface at each new instant won'’t sépdne corresponding
subdomains any more. For example, in Figure 2 (b), the exteffd;, ¢; } at instant

1 does not separate the two subdomains it connects becailsepaiths< ag, a; >
and < g¢g, g1 >. For similar reasons, slice interfaces in each subdomainado
separate the two consecutive instants of the subdomain.

4.3 Local Inference

The two issues discussed above strongly imply that exactiageht probabilis-
tic reasoning over unbounded time periods could not be aetiby maintaining
agents’ belief over a finite time.

In this paper, we propose to model a dynamic multiagent domaér aperiod of

time into an MSBN, and then reason about the state of the dopeaiod by period
exactly. For each new period, the initial prior belief of thlemain is assumed.
For example, the dynamic MSBN over time instants 0 and 1 aashio Figure

2 (b) is actually an MSBN over a period of two time instantse Gorresponding
subdomains ar€&{, andG’; respectively. The interface between the two subdomains
is {dy, eo, d1, €1}, which is the union of the corresponding agent interfacesr ov
all instants of the period. The period could be much longhe #wo consecutive

10

periods could overlap on some instants. Using the MSBN tdte sf domain could
be reasoned about period by period exactly.

Within each period, a message does not have to be passeut imgiastant. There
are no conflicts between the distribution of multiagent eyt and the central-
ization of temporal message passing. The extended agentaices separate the
two subdomains they connect. The remote historical knaydesd ignored. How-
ever, the influence of the probabilistic knowledge woulddree weakened over
distance, time and quantity. More recent history contaisemelevant informa-
tion about the current state of a domain. The history of aomalsle length could
contain sufficient relevant information for reasoning attbe state of the domain.

In particular, by a denser observation of the modeled histbe influence of the
ignored history would be reduced. We propose to observeskgVant observable
variables in the modeled period to reduce the influence. fonatalled the graph-
ical observable Markov boundary (GOMB) is proposed to cagali relevant and
observable variables regarding the state of a set of coedefariables.

5 Graphical Observable Markov Boundaries

In this section, we define and discuss how to compute the GOMBset of vari-
ables in an MSBN.

5.1 Markov Boundaries

Due to limitation of domains, not all variables are obselwaBbue to limitation
of bandwidth, it may be very costly to observe all observafaleables. It would
be ideal if we could find and only observe the relevant obd#eveariables. The
concept of Markov boundary gives us a hint.

Definition 9 [27] Let M be a dependency model over a gebf variables. Lety
be a variable such that € V. AMarkov blanket L(v) of v is any subses C V' of
variables for which

I{v},S,V\ S\ {v})y andv ¢ S. 4)

A Markov blanket is called &Markov boundary B(v) of v if it is a minimal Markov
blanket ofv.

That is, a Markov boundary of a variable provides us with ao$gtariables that is
relevant to the state of the variable.

Nevertheless, finding a Markov boundary of a variable in eabdity distribu-
tion may not be tractable, since the verification of conddilbindependencies in

1 In a not strictly positive probability distribution, the Mev boundary of a variable may
not be unique [28].

11

probabilistic models is generally infeasible. Also, in Ipabilistic graphical mod-
els, the graphical structures may not capture all conditiondependencies in the
corresponding probabilistic models. For a node in a gragpmwodel, the union
of its parents, its children and the parents of its childeeganerally not a Markov
boundary of the node because a node may have different reggimodifferent min-
imal I-map DAGs [27]. In particular, the concepts of Markdatket and Markov
boundary are defined only for a single varialighoutthe observabilities of their
members considered.

On the other hand, when we do inference with graphical modelgienerally only
take advantage of the independencies expressed by thaaaigthuctures. In par-
ticular, conditional independencies in Bayesian netwtnkcsures can be identified
in polynomial time [27]. We would revise the definition of Mawv boundary based
on d-separation in graphical structures. The revised Maldaundary of a vari-
able can be efficiently and uniquely obtained, which we tedigraphical Markov
boundary(GMB) of the corresponding variable. We then further extérnd a set
of variables, and eventually introduce thpeaphical observable Markov boundary
(GOMB) of a set of variables, which only include observaldeables.

5.2 Graphical Markov Boundaries

5.2.1 Graphical Markov Boundaries of a Single Node

Definition 10 emphasizes that we are interested in the Malkauket and the
Markov boundary defined based on d-separation& pimstead of independencies
in P.

Definition 10 Let N=(V, G, P) be a BN where DAG- is a minimal I-map ofP.

Letv be a variable such that € V. A graphical Markov blanket L(v) of v is any
subsetS C V of variables for which

< {0}|SIV\ S\ {v} >¢ andv ¢ S, 5)

A graphical Markov blanket is called thgraphical Markov boundary B(v) of v if
it is a minimal graphical Markov blanket of

For the graphical Markov boundary (GMB), we have Proposifio

Proposition 1 For a nodev ina BN N=(V, GG, P), the unionA of v’s parents,v’s
children and the parents afs children forms a graphical Markov blankét(v) of
v in N. The graphical Markov blanket is a graphical Markov boung&(v) of v.
The graphical Markov boundary is unique.

Proof: Straightforward. O

12

5.2.2 Graphical Markov Boundaries of a Set of Nodes

Since most times we are interested in the state of a set aiblasg, we further
extend the two concepts to a set of variables.

Definition 11 Let N=(V, G, P) be a BN. LetR be a set of variables such that
R Cc V andR # (). Agraphical Markov blanket L(R) of R is any subset C V/
of variables for which

< R|S[V\R\ S >¢ andRN S = 0. (6)

A graphical Markov blankeL(R) is called thegraphical Markov boundary B(R)
of R if itis a minimal graphical Markov blanket aR.

To facilitate the description of their members, we first defineparentsandchil-
drenof a set of variables.

Definition 12 Let N=(V, G, P) be a BN. LetR be a set of variables such that
R c VandR # (). We say any node ili \ R thatis a parent of a node iR is a
parent of R, and any node iV \ R thatis a child of a node ik is achild of R.

We have Proposition 2 regarding the members of GMB of a sehbles.

Proposition 2 Let N=(V, G, P) be a BN. LetR be a set of variables such that
R Cc V and R # (). The unionA of R’s parents,R’s children and the parents of
R’s children forms a graphical Markov blankét(R) of R in the BN. The graphical
Markov blanketL(R) of R is the graphical Markov boundar(R) of R. The
graphical Markov boundary is unique.

Proof: Straightforward as the proof for Proposition 1.0

Graphical Markov boundaries can only be used for relevaseonation in fully
observable problem domains. In partially observable gmobtiomains, members
of a GMB may not be observable.

5.3 Graphical Observable Markov Boundaries

In this subsection, we introduce the graphical observalalekbV boundary (GOMB)
of a setS of variables to capture all observable relevant varialdganding the state
of S.

5.3.1 Definition

In the following definition, we us€,,s(X) to denote all observable variables in a
setX.

Definition 13 Let N = (V, G, P) be a BN wheré& is a minimal I-map ofP. Let R

13

be a set of unobservable variables such tRat V. The GOMBB(R) of R is a
minimal subsef(C V') of observable variables such that

< R|S|Qops (VA S)\ R) >¢ . (7)

In the following discussion, we may also call the graphicarkbv boundaries
defined by Definitions 10 and 11 th@mediategraphical Markov boundary. Re-
garding GOMB, we have Proposition 3.

Proposition 3 For a setR of unobservable nodes in a BN=(V, GG, P), its GOMB
B always exists and is unique. Givéh R is independent of all observable nodes
in V'\ B, but may not be independent of all other node¥iy B \ R.

Proof: The GOMBB of R always exists becaudéR, S, ()) guarantees that the set
S = Qus (V) satisfies Equation (7).

(b)

Fig. 3. A path betweerR ando is not closed byB; \ {0}, where the white nodes are
observable and the black nodes are unobservable: (a) Novabgehead-to-tail or tail-tail
nodes on the path are iB,. (b) There do not exist any unobservable head-to-head nodes
on the path. (c) Any observable head-to-head nodes shoufdBge

We prove the uniqueness by contradiction. Suppose theseatteast two GOMBs

B, and By, for R such thatB, # B,, and|B,| < |B,|. Hence, there exists at least
one observable node € B, such thab ¢ B,. That is,R should be d-separated
from o by B, but not by B, \ {o}. Therefore, there should be a path between a
node inR ando not closed byB, \ {0}. As shown in Figure 3, since the path is not
closed byB, \ {0}, no head-to-tail or tail-to-tail nodes on the path aréjn\ {o}

or B,. There also should not exist any head-to-head rnfode the path that is not

in B, \ {o} since otherwise the path is closed pyIf there is any head-to-head
node on the path that is iB;, \ {0}, o won't be d-separated fror by B, since

we have known there does not exist any head-to-tail oraai&il node on the path
that is in B, \ {o}. Hence, there should not exist any head-to-head node on the
path. SinceB, d-separates from R, there should exist an observable ngden

the path that is inB,, but not in B,. Nevertheless, the observable nadeon’t

be d-separated fronkR by B,. This is in contradiction with the assumption that
< R|Bp|Qps (V' \ By \ R) >¢ holds.

SinceR contains no observable nodes, from Equation 7 and the assumtipatGG

is aminimal I-map of?, we have< R|B|Qus(V\B) >¢= I(R, B, Qus(V\B))p.
However,/(R, B,V \ B\ R)p may not hold. For example, in the BN as shown in
Figure 4 (a), given the GOMB of node B(a) = {d}, nodea is independent of

14

nodeb, but not independent of node O

5.3.2 Computation lllustration

By computing the GOMBB(a) of a in Figure 4 (b), we illustrate how to compute
the GOMB of a node in a BN. We then present a set of generalitigus for this
computation.

o]
N B R == A

X

Ly
»

'§L

e

@) () ve d¥ ce—>e: ()

Fig. 4. (a) Given the GOMBB(a) = {d} of nodea, a may not be independent of all
other nodes; (b) The computation of the GOMB of nedie a BN. The white nodes are
observable and the black nodes are unobservable. (c) Ttsodivof a domainl” by the
graphical observable Markov boundaByof a setR of nodes.

In the BN as shown in Figure 4 (b), we first check the immediaaplical Markov
boundary ofu. Its observable child and its observable pareitvould be members
of B(a). Hence,B(a) = {i,u}. Since paths to node via unobservable parert
or unobservable childrehandn are still open, we put them in a sét(initially

T = () for further processing later. Henc&, = {j,b,n}. The processing of the
parents of a child node of nodea depends on whetheror any of its descendants
is observable.

(1) If « is observable (e.gu), we process the other of its parentsd) imme-
diately. Since node: is a processed parent af we need mark: to prevent it
form being processed repeatedly. Actually this is the casalf nodes put il3(a)

or 7. We mark and put observablein B(a) and unobservablé in 7. Hence,
B(a) = {i,u,s} andT = {j,b,n,d}. We process parents of observable childf

nodea immediately because would be put inB(a) (instead ofl"), which would
not be further processed.

(2) If o is unobservable but has observable descendants:jeigshould be putin
T'. Both its parents and children should be further examined.

(3) If neither« nor any of its descendants are observable (g,dts parents and
descendants need not be further processed. For examptehtreparentsd e, g)
of b need not be examined. This is because the path from @oder g to a via
b is closed by the absence bfand any of its descendants froBY{a) (they are
unobservable). It should be noted that, althoygé not examined because &fit

15

would be examined and put ii(a) as a child ofj. This is because otherwise one
other path to node via ¢ would be open.

By similarly further processing nodes inuntil 7" becomed), we should have the
final graphical observable Markov bounddsya) = {i, u, s, g, h,m, p}.

5.3.3 Division of Domain

We say the graphical observable Markov boundamyf a setR of nodes separates
the whole domairV into 3 parts as shown in Figure 4 (c): the node® (the area
in brick pattern), the seX (O R, the grey shaded area) of nodeside B, and the
setO (O = (V'\ B) \ X) of nodesoutsideB. The setX of nodes insidé€3 contains
all nodes ink, and a sef{ of unobservable nodes which are not d-separated ftom
by B. In the example abovd3(a) = {i, u, s, g, h,m,p}, X(a)={j,b,n,d,a,c, 2},
andO(a)={r,q,t,v,k,e, f}. Given B, R is independent 0®), observable or not,
but X may not necessarily be independentoffFor example, in the BN as shown
in Figure 4 (b), givenB(a), nodea is independent of all nodes (a). However,

b € X(a) is not independent aP(a) because at least noddnas a direct path with
nodee.

5.3.4 Algorithms for Computing the Observable Descendants

In the computation of GOMBSs, we need to know if an unobservalolde has any
observable descendants. The information can be obtainedrbgursive process
which recursively checks descendants of an unobservalie unatil an observable
descendant is discovered or all descendants are checkisghrobess is presented
as Algorithms 1 and 2.

In the two algorithms, we associate each nodea BN N with a variableO,,. If v

or any of its descendants is observabléMinO, = 1; otherwiseO, = 0. Initially

we setO, = —1. We say the observability af or its descendants isnknownif

0O, = —1. If a nodewv is unobservable, we need check the observabilities of its
descendants to determine the valuépf

Algorithm 1 initializesO,, = 1 for each observable nodeandO, = —1 for each
unobservable node Then Algorithm 2 is called on each nodevhereO, = —1.
Algorithm 2 is a recursive algorithm which determines if arobservable node
has any observable descendants. It does so by searchingsalble descendant
branches. It backtracks from a noglevith determined), or a leaf node. When it
returns, any node visited should have a determinéq. In this algorithm, ¥/” on
line 4 is a boolean “or” operator.

Note this algorithm won't return even when, = 1 is determined from one of
its descendant branch. Since we wanht of each nodev in the BN, checkOD
once called, would return only after all descendant brasidteve been properly

16

searched. Hence, Algorithm 2 will be called on a node in theaBMost once. The
complexity of the computation i9(|V|) in the numbefV'| of nodes in the BN.

Algorithm 1 (computeOD)
Input: a BNN = (V, G, P).
Output: the BNV whereO, of each node in N is known.

begin
1 foreachnode in NV, do
2 if v is observable, sed, = 1;

3 otherwise se®), = —1;

4 for each node whereO, = —1, do
5 call checkOD(V, v);

end

Algorithm 2 (checkOD)

Procedure checkOD\, v)

Input: a BNN = (V, G, P) and a nodey.
Output: Any node: visited before its return has a knowan,.
begin

1 setO, =0;

2 for each childy of v, do

3 if O, = —1, setO, =checkOD(V, y);
4 O, =0,V Oy,

5 returnO,;

end

5.3.5 Algorithms for Computing GOMBSs in BNs

Once we know if each unobservable node has any observalderdists, we can
compute the GOMBB of a setR of nodes in a BN. Since nodes ihare concerned,
they will for sure not be in their GOMB3. Summarized from the computation illus-
tration of GOMB above, the other nodes are processed asv®l(D is initialized
with R):

(1) For a parent nodg of any nodes ir{": if observable, put it intd3; otherwise
put it into 7" for further processing.

(2) For an observable child nodef any nodes ir7": put it into B, and for eacly
of its parents, put it intd if observable or put it int@” for further processing
otherwise.

(3) For an unobservable child nodef any nodes iri": if it has observable de-
scendants, put it int@ for further processing.

(4) For an unobservable child nodeof any nodes iril": if it has no observable
descendants, nothing needs to be done from this node.

All nodes putintoB or T should be marked so that they won’t be further processed
a second time. Since the number of nodes in a BN is limifeaill become).

17

When T is (, the nodes inB form the GOMB of R. We present the idea into
Algorithm 3, where “elif” represents “else if”.

In Algorithm 3, lines 7, 8, 9 and 10 correspond to situatiohifes 11, 12 and 13
correspond to part of situation 2. Lines 14, 15, 16 and 17espond to the other
part of situation 2. Lines 18 and 19 correspond to situatidrirges 5 and 6 ensure

T will eventually becomd. Lines 4, 8, 13, 15 and 19 mark visited nodes so that
they won’t be processed a second time. Since nothing neddsdone for situation

4, no lines of code correspond to it.

Algorithm 3 (ComputeGOMBINBN) Let R be a set of unobservable nodes in a
BNN = (V,G, P). The GOMBB(R) of R in N is returned.

1 setB=0,T =R;
2 foreachnode € V, do
associate) with a variableb,;
if v € R, seth, = 1; else seb, = 0;
whileT # (), do
pickv € T'and setl’ = T'\ {v};
for each parenp of v whereb, = 0, do
seth, = 1,
if p is observable, seB = B U {p};
10 else, sel’ = T'U {p};
11 for each child: of v whereb,. = 0, do

©oo~NOO UL~ W

12 if ¢ is observable, do

13 seth. = 1,andB = B U {c};

14 for each pareny of c whereb, = 0, do
15 seth, = 1;

16 if g is observable, seB = BU {¢};
17 else,sel’' =T U {g};

18 elif any descendant ofis observable, do
19 seth, =1and7 =T U {c};

Though each node is processed at most once, its neighborbenalyecked for
their membership oB or T'. Therefore, the GOMB of a set of nodes in a BN can
be returned in a time o®(|V| + | E|), where|V| is the number of nodes in the
BN, and|E| is the number of arcs in the BN. Regarding Algorithm 3, we have
Proposition 4.

Proposition 4 Let R be a set of unobservable nodes in a BNLet B be the set of
nodes returned by Algorithm 3. Théhis the GOMB ofR in V.

Proof: Initially 7 = R. Whenever a node is removed fraf) the members of

its immediate graphical Markov boundary, not processedrieefire processed de-
pending on the situations they belong to.

18

OnceT becomed), all paths from any nodes if® to any observable nodes in
V'\ R\ B should have been closed by nodedinSuppose there exists a path
between a node € R and an observable nodec V' \ R\ B not closed byB. That

is, on the path there exist no observable head-to-tail btddgil nodes that are in
B, there exist no unobservable head-to-head nodes, andefekist any observable
head-to-head nodes, they should be3inWe consider it for different cases: (1) if
there exist no observable head-to-head nodes on that pathall nodes on the path
should be of head-to-tail or tail-to-tail. If any of them areservable, as shown in
Figure 5 (a), at least one of them should be reacheddnd put inB via lines 7, 8,

9 and 10; and/or lines 11, 12, 13, 14, 15, 16 and 17; and /a8 liBeand 19. This is

in contradiction with the assumption that the path is nosetb If none of them is
observablez should be reached byand put inB. This is in contradiction with the
assumptionthat € V'\ R\ B. (2) if there exist any observable head-to-head nodes
that are inB, as shown in Figure 5 (b), from these head-to-head nadsbpuld

be reached and put iB via lines 7, 8, 9 and 10; and/or lines 11, 12, 13, 14, 15,
16 and 17; and /or lines 18 and 19 because no observable tr¢aidiar tail-to-tail
nodes on the path will be iB. This is in contradiction with the assumption that
x € V\ R\ B. Hence, all paths from any observable node¥'if R to R should
have been closed.

X
'—>o—>.—> o)

ﬂ—o—>0—> o)
()

Fig. 5. (&) There should not exist any observable headit@tdail-tail nodes between
andzx; (b) If any head-to-head node is), = can also be reached by(c) Paths separated
by b are also separated by some other ways. The white nodes anwalle and the black
nodes are unobservable.

Next we showB is minimal to satisfy< R|B|Q.s(V \ B\ R) >¢. Suppose there
exists a nodé € B that could be removed, i.ex R|(B \ {b})|Qs(V \ B\ R) U

{b} >¢ holds. Therefore< R|(B\ {b})|b >¢ holds, and all paths betweédhand

b should be closed by some nodesinother thanb. As shown in Figure 5 (c),
these paths can be closed either by an unobservable héedhtionode:, or by a
head-to-tail or tail-to-tail node € B\ {b} on the path. However, if that is the case,
b cannot be reached byfrom these paths via lines 7, 8, 9 and 10; and/or lines 11,
12, 13, 14, 15, 16 and 17; and /or lines 18 and 19 and hesbeuld have never
beeninB. O

5.4 Multiagent Cooperative Computation of GOMBs

In this subsection, we provide a set of algorithms for distiéd computation of
GOMBSs in MSBNs.

19

5.4.1 GOMB in MSBNs

The GOMB of a set of nodes in an MSBN could appear across alé8ag sub-
nets. For example, in the MSBN as shown in Figure 6, the mesnbie6GOMB

of fo € G could appear in botli, and ;. Its immediate GMB is{dy, go}. If
we assume,, is unobservablejd,, go} is not a GOMB. We therefore need to fur-
ther consider the immediate GMB df. If ¢, by, ag, ande, are all observable, the
GOMB of f, should be{go, co, by, ag, €0} If we further assumey, a;, ¢; andd;
are all unobservable, the computation would return baakt@nd the GOMB of
fo would further includef; andg;. Hence, the computation of the GOMB of a set
of nodes in an MSBN could occur in a subnet many times.

,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,

1 edy eep ed; e€1
e
f;/\é/ f\é’/
0 1

,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 6. A trivial MSBN over two subdomaing, andGs .

In the following 3 Subsubsections, we propose a suite ofralgos to compute the
GOMB B(R) of a setR of nodes in an MSBNV/ of n subnets. LetV;(0 < i < n)
be then subnets over subdomaifs0 < i < n), respectively. Let4;(0 < i < n)
be the corresponding agents Bii0 < i < n). For each adjacent agenj, of Ay,
we denoté/, NV by 1.

5.4.2 Cooperative Computation of the Observable Descdsdan

We first compute the observable descendants informatignidisedly. Algorithm

4 is started by the system coordinator to activate the coatiput It first makes
some initialization by calling Algorithm 5 (line 1), wheraeh unobservable node
is assigned a value “-1”, which indicates that it is still aokvn if the corresponding
node has any observable descendants or not. Then it calisithlion 6 (line 4) on
each of such nodes to figure out the answer.

Algorithm 4 (multiComputeOD) An MSBNM of n subnets is populated by mul-
tiple agents with one at each subnet. The system coordidates the following:

1 call multilnitialOD;

2 foreachagent; (i=0,1,....n—1),do

3 foreach node in V; whereO, = —1, do

4 O,=localOD(;, v);

In an MSBN, we call a node global leaf nodef it does not have any children
in any subnet DAGs. Algorithm 6 recursively checks all desiants (could be in

20

adjacent subnets) of an unobservable node figure out ifv has any observable
descendants. For computational efficiency, the backingckappens only when
either observable nodes or global leaf nodes have beenegadode needs to
calllocalOD at most once to figure out if it has any observable descenddetse,

the computational complexity i9(mn), wheren is the number of subnets in the
corresponding MSBN, anab is the maximum number of nodes a subnet can have.
For Algorithms 4, 5 and 6, we have Proposition 5.

Algorithm 5 (multilnitialOD) Each agentA4; (: = 0,1,...,n — 1) does the
following:

1 foreachnode inVj, do

2 if v is observable, seb, = 1;

3 otherwise, seb, = —1;

Algorithm 6 (localOD(A, v)) Let A,y be an agent with a local subnéf,,. A
caller is either an adjacent agent, or the system coordinator. Whet,, is called
by caller onv, it does the following:

1 ifo,= -1, setO, = 0; else returnO,,;
2 for each child: of v, do
3 ifO.=—1,do
if ¢ is a shared local leaf node iV, do
for each adjacentl; containinge, except4,, do
pass descendant info df, N I; to A;;
O, = localOD(;, c);
O, =0,V O
elseO, = localOD(Ay, ©);
o 0,=0,VO0,

= ©O© o0 ~NO U b~

Proposition 5 Algorithms 4, 5 and 6 determin@, for each node: in an MSBN.
All messages passed among agents are through public nodes.

Proof: We have shown that Algorithms 1 and 2 can figure out sufchmation for
every node in a single agent BN. Algorithms 4, 5 and 6 modifgokithms 1 and
2 by adding some multiagent cooperation mechanisms. Hénsasufficient if we
can show such mechanisms work when computation is acrdesht subdomains.

Algorithm 5 initializes every node in every subnet when @alby Algorithm 4.
Then Algorithm 6 is called by Algorithm 4 on each agent to fegout the observ-
able descendant information for every node in the respestibdomain. Since an
agent can only be activated by the system coordinator orler@gent, the com-
putation is performed agent by agent. That is, at one tineggtls only one active
agent.

In Algorithm 6, line 1 ensures that the required informatwati be returned prop-
erly if it has been available. Lines 4, 5, 6, 7 and 8 procespe@iion operations

21

with adjacent agents. For a shared local leaf ngdiee computation would be ex-
tended to the corresponding adjacent agents. In the comdspy agents).. could
have been available. If so, it is immediately returned bg lin All the observable
descendant information on shared nodes is passed to theeatggents (line 6)
because the observable descendant information may haxeabaable for some
of these nodes and could be required by the correspondirgertj agents. Line
8 absorbs the observable descendant information obtaioedthe corresponding
adjacent agents by boolean “ow)Yoperation. O

5.4.3 Cooperative Computation of GOMBs

Based on the observable descendant information obtainatjoyithms 4, 5 and 6,
we can compute the GOMB(R) of a setR of nodes in an MSBNV/ distributedly.

In a distributed problem domain, a variable couldibgically shared by different
agents, but the entity represented by the variable canmngicallylocate in one
subdomain. We call the subdomain where an entity physieaists théhost subdo-
mainof the entity and the corresponding agentitst agentWe assume a variable
can only be observed by iteost agentTherefore, each agent; should keep the
part B;(R) of B(R) it can observe, called thgartial graphical observable Markov
boundary(PGOMB) of R in the corresponding subdomain, for observation.

We present a suite of algorithms to cooperatively computé/B0n an MSBN.
The system coordinator activates the computation by exegatgorithm 7, which
first distributesR to the corresponding agents and then call each involved égen
do some initialization by running Algorithm 8 (lines 1, 2,daB). After that, the
cooperative computation d?(R) is performed by running Algorithm 9 (line 4).

Algorithm 7 (ComputeMB) An MSBNAM of n subnets is populated by multiple
agents with one at each subnet. Li2be a set of nodes in/. The system coordi-
nator does the following for multiple agents to figure out @®MB B(R) of R,
which is the union oB3;(R)(0 < i < n), in M.

1 foreach agent;, do

2 sendR NV to A;;

3 call A; to runInitializeMB;
4 callExpandMB

By Algorithm 8, each agent receives a $ebf the corresponding concerned nodes
from the system coordinator for the cooperative computatithe GOMBB(R)
(line 1) and makes some initialization (lines 2, 3 and 4) dsi@ and 3 associate each
nodev with a variableb,. If b, = 1, the nodev should have been processed. Since
a DAG is generally multiply connected, such a marking is seagy to prevent
infinite loops. Line 4 initializes the corresponding PGOMBeiach subdomain.

22

Algorithm 8 (InitializeMB) Let A; be the agent over a subn&t = (V;, G;, Pi).
When called by the system coordinator, it does the following

1 receivel; = RNV

2 foreach node inV;, do

3 if v € R, setb,=1; else, seb,=0;
4 setB; =0,Q; = 0;

Algorithm 9 (ExpandMB) LetQy (k =0,1,...,n — 1) be the set of unobservable
nodes collected by agent,(k = 0,1,...,n — 1) for extended computation of
GOMB. The system coordinator does the following:

1 foreach agent;, do

2 if T; = (0, continue;

3 call A; to runComputePMB

4 for each agenti;, do

5 call A4; to runcollectNodes

6 ifall Q;'s (0 <i<n)are(s, return;

7 else, sefs = Q.s, restart the algorithm;

Algorithm 9 calls Algorithm 10 to compute the PGOMB B&fin each correspond-
ing subnet (lines 1, 2 and 3). This is called gressof the computation of the
GOMB B(R). Several passes may be needed to reach the final GBMB. A
pass of computation of PGOMB by Algorithm 10 could be extehdeross dif-
ferent subnets. Agemt; (0 < ¢ < n) uses@; (0 < i < n) to receive the shared
unobservable nodes from the adjacent agents when extemsapens? In Algo-
rithm 9, Algorithm 11 is called by each agent to collect suckdes from the the
corresponding agents (lines 4 and 5). Thenxlé are checked (lines 4 and 5). If
all Q,’s are()’s, the computation is finished; otherwise, a new pass of caatipn
has to be started in the corresponding agents.

Algorithm 10, which is very similar to Algorithm 3 except fesome mechanisms
for message passing among agents, performs one pass ofrtipaitadion of the
PGOMB B(R) in a subnet. The sdi, contains all unobservable nodes assigned
initially and reached in computation (lines 1, 8, 16, and. T%e public nodes in
Hy, are passed to the corresponding adjacent agents for emtetite computa-
tion of B(R) in other subnets (lines 20 and 21). The Algorithm 10 comptlies
PGOMB in an iterative way. A recursive version can reculgiedeck the imme-
diate GMB of each of’,; members.

Algorithm 11 collects unobservable public nodes from thmeeht agents for the
extended computation of the GOMB(R). Since this may not be the first pass of
computation, all nodes evaluated (and hemagked by A; are removed fromX
(line 4). The set),, are set to b in the beginning (line 1). If it remaing after

2 Q; (0 < i < n)isinitialized at line 4 of Algorithm 8.

23

the collection, no computation is necessary in subgtat this time.

Algorithm 10 (ComputePMB) Let T}, be a set of unobservable nodes .
Let H;, be the set used to collect the corresponding unobservalidesmvolved
in the pass of computation. Denote the adjacent agent.eby Ay, Ak, ..., Arm.
When called by the system coordinator, the agéntdoes the following to figure
out the GOMB members i, corresponding tdj:

1 setHyy = Tho;

2 whileTy, # 0, do

3 pickv € Tyo and setlyg = Ty \ {v};

4 for each parenp of v whereb, = 0, do

S setb, = 1;

6 if p is observable, seByy = By U {p};

7 else, do

8 setTyo = Tro U {p}, Hyo = Hio U {p};
9 for each childc of v whereb, = 0, do

10 if ¢ is observable, do

11 seth. = 1, and Byg = Byo U {c};

12 for each pareny of c whereb, = 0, do
13 seth, = 1;

14 if g is observable, s&By = By U {g};
15 else, do

16 setlo = Tro U{g}, Hro = Hro U {g},
17 elif any descendant ofis observable, do
18 seth. = 1;

19 setlg = Tio U {C}, Hyy= HpoU {C};

20 for each adjacent agent;(j = k1, k2, ..., km) of Ay, do
21 passi, N I; to A; overl;;

Algorithm 11 (collectNodes) Let A,, be an agent over a subnét,,. Denote
the adjacent agents ofly, by Ay, Asa, ..., Arn. When called by the system
coordinator, A, does the following:

setQo = 0;

for each adjacent agent; (j = k1,2, ..., km) of A, do
receive a sek of nodes over; from A;;
remove any nodes marked Ry, from X;

setQro = Qro U X;

a b wWNPEk

Since the computation @8(R) will finish when all nodes are visited, the compu-
tational complexity of the suite of algorithmsd¥n + m), wheren is the number
of nodes in the MSBN, ang is the number of arcs in the MSBN. For the suite of
algorithms, we have Proposition 6.

Proposition 6 Algorithms 7, 8, 9, 10 and 11 compute and return the GOME)

24

of a setR of nodes in an MSBN. All messages passed among agents anglthro
public nodes.

Proof: The set of algorithms is different from Algorithm 3thmat they need to pro-
cess message passing among agents for extended compatatietcOMBB(R).
To reachB(R), several passes of computation could occur in one subdoBiaice
we have proved the Algorithm 3 for single agent case in Priéipagt, we here need
to show that the message passing and multiple passes of tatiopware properly
done.

Only public unobservable nodes collected in the computatia subnet could be
involved in the extended computation in the adjacent ag&uoish nodes are passed
to the corresponding agents over their interfaces (lines2(21 ofComputePMRB

If any of them are already evaluated in the correspondingtagéhey will be re-
moved from the extended computation (line £oflectNodeks Hence, the number
of nodes in a subnet that need to be evaluated will becomarteskess until none.
The computation in each subnet will be eventually finishaw (6 of ExpandMB.

O

5.4.4 Cooperative Distribution of GOMB

Until now, all nodes that belong t8(R) should have been reached. However, they
may not have been properly distributed to PGOMER) (0 < i < n).

[]
| bo—= . C il ’
,,,,,,, Z _ \£ucv Y _____ @ ‘ @
'(O\u\vo (e
@ (G \eu (b)

Fig. 7. The GOMB of a set of nodes in an MSBN may not be propesiriduted. (a) The
4 subnets of an MSBN. (b) The hypertree MSDAG over the DAGs)nThe white nodes
are observable and the black nodes are unobservable.

Figure 7 shows a trivial MSBN of 4 subnet$), G, G, andG3, where each dot-
ted box represent one subnet. The white nodes are obsearablbe black nodes
are unobservable. We assume the 4 subnets are controlle@dgmdsA,, A, A,
and A;z respectively. Supposéy, A;, A, and A3 are the host agents ¢fi, b, 2},
{c,v,z},{e, f,y} and{d, u}, respectively. Assume that we compute the GOMB of
nodec in the MSBN. Since: is a private node 7y, in the first pass, only agent
A; run ComputePMBon GG;. All other agents do not join the pass of computation.
After the first pass of the computation, we d&t= {z,u,v,y}, andH; = {z, c}.
Then the public node in H, is passed to the corresponding adjacent aggnt

25

Ay uses) to hold z. SinceQ, = {z} is not emptyExpandMBis restarted. We
getBy = {b,z}, andHy, = {z,a} in G, in the second pass of the computation.
Then the public node in H, is passed back to the corresponding adjacent agent
A;. However,, will become() sinceA; has evaluated and marked nadéience,

Qo, Q1, Q2 andQ); are all empty at this time andomputeMHinishes. Though all
members ofB(c) have been identified in the MSBN, they may not have been dis-
tributed to the propeB;(c)’s properly. For example; andu can only be observed

by A, and A; respectively, but bottB;(c) and B3(c) are empty. Hence, we need
properly distribute the available GOMB members to the gpoading host agents.

We present a set of 3 algorithms to properly distribute GONE?) to PGOMB
Bi(R)'s (0 < i < n). Algorithm 12 is called to start the set of algorithms, wer
CollectMB and DistributeMB are called one after another by an arbitrary agent.
Both CollectMBandDistributeMBare recursive algorithms, which recursively col-
lect or distribute related GOMB members from or to the cqoesgling agents,
through agents’ interfaces.

Algorithm 12 (UnifyMarkovBoundary) Let M be an MSBN of. subnets. The
system coordinator selects an arbitrary ageht to run CollectMB in G,.. After
it finishes, A, runs DistributeMB in G... Finally, each agent4; removes nodes it
cannot observe from; (0 < i < n).

Algorithm 13 (CollectMB) Let A, be an agent over the subn#f,, of an MSBN

M. A caller can be the system coordinator or an agdnt Denote the additional
adjacent agents oflg by Ax1, Ak, ..., Arm. AgentAy, does the following when
called by a caller:

for each agent4,(i = k1,k2,...,km), do
call A; to run CollectMB;
receive a seX = B; N I, of nodes over;;
setByy = By U X

if caller is an agent4,, do
sendA, the GOMB memberB;,, N I, over,;

For the set of 3 algorithms for PGOMB distribution, we havegersition 7.

Proposition 7 Let N; = (V;,G;, P)(0 < i < 0) be the subnets of an MSBN
M. Let R be a set of unobservable nodes M. Let B(R) be the union of all

the GOMB members reached by Algorithms 7, 8, 9, 10 and 11rigigws 12, 13

and 14 properly distribute the members of the GOMBR) to the corresponding
PGOMBB;(R)(0 < i < n). Allmessages passed among agents are through public
nodes.

Proof: In a hypertree MSDAG, any nodes shared by two hypesBdndC' also

26

Algorithm 14 (DistributeMB) Let A,y be an agent over the subnéf,, of an
MSBNM. A caller can be the system coordinator or an agdgnt Denote the ad-
ditional adjacent agents o, by A1, Ao, ..., Arxm. AgentA,, does the following
when called by a caller:

if caller is an agentA4,, do
receive a seX of GOMB members ovel, from A,;
add X to Byo:

for each agent4,(i = k1,k2,...,km), do
sendBy,, N I; to B; of A; overI;;
call A; to run DistributeMB;

appear in every hypernode on the path between them. By reewllection, the
sharedB(R) members between a some ageintand agentA, will be collected
from A, to agentA, and any agents on the path between them. By recursive dis-
tribution, the shared3(R) members between ageAt and a some agent, will

be distributed from4, to A, and any agents on the path between them. Hence, by
recursive collection and distribution, a shared nade B(R) should have reached
everyB;(R) whereu € V.

After all nodes for which4, (0 < i < n) is not a host agent are removed from
B;(R) (0 < i < n), we have a set of PGOMBSs that can be observed properly by
each agent. O

By applying Algorithms 12, 13 and 14 to the above example, exeli3, = {b},
By = {v,x}, By = {y}, andB; = {u}.

Since bothCollectMB and DistributeMB are called once at each subnet, and at
each call, only a finite number of intersection operatioesaade, the computation
should finish inO(mn) time, wheren is the number of agents in the corresponding
MSBN, andm is the maximum number of neighbors an agent can have in the
hypertree.

6 Experiments

In this section, we show the effectiveness of the proposediyc multiagent prob-
abilistic inference method on the simulated sequentiataligircuits. We also give
the relationship between the computational complexitytaedength of the repre-
sented period.

6.1 The Sequential Digital Circuits
In sequential digital circuits, some devices may becoméyfan the run time.

We use the proposed dynamic multiagent inference methoeétectsuch faulty

27

devices.

The synchronous sequential digital circuit as shown in Fedliis composed of 5
components. It has a total of 62 devices includingr2@rters 21 andgates, 13r
gates, Ixor gate, 3D flip-flops and 4J-K flip-flops Each component can be asso-
ciated with a computational agent responsible for monigpend troubleshooting
the component. The agents can acquire local observatiomsdensors and reason
about the values of unobservable variables within the corapb Components are
interfaced with each other, and observations obtained beyagent could be valu-
able to another agent. When modeling these components,gamé should have
some variables shared with some other agents.

by
€0
ay)—2 | g
w4 8% i i
M l—Dan 4g%
1 %o N ! ke 34
1101l 3 b5 f —
0111i74>071i.0100 47
brr 1 L g
be N, & 1010 j—
1010l g4 | |
LTI SR
R O == —£ 1 11010 4—»7 |
il Ns | ¢ la 6 ‘17“5 g %
| 0 — — n.-—4jgoeco Y Y T |
| *O<F 0010 >0 c1 1 77777777777777 R e L e

4 |7u 1100 @

O% I n1o01 igoio
Yo T%L- 1
p eal

k

s,
0100'
i

,,

Fig. 8. A synchronous sequential digital circuit. Each dakhox represents one compo-
nent.

6.2 The MSBN Model

We monitor and diagnose the simulated circuit with a five 4d@8BN over a

period of four time instants (clocks). Figures 9 and 10 shivestwo Bayesian
subnets corresponding to component 0 and 1, respectiveBrereach variable is
labeled by its variable name followed by the variable’s i@&hich readers may
ignore). Each variable name is composed of a string inaigatie corresponding

28

device or signal and a digit indicating the respective timstant. For example, in
Figure 9,f4_3 denotes the state of J-K flip flofst in subdomairU, at relative time
instant 3. The five Bayesian subnets of the MSBN are orgamized hypertree as
shown in Figure 11.

40,3 990.8 u10,10 €80,12 2e0,13

Fig. 9. The subnetz, for component/,.

1000 10,7 210,10

i o8 140,70
2005 12011 a0z 4043 220,71

o
Po o o P) 020,25 nd0,27
s j40, b50PE ¥
G ; h70,

4)
b a

o

0
[®)]

o

2
AN

"L
Lt o

.I“.g'

122,811,420 g2
{2

n : a i

Fig. 10. The subnet’; for component/;.

In addition to the dependency structures, we have the fatigyrior beliefs on
representational parameters. The state of a device (fljs-ftw logic gates) at a
time instant is represented by a boolean variable and isreittrmalor abnormal
A device could become faulty (abnormal) at a probability &6.1f a device is
normal at timet = 4, it may become abnormal at= 7 4+ 1 with a probability
of 1%. If it is abnormal at time = 4, it will stay abnormal. A faulty device may
produce correct output(s): a faultypt gate outputs correctly with a probability of

29

50%; a faultyandgate outputs correctly with a probability of 20%; a faubtygate
outputs correctly with a probability of 70%; a faukgr gate outputs correctly with
a probability of 30%; and either output9 (Q) of a faulty flip-flop could be correct
with a probability of 30%.

Fig. 11. The hypertree MSDAG of the five agent MSBN.

We assume that the state of a device is not observable. Weasdsmne that the
observation of an input or output has a cost. Therefore,ralvgeall inputs and
outputs is not an option. To make the situation more chaitgngve assume that
not all inputs or outputs of a device are observable.

6.3 Lower Bound on the Length of the Modeled Period

To detect the problems of a flip-flop in a sequential digitedwit, we need to model
at least two instants so that we have the chance to obsenatpets of the flip-
flop. When many flip-flops are chained together and signaisd®st them are not
observable, the length of the modeled period is lower bodityeone more than
the number of flip-flops such connected. For example, as showigure 12, a
sequence of, J-K flip-flops are connected one after another, where eaely-irr
ular box represents a combinational circuit receiving atggrom the preceding
flip-flop and providing inputs to the posterior flip-flop extdpe first one only pro-
viding inputs to flip-flopjk, and the last one only receiving outputs from flip-flop
jk,_1. If we can only observe the variables in irregular bokesdO,,_;, we may
need to model the domain over a period of at leastl instants to properly reason
about the state of the domain. This is because the oGtput won't be affected by
the possibly problematic outputs from flip-flop J4K, within » instants. That is,
there exists @elaybetween the time when the problem happens and the time when
the affected outputs are observed.

\ 13 Q J Q- J Q
iko _ jka _ jkn-1

_ K Q K Q 1K
N Cp

SOl

1 I I Clock

Fig. 12. A sequence of J-K flip-flops.

30

Therefore, the number of flip-flops that are chained togedhdrthe observability
of variables between them could tell us the minimal periochesed to model.

For the digital circuit as shown in Figure 8, a period of astalaree instants needs
to be modeled to reason about the state of the domain bedmisagest sequences
of flip-flops where variables between them are unobservabl¢ha sequences of
two flip-flops. However, a modeled period of three instanty mat give us very
confident inference results for this problem domain. We shaw by randomly
picking and observing a period of three consecutive instaithe problem domain,
where flip-flopf; is assumed to be faulty. Figure 8 shows all input signals antks
of output signals over a period of four instants. The outputsided here are those
that could be affected by the outputs of fauftyand cannot be properly predicted
based on given inputs. The signal values are provided aggstof four digits.
For example, “0101” besid& indicates that, takes values ‘0, ‘1’, ‘0’ and ‘1’
chronologically in the period. We test on the first 3 instants

We assume one input4) and all outputsd;, k5) of the faulty J-K flip-flop f, are
unobservable. In particular, its outputs are direct orrgxtiinputs of another J-K
flip-flop f5, whose inputs are not observable. However, on¢gstsf outputsps is
observable, and its other outpgtis an input of arandgatea;, whose outpug,, is
observable. We underline all observable variables in lei@ur

For a model over a period of three instants, we have the grapbbservable
Markov boundaryB(R3) of R3={ fao, fo1, foz}:

B(Ro) = {1707 71, 1725 180, 181, 1825 J205 430, 431, 432, 240, 191, Lg2; €60, €615 €62, Lho,
b1 812, Ld0s Bd1s Te0s Tels T £0, L1, In0s Inls P50s D51, P52, €a0s €als €a2s o0 ol s To2 |-

For simplicity, we do not differentiate host agents heree ghaphical observable
Markov boundary contains 36 variables. It is interestingt thot all observable
direct inputs of J-K flip-flopf, are contained iB(R3). Only j, at the first instant
(0) are contained iB(R3). This is because the inputs o at instant 2 have not
gone throughf,, and no any effects have been produced. Although the inputs t
f2 atinstant 1 have gone through, the effects off,’s outputs won't be observed
at e, or p; at instant 2 before these outputs go through another J-Kldlp+5
(i.e. any information resulted from inputs fo at instant 1 are currently contained
somewhere between the two J-K flip-flops, where no variablesohservable).
Also, althoughi,,, andi,; are contained inB(R3), i,» andi,; are not. This is
because no effects af; andi,; would be observed at, or p5 within the period.

By inference based on the observatiorBif?}) and communication among agents,
J-K flip-flop f> is believed to be faulty with a belief of 72.65%. All other d=as

in component’; are believed to be normal with beliefs over 96% exa@miateog
77.86%. All devices in components,, C; and(C; are believed to be normal with
beliefs over 96.06%. All devices in componérit are believed to be normal with
beliefs over 96.06% except flip-flofy 89.81%. Though the inference indicates that

31

f2 could be faulty, we may not be very confident about the resutesthe posterior
(72.65%) is not very positive.

6.4 More Than Minimal Instants

When we monitor the circuit as shown in Figure 8 over periddsur instants, we
may get better results. Based on the similar assumptioreasxample above, we
have the graphical observable Markov bound&ty?;) of Ry={ fs0, fo1, fo2, fo3}:

B(Ro) = {1707 71,072, 173, 180, 181, 182, 1835 J20, J215 4305 431, 4325 4335 g0, 291, 2¢2,
143, €60, €61, €625 €635 Lh0; Lhls h2; Th3; 1d0s Ldl, Ld2; Le0; tels Le2, L0, Lf1, L2, Tno,
in17 in27p507p517p527p537 €405 €aly €a2y €a3, /i007 iolu 7;027 7:O?>}'

The graphical observable Markov boundary contains 50 blesaJust like irB(R3),
not all observable direct inputs of J-K flip-flofs over the period are contained in
B(R{). Only jo andyy; at first two instants (0 and 1) are containedd?3). This

is because the inputs tfy at instant 3 have not gone through and no effects
could be observed. Although the inputsftoat instant 2 have gone through the
effects of f,’s outputs have not been observed:abr p; before they go through
another J-K flip-flopf; (i.e. any information resulted from inputs {6 at instant
2 are contained somewhere between the two J-K flip-flops, evheariables are
observable). Also though,, i,.1, andi,, are contained iB(R;), buti,; are not.
This is because no effects 9k would be observed at, or p5; within the period.

After B(R}) are observed and agents communicate with each other, #reie
indicates thatf, could be faulty with a belief of 84.21%f{3). All other devices

in component’; are believed to be normal with beliefs over 94%. All deviaes i
componentg’,, C; and(C5 are believed to be normal with beliefs over 96%. All
devices in componertt, are believed to be normal with beliefs over 93.95%. The
inference results are significantly improved with one morgant modeled. This
example also indicates that the potential improvementespalt become less and
less over more and more instants. This, from another pergpeshows a long
history may not be so necessary in reasoning about the statgymamic domain.

6.5 Multiple Faults

To make the situation more complex, we next assume, besideiptlop f> in
component’s,, J-K flip-flop f, in component’, is also abnormal. We randomly
pick six consecutive instants as shown in Figure 13, wheretisignals, and those
output signals that could be affected by the outputg,adnd f, are provided and
presented as strings of six digits. The six instants will iv&ded into two consec-
utive periods each of which contains 4 instants. The twoogeroverlap over two
instants. In Figure 13, the observable variables are uneel!

32

777

b |
S R 1

oowor0 P ! 4DO
do’-i il Ny b, a Ia - d
e

010101 ! K 9
ooozo01i 3 be 13 ‘ Ka f
. 5 |
f0 100001 4:‘ :E [>o oo 4

g
ro11101 1O

‘
1 mioo0

02 i 1y 000001 19011100

A,
‘ ke 010100,
|

n; f5 7001010

o11010 I y

Fig. 13. The signal values of a sequential digital circuitro® instants.

The graphical observable Markov boundd?yR}) of Ri={fio, fu1, f12, f13} iS @s
shown as follows, and(Rg) is the same as given in Subsection 6.4. There are a
total of 33 variables iB(R7).

B(RY) = {0, %1, %2, 13, 10, 11, 152, 153, €80, €81, €82, €83, €70, €71, €72, €73, D40,

P41, P42, P43, 120, 121, 122, P40, P41, P42, P43, 130, 131, 132, 40, 41, Z42}-

Based on the observation of bat{ R¢) and B(R?) in the first period and commu-
nication among agents, the inference indicates that J-Kilép f, is believed to
be faulty with a belief over 94.89%. This belief is higherritthe one obtained in
Subsection 6.4. This is because stronger evidence, thaatedf, could be faulty,
appears inB(Rj) in this period (after observin@(R3), (R7}) is irrelevant to the
state off;). The strength of the evidence we observe could be différent period
to period for the same problem. When a system is monitoredgbey period, the
system problems could be detected in different periodse@ndevice is believed
to be faulty in some period, the device should be fixed or cgugthough it may
not be indicated to be faulty at some other periods).

In componentCs, all other devices are believed to be normal with beliefsrove
96.06% excepbr gateog with a belief over 94.30% in the first period.

33

The problem in J-K flip-flopfs, however, is not properly detected in this period,
which is believed to be abnormal with a belief of 16.21%. Ather devices in
components’, are believed to be normal with beliefs over 96.06%. All degim
component’; are believed to be normal with beliefs over 96.06% exo®rter

n, with a belief of 66.74%andgatea,, with a belief of 45.79%. That s, the system
seems to attribute inconsistencies observed;tanda, instead off,;. Anyway,
neither belief is high enough to conclude that eithgor a,, or both are abnormal.
All devices in component’s andC, are believed to be normal with beliefs over
96.06% excepexclusive orgatez, with a belief of 93.48% and J-K flip-flogs
with a belief of 95.65%.

Next, we continue to monitor the circuit over a new period @figtants, which has
two instants overlapped with the previous one. The infezdrased on the obser-
vation of bothB(R3) and B(R{) and communication among agents indicates that
J-K flip-flop f5 is believed to be faulty with a belief of 47.25%. This is bexathat
confusing evidence is observed in this period correspanttirthe problem infs.
Nevertheless, J-K flip-flog, is believed to be faulty with a belief of 84.54%. All
other devices in componeay, are believed to be normal with beliefs over 96.06%
exceptand gateay with a belief over 86.74%. All devices in componetit are
believed to be normal with beliefs over 95.64% excapd gatea, with a belief of
86.71%,inverterns 91.69%, andnvertern,; 82.98%. All other devices in compo-
nentC, are believed to be normal with beliefs over 96.06% excemateog with

a belief of 86.28%. All devices in componers are believed to be normal with
beliefs over 95.99%. All devices in componentsare believed to be normal with
beliefs over 96.06% excepiclusive omgatex, 85.00%, and flip-flopf; 73.14%.
This time, we are confident thg is faulty.

In the two consecutive periods, the posterior belief overdame entity may fluc-
tuate significantly. For example, in the first perigédl,is believed to be faulty with
a belief over 94.89% and, 16.21%, and in the next period; is believed to be
faulty with a belief of 47.25% and, 84.54%. The fluctuation is considered ra-
tional, which is caused by the variation in the strength ef ¢widence observed
corresponding to the problems in the two devices in the twimgs. In the first pe-
riod, the observed evidence strongly indicates fhas faulty and weakly indicates
f1is faulty, and in the second period, the observed evidemoagly indicates that
f1 is faulty but weakly indicates that is faulty.

With dynamic systems being monitored period by period, tleblems in the sys-
tems would be detected whenever proper evidence appears.

6.6 Complexity Growth
In general, the longer the period of a dynamic domain we catiemthe better the

inference results we can reach would be. However, the pefiadlynamic domain
we can model into an MSBN should be limited by the computati@omplex-

34

ity. The computational complexity of inference using MSBBIslominated by the
largest clique size in the corresponding LJFs. In this stutis® we experimentally
show the relationship between the computational complexit the length of the
modeled period of a dynamic domain.

The experiment is done on 3 different sequential digitalgts with different levels
of complexity. Each circuit is divided into five componerdsd is modeled with
a 5 agent MSBN over a range of periods. Depending on the ticoumplexity,

the period modeled could be up to 10 instant long. Beside ¢lgeiential digital

circuit as shown in Figure 8, the other two sequential digit@uits are as shown
in Figures 14 and 15, respectively.

Fig. 14. A simple sequential digital circuit of five compoi®n

The circuit as shown in Figure 14 has the simplest topoldégizacture. The in-
terfaces between any two adjacent components are as showabli@ 1. When
modeled into an MSBN, a new set of the corresponding interfaciables will be
added to the corresponding interfaces for each new instiaietch

The sequential digital circuit as shown in Figure 15 has aeansomplex topological
structure. The interfaces between any two components asbasn in Table 1.
Compared to the two sequential digital circuits, the onehasvea in Figure 8 has
the most devices and signals.

35

Fig. 15. A more complex sequential digital circuit of five cooments.

Table 1

Interfaces of the circuits in Figure 14 and 15.

Components

Interfaces of circuit in Fig. 14

Interfaces of circuit in Fig. 15

Co&Cy
C1&Cy
Cr&Cs
Cr&Cy

C1,U3, V4
g2, 50,51
UQ,’LLO,bO

Wo, S3

20,41
j17]{717 22, V2
ug, bo, d2, q4

w2, Wi, 337j3

For the digital circuit as shown in Figure 8, we produce 4 MSBidrresponding
to the modeled periods from length 2 to length 5. For the digitrcuit as shown
in Figure 14, we produce 9 MSBNs corresponding to the modpébds from

length 2 to length 10. For the digital circuit as shown in Fega5, we produce 4
MSBNSs corresponding to the modeled periods from length 2ngth 5.

Since the computational complexity of the inference usirgBWs is dominated by
the size of the largest cliques in the corresponding LJR&€l junction forests),
we show how the size of the largest cliques grows over thelesfghe represented
period. Tables 2, 3 and 4 show the respective experimersaltseon different cir-

cuits.

36

Table 2

Maximum clique size vs the length of the modeled period ferdincuit in Figure 8.

of instants

Size of the largest cliques

Total # of cliques

2

3
4
5

8

13
17
22

246
395
527
645

-II\;Iaabi?mgum clique size vs the length of the modeled period ferdincuit in Figure 14.
of instants | Size of the largest cliques Total # of cliques
2 8 114
3 11 148
4 14 211
5 19 252
6 21 287
7 24 330
8 27 371
9 29 416
10 31 458
Table 4
Maximum clique size vs the length of the modeled period ferdincuit in Figure 15.
of instants | Size of the largest cliques Total # of cliques
2 11 108
3 19 164
4 30 219
5 39 267

From the Tables 2, 3 and 4, the size of the largest cliquesreaitmber of cliques
in the corresponding linked junction forests grow lineanlyhe number of instants
modeled. For example, in the column “Size of the largestueipf Table 2, the
difference between any two consecutive numbers are appetgly the same (5).
Note the size of the largest cliques is not only affected leydbmplexity and the
size of the circuits, but is also affected by how you model ¢heuits (e.g. the
choices of interface variables and the interface size). etc.

37

7 Conclusion

In dynamic multiagent domains, individual agents gengredinnot evolve sepa-
rately using DBNs because the temporal probabilistic ngessitom different sub-
domains are dependent of each other. This results in thergeasition issue and
the distribution issue, which make it hard for the dynamidtragent probabilistic
inference to be performed both exactly and effectively. dttheless, in dynamic
systems, the influence from the past could be weakened véaklguNe propose
to represent and reason about the state of a dynamic muitidgenain period by
period. By denser and relevant observation, the influenadeignored history
on the inference is reduced to a minimum. For relevant olasiery, we introduce
graphical observable Markov boundary (GOMB) to captureeddivant observable
variables. GOMB may also help us locate the relevant agartteeiinference. For
example, as shown in Subsection 6.4, the GOMB membel it})) (correspond-
ing to flip-flop f, in the circuit as shown in Figure 8) only appear in subdomain
C,, C3 andCy. Hence, it is possible that, after proper initial procegsthe 5 agent
MSBN can be simplified to a 3 agent MSBN for cheaper inference.

Experiments show that the proposed method can successgfoily on the simu-
lated cases. The size of the largest cliques in the correlspghJFs grows linearly
in the length of the represented period. Hence, the periagiteaffects the compu-
tational complexity in an exponential way. The length ofthedeled period cannot
be too long.

In the future, more experiments on more problem domainsbelperformed to
further investigate the proposed approach.

References

[1] V.R. Lesser, L. D. Erman, Distributed interpretationmadel and experiment, IEEE
Transactions on Computers C-29 (12) (1980) 1144-1163.

[2] Y. Xiang, B. Pant, A. Eisen, M. P. Beddoes, D. Poole, Paimua neuromuscular
diagnostic aid using multiply sectioned Bayesian networks D. |. Hudson
(Ed.), Proceedings of ISMM (International Society for Miamd Microcomputers)
International Conference on Mini and Microcomputers in Méetk and Healthcare,
Long Beach, CA, 1991, pp. 64-69.

[3] Y. Xiang, B. Pant, A. Eisen, M. P. Beddoes, D. Poole, Militisectioned Bayesian
networks for neuromuscular diagnosis, Artificial Intedigce in Medicine 5 (1993)
293-314.

[4] Y. Xiang, H. Geng, Distributed monitoring and diagnos¥th multiply sectioned
Bayesian networks, in: AAAI Spring Symposium on Al in Equient Service
Maintenance and Support, AAAI Press, Stanford, CA, 19991B8p25.

38

[5] A. Ghosh, S. Sen, Agent-based distributed intrusiomt &gstem, in: Proceedings of
the 6th International Workshop on Distributed Computing[iC’04), Kolkata, India,
2004, pp. 240-251.

[6] Y. Xiang, Probabilistic Reasoning in Multiagent Syst&mA Graphical Models
Approach, Cambridge University Press, 2002.

[7] S.Buchegger, J.-Y. L. Boudec, A robust reputation syster P2P and mobile ad-hoc
networks, in; Proceedings of the 2nd Workshop on the Ecocewii Peer-to- Peer
Systems, Cambridge, MA, 2004.

[8] B. Skyrms, R. Pemantle, A dynamic model of social netwimknation, Proceedings
of National Academy of Sciences of the United States of Aoae(PNAS) 97 (16)
(2000) 9340-9346.

[9] H. Li, S. Majumdar, Dynamic decisions with short-term mmaries, Tech. rep.,
Department of Economics, University of Toronto (2005).

[10] D. Koller, Representation, reasoning, learning, Kaertalk at the 17th International
Joint Conference on Atrtificial Intelligence (IJCAI-200Beattle, WA.

[11] L. M. de Campos, J. M. Fernandez-Luna, Reducing prajpageeffort in large
polytrees: an application to information retrieval, inoBeedings of the First European
Workshop on Probabilistic Graphical Models (PGM’02), CeeerSpain, 2002, pp. 35—
44,

[12] R. D. Shachter, Bayes-ball: the rational pastime (fetednining irrelevance and
requisite information in belief networks and influence d#&mgs), in: G. F. Cooper,
S. Moral (Eds.), Proceedings of the 14th Conference on Waiogy in Artificial
Intelligence (UAI-1998), Morgan Kaufmann Publishers, Néaah, WI, 1998, pp. 480—
487.

[13] M. L. Puterman, Markov Decision Processes: Discreteclsstic Dynamic
Programming, John Wiley & Sons, Inc., New York, NY, 1994,

[14] L. P. Kaelbling, M. Littman, A. R. Cassandra, Planningdaacting in partially
observable stochastic domains, Artificial Intelligencd {0998) 99-134.

[15] C. Boutilier, Multiagent systems: challenges and apyaties for decision-theoretic
planning, Al Magazine 20 (4) (1999) 35-43.

[16] D. S. Bernstein, S. Zilberstein, N. Immerman, The carjty of decentralized control
of Markov decision processes, in: C. Boutilier, M. Goldsdim{Eds.), Proceedings
of the 16th Conference on Uncertainty in Artificial Intetiigce (UAI-2000), Morgan
Kaufmann Publishers, Stanford, CA, 2000, pp. 32-37.

[17] C. V. Goldman, S. Zilberstein, Optimizing informaticexchange in cooperative
multi-agent systems, in: Proceedings of the 2nd InternatiaJoint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-2008GM Press,
Melbourne, Australia, 2003, pp. 137-144.

39

[18] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, S. Marsellajriliag decentralized
POMDPs: towards efficient policy computation for multiagesettings, in:
Proceedings of the 18th International Joint Conference diifidhal Intelligence
(IJCAI'03), Morgan Kaufmann, Acapulco, Mexico, 2003, pp5+711.

[19] M. Littman, Algorithms for sequential decision makirigh.D. thesis, Department of
Computer Science, Brown University, Providence, Rhodmnltl(1996).

[20] J. Forbes, T. Huang, K. Kanazawa, S. Russell, The BATlaotowards a Bayesian
automated taxi, in: Proceedings of the 14th Internationiat Lonference on Artificial
Intelligence (IJCAI-1995), Morgan Kaufmann Publishergriétéal, Québec, Canada,
1995, pp. 1878-1885.

[21] B. Sallans, Learning factored representations fotighr observable Markov decision
processes, in: S. Solla, T. Leen, K. R. Muller (Eds.), Prdoess of the Advances
in Neural Information Processing Systems 12 (NIPS-1999Y, Rtress, Denver, CO,
1999, pp. 1050-1056.

[22] X. Boyen, Inference and learning in complex stochagtiocesses, Ph.D. thesis,
Computer Science Department, Stanford University, StanfoA (2002).

[23] K. Murphy, Y. Weiss, The factored frontier algorithmrfapproximate inference
in DBNSs, in: J. S. Breese, D. Koller (Eds.), Proceedings & 1fTth Conference
on Uncertainty in Artificial Intelligence (UAI-2001), Moan Kaufmann Publishers,
Seattle, WA, 2001, pp. 378-385.

[24] K. Murphy, Dynamic Bayesian networks: representationference and learning,
Ph.D. thesis, CS Division, UC Berkeley, Berkeley, CA (Judp2).

[25] A. T. Ihler, J. W. F. 1ll, A. S. Willsky, Loopy belief proagation: convergence and
effects of message errors, Journal of Machine LearningdRels& (May) (2005) 905—
936.

[26] Y. Xiang, Temporally invariant junction tree for infamce in dynamic Bayesian
networks, in: R. E. Mercer, E. Neufeld (Eds.), Advances itifisial Intelligence:
Proceedings of the 12th Biennial Conference of the Canadaciety for
Computational Studies of Intelligence, LNAI 1418, Springéancouver, BC, Canada,
1998, pp. 363-377.

[27] J. Pearl, Probabilistic Reasoning in Intelligent ®yss: Networks of Plausible
Inference, Morgan Kaufmann Publishers, San Franciso, G831

[28] J. Pearl, A. Paz, Graphoids: a graph-based logic fosaiag about relevance
relations, in: B. D. Boulay, D. Hogg., L. Steels (Eds.), Adgas in Artificial
Intelligence 2, Amsterdam: North Holland, 1985, pp. 3573:36

40

