
Dynamic Multiagent Probabilistic Inference

Xiangdong Ana,∗, Yang Xiangb, Nick Cerconec

a Faculty of Computer Science, Dalhousie University
Halifax, Nova Scotia B3H 1W5, Canada

bDepartment of Computing and Information Science, University of Guelph
Guelph, Ontario N1G 2W1, Canada

cDepartment of Computer Science and Engineering, York University
Toronto, Ontario M3J 1P3, Canada

Abstract

Cooperative multiagent probabilistic inference can be applied in areas such as building
surveillance and complex system diagnosis to reason about the states of the distributed un-
certain domains. In the static cases, multiply sectioned Bayesian networks (MSBNs) have
provided a solution when interactions within each agent arestructured and those among
agents are limited. However, in the dynamic cases, the agents’ inference will not guarantee
exact posterior probabilities if each agent evolves separately using a single agent dynamic
Bayesian network (DBN). Nevertheless, due to the discount of the past, we may not have
to use the whole history of a domain to reason about its current state. In this paper, we
propose to reason about the state of a distributed dynamic domain period by period using
an MSBN. To reduce the influence of the ignored history on the posterior probabilities to a
minimum, we propose to observe as many observable variablesas possible in the modeled
history. Due to the limitations of the problem domains, it could be very costly to observe
all observable variables. We present a distributed algorithm to compute all observable vari-
ables that are relevant to our concerns. Experimental results on the relationship between
the computational complexity and the length of the represented history, and effectiveness
of the approach are presented.

Key words: Multiagent uncertain reasoning, Reasoning in dynamic systems, (Dynamic)
Bayesian networks, Agent privacy, Exact and approximate reasoning

1 Introduction

For cooperative multiagent systems, one of the tasks we needto study is how mul-
tiple agents can collectively reason about the state of the problem domain based

∗ Corresponding author. Tel.:+1-902-420-5003; fax:+1-902-496-8101.
Email address:xan@cs.dal.ca (Xiangdong An).

Preprint submitted to International Journal of Approximate Reasoning

on their local knowledge, local observation (evidence), and limited communication
with each other. This task is referred to by some authors asdistributed interpreta-
tion [1], which arises in many areas such as inventory control, power network grids,
equipment monitoring, smart house, cooperative design, battlefield assessment, and
surveillance.

Multiply sectioned Bayesian networks (MSBNs) [2] provide acoherent framework
for probabilistic reasoning in distributed interpretation systems with uncertainties,
which have been applied in many areas such as medical diagnosis [3], equipment
monitoring and diagnosis [4], and distributed network intrusion detection [5]. How-
ever, problem domains such as medical diagnosis and equipment monitoring and
diagnosis are dynamic in general. MSBNs do not provide facilities to properly man-
age and absorb historical information in distributed dynamic domains [6]. Actually
in distributed dynamic domains, if we allow the historical probabilistic messages
from different subdomains to be passed over time separately, the dependencies
among these separated messages would be lost. This indicates that, at least for
probabilistic inference, the spatial distribution of multiagent systems conflicts with
the temporal message passing requirement of dynamic domains. We have difficulty
to perform probabilistic inference in dynamic multiagent systems ideally on all of
the following aspects: exactness, distribution and effectiveness.

We cannot sacrifice the distribution since multiagent inference has to be done dis-
tributedly. We could make some tradeoffs between the ideallness and either the
exactness or the effectiveness or both.

It has been widely recognized that the recent past is more relevant to the current
state of domain than the distant past [7–9], which is called the discount of the past.
In the probabilistic framework, weak influence means small effects on the poste-
rior probabilities. In a stochastic world, the influence of the historical probabilistic
knowledge would be weakened over distance (the length of influence chains), time
and quantity (as many influences combine) [10,11]. In this paper, we propose to
reason about the state of a dynamic multiagent domain based on its recent history,
instead of its whole history. To reduce the impacts of the ignored history on the
inference results, we propose to observe (gather information from) the modeled
history as much as possible. In dynamic domains, some aspects of the remote past
are referenced in the recent history. The more variables in the modeled history we
observe, the less influence the ignored history would have onthe posterior prob-
abilities. Observing everything that is observable would reduce the impacts of the
ignored remote past to a minimum. However, each observationwould have a cost. It
could be very expensive to observe everything. For example,although many med-
ical laboratory tests may help improve the accuracy of a patient’s diagnosis, the
patient may not want to take all of them due to the cost and the potential side ef-
fects involved. To fully and efficiently take advantage of the information provided
by the modeled history, we propose to observe all observablevariables that are
relevant to the concerned variables.

2

A suite of algorithms is presented to distributedly computeall observable variables
that are relevant to the concerned variables, where agents’privacy is preserved.
The correctness and the complexity of the set of algorithms is analyzed. To facili-
tate the understanding of the set of algorithms, a single agent version of the set of
algorithms is presented before the multiagent version. An algorithm called Bayes-
Ball [12] was once presented to compute therequisite observationsfor a set of
concerned variables in Bayesian networks (BNs). The requisite observations for a
setS of variables are those observed variables in the domain, which are relevant
to the state ofS. Bayes-Ball solves the same problem as our single agent version
algorithm in the same computational complexity. Nevertheless, Bayes-Ball is dif-
ferent from our single agent version algorithm in that our method computes the
requisite observations based on the explicit observable descendant information of
nodes in the BNs. Observable descendant information can be reused once obtained.
This makes our method cheaper in both time and space complexities when requisite
observations for multiple sets of concerned variables needto be computed.

Experimental results on the relationship between the computational complexity and
the length of the represented period, and the effectivenessof the approach are pre-
sented.

The rest of the paper is organized as follows. In Section 2, wereview the related
work. The necessary background knowledge is introduced in Section 3. In Section
4, the issues involved in the dynamic multiagent probabilistic inference and the pro-
posed solution are presented. In Section 5, the set of algorithms for computing the
observable relevant variables in MSBNs is presented and analyzed. Experimental
results are provided in Section 6. In Section 7, the conclusion is made.

2 Related Work

Both the Markov decision processes (MDPs) [13] and the partially observable
Markov decision processes (POMDPs) [14] are probabilisticmodels for probabilis-
tic reasoning and acting in stochastic systems. They have been extended and applied
to probabilistic reasoning and acting in dynamic multiagent systems recently.

Extended from MDPs, the multiagent MDPs (MMDPs) [15] assumea full view
of the global state by each agent, whereas the decentralizedMDPs (Dec-MDPs)
assume a different partial view of the global state by each agent [16]. In either
MMDPs or Dec-MDPs, an agent can fully observe the state of theworld in its view.
In Dec-MDPs, agents may be allowed to communicate about their deterministic
local states with costs. Though solving an MDP is P-complete, solving a Dec-MDP
is NEXP-complete [16].

The decentralized POMDPs (Dec-POMDPs) [17], extended fromPOMDPs, are
more related with our work than Dec-MDPs, where each agent only has an in-
complete information about its subdomain. In Dec-POMDPs, though agents exe-

3

cute their local policies distributedly based on their local observations, planning
is generally centralized [18]. Agents may be allowed to communicate about their
observations to improve the policy computation. In Dec-POMDPs, no probabilistic
messages are passed among agents. Hence, there does not exist the divided tempo-
ral probabilistic message passing problem. Solving a POMDPis EXP-complete
(PSPACE-complete if the transitions are deterministic) [19], whereas solving a
Dec-POMDP is NEXP-complete [16].

In POMDPs, the state is encoded in a single random variable, which is not efficient
in modeling large state spaces with structures. Dynamic decision networks (DDNs)
[20] have been proposed to model and solve sequential decision problems with
large structured state spaces. DDNs were extended from dynamic Bayesian net-
works (DBNs) with decision nodes and utility nodes. Factored POMDPs [21] were
proposed to represent large structured POMDPs compactly. In a factored POMDP, a
DBN is used to compactly represent the transition models andobservations models.
In this paper, we investigate how to properly use MSBNs to compactly represent
and reason about the states of the distributed partially observable dynamic domains.

In [22], an approximate inference method for DBNs, which we call Boyen-Koller
(BK), was investigated. The method works on stochastic processes that are com-
posed of weakly interacting subprocesses. In the method, the joint belief on the
DBN interface is approximated by the product of marginals that correspond to re-
spective individual subprocesses. Message passing over time is done approximately
through these marginal products, whereas belief updating at each time instant is
done exactly. It was shown that the approximation error remains bounded over time.
Motivated by BK, a more aggressive DBN approximate inference approach, called
Factored Frontier (FF), has been presented [23]. FF is very similar to BK algorithm,
but instead of doing an exact belief updating at each time instant, it always works
with the factored distributions.

Though the approximation error of BK is bounded over time, itis still unclear how
tight the bound is [24]. The tightness of the bound is relatedwith the strength of the
interactions among subprocesses (agents). There is no guarantee on the boundness
of approximation error from FF. It has been shown [24] both BKand FF are special
cases of loopy belief propagation (LBP), which is not guaranteed to converge [25].

3 Background Knowledge

3.1 Notations and Terminology

LetX, Y andZ be disjoint subsets of variables inV . We use the notationI(X, Z, Y)P

to denote the conditional independence ofX andY givenZ; thus,

I(X, Z, Y)P iff P (x|y, z) = P (x|z)

4

for any configurationx of X, and any configurationsy andz of Y andZ such that
P (y, z) > 0.

In a directed graph, when two arcs meet in a path, the shared node can be described
as a node oftail-to-tail, head-to-tailor head-to-head.

Definition 1 Let X, Y andZ be disjoint subsets of nodes in a DAGG. A pathρ
between nodesx ∈ X and y ∈ Y is closed by Z whenever one of the following
two conditions is true: (1) there existsz ∈ Z that is a node of either tail-to-tail or
head-to-tail onρ; (2) there exists a nodew that is a node of head-to-head onρ and
neitherw nor any descendant ofw is in Z. If both conditions are false, thenρ is
renderedopen by Z. Nodesx andy are d-separated by Z if every path betweenx
andy is closed byZ; X andY ared-separated byZ if for everyx ∈ X andy ∈ Y ,
x andy are d-separated byZ.

We use the notation< X|Z|Y >G to denote thatX and Y are separated (d-
separated) byZ in graphG.

A dependency modelM over a setU of variables is a model that can determine
whetherI(X, Z, Y)M is true, for all possible triplets of disjoint subsetsX, Y and
Z. A probabilistic model, which is a complete specification of a joint probability
distribution (JPD), is a dependency model.

A graphG is an I-map of a dependency modelM over a setV of variables, if
there is a one-to-one correspondence between nodes inG and variables inV and
for every disjoint subsetsX, Y andZ, we have< X|Z|Y >G⇒ I(X, Z, Y)M . A
graph is aminimal I-map if all edges in it are necessary for it to remain an I-map.

3.2 Bayesian Networks

Definition 2 A Bayesian network (BN) is a triplet (V, G, P), whereV is a set
of variables,G is a connected DAG, and there is a one-to-one correspondence
between nodes inG and variables inV . P is a set of probability distributions:
P = {P (v|π(v)) | v ∈ V }, whereπ(v) denotes the set of parents ofv in G. G is a
minimal I-map ofP (V).

3.3 Dynamic Bayesian Networks

Definition 3 A dynamic Bayesian network (DBN) is a quadruplet

G = (
⋃

t=0

Vt,
⋃

t=0

Et,
⋃

t=0

E→

t ,
⋃

t=0

Pt). (1)

EachVt is a set of nodes labeled by variables, which represents the dynamic domain
at time instantt (0 ≤ t < k). Collectively,V =

⋃k
t=0 Vt represents the dynamic

domain overk instants. EachEt is a set of arcs among nodes inVt, which represents

5

dependencies among domain variables at timet. EachE→

t is a set of temporal arcs
each of which is directed from a node inVt−1 to a node inVt (0 < t < k). The
subset ofVt (0 ≤ t < k) FIt = {x|x ∈ Vt & ∃y < x, y >∈ E→

t+1} is called the
forward interface of Vt where< x, y > is a temporal arc directed fromx to y. The
subsets ofVt (0 < t < k) BIt = It ∪{z|z ∈ Vt & ∃y(y ∈ It & z ∈ π(y))} is called
thebackward interface of Vt, whereIt = {y|y ∈ Vt & ∃x(< x, y >∈ E→

t)}. Each
Dt = (Vt ∪FIt−1, Et ∪E→

t) or (Vt ∪BIt+1, Et ∪E→

t+1) is a DAG and eachPt is a
set of probability distributions

Pt =

P (V0), t=0

P (Vt|FIt−1)orP (BIt+1|Vt), t > 0.
(2)

The pairSt = (Dt, Pt) is called aslice of the DBN.

Figure 1 shows the structure of a DBN ofn slices, whereV1 = {a1, b1, c1, d1}, E1 =
{(a1, b1), (b1, c1), (b1, d1), (d1, c1)}, E

→

1 = {(a0, b1), (d0, c1)}, FI1 = {a1, d1} and
BI1 = {a1, b1, c1, d1}. The slice of DBN at timet = 1 isD1 = {V1∪FI0, E1∪E→

1 }
whereFI0 = {a0, d0}. Each slice of a DBN is a BN. At any timet = j ≤ n − 1,
the slicesS0, S1, ..., Sj−1 represent the domain history andSj+1, ..., Sn−1 predict
the future. Evidences may be entered intoS0, ..., Sj.

c 0

d 0b 0

0a a a a1

c

db 1

1

1

c

db

2

22

2

b d

c

n−1

n−1

n−1

n−1

...

...

...

Fig. 1. A simple sample dynamic Bayesian network.

3.4 Overview of MSBNs

In an MSBN, a set ofn > 1 agentsA0, A1, ..., An−1 populates a total universe
V of variables. EachAi has knowledge over a subdomainVi ⊂ V encoded as
a Bayesian subnet(Vi, Gi, Pi). The collection{G0, G1, ..., Gn−1} of local DAGs
encodes agents’ knowledge of domain dependencies. Local DAGs of an MSBN
should overlap and be organized into ahypertree.

Definition 4 Let G = (V, E) be a connected graph sectioned into subgraphs
{Gi = (Vi, Ei)}. Let these subgraphs be organized into a treeΨ where each node,
called ahypernode, is labeled byGi and each link betweenGi and Gj, called a
hyperlink, is labeled by the interfaceVi ∩ Vj such that for each pair of nodesGl

andGm, Vl ∩ Vm is contained in each subgraph on the path betweenGl andGm.
The treeΨ is called ahypertree overG.

6

Each hyperlink serves as the information channel between agents connected and is
referred to as anagent interface. We say all variables in agent interfaces arepub-
lic or sharedamong agents involved, and all others areprivate. To allow efficient
and exact inference, each hyperlink should render the subdomains connected con-
ditionally independent. It has been shown that this impliesthe following structural
condition [6].

Definition 5 Let G be directed graph such that a hypertree overG exists. A node
x contained in more than one subgraph with its parentsπ(x) in G is a d-sepnode
if there exists a subgraph that containsπ(x). An interfaceI is a d-sepset if every
x ∈ I is a d-sepnode.

Theorem 1 Let Ψ be a hypertree over a directed graphG = (V, E). For each
hyperlinkI which splitsΨ into two subtrees overU ⊂ V andW ⊂ V respectively,
U \I andW \I are d-separated byI if and only if each hyperlink inΨ is a d-sepset.

The overall structure of an MSBN is a hypertree MSDAG.

Definition 6 A hypertree MSDAG G =
⋃

i Gi, where eachGi = (Vi, Ei) is a DAG,
is a connected DAG such that there exist a hypertree overG and each hyperlink is
a d-sepset.

An MSBN is composed of a hypertree MSDAG and the corresponding numerical
probability distributions.

Definition 7 An MSBN M is a triplet (V, G, P). V =
⋃

i Vi is thetotal universe
where eachVi is a set of variables, called asubdomain. G =

⋃

i Gi is a hypertree
MSDAG where nodes of each subgraphGi are labeled by elements ofVi. Letx be a
variable andπ(x) be all parents ofx in G. For eachx, exactly one of its occurrences
(in a Gi containing{x} ∪ π(x)) is assignedP (x|π(x)), and each occurrence in
other subgraphs is assigned a unit constant potential.P =

∏

i Pi is the JPD where
eachPi is the product of the potentials associated with nodes inGi. Each triplet
Si = (Vi, Gi, Pi) is called asubnet of M . Two subnetsSi and Sj are said to be
adjacent if Gi andGj are adjacent in the hypertree.

4 Issues and Solution

4.1 Dynamic MSBNs

We first look at how MSBNs can be extended and applied to dynamic multiagent
probabilistic inference. We propose to use an MSBN to model one time instant
of a dynamic multiagent domain. The MSBNs over all time instants are called a
dynamic MSBN(dMSBN).

A dMSBN is defined as in Definition 8.

7

Definition 8 A dynamic MSBN is a quadruplet

M = (
⋃

t=0

Vt,
⋃

t=0

Et,
⋃

t=0

E→

t ,
⋃

t=0

Pt).

EachVt =
⋃

i Vt,i (0 ≤ i < n) is the total universe at timet, whereVt,i is a set of
variables, called subdomaini at timet. EachEt =

⋃

i Et,i is a set of arcs among
nodes inVt, whereEt,i is a set of arcs among nodes inVt,i. EachE→

t =
⋃

i E
→

t,i is
a set of temporal arcs directed from nodes inVt−1 to nodes inVt, whereE→

t,i is the
set of temporal arcs directed from nodes inVt−1,i to nodes inVt,i. The subset ofVt,i

FIt,i = {x ∈ Vt,i | (∃y)(< x, y >∈ E→

t+1,i)}

is called theforward interface of Vt,i, whereasFIt =
⋃

i FIt,i is called the forward
interface ofVt. The subset ofVt,i

BIt,i = {y ∈ Vt,i | (∃x)(< x, y >∈ E→

t,i)} ∪ {z ∈ Vt,i | (∃y)(z ∈ π(y)&

(∃x)(< x, y >∈ E→

t,i))}

is called thebackward interface of Vt,i, whereasBIt =
⋃

i BIt,i is called the back-
ward interface ofVt. EachGt = (Vt ∪ FIt−1, Et ∪ E→

t) is a MSDAG and eachPt

is a probability distribution

Pt =

P (V0), t=0

P (Vt|FIt−1), t > 0.
(3)

The tripletMt=(Vt∪FIt−1, Et∪E→

t , Pt) is an MSBN, called aslice of the dynamic
MSBN at timet.

Temporal dependencies in a dMSBN only happen within the samesubdomains.
Hence, there exists a DBN corresponding to each subdomain (agent), where the
uncertain knowledge at each time instant is represented by aBN.

Let D0 be the MSDAG over(V0, E0). A (stationary) dynamic MSBN can be rep-
resented by a pair (S0, S→), whereS0 is an MSBN(V0, D0, P0) andS→ represents
how the dynamic MSBN evolves over time.S0 andS→ together define

P (Vt | Vt−1) = P (Vt | FIt−1) =
∏

v∈Vt

P (v|π(v)), 0 < t,

whereP (v | π(v)) is defined byP (V0) for thosev ∈ Vt with π(v) ⊆ Vt, and by
S→ for those withπ(v) ⊆ FIt−1.

For a forward or a backward interface in a dMSBN, we have Lemma1.

Lemma 1 In a dMSBN, for a forward interfaceFIt, we have< V0:t|FIt|Vt+1:T >;
for a backward interfaceBIt, we have< V0:t−1|BIt|Vt:T >.

8

That is, a forward or backward interface in a dMSBN separatesthe past from the
future.

Proof: By definition ofFIt, any pathρ between a node in the futuref and a node in
the pastp should be via a noden ∈ FIt. Since the nodef ′ ∈ Vt+1 that is adjacent
to n onρ should be a child ofn, no matter how the nodep′ ∈ Vt that is adjacent to
n on ρ is connected withn, ρ should be closed byn. Hence,FIt d-separatesV0:t

andVt+1:T .

By definition of BIt, any pathρ between a node in the futuref and a node in
the pastp should be via a noden ∈ BIt. Noden should be the child of a node
p′ ∈ Vt−1 that is adjacent ton onρ. If the nodef ′ ∈ Vt that is adjacent ton onρ is
a child ofn, ρ is closed byn; otherwise,f ′ ∈ BIt. Then, no matter how the node
f ′′ ∈ Vt:T that is adjacent tof ′ onρ is connected withf ′, f ′ should blockρ. Hence,
BIt d-separatesV0,t−1 andVt:T . 2

(a) (b)

d e00

0

g 0

f

G’1

d0 e0

c 0

b 0G’0 0a

d e

f 1

g 1

1 1

d e

c1

1 1

a1 1b

d0 e0

c 0

b 00 0aG

d e00

0

g 0

f

G 1

Fig. 2. A dynamic MSBN extended from an MSBN: (a) An MSBN over two subdomains
G0 andG1; (b) The first two slices of the dynamic MSBN.

Figure 2 shows a two agent MSBN extended over a distributed dynamic domain.
The structure of a slice of the dynamic MSBN is shown as in (a),and the first
two consecutive slices of the dynamic MSBN are shown as in (b), where each
dotted box represents a subdomain. A DBN is formed in each subdomain. The
temporal dependencies are signified by the arcs(a0, a1) and(g0, g1) respectively as
shown in (b). Either the forward interfaceFI0 = {a0, g0} or the backward interface
BI1 = {a1, c1, g1, d1, f1} separates the two parts it connects.

Therefore, we can construct a model to represent the distributed uncertain knowl-
edge in a dynamic multiagent system. Next, we discuss the difficulties we face
when using dMSBNs to perform inference.

4.2 Issues

4.2.1 Decomposition Issue

The decomposition issue exists in DBNs. However, it becomesa fatal problem for
probabilistic reasoning using dynamic MSBNs.

9

In DBNs, between any two consecutive slices, there exists aninterface — a forward
interface or a backward interface — that d-separates the twoslices. For messages to
be properly passed forward via such interfaces, the elimination should be done by
eliminating nodes in the previous slice (except interface nodes) first. A junction tree
(JT) obtained based on such triangulation would make interfaces complete (when
forward or backward interfaces are optimal) [26]. This makes the size of the slice
interface the lower bound of computational complexity of reasoning using DBNs.

This problem becomes fatal for dynamic MSBNs since it requires that all messages
passed from the preceding slice to the current slice be in theform of a single JPD.
This not only makes the reasoning using dMSBNs expensive, but also results in the
difficulty of the distribution of multiagent inference.

4.2.2 Distribution Issue

Ideally, we would like each agent to be able to maintain its own belief on its own
subdomain and all agents to be able to benefit from each others’ knowledge up to
the relevant history. However, agents have difficulty to propagate their beliefs from
one time instant to next time instant individually. The message passing separately
in each subdomain would constitute loopy belief propagation. The slice interfaces
at each subdomain and agent interfaces at each time instant won’t d-separate the
corresponding instants or subdomains.

For example, in the MSBN as shown in Figure 2 (a), the agent interface{d0, e0}
separates the two subdomainsG0 andG1 it connects. Once the MSBN evolves,
the corresponding interface at each new instant won’t separate the corresponding
subdomains any more. For example, in Figure 2 (b), the interface{d1, e1} at instant
1 does not separate the two subdomains it connects because ofthe paths< a0, a1 >
and < g0, g1 >. For similar reasons, slice interfaces in each subdomain donot
separate the two consecutive instants of the subdomain.

4.3 Local Inference

The two issues discussed above strongly imply that exact multiagent probabilis-
tic reasoning over unbounded time periods could not be achieved by maintaining
agents’ belief over a finite time.

In this paper, we propose to model a dynamic multiagent domain over aperiodof
time into an MSBN, and then reason about the state of the domain period by period
exactly. For each new period, the initial prior belief of thedomain is assumed.
For example, the dynamic MSBN over time instants 0 and 1 as shown in Figure
2 (b) is actually an MSBN over a period of two time instants. The corresponding
subdomains areG′

0 andG′

1 respectively. The interface between the two subdomains
is {d0, e0, d1, e1}, which is the union of the corresponding agent interfaces over
all instants of the period. The period could be much longer. The two consecutive

10

periods could overlap on some instants. Using the MSBN, the state of domain could
be reasoned about period by period exactly.

Within each period, a message does not have to be passed instant by instant. There
are no conflicts between the distribution of multiagent systems and the central-
ization of temporal message passing. The extended agent interfaces separate the
two subdomains they connect. The remote historical knowledge is ignored. How-
ever, the influence of the probabilistic knowledge would become weakened over
distance, time and quantity. More recent history contains more relevant informa-
tion about the current state of a domain. The history of a reasonable length could
contain sufficient relevant information for reasoning about the state of the domain.

In particular, by a denser observation of the modeled history, the influence of the
ignored history would be reduced. We propose to observe all relevant observable
variables in the modeled period to reduce the influence. A notion called the graph-
ical observable Markov boundary (GOMB) is proposed to capture all relevant and
observable variables regarding the state of a set of concerned variables.

5 Graphical Observable Markov Boundaries

In this section, we define and discuss how to compute the GOMB of a set of vari-
ables in an MSBN.

5.1 Markov Boundaries

Due to limitation of domains, not all variables are observable. Due to limitation
of bandwidth, it may be very costly to observe all observablevariables. It would
be ideal if we could find and only observe the relevant observable variables. The
concept of Markov boundary gives us a hint.

Definition 9 [27] Let M be a dependency model over a setV of variables. Letv
be a variable such thatv ∈ V . A Markov blanket L(v) of v is any subsetS ⊂ V of
variables for which

I({v}, S, V \ S \ {v})M andv /∈ S. (4)

A Markov blanket is called aMarkov boundary B(v) of v if it is a minimal Markov
blanket ofv.

That is, a Markov boundary of a variable provides us with a setof variables that is
relevant to the state of the variable.1

Nevertheless, finding a Markov boundary of a variable in a probability distribu-
tion may not be tractable, since the verification of conditional independencies in

1 In a not strictly positive probability distribution, the Markov boundary of a variable may
not be unique [28].

11

probabilistic models is generally infeasible. Also, in probabilistic graphical mod-
els, the graphical structures may not capture all conditional independencies in the
corresponding probabilistic models. For a node in a graphical model, the union
of its parents, its children and the parents of its children is generally not a Markov
boundary of the node because a node may have different neighbors in different min-
imal I-map DAGs [27]. In particular, the concepts of Markov blanket and Markov
boundary are defined only for a single variablewithout the observabilities of their
members considered.

On the other hand, when we do inference with graphical models, we generally only
take advantage of the independencies expressed by the graphical structures. In par-
ticular, conditional independencies in Bayesian network structures can be identified
in polynomial time [27]. We would revise the definition of Markov boundary based
on d-separation in graphical structures. The revised Markov boundary of a vari-
able can be efficiently and uniquely obtained, which we call thegraphical Markov
boundary(GMB) of the corresponding variable. We then further extendit to a set
of variables, and eventually introduce thegraphical observable Markov boundary
(GOMB) of a set of variables, which only include observable variables.

5.2 Graphical Markov Boundaries

5.2.1 Graphical Markov Boundaries of a Single Node

Definition 10 emphasizes that we are interested in the Markovblanket and the
Markov boundary defined based on d-separations onG, instead of independencies
in P .

Definition 10 Let N=(V, G, P) be a BN where DAGG is a minimal I-map ofP .
Let v be a variable such thatv ∈ V . A graphical Markov blanket L(v) of v is any
subsetS ⊂ V of variables for which

< {v}|S|V \ S \ {v} >G andv /∈ S. (5)

A graphical Markov blanket is called thegraphical Markov boundary B(v) of v if
it is a minimal graphical Markov blanket ofv.

For the graphical Markov boundary (GMB), we have Proposition 1.

Proposition 1 For a nodev in a BNN=(V, G, P), the unionA of v’s parents,v’s
children and the parents ofv’s children forms a graphical Markov blanketL(v) of
v in N . The graphical Markov blanket is a graphical Markov boundary B(v) of v.
The graphical Markov boundary is unique.

Proof: Straightforward. 2

12

5.2.2 Graphical Markov Boundaries of a Set of Nodes

Since most times we are interested in the state of a set of variables, we further
extend the two concepts to a set of variables.

Definition 11 Let N=(V, G, P) be a BN. LetR be a set of variables such that
R ⊂ V andR 6= ∅. A graphical Markov blanket L(R) of R is any subsetS ⊂ V
of variables for which

< R|S|V \ R \ S >G andR ∩ S = ∅. (6)

A graphical Markov blanketL(R) is called thegraphical Markov boundary B(R)
of R if it is a minimal graphical Markov blanket ofR.

To facilitate the description of their members, we first define theparentsandchil-
drenof a set of variables.

Definition 12 Let N=(V, G, P) be a BN. LetR be a set of variables such that
R ⊂ V andR 6= ∅. We say any node inV \ R that is a parent of a node inR is a
parent of R, and any node inV \ R that is a child of a node inR is a child of R.

We have Proposition 2 regarding the members of GMB of a set of variables.

Proposition 2 Let N=(V, G, P) be a BN. LetR be a set of variables such that
R ⊂ V andR 6= ∅. The unionA of R’s parents,R’s children and the parents of
R’s children forms a graphical Markov blanketB(R) ofR in the BN. The graphical
Markov blanketL(R) of R is the graphical Markov boundaryB(R) of R. The
graphical Markov boundary is unique.

Proof: Straightforward as the proof for Proposition 1.2

Graphical Markov boundaries can only be used for relevant observation in fully
observable problem domains. In partially observable problem domains, members
of a GMB may not be observable.

5.3 Graphical Observable Markov Boundaries

In this subsection, we introduce the graphical observable Markov boundary (GOMB)
of a setS of variables to capture all observable relevant variables regarding the state
of S.

5.3.1 Definition

In the following definition, we useΩobs(X) to denote all observable variables in a
setX.

Definition 13 LetN = (V, G, P) be a BN whereG is a minimal I-map ofP . LetR

13

be a set of unobservable variables such thatR ⊂ V . The GOMBB(R) of R is a
minimal subsetS(⊂ V) of observable variables such that

< R|S|Ωobs((V \ S) \ R) >G . (7)

In the following discussion, we may also call the graphical Markov boundaries
defined by Definitions 10 and 11 theimmediategraphical Markov boundary. Re-
garding GOMB, we have Proposition 3.

Proposition 3 For a setR of unobservable nodes in a BNN=(V, G, P), its GOMB
B always exists and is unique. GivenB, R is independent of all observable nodes
in V \ B, but may not be independent of all other nodes inV \ B \ R.

Proof: The GOMBB of R always exists becauseI(R, S, ∅) guarantees that the set
S = Ωobs(V) satisfies Equation (7).

(a) (b) (c)

o

...

R

Bb

...

o

...

R

Bb

...

o

...

R

Bb

...

f

Fig. 3. A path betweenR and o is not closed byBb \ {o}, where the white nodes are
observable and the black nodes are unobservable: (a) No observable head-to-tail or tail-tail
nodes on the path are inBb. (b) There do not exist any unobservable head-to-head nodes
on the path. (c) Any observable head-to-head nodes should bein Bb.

We prove the uniqueness by contradiction. Suppose there exist at least two GOMBs
Ba andBb for R such thatBa 6= Bb, and|Ba| ≤ |Bb|. Hence, there exists at least
one observable nodeo ∈ Bb such thato /∈ Ba. That is,R should be d-separated
from o by Ba but not byBb \ {o}. Therefore, there should be a path between a
node inR ando not closed byBb \ {o}. As shown in Figure 3, since the path is not
closed byBb \ {o}, no head-to-tail or tail-to-tail nodes on the path are inBb \ {o}
or Bb. There also should not exist any head-to-head nodef on the path that is not
in Bb \ {o} since otherwise the path is closed byf . If there is any head-to-head
node on the path that is inBb \ {o}, o won’t be d-separated fromR by Bb since
we have known there does not exist any head-to-tail or tail-to-tail node on the path
that is inBb \ {o}. Hence, there should not exist any head-to-head node on the
path. SinceBa d-separateso from R, there should exist an observable nodeg on
the path that is inBa, but not inBb. Nevertheless, the observable nodeg won’t
be d-separated fromR by Bb. This is in contradiction with the assumption that
< R|Bb|Ωobs(V \ Bb \ R) >G holds.

SinceR contains no observable nodes, from Equation 7 and the assumption thatG
is a minimal I-map ofP , we have< R|B|Ωobs(V \B) >G⇒ I(R, B, Ωobs(V \B))P .
However,I(R, B, V \ B \ R)P may not hold. For example, in the BN as shown in
Figure 4 (a), given the GOMB of nodea B(a) = {d}, nodea is independent of

14

nodeb, but not independent of nodec. 2

5.3.2 Computation Illustration

By computing the GOMBB(a) of a in Figure 4 (b), we illustrate how to compute
the GOMB of a node in a BN. We then present a set of general algorithms for this
computation.

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

B

O

X R
a

g

c

h

i
j

km

n

l

q p

r

t
s

b

dv

u

e

z
f

c

d

a b

(b)(a) (c)

Fig. 4. (a) Given the GOMBB(a) = {d} of nodea, a may not be independent of all
other nodes; (b) The computation of the GOMB of nodea in a BN. The white nodes are
observable and the black nodes are unobservable. (c) The division of a domainV by the
graphical observable Markov boundaryB of a setR of nodes.

In the BN as shown in Figure 4 (b), we first check the immediate graphical Markov
boundary ofa. Its observable childu and its observable parenti would be members
of B(a). Hence,B(a) = {i, u}. Since paths to nodea via unobservable parentj
or unobservable childrenb andn are still open, we put them in a setT (initially
T = ∅) for further processing later. Hence,T = {j, b, n}. The processing of the
parents of a child nodeα of nodea depends on whetherα or any of its descendants
is observable.

(1) If α is observable (e.g.u), we process the other of its parents (s, d) imme-
diately. Since nodea is a processed parent ofu, we need marka to prevent it
form being processed repeatedly. Actually this is the case for all nodes put inB(a)
or T . We mark and put observables in B(a) and unobservabled in T . Hence,
B(a) = {i, u, s} andT = {j, b, n, d}. We process parents of observable childu of
nodea immediately becauseu would be put inB(a) (instead ofT), which would
not be further processed.

(2) If α is unobservable but has observable descendants (e.g.n), it should be put in
T . Both its parents and children should be further examined.

(3) If neitherα nor any of its descendants are observable (e.g.b), its parents and
descendants need not be further processed. For example, theother parents (d, e, g)
of b need not be examined. This is because the path from noded, e or g to a via
b is closed by the absence ofb and any of its descendants fromB(a) (they are
unobservable). It should be noted that, althoughg is not examined because ofb, it

15

would be examined and put inB(a) as a child ofj. This is because otherwise one
other path to nodea via g would be open.

By similarly further processing nodes inT until T becomes∅, we should have the
final graphical observable Markov boundaryB(a) = {i, u, s, g, h, m, p}.

5.3.3 Division of Domain

We say the graphical observable Markov boundaryB of a setR of nodes separates
the whole domainV into 3 parts as shown in Figure 4 (c): the nodesin B (the area
in brick pattern), the setX (⊇ R, the grey shaded area) of nodesinsideB, and the
setO (O = (V \B)\X) of nodesoutsideB. The setX of nodes insideB contains
all nodes inR, and a setK of unobservable nodes which are not d-separated fromR
by B. In the example above,B(a) = {i, u, s, g, h, m, p}, X(a)={j, b, n, d, a, c, z},
andO(a)={r, q, t, v, k, e, f}. GivenB, R is independent ofO, observable or not,
butX may not necessarily be independent ofO. For example, in the BN as shown
in Figure 4 (b), givenB(a), nodea is independent of all nodes inO(a). However,
b ∈ X(a) is not independent ofO(a) because at least nodeb has a direct path with
nodee.

5.3.4 Algorithms for Computing the Observable Descendants

In the computation of GOMBs, we need to know if an unobservable node has any
observable descendants. The information can be obtained bya recursive process
which recursively checks descendants of an unobservable node until an observable
descendant is discovered or all descendants are checked. This process is presented
as Algorithms 1 and 2.

In the two algorithms, we associate each nodev in a BNN with a variableOv. If v
or any of its descendants is observable inN , Ov = 1; otherwiseOv = 0. Initially
we setOv = −1. We say the observability ofv or its descendants isunknownif
Ov = −1. If a nodev is unobservable, we need check the observabilities of its
descendants to determine the value ofOv.

Algorithm 1 initializesOv = 1 for each observable nodev andOv = −1 for each
unobservable nodev. Then Algorithm 2 is called on each nodev whereOv = −1.
Algorithm 2 is a recursive algorithm which determines if an unobservable nodev
has any observable descendants. It does so by searching all possible descendant
branches. It backtracks from a nodey with determinedOy or a leaf node. When it
returns, any nodex visited should have a determinedOx. In this algorithm, “∨” on
line 4 is a boolean “or” operator.

Note this algorithm won’t return even whenOv = 1 is determined from one of
its descendant branch. Since we wantOv of each nodev in the BN, checkOD,
once called, would return only after all descendant branches have been properly

16

searched. Hence, Algorithm 2 will be called on a node in the BNat most once. The
complexity of the computation isO(|V |) in the number|V | of nodes in the BN.

Algorithm 1 (computeOD)
Input: a BNN = (V, G, P).
Output: the BNN whereOv of each nodev in N is known.
begin
1 for each nodev in N , do
2 if v is observable, setOv = 1;
3 otherwise setOv = −1;
4 for each nodev whereOv = −1, do
5 call checkOD(N, v);
end

Algorithm 2 (checkOD)
Procedure checkOD(N, v)
Input: a BNN = (V, G, P) and a nodev.
Output: Any nodex visited before its return has a knownOx.
begin
1 setOv = 0;
2 for each childy of v, do
3 if Oy = −1, setOy =checkOD(N, y);
4 Ov = Ov ∨ Oy;
5 returnOv;
end

5.3.5 Algorithms for Computing GOMBs in BNs

Once we know if each unobservable node has any observable descendants, we can
compute the GOMBB of a setR of nodes in a BN. Since nodes inR are concerned,
they will for sure not be in their GOMBB. Summarized from the computation illus-
tration of GOMB above, the other nodes are processed as follows (T is initialized
with R):

(1) For a parent nodep of any nodes inT : if observable, put it intoB; otherwise
put it intoT for further processing.

(2) For an observable child nodec of any nodes inT : put it intoB, and for eachg
of its parents, put it intoB if observable or put it intoT for further processing
otherwise.

(3) For an unobservable child nodec of any nodes inT : if it has observable de-
scendants, put it intoT for further processing.

(4) For an unobservable child nodec of any nodes inT : if it has no observable
descendants, nothing needs to be done from this node.

All nodes put intoB or T should be marked so that they won’t be further processed
a second time. Since the number of nodes in a BN is limited,T will become∅.

17

When T is ∅, the nodes inB form the GOMB ofR. We present the idea into
Algorithm 3, where “elif” represents “else if”.

In Algorithm 3, lines 7, 8, 9 and 10 correspond to situation 1.Lines 11, 12 and 13
correspond to part of situation 2. Lines 14, 15, 16 and 17 correspond to the other
part of situation 2. Lines 18 and 19 correspond to situation 3. Lines 5 and 6 ensure
T will eventually become∅. Lines 4, 8, 13, 15 and 19 mark visited nodes so that
they won’t be processed a second time. Since nothing needs tobe done for situation
4, no lines of code correspond to it.

Algorithm 3 (ComputeGOMBinBN) Let R be a set of unobservable nodes in a
BNN = (V, G, P). The GOMBB(R) of R in N is returned.

1 setB = ∅, T = R;
2 for each nodev ∈ V , do
3 associatev with a variablebv;
4 if v ∈ R, setbv = 1; else setbv = 0;
5 whileT 6= ∅, do
6 pickv ∈ T and setT = T \ {v};
7 for each parentp of v wherebp = 0, do
8 setbp = 1;
9 if p is observable, setB = B ∪ {p};
10 else, setT = T ∪ {p};
11 for each childc of v wherebc = 0, do
12 if c is observable, do
13 setbc = 1, andB = B ∪ {c};
14 for each parentg of c wherebg = 0, do
15 setbg = 1;
16 if g is observable, setB = B ∪ {g};
17 else, setT = T ∪ {g};
18 elif any descendant ofc is observable, do
19 setbc = 1 andT = T ∪ {c};

Though each node is processed at most once, its neighbors maybe checked for
their membership ofB or T . Therefore, the GOMB of a set of nodes in a BN can
be returned in a time ofO(|V | + |E|), where|V | is the number of nodes in the
BN, and |E| is the number of arcs in the BN. Regarding Algorithm 3, we have
Proposition 4.

Proposition 4 LetR be a set of unobservable nodes in a BNN . LetB be the set of
nodes returned by Algorithm 3. ThenB is the GOMB ofR in N .

Proof: Initially T = R. Whenever a node is removed fromT , the members of
its immediate graphical Markov boundary, not processed before, are processed de-
pending on the situations they belong to.

18

OnceT becomes∅, all paths from any nodes inR to any observable nodes in
V \ R \ B should have been closed by nodes inB. Suppose there exists a pathρ
between a noder ∈ R and an observable nodex ∈ V \R\B not closed byB. That
is, on the path there exist no observable head-to-tail or tail-to-tail nodes that are in
B, there exist no unobservable head-to-head nodes, and if there exist any observable
head-to-head nodes, they should be inB. We consider it for different cases: (1) if
there exist no observable head-to-head nodes on that path, then all nodes on the path
should be of head-to-tail or tail-to-tail. If any of them areobservable, as shown in
Figure 5 (a), at least one of them should be reached byr and put inB via lines 7, 8,
9 and 10; and/or lines 11, 12, 13, 14, 15, 16 and 17; and /or lines 18 and 19. This is
in contradiction with the assumption that the path is not closed. If none of them is
observable,x should be reached byr and put inB. This is in contradiction with the
assumption thatx ∈ V \R\B. (2) if there exist any observable head-to-head nodes
that are inB, as shown in Figure 5 (b), from these head-to-head nodes,x should
be reached and put inB via lines 7, 8, 9 and 10; and/or lines 11, 12, 13, 14, 15,
16 and 17; and /or lines 18 and 19 because no observable head-to-tail or tail-to-tail
nodes on the path will be inB. This is in contradiction with the assumption that
x ∈ V \ R \ B. Hence, all paths from any observable nodes inV \ R to R should
have been closed.

r x

ρ

B

ρ

B
r

x

x

R

r 0
0

1 1

b

obsΩ (V\B\R)

c

p

(b)

(a)

(c)

r x

Fig. 5. (a) There should not exist any observable head-to-tail or tail-tail nodes betweenr
andx; (b) If any head-to-head node is inB, x can also be reached byr; (c) Paths separated
by b are also separated by some other ways. The white nodes are observable and the black
nodes are unobservable.

Next we showB is minimal to satisfy< R|B|Ωobs(V \ B \ R) >G. Suppose there
exists a nodeb ∈ B that could be removed, i.e.< R|(B \ {b})|Ωobs(V \ B \ R) ∪
{b} >G holds. Therefore,< R|(B \ {b})|b >G holds, and all paths betweenR and
b should be closed by some nodes inB other thanb. As shown in Figure 5 (c),
these paths can be closed either by an unobservable head-to-head nodec, or by a
head-to-tail or tail-to-tail nodep ∈ B \{b} on the path. However, if that is the case,
b cannot be reached byr from these paths via lines 7, 8, 9 and 10; and/or lines 11,
12, 13, 14, 15, 16 and 17; and /or lines 18 and 19 and henceb should have never
been inB. 2

5.4 Multiagent Cooperative Computation of GOMBs

In this subsection, we provide a set of algorithms for distributed computation of
GOMBs in MSBNs.

19

5.4.1 GOMB in MSBNs

The GOMB of a set of nodes in an MSBN could appear across all Bayesian sub-
nets. For example, in the MSBN as shown in Figure 6, the members of GOMB
of f0 ∈ G1 could appear in bothG0 andG1. Its immediate GMB is{d0, g0}. If
we assumed0 is unobservable,{d0, g0} is not a GOMB. We therefore need to fur-
ther consider the immediate GMB ofd0. If c0, b0, a0, ande0 are all observable, the
GOMB of f0 should be{g0, c0, b0, a0, e0}. If we further assumea0, a1, c1 andd1

are all unobservable, the computation would return back toG1 and the GOMB of
f0 would further includef1 andg1. Hence, the computation of the GOMB of a set
of nodes in an MSBN could occur in a subnet many times.

d0 e0

f 0 g 0

G

G

1 1

0c

d0

a0 a b

1c

d1 e1

b0

d

f
g

e

1

1

1

1

e0

1

0

Fig. 6. A trivial MSBN over two subdomainsG0 andG1.

In the following 3 Subsubsections, we propose a suite of algorithms to compute the
GOMB B(R) of a setR of nodes in an MSBNM of n subnets. LetNi(0 ≤ i < n)
be then subnets over subdomainsVi(0 ≤ i < n), respectively. LetAi(0 ≤ i < n)
be the corresponding agents onVi(0 ≤ i < n). For each adjacent agentAk of A0,
we denoteVk ∩ V0 by Ik.

5.4.2 Cooperative Computation of the Observable Descendants

We first compute the observable descendants information distributedly. Algorithm
4 is started by the system coordinator to activate the computation. It first makes
some initialization by calling Algorithm 5 (line 1), where each unobservable node
is assigned a value “-1”, which indicates that it is still unknown if the corresponding
node has any observable descendants or not. Then it calls Algorithm 6 (line 4) on
each of such nodes to figure out the answer.

Algorithm 4 (multiComputeOD) An MSBNM of n subnets is populated by mul-
tiple agents with one at each subnet. The system coordinatordoes the following:
1 call multiInitialOD;
2 for each agentAi (i = 0, 1, ..., n − 1), do
3 for each nodev in Vi whereOv = −1, do
4 Ov= localOD(Ai, v);

In an MSBN, we call a node aglobal leaf nodeif it does not have any children
in any subnet DAGs. Algorithm 6 recursively checks all descendants (could be in

20

adjacent subnets) of an unobservable nodev to figure out ifv has any observable
descendants. For computational efficiency, the backtracking happens only when
either observable nodes or global leaf nodes have been reached. A node needs to
call localODat most once to figure out if it has any observable descendants. Hence,
the computational complexity isO(mn), wheren is the number of subnets in the
corresponding MSBN, andm is the maximum number of nodes a subnet can have.
For Algorithms 4, 5 and 6, we have Proposition 5.

Algorithm 5 (multiInitialOD) Each agentAi (i = 0, 1, ..., n − 1) does the
following:

1 for each nodev in Vi, do
2 if v is observable, setOv = 1;
3 otherwise, setOv = −1;

Algorithm 6 (localOD(Ak0, v)) Let Ak0 be an agent with a local subnetNk0. A
caller is either an adjacent agentAs or the system coordinator. WhenAk0 is called
by caller onv, it does the following:

1 if Ov = −1, setOv = 0; else returnOv;
2 for each childc of v, do
3 if Oc = −1, do
4 if c is a shared local leaf node inNk0, do
5 for each adjacentAj containingc, exceptAs, do
6 pass descendant info onVk0 ∩ Ij to Aj;
7 Oc = localOD(Aj , c);
8 Ov = Ov ∨ Oc;
9 elseOc = localOD(Ak0, c);
10 Ov = Ov ∨ Oc;

Proposition 5 Algorithms 4, 5 and 6 determineOa for each nodea in an MSBN.
All messages passed among agents are through public nodes.

Proof: We have shown that Algorithms 1 and 2 can figure out suchinformation for
every node in a single agent BN. Algorithms 4, 5 and 6 modify Algorithms 1 and
2 by adding some multiagent cooperation mechanisms. Hence,it is sufficient if we
can show such mechanisms work when computation is across different subdomains.

Algorithm 5 initializes every node in every subnet when called by Algorithm 4.
Then Algorithm 6 is called by Algorithm 4 on each agent to figure out the observ-
able descendant information for every node in the respective subdomain. Since an
agent can only be activated by the system coordinator or a caller agent, the com-
putation is performed agent by agent. That is, at one time, there is only one active
agent.

In Algorithm 6, line 1 ensures that the required informationwill be returned prop-
erly if it has been available. Lines 4, 5, 6, 7 and 8 process cooperation operations

21

with adjacent agents. For a shared local leaf nodec, the computation would be ex-
tended to the corresponding adjacent agents. In the corresponding agents,Oc could
have been available. If so, it is immediately returned by line 1. All the observable
descendant information on shared nodes is passed to the adjacent agents (line 6)
because the observable descendant information may have been available for some
of these nodes and could be required by the corresponding adjacent agents. Line
8 absorbs the observable descendant information obtained from the corresponding
adjacent agents by boolean “or” (∨) operation. 2

5.4.3 Cooperative Computation of GOMBs

Based on the observable descendant information obtained byAlgorithms 4, 5 and 6,
we can compute the GOMBB(R) of a setR of nodes in an MSBNM distributedly.

In a distributed problem domain, a variable could belogically shared by different
agents, but the entity represented by the variable can onlyphysicallylocate in one
subdomain. We call the subdomain where an entity physicallyexists thehost subdo-
mainof the entity and the corresponding agent itshost agent. We assume a variable
can only be observed by itshost agent. Therefore, each agentAi should keep the
partBi(R) of B(R) it can observe, called thepartial graphical observable Markov
boundary(PGOMB) ofR in the corresponding subdomain, for observation.

We present a suite of algorithms to cooperatively compute GOMB in an MSBN.
The system coordinator activates the computation by executing Algorithm 7, which
first distributesR to the corresponding agents and then call each involved agent to
do some initialization by running Algorithm 8 (lines 1, 2, and 3). After that, the
cooperative computation ofB(R) is performed by running Algorithm 9 (line 4).

Algorithm 7 (ComputeMB) An MSBNM of n subnets is populated by multiple
agents with one at each subnet. LetR be a set of nodes inM . The system coordi-
nator does the following for multiple agents to figure out theGOMBB(R) of R,
which is the union ofBi(R)(0 ≤ i < n), in M .

1 for each agentAi, do
2 sendR ∩ Vi to Ai;
3 call Ai to run InitializeMB;
4 call ExpandMB;

By Algorithm 8, each agent receives a setTi of the corresponding concerned nodes
from the system coordinator for the cooperative computation of the GOMBB(R)
(line 1) and makes some initialization (lines 2, 3 and 4). Lines 2 and 3 associate each
nodev with a variablebv. If bv = 1, the nodev should have been processed. Since
a DAG is generally multiply connected, such a marking is necessary to prevent
infinite loops. Line 4 initializes the corresponding PGOMB in each subdomain.

22

Algorithm 8 (InitializeMB) Let Ai be the agent over a subnetNi = (Vi, Gi, P i).
When called by the system coordinator, it does the following:

1 receiveTi = R ∩ Vi;
2 for each nodev in Vi, do
3 if v ∈ R, setbv=1; else, setbv=0;
4 setBi = ∅, Qi = ∅;

Algorithm 9 (ExpandMB) LetQk (k = 0, 1, ..., n− 1) be the set of unobservable
nodes collected by agentAk(k = 0, 1, ..., n − 1) for extended computation of
GOMB. The system coordinator does the following:

1 for each agentAi, do
2 if Ti = ∅, continue;
3 call Ai to run ComputePMB;
4 for each agentAi, do
5 call Ai to run collectNodes;
6 if all Qi’s (0 ≤ i < n) are∅’s, return;
7 else, setT ′

is = Q′

is, restart the algorithm;

Algorithm 9 calls Algorithm 10 to compute the PGOMB ofR in each correspond-
ing subnet (lines 1, 2 and 3). This is called onepassof the computation of the
GOMB B(R). Several passes may be needed to reach the final GOMBB(R). A
pass of computation of PGOMB by Algorithm 10 could be extended across dif-
ferent subnets. AgentAi (0 ≤ i < n) usesQi (0 ≤ i < n) to receive the shared
unobservable nodes from the adjacent agents when extensionhappens.2 In Algo-
rithm 9, Algorithm 11 is called by each agent to collect such nodes from the the
corresponding agents (lines 4 and 5). Then allQi’s are checked (lines 4 and 5). If
all Qi’s are∅’s, the computation is finished; otherwise, a new pass of computation
has to be started in the corresponding agents.

Algorithm 10, which is very similar to Algorithm 3 except forsome mechanisms
for message passing among agents, performs one pass of the computation of the
PGOMBB(R) in a subnet. The setHk0 contains all unobservable nodes assigned
initially and reached in computation (lines 1, 8, 16, and 19). The public nodes in
Hk0 are passed to the corresponding adjacent agents for extending the computa-
tion of B(R) in other subnets (lines 20 and 21). The Algorithm 10 computesthe
PGOMB in an iterative way. A recursive version can recursively check the imme-
diate GMB of each ofTk0 members.

Algorithm 11 collects unobservable public nodes from the adjacent agents for the
extended computation of the GOMBB(R). Since this may not be the first pass of
computation, all nodes evaluated (and hencemarked) by Ai are removed fromX
(line 4). The setQk0 are set to be∅ in the beginning (line 1). If it remains∅ after

2 Qi (0 ≤ i < n) is initialized at line 4 of Algorithm 8.

23

the collection, no computation is necessary in subnetNk0 at this time.

Algorithm 10 (ComputePMB) Let Tk0 be a set of unobservable nodes inNk0.
Let Hk0 be the set used to collect the corresponding unobservable nodes involved
in the pass of computation. Denote the adjacent agent ofAk0 byAk1, Ak2, ..., Akm.
When called by the system coordinator, the agentAk0 does the following to figure
out the GOMB members inVk0 corresponding toTk0:

1 setHk0 = Tk0;
2 whileTk0 6= ∅, do
3 pickv ∈ Tk0 and setTk0 = Tk0 \ {v};
4 for each parentp of v wherebp = 0, do
5 setbp = 1;
6 if p is observable, setBk0 = Bk0 ∪ {p};
7 else, do
8 setTk0 = Tk0 ∪ {p}, Hk0 = Hk0 ∪ {p};
9 for each childc of v wherebc = 0, do
10 if c is observable, do
11 setbc = 1, andBk0 = Bk0 ∪ {c};
12 for each parentg of c wherebg = 0, do
13 setbg = 1;
14 if g is observable, setBk0 = Bk0 ∪ {g};
15 else, do
16 setTk0 = Tk0 ∪ {g}, Hk0 = Hk0 ∪ {g};
17 elif any descendant ofc is observable, do
18 setbc = 1;
19 setTk0 = Tk0 ∪ {c}, Hk0 = Hk0 ∪ {c};
20 for each adjacent agentAj(j = k1, k2, ..., km) of Ak0, do
21 passHk0 ∩ Ij to Aj overIj ;

Algorithm 11 (collectNodes) Let Ak0 be an agent over a subnetNk0. Denote
the adjacent agents ofAk0 by Ak1, Ak2, ..., Akm. When called by the system
coordinator,Ak0 does the following:

1 setQk0 = ∅;
2 for each adjacent agentAj (j = k1, k2, ..., km) of Ak0, do
3 receive a setX of nodes overIj fromAj ;
4 remove any nodes marked byAk0 fromX;
5 setQk0 = Qk0 ∪ X;

Since the computation ofB(R) will finish when all nodes are visited, the compu-
tational complexity of the suite of algorithms isO(n + m), wheren is the number
of nodes in the MSBN, andm is the number of arcs in the MSBN. For the suite of
algorithms, we have Proposition 6.

Proposition 6 Algorithms 7, 8, 9, 10 and 11 compute and return the GOMBB(R)

24

of a setR of nodes in an MSBN. All messages passed among agents are through
public nodes.

Proof: The set of algorithms is different from Algorithm 3 inthat they need to pro-
cess message passing among agents for extended computationof the GOMBB(R).
To reachB(R), several passes of computation could occur in one subdomain. Since
we have proved the Algorithm 3 for single agent case in Proposition 4, we here need
to show that the message passing and multiple passes of computation are properly
done.

Only public unobservable nodes collected in the computation in a subnet could be
involved in the extended computation in the adjacent agents. Such nodes are passed
to the corresponding agents over their interfaces (lines 20and 21 ofComputePMB).
If any of them are already evaluated in the corresponding agents, they will be re-
moved from the extended computation (line 4 ofcollectNodes). Hence, the number
of nodes in a subnet that need to be evaluated will become lessand less until none.
The computation in each subnet will be eventually finished (line 6 ofExpandMB).
2

5.4.4 Cooperative Distribution of GOMB

Until now, all nodes that belong toB(R) should have been reached. However, they
may not have been properly distributed to PGOMBBi(R) (0 ≤ i < n).

x

z
b

a

G0

x

fy

e

G2

G1

G2

G3

G0

x

z y

u v
c

u v

d

G

G

1

3

u,v
x,z x,y

(a) (b)

Fig. 7. The GOMB of a set of nodes in an MSBN may not be properly distributed. (a) The
4 subnets of an MSBN. (b) The hypertree MSDAG over the DAGs in (a). The white nodes
are observable and the black nodes are unobservable.

Figure 7 shows a trivial MSBN of 4 subnetsG0, G1, G2 andG3, where each dot-
ted box represent one subnet. The white nodes are observableand the black nodes
are unobservable. We assume the 4 subnets are controlled by 4agentsA0, A1, A2

andA3 respectively. SupposeA0, A1, A2 andA3 are the host agents of{a, b, z},
{c, v, x}, {e, f, y} and{d, u}, respectively. Assume that we compute the GOMB of
nodec in the MSBN. Sincec is a private node inG1, in the first pass, only agent
A1 run ComputePMBonG1. All other agents do not join the pass of computation.
After the first pass of the computation, we getB1 = {x, u, v, y}, andH1 = {z, c}.
Then the public nodez in H1 is passed to the corresponding adjacent agentA0.

25

A0 usesQ0 to hold z. SinceQ0 = {z} is not empty,ExpandMBis restarted. We
get B0 = {b, x}, andH0 = {z, a} in G0 in the second pass of the computation.
Then the public nodez in H0 is passed back to the corresponding adjacent agent
A1. However,Q1 will become∅ sinceA1 has evaluated and marked nodez. Hence,
Q0, Q1, Q2 andQ3 are all empty at this time andComputeMBfinishes. Though all
members ofB(c) have been identified in the MSBN, they may not have been dis-
tributed to the properBi(c)

′s properly. For example,y andu can only be observed
by A2 andA3 respectively, but bothB2(c) andB3(c) are empty. Hence, we need
properly distribute the available GOMB members to the corresponding host agents.

We present a set of 3 algorithms to properly distribute GOMBB(R) to PGOMB
Bi(R)′s (0 ≤ i < n). Algorithm 12 is called to start the set of algorithms, where
CollectMB and DistributeMBare called one after another by an arbitrary agent.
BothCollectMBandDistributeMBare recursive algorithms, which recursively col-
lect or distribute related GOMB members from or to the corresponding agents,
through agents’ interfaces.

Algorithm 12 (UnifyMarkovBoundary) Let M be an MSBN ofn subnets. The
system coordinator selects an arbitrary agentAr to run CollectMB in Gr. After
it finishes,Ar runs DistributeMB in Gr. Finally, each agentAi removes nodes it
cannot observe fromBi (0 ≤ i < n).

Algorithm 13 (CollectMB) LetAk0 be an agent over the subnetNk0 of an MSBN
M . A caller can be the system coordinator or an agentAs. Denote the additional
adjacent agents ofAk0 by Ak1, Ak2, ..., Akm. AgentAk0 does the following when
called by a caller:

for each agentAi(i = k1, k2, ..., km), do
call Ai to run CollectMB;
receive a setX = Bi ∩ Ii of nodes overIi;
setBk0 = Bk0 ∪ X;

if caller is an agentAs, do
sendAs the GOMB membersBk0 ∩ Is overIs;

For the set of 3 algorithms for PGOMB distribution, we have Proposition 7.

Proposition 7 Let Ni = (Vi, Gi, Pi)(0 ≤ i < 0) be the subnets of an MSBN
M . Let R be a set of unobservable nodes inM . Let B(R) be the union of all
the GOMB members reached by Algorithms 7, 8, 9, 10 and 11. Algorithms 12, 13
and 14 properly distribute the members of the GOMBB(R) to the corresponding
PGOMBBi(R)(0 ≤ i < n). All messages passed among agents are through public
nodes.

Proof: In a hypertree MSDAG, any nodes shared by two hypernodesB andC also

26

Algorithm 14 (DistributeMB) Let Ak0 be an agent over the subnetNk0 of an
MSBNM . A caller can be the system coordinator or an agentAs. Denote the ad-
ditional adjacent agents ofAk0 byAk1, Ak2, ..., Akm. AgentAk0 does the following
when called by a caller:

if caller is an agentAs, do
receive a setX of GOMB members overIs fromAs;
addX to Bk0;

for each agentAi(i = k1, k2, ..., km), do
sendBk0 ∩ Ii to Bi of Ai overIi;
call Ai to run DistributeMB;

appear in every hypernode on the path between them. By recursive collection, the
sharedB(R) members between a some agentAx and agentAr will be collected
from Ax to agentAr and any agents on the path between them. By recursive dis-
tribution, the sharedB(R) members between agentAr and a some agentAx will
be distributed fromAr to Ax and any agents on the path between them. Hence, by
recursive collection and distribution, a shared nodeu ∈ B(R) should have reached
everyBi(R) whereu ∈ Vi.

After all nodes for whichAi (0 ≤ i < n) is not a host agent are removed from
Bi(R) (0 ≤ i < n), we have a set of PGOMBs that can be observed properly by
each agent. 2

By applying Algorithms 12, 13 and 14 to the above example, we haveB0 = {b},
B1 = {v, x}, B2 = {y}, andB3 = {u}.

Since bothCollectMB and DistributeMB are called once at each subnet, and at
each call, only a finite number of intersection operations are made, the computation
should finish inO(mn) time, wheren is the number of agents in the corresponding
MSBN, andm is the maximum number of neighbors an agent can have in the
hypertree.

6 Experiments

In this section, we show the effectiveness of the proposed dynamic multiagent prob-
abilistic inference method on the simulated sequential digital circuits. We also give
the relationship between the computational complexity andthe length of the repre-
sented period.

6.1 The Sequential Digital Circuits

In sequential digital circuits, some devices may become faulty in the run time.
We use the proposed dynamic multiagent inference method to detect such faulty

27

devices.

The synchronous sequential digital circuit as shown in Figure 8 is composed of 5
components. It has a total of 62 devices including 20inverters, 21andgates, 13or
gates, 1xor gate, 3D flip-flops, and 4J-K flip-flops. Each component can be asso-
ciated with a computational agent responsible for monitoring and troubleshooting
the component. The agents can acquire local observations from sensors and reason
about the values of unobservable variables within the component. Components are
interfaced with each other, and observations obtained by one agent could be valu-
able to another agent. When modeling these components, one agent should have
some variables shared with some other agents.

D Q

Q

D Q

Q

J

Q

Q

K

J

Q

Q

K

D Q

Q

J

Q

Q

KJ

Q

Q

K

1111
0101

0010

1001

0011

0110

0101

1000

1101

1011 0110

1011

0101

1101

0111

1010

0101

1001

0100

1010

0000

1010

0010

1100

1011

0110

1101

1111

1110

1100

0101

0011

1110

0111

0100

0111

0011

o3

p3

n1

n2

n4

n7

na

nc

nb

nk

ng

ndn0

nh

a2

a0

a4 a5

a3

ab

a9

ag

a1

af
o2

o0

o6

o9

ob

oe

0f

6f

d0

1q

d3

d6

i 0
i 1

i a

i 7

i 8

i d

i f

i s

i 2

i 3
i 4

i h

i j ne
i i

i t

0C

e6
ec

i n

b1 b2

1k

1j

k4

b0

b3 b4

0q

i 6

b6

b7

c0
c1

c2

c5 c6

g0

g1

g2
g3

g4

g5

u0

u1

u2

u3

u4

u5
u6

v0

v6v5

C1

C3

n3

an

c7 ai5q
ea

5x0

do
edi r

v4

qi

o8e4

ef
i p

i v
ni

v1

v2

6q nj

i u

2

2q

C2 4C

p
1 i 5

i m

i k

o4

5n

n9

a

5

7e
n

e

a

4

f4

f

n6

f

7 8a

a

f3
a

ca

ad

a

am

o
1

q3

q

p
4

ei

ig

2e

e1

0e

3e

e

e8

e9

4j

b5

o5

io
j

ka

ja

co

p
f5

5

eb

k
2j

5k
f2

Fig. 8. A synchronous sequential digital circuit. Each dashed box represents one compo-
nent.

6.2 The MSBN Model

We monitor and diagnose the simulated circuit with a five agent MSBN over a
period of four time instants (clocks). Figures 9 and 10 showsthe two Bayesian
subnets corresponding to component 0 and 1, respectively, where each variable is
labeled by its variable name followed by the variable’s index (which readers may
ignore). Each variable name is composed of a string indicating the corresponding

28

device or signal and a digit indicating the respective time instant. For example, in
Figure 9,f4 3 denotes the state of J-K flip flopf4 in subdomainU0 at relative time
instant 3. The five Bayesian subnets of the MSBN are organizedinto a hypertree as
shown in Figure 11.

Fig. 9. The subnetG0 for componentU0.

Fig. 10. The subnetG1 for componentU1.

In addition to the dependency structures, we have the following prior beliefs on
representational parameters. The state of a device (flip-flops or logic gates) at a
time instant is represented by a boolean variable and is eithernormalor abnormal.
A device could become faulty (abnormal) at a probability of 1%. If a device is
normal at timet = i, it may become abnormal att = i + 1 with a probability
of 1%. If it is abnormal at timet = i, it will stay abnormal. A faulty device may
produce correct output(s): a faultynot gate outputs correctly with a probability of

29

50%; a faultyandgate outputs correctly with a probability of 20%; a faultyor gate
outputs correctly with a probability of 70%; a faultyxor gate outputs correctly with
a probability of 30%; and either outputs (Q, Q̄) of a faulty flip-flop could be correct
with a probability of 30%.

C

C0

C

1C

C

4

2

3

Fig. 11. The hypertree MSDAG of the five agent MSBN.

We assume that the state of a device is not observable. We alsoassume that the
observation of an input or output has a cost. Therefore, observing all inputs and
outputs is not an option. To make the situation more challenging, we assume that
not all inputs or outputs of a device are observable.

6.3 Lower Bound on the Length of the Modeled Period

To detect the problems of a flip-flop in a sequential digital circuit, we need to model
at least two instants so that we have the chance to observe theoutputs of the flip-
flop. When many flip-flops are chained together and signals between them are not
observable, the length of the modeled period is lower bounded by one more than
the number of flip-flops such connected. For example, as shownin Figure 12, a
sequence ofn J-K flip-flops are connected one after another, where each irreg-
ular box represents a combinational circuit receiving outputs from the preceding
flip-flop and providing inputs to the posterior flip-flop except the first one only pro-
viding inputs to flip-flopjk0 and the last one only receiving outputs from flip-flop
jkn−1. If we can only observe the variables in irregular boxesI andOn−1, we may
need to model the domain over a period of at leastn+1 instants to properly reason
about the state of the domain. This is because the outputOn−1 won’t be affected by
the possibly problematic outputs from flip-flop J-Kjk0 within n instants. That is,
there exists adelaybetween the time when the problem happens and the time when
the affected outputs are observed.

Q
−

Q
−

Cp Cp

jk2

Q
−

Cp

I jk0

Q Q

K

J

K

J
....

J

K

O0

Q
jkn−1 On−1

Clock

Fig. 12. A sequence of J-K flip-flops.

30

Therefore, the number of flip-flops that are chained togetherand the observability
of variables between them could tell us the minimal period weneed to model.

For the digital circuit as shown in Figure 8, a period of at least three instants needs
to be modeled to reason about the state of the domain because the longest sequences
of flip-flops where variables between them are unobservable are the sequences of
two flip-flops. However, a modeled period of three instants may not give us very
confident inference results for this problem domain. We showthis by randomly
picking and observing a period of three consecutive instants of the problem domain,
where flip-flopf2 is assumed to be faulty. Figure 8 shows all input signals and some
of output signals over a period of four instants. The outputsprovided here are those
that could be affected by the outputs of faultyf2 and cannot be properly predicted
based on given inputs. The signal values are provided as strings of four digits.
For example, “0101” besidei7 indicates thati7 takes values ‘0’, ‘1’, ‘0’ and ‘1’
chronologically in the period. We test on the first 3 instants.

We assume one input (k2) and all outputs (q2, k5) of the faulty J-K flip-flopf2 are
unobservable. In particular, its outputs are direct or indirect inputs of another J-K
flip-flop f5, whose inputs are not observable. However, one off5’s outputsp5 is
observable, and its other outputq5 is an input of anandgateai, whose outputea is
observable. We underline all observable variables in Figure 8.

For a model over a period of three instants, we have the graphical observable
Markov boundaryB(R3

0) of R3
0={f20, f21, f22}:

B(R3
0) = {i70, i71, i72, i80, i81, i82, j20, q30, q31, q32, ig0, ig1, ig2, e60, e61, e62, ih0,

ih1, ih2, id0, id1, ie0, ie1, if0, if1, in0, in1, p50, p51, p52, ea0, ea1, ea2, io0, io1, io2}.

For simplicity, we do not differentiate host agents here. The graphical observable
Markov boundary contains 36 variables. It is interesting that not all observable
direct inputs of J-K flip-flopf2 are contained inB(R3

0). Only j20 at the first instant
(0) are contained inB(R3

0). This is because the inputs tof2 at instant 2 have not
gone throughf2, and no any effects have been produced. Although the inputs to
f2 at instant 1 have gone throughf2, the effects off2’s outputs won’t be observed
at ea or p5 at instant 2 before these outputs go through another J-K flip-flop f5

(i.e. any information resulted from inputs tof2 at instant 1 are currently contained
somewhere between the two J-K flip-flops, where no variables are observable).
Also, althoughin0 and in1 are contained inB(R3

0), in2 and in3 are not. This is
because no effects ofin2 andin3 would be observed atea or p5 within the period.

By inference based on the observation ofB(R3
0) and communication among agents,

J-K flip-flop f2 is believed to be faulty with a belief of 72.65%. All other devices
in componentC2 are believed to be normal with beliefs over 96% exceptor gateo6

77.86%. All devices in componentsC0, C1 andC3 are believed to be normal with
beliefs over 96.06%. All devices in componentC4 are believed to be normal with
beliefs over 96.06% except flip-flopf5 89.81%. Though the inference indicates that

31

f2 could be faulty, we may not be very confident about the result since the posterior
(72.65%) is not very positive.

6.4 More Than Minimal Instants

When we monitor the circuit as shown in Figure 8 over periods of four instants, we
may get better results. Based on the similar assumptions as the example above, we
have the graphical observable Markov boundaryB(R4

0) of R4
0={f20, f21, f22, f23}:

B(R4
0) = {i70, i71, i72, i73, i80, i81, i82, i83, j20, j21, q30, q31, q32, q33, ig0, ig1, ig2,

ig3, e60, e61, e62, e63, ih0, ih1, ih2, ih3, id0, id1, id2, ie0, ie1, ie2, if0, if1, if2, in0,

in1, in2, p50, p51, p52, p53, ea0, ea1, ea2, ea3, io0, io1, io2, io3}.

The graphical observable Markov boundary contains 50 variables. Just like inB(R3
0),

not all observable direct inputs of J-K flip-flopf2 over the period are contained in
B(R4

0). Only j20 andj21 at first two instants (0 and 1) are contained inB(R4
0). This

is because the inputs tof2 at instant 3 have not gone throughf2, and no effects
could be observed. Although the inputs tof2 at instant 2 have gone throughf2, the
effects off2’s outputs have not been observed atea or p5 before they go through
another J-K flip-flopf5 (i.e. any information resulted from inputs tof2 at instant
2 are contained somewhere between the two J-K flip-flops, where no variables are
observable). Also thoughin0, in1, andin2 are contained inB(R4

0), but in3 are not.
This is because no effects ofin3 would be observed atea or p5 within the period.

After B(R4
0) are observed and agents communicate with each other, the inference

indicates thatf2 could be faulty with a belief of 84.21% (f23). All other devices
in componentC2 are believed to be normal with beliefs over 94%. All devices in
componentsC0, C1 andC3 are believed to be normal with beliefs over 96%. All
devices in componentC4 are believed to be normal with beliefs over 93.95%. The
inference results are significantly improved with one more instant modeled. This
example also indicates that the potential improvement space will become less and
less over more and more instants. This, from another perspective, shows a long
history may not be so necessary in reasoning about the state of a dynamic domain.

6.5 Multiple Faults

To make the situation more complex, we next assume, besides J-K flip-flop f2 in
componentC2, J-K flip-flop f4 in componentC0 is also abnormal. We randomly
pick six consecutive instants as shown in Figure 13, where input signals, and those
output signals that could be affected by the outputs off2 andf4 are provided and
presented as strings of six digits. The six instants will be divided into two consec-
utive periods each of which contains 4 instants. The two periods overlap over two
instants. In Figure 13, the observable variables are underlined.

32

D Q

Q

D Q

Q

J

Q

Q

K

J

Q

Q

K

D Q

Q

J

Q

Q

KJ

Q

Q

K

000101

100001

011100

011101 001010

001101

101010

000001

001010

101110

01100

10100

000001 011100

000111

010111

000001

010101

100001

000101

011101 100100

100101

001010

101010

101100

000010

010101

011100

011010

010100

001010

010001

111011

111011

001010

111000

111000 000101

o3

p3

n1

n2

n4

n7

na

nc

nb

nk

ng

ndn0

nh

a2

a0

a4 a5

a3

ab

a9

ag

a1

af
o2

o0

o6

o9

ob

oe

0f

6f

d0

1q

d3

d6

i 1

i a

i 7

i 8

i d

i f

i s

i 2

i 3
i 4

i h

i j ne
i i

i t

0C

e6
ec

i n

b1 b2

1k

1j

k4

b0

b3 b4

0q

i 6

b6

b7

c0
c1

c2

c5 c6

g0

g1

g2
g3

g4

g5

u0

u1

u2

u3

u4

u5
u6

v0

v6v5

C1

C3

n3

an

c7 ai5q
ea

5x0

do
edi r

v4

qi

o8e4

ef
i p

i v
ni

v1

v2

6q nj

i u

2

2q

C2 4C

p
1 i 5

i m

i k

i 0

o4

5n

n9

a

5

7e
n

e

a

4

f4

f

n6

f

7 8a

a

f3
a

ca

ad

a

am

o
1

q

p
4

ei

ig

2e

e1

0e

3e

e

e8

e9

4j

b5

o5

io
j

ka

ja

co

p
f5

5

eb

k
2j

5k
f2

3q

Fig. 13. The signal values of a sequential digital circuit over 6 instants.

The graphical observable Markov boundaryB(R4
1) of R1={f40, f41, f42, f43} is as

shown as follows, andB(R4
0) is the same as given in Subsection 6.4. There are a

total of 33 variables inB(R4
1).

B(R4
1) = {ii0, ii1, ii2, ii3, ij0, ij1, ij2, ij3, e80, e81, e82, e83, e70, e71, e72, e73, p40,

p41, p42, p43, i20, i21, i22, p40, p41, p42, p43, i30, i31, i32, i40, i41, i42}.

Based on the observation of bothB(R4
0) andB(R4

1) in the first period and commu-
nication among agents, the inference indicates that J-K flip-flop f2 is believed to
be faulty with a belief over 94.89%. This belief is higher than the one obtained in
Subsection 6.4. This is because stronger evidence, that indicatesf2 could be faulty,
appears inB(R4

0) in this period (after observingB(R4
0), (R4

1) is irrelevant to the
state off2). The strength of the evidence we observe could be differentfrom period
to period for the same problem. When a system is monitored period by period, the
system problems could be detected in different periods. Once a device is believed
to be faulty in some period, the device should be fixed or replaced (though it may
not be indicated to be faulty at some other periods).

In componentC2, all other devices are believed to be normal with beliefs over
96.06% exceptor gateo6 with a belief over 94.30% in the first period.

33

The problem in J-K flip-flopf4, however, is not properly detected in this period,
which is believed to be abnormal with a belief of 16.21%. All other devices in
componentsC0 are believed to be normal with beliefs over 96.06%. All devices in
componentC1 are believed to be normal with beliefs over 96.06% exceptinverter
n1 with a belief of 66.74%,andgatean with a belief of 45.79%. That is, the system
seems to attribute inconsistencies observed ton1 andan instead off4. Anyway,
neither belief is high enough to conclude that eithern1 or an or both are abnormal.
All devices in componentC3 andC4 are believed to be normal with beliefs over
96.06% exceptexclusive orgatex0 with a belief of 93.48% and J-K flip-flopf5

with a belief of 95.65%.

Next, we continue to monitor the circuit over a new period of 4instants, which has
two instants overlapped with the previous one. The inference based on the obser-
vation of bothB(R4

0) andB(R4
1) and communication among agents indicates that

J-K flip-flop f2 is believed to be faulty with a belief of 47.25%. This is because that
confusing evidence is observed in this period corresponding to the problem inf2.
Nevertheless, J-K flip-flopf4 is believed to be faulty with a belief of 84.54%. All
other devices in componentC0 are believed to be normal with beliefs over 96.06%
exceptand gatead with a belief over 86.74%. All devices in componentC1 are
believed to be normal with beliefs over 95.64% exceptandgatea2 with a belief of
86.71%,invertern3 91.69%, andinvertern1 82.98%. All other devices in compo-
nentC2 are believed to be normal with beliefs over 96.06% exceptor gateo6 with
a belief of 86.28%. All devices in componentsC3 are believed to be normal with
beliefs over 95.99%. All devices in componentsC4 are believed to be normal with
beliefs over 96.06% exceptexclusive orgatex0 85.00%, and flip-flopf5 73.14%.
This time, we are confident thatf4 is faulty.

In the two consecutive periods, the posterior belief over the same entity may fluc-
tuate significantly. For example, in the first period,f2 is believed to be faulty with
a belief over 94.89% andf4 16.21%, and in the next period,f2 is believed to be
faulty with a belief of 47.25% andf4 84.54%. The fluctuation is considered ra-
tional, which is caused by the variation in the strength of the evidence observed
corresponding to the problems in the two devices in the two periods. In the first pe-
riod, the observed evidence strongly indicates thatf2 is faulty and weakly indicates
f4 is faulty, and in the second period, the observed evidence strongly indicates that
f4 is faulty but weakly indicates thatf2 is faulty.

With dynamic systems being monitored period by period, the problems in the sys-
tems would be detected whenever proper evidence appears.

6.6 Complexity Growth

In general, the longer the period of a dynamic domain we can model, the better the
inference results we can reach would be. However, the periodof a dynamic domain
we can model into an MSBN should be limited by the computational complex-

34

ity. The computational complexity of inference using MSBNsis dominated by the
largest clique size in the corresponding LJFs. In this subsection, we experimentally
show the relationship between the computational complexity and the length of the
modeled period of a dynamic domain.

The experiment is done on 3 different sequential digital circuits with different levels
of complexity. Each circuit is divided into five components,and is modeled with
a 5 agent MSBN over a range of periods. Depending on the circuit complexity,
the period modeled could be up to 10 instant long. Beside the sequential digital
circuit as shown in Figure 8, the other two sequential digital circuits are as shown
in Figures 14 and 15, respectively.

D Q

Q

Q

Q

J

Q

Q

K

Q

QD

D

s2

1C

m2

m1

m0

0C

a4

v0

z1

n
2f

2

o3

w0

a3

s4

C3

a5 4o

f3

u0

1u

0c

2n

1a

q1

q
3

3
p

0f

f1

o0

o2

a0

a6

n0

3

n4
n5

u2

6

b1
p4

q
4

n

7

8n

d0 q
0 v1 v2

v3 v41n

s0

q
2

s3

b0
a 3

w1

n
c2

c

C2

4C

d1
n9

d2

s1
o1

c1

Fig. 14. A simple sequential digital circuit of five components.

The circuit as shown in Figure 14 has the simplest topological structure. The in-
terfaces between any two adjacent components are as shown inTable 1. When
modeled into an MSBN, a new set of the corresponding interface variables will be
added to the corresponding interfaces for each new instant added.

The sequential digital circuit as shown in Figure 15 has a more complex topological
structure. The interfaces between any two components are asshown in Table 1.
Compared to the two sequential digital circuits, the one as shown in Figure 8 has
the most devices and signals.

35

J

Q

Q

K

J

Q

Q

K

J

Q

Q

K

D Q

Q

D Q

Q

J

Q

Q

K

v0

1j

k0

5q

t0

1u

0C

v1 v2

v3

v4

o

a

4

3

4

z0

q

s0

0
1s

v5

u0

0d

a4

w

a2

0

2C

C3

q1

z1

z2

t0

q2

C4

m

m2

2p

6o

3

0c

C1

3z
a

n

5

6

f0

f 1

f2

3f

f4

f5

1n0n

n

n2

3

n n5
6

n7

8n

n9

0a

1

2a

a

a 7a

o1

o2
o3

o5

j0

k1

p
3

p
1

q4
p4

u2

s2

b

s3

w1

1
m0

j

w2

d1

0

Fig. 15. A more complex sequential digital circuit of five components.

Table 1
Interfaces of the circuits in Figure 14 and 15.

Components Interfaces of circuit in Fig. 14 Interfaces of circuit in Fig. 15

C0&C1 c1, v3, v4 z0, q1

C1&C2 q2, s0, s1 j1, k1, z2, v2

C2&C3 u2, u0, b0 u0, b0, d2, q4

C2&C4 w0, s3 w2, w1, s3, j3

For the digital circuit as shown in Figure 8, we produce 4 MSBNs corresponding
to the modeled periods from length 2 to length 5. For the digital circuit as shown
in Figure 14, we produce 9 MSBNs corresponding to the modeledperiods from
length 2 to length 10. For the digital circuit as shown in Figure 15, we produce 4
MSBNs corresponding to the modeled periods from length 2 to length 5.

Since the computational complexity of the inference using MSBNs is dominated by
the size of the largest cliques in the corresponding LJFs (linked junction forests),
we show how the size of the largest cliques grows over the length of the represented
period. Tables 2, 3 and 4 show the respective experimental results on different cir-
cuits.

36

Table 2
Maximum clique size vs the length of the modeled period for the circuit in Figure 8.

of instants Size of the largest cliques Total # of cliques

2 8 246

3 13 395

4 17 527

5 22 645

Table 3
Maximum clique size vs the length of the modeled period for the circuit in Figure 14.

of instants Size of the largest cliques Total # of cliques

2 8 114

3 11 148

4 14 211

5 19 252

6 21 287

7 24 330

8 27 371

9 29 416

10 31 458

Table 4
Maximum clique size vs the length of the modeled period for the circuit in Figure 15.

of instants Size of the largest cliques Total # of cliques

2 11 108

3 19 164

4 30 219

5 39 267

From the Tables 2, 3 and 4, the size of the largest cliques and the number of cliques
in the corresponding linked junction forests grow linearlyin the number of instants
modeled. For example, in the column “Size of the largest clique” of Table 2, the
difference between any two consecutive numbers are approximately the same (5).
Note the size of the largest cliques is not only affected by the complexity and the
size of the circuits, but is also affected by how you model thecircuits (e.g. the
choices of interface variables and the interface size, etc.).

37

7 Conclusion

In dynamic multiagent domains, individual agents generally cannot evolve sepa-
rately using DBNs because the temporal probabilistic messages from different sub-
domains are dependent of each other. This results in the decomposition issue and
the distribution issue, which make it hard for the dynamic multiagent probabilistic
inference to be performed both exactly and effectively. Nevertheless, in dynamic
systems, the influence from the past could be weakened very quickly. We propose
to represent and reason about the state of a dynamic multiagent domain period by
period. By denser and relevant observation, the influence ofthe ignored history
on the inference is reduced to a minimum. For relevant observation, we introduce
graphical observable Markov boundary (GOMB) to capture allrelevant observable
variables. GOMB may also help us locate the relevant agents in the inference. For
example, as shown in Subsection 6.4, the GOMB members inB(R4

0) (correspond-
ing to flip-flop f2 in the circuit as shown in Figure 8) only appear in subdomain
C2, C3 andC4. Hence, it is possible that, after proper initial processing, the 5 agent
MSBN can be simplified to a 3 agent MSBN for cheaper inference.

Experiments show that the proposed method can successfullywork on the simu-
lated cases. The size of the largest cliques in the corresponding LJFs grows linearly
in the length of the represented period. Hence, the period length affects the compu-
tational complexity in an exponential way. The length of themodeled period cannot
be too long.

In the future, more experiments on more problem domains willbe performed to
further investigate the proposed approach.

References

[1] V. R. Lesser, L. D. Erman, Distributed interpretation: amodel and experiment, IEEE
Transactions on Computers C-29 (12) (1980) 1144–1163.

[2] Y. Xiang, B. Pant, A. Eisen, M. P. Beddoes, D. Poole, Painulm: a neuromuscular
diagnostic aid using multiply sectioned Bayesian networks, in: D. I. Hudson
(Ed.), Proceedings of ISMM (International Society for Miniand Microcomputers)
International Conference on Mini and Microcomputers in Medicine and Healthcare,
Long Beach, CA, 1991, pp. 64–69.

[3] Y. Xiang, B. Pant, A. Eisen, M. P. Beddoes, D. Poole, Multiply sectioned Bayesian
networks for neuromuscular diagnosis, Artificial Intelligence in Medicine 5 (1993)
293–314.

[4] Y. Xiang, H. Geng, Distributed monitoring and diagnosiswith multiply sectioned
Bayesian networks, in: AAAI Spring Symposium on AI in Equipment Service
Maintenance and Support, AAAI Press, Stanford, CA, 1999, pp. 18–25.

38

[5] A. Ghosh, S. Sen, Agent-based distributed intrusion alert system, in: Proceedings of
the 6th International Workshop on Distributed Computing (IWDC’04), Kolkata, India,
2004, pp. 240–251.

[6] Y. Xiang, Probabilistic Reasoning in Multiagent Systems: A Graphical Models
Approach, Cambridge University Press, 2002.

[7] S. Buchegger, J.-Y. L. Boudec, A robust reputation system for P2P and mobile ad-hoc
networks, in: Proceedings of the 2nd Workshop on the Economics of Peer-to- Peer
Systems, Cambridge, MA, 2004.

[8] B. Skyrms, R. Pemantle, A dynamic model of social networkformation, Proceedings
of National Academy of Sciences of the United States of America (PNAS) 97 (16)
(2000) 9340–9346.

[9] H. Li, S. Majumdar, Dynamic decisions with short-term memories, Tech. rep.,
Department of Economics, University of Toronto (2005).

[10] D. Koller, Representation, reasoning, learning, Keynote talk at the 17th International
Joint Conference on Artificial Intelligence (IJCAI-2001),Seattle, WA.

[11] L. M. de Campos, J. M. Fernandez-Luna, Reducing propagation effort in large
polytrees: an application to information retrieval, in: Proceedings of the First European
Workshop on Probabilistic Graphical Models (PGM’02), Cuenca, Spain, 2002, pp. 35–
44.

[12] R. D. Shachter, Bayes-ball: the rational pastime (for determining irrelevance and
requisite information in belief networks and influence diagrams), in: G. F. Cooper,
S. Moral (Eds.), Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence (UAI-1998), Morgan Kaufmann Publishers, Madison, WI, 1998, pp. 480–
487.

[13] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming, John Wiley & Sons, Inc., New York, NY, 1994.

[14] L. P. Kaelbling, M. Littman, A. R. Cassandra, Planning and acting in partially
observable stochastic domains, Artificial Intelligence 101 (1998) 99–134.

[15] C. Boutilier, Multiagent systems: challenges and opportunities for decision-theoretic
planning, AI Magazine 20 (4) (1999) 35–43.

[16] D. S. Bernstein, S. Zilberstein, N. Immerman, The complexity of decentralized control
of Markov decision processes, in: C. Boutilier, M. Goldszmidt (Eds.), Proceedings
of the 16th Conference on Uncertainty in Artificial Intelligence (UAI-2000), Morgan
Kaufmann Publishers, Stanford, CA, 2000, pp. 32–37.

[17] C. V. Goldman, S. Zilberstein, Optimizing informationexchange in cooperative
multi-agent systems, in: Proceedings of the 2nd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-2003),ACM Press,
Melbourne, Australia, 2003, pp. 137–144.

39

[18] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, S. Marsella, Taming decentralized
POMDPs: towards efficient policy computation for multiagent settings, in:
Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI’03), Morgan Kaufmann, Acapulco, Mexico, 2003, pp. 705–711.

[19] M. Littman, Algorithms for sequential decision making, Ph.D. thesis, Department of
Computer Science, Brown University, Providence, Rhode Island (1996).

[20] J. Forbes, T. Huang, K. Kanazawa, S. Russell, The BATmobile: towards a Bayesian
automated taxi, in: Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI-1995), Morgan Kaufmann Publishers, Montŕeal, Qúebec, Canada,
1995, pp. 1878–1885.

[21] B. Sallans, Learning factored representations for partially observable Markov decision
processes, in: S. Solla, T. Leen, K. R. Muller (Eds.), Proceedings of the Advances
in Neural Information Processing Systems 12 (NIPS-1999), MIT Press, Denver, CO,
1999, pp. 1050–1056.

[22] X. Boyen, Inference and learning in complex stochasticprocesses, Ph.D. thesis,
Computer Science Department, Stanford University, Stanford, CA (2002).

[23] K. Murphy, Y. Weiss, The factored frontier algorithm for approximate inference
in DBNs, in: J. S. Breese, D. Koller (Eds.), Proceedings of the 17th Conference
on Uncertainty in Artificial Intelligence (UAI-2001), Morgan Kaufmann Publishers,
Seattle, WA, 2001, pp. 378–385.

[24] K. Murphy, Dynamic Bayesian networks: representation, inference and learning,
Ph.D. thesis, CS Division, UC Berkeley, Berkeley, CA (July 2002).

[25] A. T. Ihler, J. W. F. III, A. S. Willsky, Loopy belief propagation: convergence and
effects of message errors, Journal of Machine Learning Research 6 (May) (2005) 905–
936.

[26] Y. Xiang, Temporally invariant junction tree for inference in dynamic Bayesian
networks, in: R. E. Mercer, E. Neufeld (Eds.), Advances in Artificial Intelligence:
Proceedings of the 12th Biennial Conference of the CanadianSociety for
Computational Studies of Intelligence, LNAI 1418, Springer, Vancouver, BC, Canada,
1998, pp. 363–377.

[27] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann Publishers, San Franciso, CA, 1988.

[28] J. Pearl, A. Paz, Graphoids: a graph-based logic for reasoning about relevance
relations, in: B. D. Boulay, D. Hogg., L. Steels (Eds.), Advances in Artificial
Intelligence 2, Amsterdam: North Holland, 1985, pp. 357–363.

40

