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Abstract

To specify a Bayesian network (BN), a conditional probability table (CPT), of-
ten of an effect conditioned on its n causes, must be assessed for each node. Its
complexity is generally exponential in n. Noisy-OR and a number of extensions
reduce the complexity to linear, but can only represent reinforcing causal inter-
actions. Non-impeding noisy-AND (NIN-AND) trees are the first causal models
that explicitly express reinforcement, undermining, and their mixture. Their
acquisition has a linear complexity, in terms of both the number of parame-
ters and the size of the tree topology. As originally proposed, however, they
allow only binary effects and causes. This work generalizes binary NIN-AND
tree models to multi-valued effects and causes. It is shown that the generalized
NIN-AND tree models express reinforcement, undermining, and their mixture
at multiple levels, relative to each active value of the effect. The model acquisi-
tion is still efficient. For binary variables, they degenerate into binary NIN-AND
tree models. Hence, this contribution enables CPTs of discrete BNs of arbitrary
variables (binary or multi-valued) to be specified efficiently through the intuitive
concepts of reinforcement and undermining.

Key words: Bayesian networks, causal probabilistic models, conditional
probability distributions, knowledge acquisition.

1. Introduction

To specify a BN, a CPT must be assessed for each non-root node. It is often
advantageous to construct BNs along the causal direction, in which case a CPT
is the distribution of an effect conditioned on its n causes. In general, assessment
of a CPT has complexity exponential in n. Noisy-OR [1] is the most well known
technique that reduces this complexity to linear. A number of extensions have
also been proposed such as [2, 3, 4]. However, noisy-OR, noisy-AND [3], as well
as related techniques, can only represent causal interactions that are reinforcing
[5].
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The NIN-AND tree [5] extends noisy-OR and provides the first causal model
that explicitly expresses reinforcing and undermining causal interactions, as well
as their mixtures at multiple levels. It requires specification of a set of probabil-
ity parameters of a size linear in n, and a tree topology also of a size linear in n,
which expresses the types of causal interactions among causes. The model uses
default independence assumptions to gain efficiency, but is also flexible enough
to allow these assumptions to be relaxed. By relaxing these assumptions incre-
mentally and specifying more parameters accordingly, any CPT can be encoded
through a NIN-AND tree.

As originally proposed [5], the effect and cause variables in a NIN-AND tree
are binary, which limits its scope of applicability. In this work, we draw from the
generalization of noisy-OR from the binary case, such as [6, 7], and generalize
the NIN-AND tree model to multi-valued effects and cause variables.

The remainder of the paper is organized as follows: Section 2 reviews the
binary NIN-AND tree models. We then introduce the terminology on graded
multi-causal events in Section 3. The basic processing units in a NIN-AND
tree model, NIN-AND gates, are generalized to graded multi-causal events in
Section 4. This is followed by the definition of the generalized NIN-AND tree
model in Section 6. Section 7 analyzes properties of these models in terms of
expressiveness of reinforcement and undermining, as well as the complexity for
acquiring a model.

2. Background on Binary NIN-AND Trees

This section is mostly based on [5]. An uncertain cause is a cause that can
produce an effect but does not always do so. For instance, flu is a uncertain
cause of fever. Denote a binary effect variable by e and a set of binary cause
variables of e by X = {c1, ..., cn}. Denote e = true by e+ and e = false by e−.
Similarly, for each cause ci, denote ci = true by c+

i and ci = false by c−i .
A causal success event refers to an event that a cause ci caused an effect

e to occur successfully when all other causes of e are inactive (equal to false).
Denote this causal event by e+ ← c+

i and its probability by P (e+ ← c+
i ). A

causal failure event is an event where e is false when ci is true and all other
causes of e are false. It is denoted by e− ← c+

i . Denote the causal event that a
set X = {c1, ..., cn} of causes caused e by e+ ← c+

1 , ..., c+
n or e+ ← x+. Denote

the set of all causes of e by C.
The CPT P (e|C) relates to probabilities of causal events as follows: If C =

{c1, c2, c3}, then P (e+|c+
1 , c−2 , c+

3 ) = P (e+ ← c+
1 , c+

3 ). Note that in our notation,
a causal probability (the right-hand side) is always equivalent to a conditional
probability (the left-hand side). However, an arbitrary conditional probability
may not correspond to any causal probability. C is assumed to include a leaky
variable (if any) to capture causes that we do not wish to represent explicitly,
and hence P (e+|c−1 , c−2 , c−3 ) = 0.

Readers familiar with noisy-OR may draw the similarity (and difference)
between the above and Pearl’s formulation (Section 4.3.2 in [1]) of noisy-OR.
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Pearl treats a cause as deterministic, whose occurrence always results in the
effect, unless being blocked by an inhibitor. He encodes the causal uncertainty
through the uncertain inhibitor. The conjunction of a deterministic cause and
a stochastic inhibitor in his formulation is equivalent to the uncertain cause
introduced above. Pearl depicts interaction among noisy-OR causes by a noisy-
OR gate (Fig. 4.20 in [1]). The causal success event e+ ← x+ defined above
corresponds to the output event of a noisy-OR gate when it is true, and the
causal failure event e− ← x+ corresponds to the output event when it is false.
Note that noisy-OR represents only reinforcing causal interaction, while our
formulation is intended to express undermining in addition as well as their
mixture, as shown below. Note also that computation of probability of the
output event of a noisy-OR gate in terms of conditional probability in [1] is
parallel to the relation between causal and conditional probabilities as illustrated
above in P (e+|c+

1 , c−2 , c+
3 ) = P (e+ ← c+

1 , c+
3 ).

Causes reinforce each other if collectively they are at least as effective in caus-
ing the effect as some acting by themselves. If collectively they are less effective,
then they undermine each other. For an example of reinforcement, consider cur-
ing of a type of cancer as the effect. Both radiotherapy and chemotherapy are
its uncertain causes. When both therapies are applied, the chance of curing
the cancer is improved. For an example of undermining, let the effect be the
happiness of a person. Taking either one of two desirable jobs is a uncertain
cause of the effect. When taking both, the chance of happiness is reduced due
to overstress.

Note that if C = {c1, c2} and c1 and c2 undermine each other, then all the
following hold:

P (e+|c−1 , c−2 ) = 0, P (e+|c+
1 , c−2 ) > 0, P (e+|c−1 , c+

2 ) > 0,

P (e+|c+
1 , c+

2 ) < min(P (e+ |c+
1 , c−2 ), P (e+|c−1 , c+

2 )).

The following Def.1 defines the two types of causal interactions generally.

Definition 1. Let R = {W1, W2, ...} be a partition of a set X of causes, R′ ⊂ R
be any proper subset of R, and Y = ∪Wi∈R′Wi. Sets of causes in R reinforce
each other, iff

∀R′ P (e+ ← y+) ≤ P (e+ ← x+).

Sets of causes in R undermine each other, iff

∀R′ P (e+ ← y+) > P (e+ ← x+).

Note that reinforcement and undermining can occur between individual vari-
ables as well as sets of variables. When the causal interaction is between in-
dividual variables, each Wi above is a singleton. Otherwise, each Wi can be a
generic set of causes. For instance, consider

X = {c1, c2, c3, c4}, W1 = {c1, c2}, W2 = {c3, c4}, R = {W1, W2}.

3



It is possible that causes c1 and c2 are reinforcing each other, and so are c3 and
c4. But the sets W1 and W2 are undermining each other. A numerical example
will be given below with Fig. 2.

Disjoint sets of causes W1, ..., Wm satisfy failure conjunction iff

(e− ← w+
1 , ..., w+

m) = (e− ← w+
1 ) ∧ ...∧ (e− ← w+

m).

That is, collective failure is attributed to individual failures. They also satisfy
failure independence iff

P ((e− ← w+
1 ) ∧ ...∧ (e− ← w+

m)) = P (e− ← w+
1 )× ...× P (e− ← w+

m). (1)

Disjoint sets of causes W1, ..., Wm satisfy success conjunction iff

(e+ ← w+
1 , ..., w+

m) = (e+ ← w+
1 ) ∧ ...∧ (e+ ← w+

m).

That is, collective success requires individual effectiveness. They also satisfy
success independence iff

P ((e+ ← w+
1 ) ∧ ...∧ (e+ ← w+

m)) = P (e+ ← w+
1 )× ...× P (e+ ← w+

m). (2)

It has been shown [5] that causes are undermining when they satisfy success
conjunction and independence. Hence, undermining can be modeled by a direct
NIN-AND gate as shown in the left of Fig. 1. Its root nodes (top) are causal

+        ++        +

+        +           +e     c  ,...,c1           n

1 n...
e     ce     c e     c e     c

... n1

1           ne     c  ,...,c−        +           +

−        + −        +

Figure 1: Direct (left) and dual (right) NIN-AND gates

success events of single causes, and its leaf node (bottom) is the causal success
event in question. Success conjunction is expressed by the AND gate, and suc-
cess independence is signified by disconnection of root nodes other than through
the gate. The probability of the leaf event can be computed by Eqn. (2). Note
that a direct NIN-AND gate differs from the common noisy-AND gate in that
the former is non-impeding while the latter is impeding (see reference above for
a detailed analysis).

It has also been shown [5] that causes are reinforcing when they satisfy
failure conjunction and independence. Hence, reinforcement can be modeled by
a dual NIN-AND gate (right). Its root nodes (top) are causal failure events of
single causes, and its leaf node (bottom) is the causal failure event in question.
Failure conjunction is expressed by the AND gate, and failure independence
by disconnection of root nodes other than through the gate. The leaf event
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probability is computed by Eqn. (1). Note that the common noisy-OR gate is a
special case of a dual NIN-AND gate in that the former allows only single cause
input events while the latter allows multiple cause input events (see reference
above for a formal analysis).

By using multiple direct and dual NIN-AND gates and organizing them into
a tree topology, both reinforcement and undermining, as well as their mixture
at multiple levels can be expressed in a single model, called a NIN-AND tree.

Example 1. Consider an example where C = {c1, c2, c3}, c1 and c3 undermine
each other, but collectively they reinforce c2. Assuming the default conjunction

e     c−        +
2+        +     +

1     3    e     c , c 

e     c1
+        + e     c+        +

3

e     c , c , c1     2     3
−        +     +     +

Figure 2: A NIN-AND tree causal model.

and independence, their causal interaction (a two-level mixture of reinforcement
and undermining), relative to the event e− ← c+

1 , c+
2 , c+

3 can be expressed by the
NIN-AND tree shown in Fig. 2. It has five nodes (three root nodes at the top
and one leaf node at the bottom) labeled by causal events. It has two NIN-AND
gates. The top gate is direct and the bottom gate (the leaf gate) is dual. The
link downward from node e+ ← c+

1 , c+
3 has a white circle end (a negation link)

and negates the event. All other links are forward links that feeds the event in
one end to the other.

Given a NIN-AND tree, the probability of the leaf event can be computed
by Algorithm 1.

Algorithm 1. GetCausalEventProb(T)
Input: A NIN-AND tree T of leaf node v and leaf gate g, with probabilities of
root events specified.
for each node w directly inputting to g, do

if P (w) is not specified,
denote the sub-NIN-AND-tree with w as the leaf node by Tw;
P (w) = GetCausalEventProb(Tw);

if (w, g) is a forward link, P ′(w) = P (w);
else P ′(w) = 1− P (w);

return P (v) =
∏

w P ′(w);

Example 2. For the example in Fig. 2, after the following are specified,

P (e+ ← c+
1 ) = 0.85, P (e+ ← c+

2 ) = 0.8, P (e+ ← c+
3 ) = 0.7,
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the probability P (e− ← c+
1 , c+

2 , c+
3 ) = 0.081 can be derived. From the above

and other NIN-AND tree models derived from Fig. 2 (by removing some nodes,
gates and links), the CPT in Table 1 can be derived. P (e+|c+

1 , c−2 , c+
3 ) is less

Table 1: The CPT of an example NIN-AND tree model.

P (e+|c−1 , c−2 , c−3 ) 0 P (e+|c+
1 , c−2 , c+

3 ) 0.595
P (e+|c+

1 , c−2 , c−3 ) 0.85 P (e+|c+
1 , c+

2 , c−3 ) 0.97
P (e+|c−1 , c+

2 , c−3 ) 0.8 P (e+|c−1 , c+
2 , c+

3 ) 0.94
P (e+|c−1 , c−2 , c+

3 ) 0.7 P (e+|c+
1 , c+

2 , c+
3 ) 0.919

than either P (e+|c+
1 , c−2 , c−3 ) or P (e+|c−1 , c−2 , c+

3 ): the result of undermining.
P (e+|c+

1 , c+
2 , c+

3 ) is larger than both P (e+|c+
1 , c−2 , c+

3 ) and P (e+|c−1 , c+
2 , c−3 ): the

result of reinforcement. A more efficient method to obtain the CPT from a
NIN-AND tree model over C can be found in [8].

In general, for every cause e and its set C of causes, every NIN-AND tree,
where no cause in C appears in more than one root node, defines a CPT pa-
rameterized by the causal probabilities of its root events.

Before closing this section, we discuss the relation between NIN-AND tree
models and the DeMorgan models [9]. Being unaware of the work reported

Dual NIN−AND gate

e     c1
−        + −        +

ke     c

e     c+        +
k+m

e     c , c , c  ,c1     2     3     4
+        +     +     +    +

2     4    
−        +     +e     c , c 

e     c−        +
3 e     c2

−        +

e     c1
−        +

e     c−        +
4

−        +     +
1     3    e     c , c 

Direct NIN−AND gate

e     c  , ..., c  , c    , ..., c1              k      k+1            k+m
+        +             +      +                +

e     c+        +
k+1 ...

Model m ‘inhibiting’ influences

Model k ‘promoting’ influences (including leaky)

(a) (b)

Figure 3: (a) The NIN-AND tree encoding of DeMorgan models. (b) A NIN-AND tree model
not expressible as DeMorgan models.

in [10, 5] on NIN-AND tree models, authors of [9] independently developed
DeMorgan models. Like binary NIN-AND trees, DeMorgan models deal with
only binary effect and causes. The causal interaction mechanism of DeMorgan
models is a special case of that of binary NIN-AND tree models, in the sense
that every DeMorgan model can be encoded into a NIN-AND tree model of
exactly two NIN-AND gates, as shown in Fig. 3 (a). On the other hand, NIN-
AND tree models may contain three or more NIN-AND gates and thus may
not be expressed as DeMorgan models. An example is shown in Fig. 3 (b),
where causes c1 and c3 reinforce each other, so do c2 and c4, but the two groups
undermine each other.
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3. Graded Multi-Causal Events

Let e be a multi-valued effect variable whose finite domain is denoted De =
{e0, e1, ..., eη}, where η ≥ 1. The value e0 (by the superscript index 0) represents
the absence of the effect condition. Each value ej with a higher superscript
index j > 0 represents the effect condition at a higher intensity. For instance, if
e represents the fever condition of a patient, it may have a domain {e0, e1, e2}
which corresponds to

{normal, low fever, high fever}.

We will refer to e1, , ..., eη as the active values of e, to e0 as the inactive value
of e, and to eη as the most intensive value of e. Notation e < ej is well defined,
when 0 < j ≤ η, to denote e ∈ {e0, e1, ..., ej−1}, and so is e ≥ ej , to denote
e ∈ {ej , ej+1, ..., eη}.

Let ci (i = 1, 2, ...) be a multi-valued uncertain cause, whose finite domain
is denoted Di = {c0

i , c
1
i , c

2
i , ...}. The value c0

i represents the absence of the
condition signified by the variable ci, and each value cj

i with a higher superscript
index j > 0 represents the condition at a higher intensity. Variables such as
e and ci are often referred to as graded [7]. Although generally multi-valued
variables are not necessarily graded, in this work, we assume they are. We will
use multi-valued and graded interchangeably hereafter. We will refer to values
of a graded cause variable as active, inactive, or most intensive, similarly to the
way we refer to those of the effect.

We denote a set of multi-valued cause variables of effect e (multi-valued) as
X = {c1, ..., cn}. The set of all causes of e is denoted by C. Set C is assumed
to include a leaky variable (if any) to capture causes not represented explicitly.

Causal events with multi-valued variables can be categorized from several
perspectives. First, they can be categorized as success or failure events, de-
pending on whether the effect is rendered active at a sufficiently high intensity.
Second, they can be categorized as single-causal or multi-causal, depending on
the number of active causes. Third, they can be categorized as simple or congre-
gate, depending on the range of effect values involved. Below, we define causal
events according to these categories precisely.

A simple single-causal success is an event that a cause ci with value cj
i (j > 0)

caused the effect e to occur at a value ek (k > 0), when every other cause cm

of e has the value c0
m (inactive). Condition j > 0 means that the cause ci must

be active, and k > 0 says that the effect must be active. Denote this event by

ek ← {cj
i} or simply ek ← cj

i .

The probability of the event is P (ek ← cj
i ), which we refer to as a causal

probability, and it relates to conditional probability as

P (ek ← cj
i ) = P (ek|cj

i , c
0
m for each cm ∈ C where m 6= i). (3)

A congregate single-causal success is an event that a cause ci with value cj
i

(j > 0) caused the effect e to occur at a value ek (k > 0) or higher, when every
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other cause is inactive. Denote this event by

e ≥ ek ← cj
i .

The probability of the event is P (e ≥ ek ← cj
i ), and it relates to conditional

probability as

P (e ≥ ek ← cj
i ) = P (e ≥ ek|cj

i , c
0
m for each cm ∈ C where m 6= i). (4)

A multi-causal success involves a set X = {c1, ..., cn} (n > 1) of active causes
of e, where each ci ∈ X has a value cj

i (j > 0), when every other cause cm ∈ C\X
is inactive. In a simple multi-causal success, causes in X collectively caused the
effect e to occur at ek (k > 0). We denote the event by

ek ← {cj1
1 , ..., cjn

n } or simply ek ← cj1
1 , ..., cjn

n

or by the (somewhat abused) vector notion

ek ← x+,

where superscript + signifies that, for each ci ∈ X, its value cji

i > c0
i . The

corresponding causal probability relates to conditional probability as

P (ek ← cj1
1 , ..., cjn

n ) = P (ek|cj1
1 , ..., cjn

n , c0
m for each cm ∈ C \X). (5)

In a congregate multi-causal success, causes in X collectively caused the effect
e to occur at ek (k > 0) or higher. We denote the event by

e ≥ ek ← cj1
1 , ..., cjn

n or e ≥ ek ← x+.

The corresponding causal probability relates to conditional probability as

P (e ≥ ek ← cj1
1 , ..., cjn

n ) = P (e ≥ ek|cj1
1 , ..., cjn

n , c0
m for each cm ∈ C \X). (6)

A congregate single-causal failure refers to an event where e < ek (k > 0)
when a cause ci has a value cj

i (j > 0) and every other cause cm is inactive. It
is a failure in the sense that ci fails to produce the effect with an intensity ek

or higher. We denote the failure event by

e < ek ← cj
i .

In the event of a congregate multi-causal failure, a set X = {c1, ..., cn} (n > 1)
of causes are active while the effect e < ek (k > 0). That is, e < ek, each ci ∈ X
has a value cj

i (j > 0), and each cm ∈ C \X has the value c0
m. We denote the

failure event by

e < ek ← cj1
1 , ..., cjn

n or e < ek ← x+.

Although simple failure events can be similarly defined, they are not referred
to in this work. On the other hand, congregate causal events play an important
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role in generalizing NIN-AND tree causal models to multi-valued variables as
will be seen in the subsequent sections.

The negation of congregate success e ≥ ek ← cj1
1 , ..., cjn

n is the congregate
failure e < ek ← cj1

1 , ..., cjn
n and vice versa. An equation that converts the two

corresponding causal probabilities is given below in Proposition 1. Relation be-
tween causal probabilities of congregate failures and corresponding conditional
probabilities can then be established through Eqns. (4) and (6).

When a cause takes a more intensive value, it may increase the probability
of a causal success. For example, it may be the case that

P (ek ← cm
i ) > P (ek ← cj

i ), whenever m > j > 0.

Our interpretation of indexes of cause values allow such semantics. However,
we make no such assumption in this work. That is, our results are applicable
whether or not such semantics is adopted.

Note that our terminology on multi-valued causal events differs from those
based on inhibitors or intermediate variables (ours is arguably simpler), e.g.,
[1, 2, 11], and is more coherent with those in [4, 5], although the latter deal
with only binary variables. An idea similar to congregate causal events has
been used in extending noisy-OR [12].

Eqns. (3) through (6) allow conversions between causal probabilities and con-
ditional probabilities. The following proposition collects five additional equa-
tions for conversions between different causal probabilities. The nine equations
together allow common conversions of probabilities over arbitrary causal events.
We will refer to them as conversion equations.

Proposition 1. Let e be an effect, X be a set of active causes of e, and X be
instantiated to x+. Then the following hold, where k > 0.

P (e ≥ ek ← x+) = 1− P (e < ek ← x+). (7)

P (e0 ← x+) = 1− P (e ≥ e1 ← x+). (8)

P (eη ← x+) = P (e ≥ eη ← x+). (9)

For k < η, P (ek ← x+) = P (e ≥ ek ← x+)− P (e ≥ ek+1 ← x+). (10)

P (e ≥ ek ← x+) =
η∑

j=k

P (ej ← x+). (11)

Eqn. (7) deals with negation of a congregate causal event. The next three
obtain simple causal probabilities from congregate causal probabilities. Eqn. (8)
concerns the inactive value of the effect, Eqn. (9) involves the most intensive
value, and Eqn. (10) deals with the other active values. Eqn. (11) obtains a
congregate causal probability from simple causal probabilities.

Proof:
Eqn. (7) follows from that e < ek ← x+ is the negation of e ≥ ek ← x+.
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Eqn. (8) follows from that the negation of e ≥ e1 ← x+ is e0 ← x+.
Eqn. (9) follows from equivalence between e ≥ eη and e = eη .
Eqns. (10) and (11) follow from the sum rule of probability for mutually

exclusive events. 2

We illustrate the practical usage of graded multi-causal events with an ex-
ample on home renovation.

Example 3. Surface enhancers protects and rejuvenates the color and appear-
ance for stone and tile surfaces in kitchens and bathrooms. Four types of en-
hancers can be ordered. Each type has a low grade product and a high grade
product. When multiple types of enhancers are applied to the same surface,
for some combinations, the degree of surface enhancement is improved beyond
that achievable when only one type is applied, while for others, the degree of
enhancement is reduced. Denote the degree of surface enhancement by e with
domain

De = {e0, e1, e2} = {no enhancing, slightly enhancing, strongly enhancing}.

Denote the application of type i enhancer (i = 1, 2, 3, 4) by hi with domain

Di = {h0
i , h

1
i , h

2
i} = {not applied, apply low grade, apply high grade}.

The causal probability P (e2 ← h2
1, h

1
3) would tell a contractor the chance to ob-

tain strong surface enhancement when the high grade product of type 1 enhancer
and the low grade product of type 3 enhancer are both applied to the surface to
be renovated.

Since the cause and effect variables in the above example are multi-valued, bi-
nary NIN-AND tree models are not applicable for assessment of P (e2 ← h2

1, h
1
3)

and other multi-causal probabilities. Graded multi-causal events introduced in
this section and generalized NIN-AND tree models to be presented below will
enable such assessment.

4. Generalized NIN-AND Gates

In this section, we generalize NIN-AND gates to graded variables. To gener-
alize direct NIN-AND gates, we first extend the concepts on success conjunction
and independence based on congregate causal successes.

Definition 2. Disjoint sets of causes W1, ..., Wm of effect e satisfy graded
success conjunction iff

e ≥ ek ← w+
1 , ..., w+

m = (e ≥ ek ← w+
1 ) ∧ ...∧ (e ≥ ek ← w+

m),

where k > 0.
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Definition 3. Disjoint sets of causes W1, ..., Wm of effect e satisfy graded
success independence iff events

e ≥ ek ← w+
1 , ..., e ≥ ek ← w+

m

are independent of each other, where k > 0. That is, the following equation
holds,

P (e ≥ ek ← w+
1 , ..., w+

m) = P (e ≥ ek ← w+
1 ) × ...× P (e ≥ ek ← w+

m). (12)

When the interaction of causes satisfies graded success conjunction and
graded success independence, it can be depicted by a graphical model as shown
in Fig. 4, where the set of active causes is X = {c1, ..., cn}. The success conjunc-

cn
jnc1

j1

...e  ek c1
j1 cn

jne  ek

,...,e  ek

Figure 4: A generalized direct NIN-AND gate.

tion is represented by the AND gate. The success independence is signified by
the disconnection of input events other than through the gate. Since the causes
are uncertain causes, the AND gate is noisy. Common noisy-AND gates, e.g.,
[3], are impeding in that the probability of a causal success event is zero unless
the set of active causes is equal to C. The probability of the output event of
the gate in Fig. 4 is determined by Eqn. (12) from probabilities of the input
events, whether X = C or not. Hence, the gate is non-impeding. To distinguish
it from the binary case (see Section 2) as well as the case introduced below, we
term the gate in Fig. 4 as a generalized direct non-impeding noisy-AND gate or
a generalized direct NIN-AND gate.

Next, we extend failure conjunction and independence, and generalize dual
NIN-AND gates, based on congregate causal failures.

Definition 4. Disjoint sets of causes W1, ..., Wm of effect e satisfy graded
failure conjunction iff

e < ek ← w+
1 , ..., w+

m = (e < ek ← w+
1 ) ∧ ...∧ (e < ek ← w+

m),

where k > 0.

Definition 5. Disjoint sets of causes W1, ..., Wm of effect e satisfy graded
failure independence iff failure events

e < ek ← w+
1 , ..., e < ek ← w+

m
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are independent of each other, where k > 0. That is, the following equation
holds,

P (e < ek ← w+
1 , ..., w+

m) = P (e < ek ← w+
1 ) × ...× P (e < ek ← w+

m). (13)

...c1
j1e<ek

cn
jnc1

j1

cn
jne<ek

,...,e<ek

Figure 5: A generalized dual NIN-AND gate.

When the interaction of causes satisfies graded failure conjunction and graded
failure independence, it can be depicted by a graphical model as shown in Fig. 5.
The failure conjunction is represented by the AND gate, and the failure indepen-
dence is signified by the disconnection of input events other than through the
gate. The probability of the output event of the gate is determined by Eqn. (13)
from probabilities of the input events. The gate in Fig. 5 differs from that in
Fig. 4 in that all input and output events are causal failure events. Hence, we
refer to it as a generalized dual NIN-AND gate.

Defs. 2 through 5 are applicable to sets of causes. Figs. 4 and 5 are special
cases where these sets are singletons, reflected by the single-causal input events.
In the general case, sets of active causes are involved, which will be reflected by
multi-causal input events of the gate. A more general example appears in Fig. 6
below.

5. Reinforcing and Undermining Properties

This section analyzes the reinforcing and undermining behaviours of gener-
alized NIN-AND gates, which generalize those of binary NIN-AND gates. First,
we define reinforcing and undermining in the context of multi-valued effect.

Definition 6. Let ek (k > 0) be an active value of effect e. Let R = {W1, W2, ...}
be a partition of a set X of causes of e, R′ ⊂ R be any proper subset of R, and
Y = ∪Wi∈R′Wi. Sets of causes in R reinforce each other relative to ek, iff

∀R′ P (e ≥ ek ← y+) ≤ P (e ≥ ek ← x+).

Sets of causes in R undermine each other relative to ek, iff

∀R′ P (e ≥ ek ← y+) > P (e ≥ ek ← x+).

12



Note that Def. 6 is defined based on congregate causal probabilities rather
than simple causal probabilities as Def. 1. The following proposition shows that
a generalized direct NIN-AND gate models undermining.

Proposition 2. Let ek (k > 0) be an active value of effect e, W1, ..., Wm be
disjoint sets of active causes of e with their union X = ∪m

i=1Wi,

e ≥ ek ← w+
1 , ..., e ≥ ek ← w+

m

be input events of a generalized direct NIN-AND gate g, each associated with
probability P (e ≥ ek ← w+

i ), and P (e ≥ ek ← w+
1 , ..., w+

m) = P (e ≥ ek ← x+)
be probability associated with the output event of g.

Let R′ be a proper subset of {W1, ..., Wm} with its associated union Y =
∪Wi∈R′Wi, g′ be another generalized direct NIN-AND gate with input events
corresponding to elements of R′, and output event probability P (e ≥ ek ← y+).

Then, the following hold:
1. For i = 1, ..., m, P (e ≥ ek ← w+

1 , ..., w+
m) < P (e ≥ ek ← w+

i ).
2. P (e ≥ ek ← x+) < P (e ≥ ek ← y+).

Proof:
Both assertions follow from Eqn. (12). 2

Example 4. Consider an example where C = {c1, c2}, |D1| = 2, |D2| = |De| =
3, and we are given the simple single-causal probabilities

P (e1 ← c1
1) = 0.3, P (e2← c1

1) = 0.45,

P (e1 ← c1
2) = 0.35, P (e2← c1

2) = 0.22,

P (e1 ← c2
2) = 0.4, P (e2← c2

2) = 0.52.

Let the input events of a generalized direct NIN-AND gate be

e ≥ e2 ← c1
1 and e ≥ e2 ← c2

2,

whose associated probabilities are 0.45 and 0.52, obtained from the above by
conversion equations. The output event of the gate is e ≥ e2 ← c1

1, c
2
2, and its

associated probability is derived by Eqn. (12) as

P (e ≥ e2 ← c1
1, c

2
2) = 0.234.

Let the input events of another generalized direct NIN-AND gate be

e ≥ e1 ← c1
1 and e ≥ e1 ← c2

2,

whose associated probabilities are 0.75 and 0.92. The output event of the gate
is e ≥ e1 ← c1

1, c
2
2, and its associated probability is derived as

P (e ≥ e1 ← c1
1, c

2
2) = 0.69.

Note that the multi-causal probability of the output event obtained from each
gate is less than the single-causal probabilities of input events: undermining
interaction.

13



Undermining is defined based on congregate causal probabilities (Def. 6).
Would it manifest if examined based on simple causal probabilities? To answer
this question, we apply conversion equations to

P (e ≥ e1|c1
1, c

2
2) = 0.69, P (e ≥ e2|c1

1, c
2
2) = 0.234,

and obtain conditional probabilities with the same active values for causes:

P (e0|c1
1, c

2
2) = 0.31, P (e1|c1

1, c
2
2) = 0.456, P (e2|c1

1, c
2
2) = 0.234.

They can be equivalently expressed as simple causal probabilities, e.g., P (e1 ←
c1
1, c

2
2) = 0.456. It can be seen that undermining does not manifest if examined

based on simple causal probabilities, e.g.,

P (e1 ← c1
1, c

2
2) = 0.456 > 0.3 = P (e1 ← c1

1),

and
P (e1 ← c1

1, c
2
2) = 0.456 > 0.4 = P (e1 ← c2

2).

The next proposition shows that a generalized dual NIN-AND gate models
reinforcement.

Proposition 3. Let ek (k > 0) be an active value of effect e, W1, ..., Wm be
disjoint sets of active causes of e with their union X = ∪m

i=1Wi,

e < ek ← w+
1 , ..., e < ek ← w+

m

be input events of a generalized dual NIN-AND gate g, each associated with
probability P (e < ek ← w+

i ), and P (e < ek ← w+
1 , ..., w+

m) = P (e < ek ← x+)
be probability associated with the output event of g.

Let R′ be a proper subset of {W1, ..., Wm} with its associated union Y =
∪Wi∈R′Wi, g′ be another generalized dual NIN-AND gate with input events cor-
responding to elements of R′, and output event probability P (e < ek ← y+).

Then, the following hold:

1. For i = 1, ..., m, P (e ≥ ek ← w+
1 , ..., w+

m) > P (e ≥ ek ← w+
i ).

2. P (e ≥ ek ← x+) > P (e ≥ ek ← y+).

Proof:
For the first statement, from Eqn. (13) for a generalized dual NIN-AND

gate, we have, for i = 1, ..., m,

P (e < ek ← w+
1 , ..., w+

m) < P (e < ek ← w+
i ).

From conversion equations, the statement follows.
The second statement follows from Eqn. (13) and conversion equations with

a similar argument. 2

14



Example 5. Consider the effect and causes in the above example with the given
single-causal probabilities, but apply to a dual gate. Let the input events of a
generalized dual NIN-AND gate be e < e2 ← c1

1 and e < e2 ← c2
2, whose

associated probabilities are 0.55 and 0.48, obtained by conversion equations.
The output event of the gate is e < e2 ← c1

1, c
2
2, and its associated probability

is derived by Eqn. (13) as P (e < e2 ← c1
1, c

2
2) = 0.264. Reinforcing interaction

manifests as

P (e ≥ e2 ← c1
1, c

2
2) = 0.736 > max(P (e ≥ e2 ← c1

1) = 0.45, P (e ≥ e2 ← c2
2) = 0.52).

Using another dual gate with input events e < e1 ← c1
1 and e < e1 ← c2

2,
whose associated probabilities are 0.25 and 0.08, we obtain the probability of its
output event as P (e < e1 ← c1

1, c
2
2) = 0.02.

Def. 6 defines reinforcement based on congregate causal probabilities. What
would happen if we examine based on simple causal probabilities? From the
above result P (e < e2 ← c1

1, c
2
2) = 0.264, P (e < e1 ← c1

1, c
2
2) = 0.02, and

conversion equations, we obtain

P (e0|c1
1, c

2
2) = 0.02, P (e1|c1

1, c
2
2) = 0.244, P (e2|c1

1, c
2
2) = 0.736.

It can be seen that reinforcement does not manifest if examined based on simple
causal probabilities, e.g.,

P (e1 ← c1
1, c

2
2) = P (e1|c1

1, c
2
2) = 0.244 < 0.3 = P (e1 ← c1

1).

In summary, a generalized direct NIN-AND gate expresses undermining and
a generalized dual NIN-AND gate expresses reinforcement, judged based on
congregate causal probabilities.

6. Generalized NIN-AND Trees

The following definition generalizes the binary NIN-AND tree models to
multi-valued effects and causes. To facilitate comprehension, an intuitive expla-
nation is given after each formal item.

Definition 7. A generalized NIN-AND tree is a directed tree for a multi-
valued effect e and a set X = {c1, ..., cn} of multi-valued causes, relative to a
boundary value ek (k > 0) of e and an instantiation x+ = {cj1

1 , ..., cjn
n } of X,

where ji > 0 (i = 1, ..., n).

1. There are two types of nodes. An event node (a black circle) has an in-
degree ≤ 1 and an out-degree ≤ 1. A gate node (a generalized NIN-AND
gate) has an in-degree ≥ 2 and an out-degree 1.
An event node corresponds to a causal event, and a gate node specifies the
nature of causal interaction among its input events.
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2. There are two types of links, each connecting an event and a gate along
the input-to-output direction of gates. A forward link (a line) is implicitly
directed. A negation link (with a white circle at one end) is explicitly
directed.
A forward link feeds a causal event directly into a gate, and a negation link
negates a causal event before feeding it into a gate.

3. Each terminal node is an event labelled by a graded causal event e ≥ ek ←
y+ or e < ek ← y+. There is a single leaf (no child) where y+ = x+, and
the gate it connects to is the leaf gate. For each root (no parent; indexed
by i), y+

i
⊂ x+, y+

j
∩ y+

k
= ∅ for j 6= k, and

⋃
i y+

i
= x+.

Root nodes represent input causal events, and the leaf node represents the
causal event due to interaction of all causes in the root nodes. Each cause
appears in exactly one root node.

4. Inputs to a gate g are in one of two cases:
(a) Each is either connected by a forward link to a node labelled e ≥ ek ←

y+, or by a negation link to a node labelled e < ek ← y+. The output
of g is connected by a forward link to a node labelled e ≥ ek ← ∪iy

+
i
.

This involves a direct gate, whose input events are all causal success
events, and so is its output event.

(b) Each is either connected by a forward link to a node labelled e < ek ←
y+, or by a negation link to a node labelled e ≥ ek ← y+. The output
of g is connected by a forward link to a node labelled e < ek ← ∪iy

+
i
.

This involves a dual gate, whose input events are all causal failure
events, and so is its output event.

5. Whenever two gate nodes are connected through an event node, their types
(direct or dual) differ.

Note that condition 5 ensures that each generalized NIN-AND tree encodes
a unique causal interaction structure (see [13, 14] for details). Note also that the
event associated with a root node may be single-causal or multi-causal, although
this work focuses on root events that are single-causal only.

Example 6. Fig. 6 is an example of a generalized NIN-AND tree for C =
{c1, c2, c3} where |De| = |D1| = |D2| = |D3| = 3.

Next, we consider numerical parameters concerning root causal events in a
generalized NIN-AND tree. It is possible that the probability associated with
each root event (a congregate single-causal success or failure) is directly speci-
fied. Alternatively, only the probability of each simple single-causal success is
directly specified.

Example 7. With the example in Fig. 6, the following causal probabilities may
be specified.

P (e1 ← c1
1) = 0.20, P (e2← c1

1) = 0.40; P (e1 ← c2
1) = 0.30, P (e2← c2

1) = 0.50;

P (e1 ← c1
2) = 0.25, P (e2← c1

2) = 0.35; P (e1 ← c2
2) = 0.44, P (e2← c2

2) = 0.33;
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c ,21

1e  e c 23

1e<e c 22

2
2c , 3

2c 1e<e

1e  e c 21

3
2c 1e  e

Figure 6: A generalized NIN-AND tree.

P (e1 ← c1
3) = 0.32, P (e2← c1

3) = 0.64; P (e1 ← c2
3) = 0.16, P (e2← c2

3) = 0.60.

In that case, the congregate causal probability associated with each root event
must be obtained through conversion equations. For instance, P (e ≥ e1 ← c2

1)
for the top left root node can be obtained as

P (e1 ← c2
1) + P (e2 ← c2

1) = 0.80,

and P (e < e1 ← c2
2) for the middle right root node can be obtained as

1− P (e1 ← c2
2) − P (e2 ← c2

2) = 0.23.

Next, we consider evaluation of probability of the leaf event in a generalized
NIN-AND tree. This can be performed using Algorithm 1 GetCausalEventProb.
From the above example, we obtain

P (e < e1 ← c2
1, c

2
2, c

2
3) = 0.09016.

Finally, we consider evaluation of CPT for effect e and its set C of all causes.
Before doing so, we introduce the concept of NIN-AND tree consistency.

Definition 8. Let T be a generalized NIN-AND tree over e and X, and T ′ be
another generalized NIN-AND tree over e and X ′ ⊆ X. T and T ′ are consistent
iff one of the following holds.

1. X ′ = X: T and T ′ are isomorphic relative to variables. That is, they are
structurally isomorphic with corresponding event node labels differing only
in variable values.

2. X ′ ⊂ X: A generalized NIN-AND tree T ′′ over e and X ′ can be obtained by
the following operation from T such that T ′′ and T ′ are isomorphic relative
to variables.
The operation consists of recursive removal of each root node r (and its
outgoing link) in T if none of the causes for r is in X ′. If in-degree of a
gate node g is reduced to 0 as the result, remove g, its output event node,
and links connected to them. If in-degree of g is reduced to 1, replace its
output event node with its input event node, and remove g as well as links
connected to g. Adjust link types and event labels accordingly.
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When a generalized NIN-AND tree over X ′ ⊆ X is consistent with another
over X, they express the same causal interaction among elements of X ′. Fig. 7
(a) shows a generalized NIN-AND tree that is consistent with that in Fig. 6,
both over C. Note that the boundary value of e is e1 in Fig. 6, but is e2 in (a).
Also, the value of c2 is c2

2 in Fig. 6, but is c1
2 in (a).

c ,21

2e  e c 23

2e<e c 12

2
2c , 3

1c 2e<e

2e  e c 21

3
2c 2e  e c ,21

c ,21(a) (b)

1e<e c 22

2
2c 1e<e

1e<e c 21

Figure 7: Generalized NIN-AND trees that are consistent with that of Fig. 6.

Fig. 7 (b) shows another generalized NIN-AND tree, over X ′ = {c1, c2},
that is consistent with that in Fig. 6. The top-right root node of Fig. 6 involves
cause c3 6∈ X ′. Its removal in turn causes the removal of the top gate node. The
remaining input node of the gate replaces its output node, whose label as well
as the type of its connecting link are adjusted, as shown in (b).

To evaluate CPT P (e|C), a set of generalized NIN-AND trees is required,
each corresponding to a unique combination of active boundary value ek, a sub-
set (not necessarily proper) X of C, where |X| ≥ 2, and an active instantiation
of X. We assume that all of them are consistent, which is the typical case.
Hence, it is sufficient to acquire a single generalized NIN-AND tree T over e
and C, since all others can be derived from T . We also assume that for each
combination of an active value of e and an active value of a cause in C, the
corresponding simple single-causal probability is acquired.

For each combination of active effect value ek, cause subset X = {c1, ..., cn} ⊆
C, where n > 1, and active instantiation x+ = (cj1

1 , ..., cjn
n ), obtain its consis-

tent generalized NIN-AND tree T ′ from T . Derive causal probabilities P (e ≥
ek ← cj

i ) or P (e < ek ← cj
i ) of its root events from the simple single-causal

probability through conversion equations. Compute the leaf event probability
P (e ≥ ek ← x+) or P (e < ek ← x+) by algorithm GetCausalEventProb(T ′).

After the above has been done for k = 1, ..., η, from

P (e ≥ e1 ← x+), ..., P (e≥ eη ← x+)

and conversion equations, obtain simple causal probabilities,

P (e1 ← x+), ..., P (eη← x+),

which define conditional probabilities by conversion equations,

P (e1|x+, y0), ..., P (eη|x+, y0), where Y = C \X.
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Algorithm 2 summarizes the above computation for CPT evaluation. Lines
1 through 9 obtain conditional probabilities where two or more active causes
are involved. Lines 10 through 12 specify those of a single active cause. Lines
13 and 14 specify those where all causes are inactive.

Algorithm 2. GetCptFromGenNinAndTree(T)
Input: A generalized NIN-AND tree T over e and C, and a set SSCP of simple
single-causal probabilities {P (ek ← cj

i )}, where k > 0, ci ∈ C, and j > 0.
1 for each X = {c1, ..., cn} ⊆ C, where n > 1, do
2 for each (cj1

1 , ..., cjn
n ) = x+, where j > 0, do

3 for each ek, where k > 0, do
4 get generalized NIN-AND tree T ′ over e and X that is consistent with T ;
5 get probabilities of root events of T ′ from SSCP;
6 get probability p of leaf event of T ′ by GetCausalEventProb(T ′);
7 if p is P (e < ek ← x+), obtain P (e ≥ ek ← x+) from p;
8 get P (ek ← x+) (k = 1, ..., η) from P (e ≥ ek ← x+) (k = 1, ..., η);
9 get P (ek|x+, y0) = P (ek ← x+) (k = 1, ..., η), where Y = C \X;

10 for each X = {ci} ⊆ C, do
11 for each cj

i , where j > 0, do
12 P (ek|cj

i , y
0) = P (ek ← cj

i ) (k = 1, ..., η), where Y = C \X;

13 P (ek|c0) = 0 (k = 1, ..., η), where c0 is the inactive instantiation of C;
14 return P (e|C) where e 6= e0;

Example 8. For the generalized NIN-AND tree in Fig. 6 and the single-causal
probabilities specified above, the CPT evaluated by GetCptFromGenNinAndTree
is shown in Table 2.

7. Properties of Generalized NIN-AND Trees

In the following two theorems, we show that generalized NIN-AND trees
model both reinforcement, undermining, and their multi-level mixtures cor-
rectly. Theorem 1 below establishes this relative to a single generalized NIN-
AND tree.

Theorem 1. Let T be a generalized NIN-AND tree with boundary value ek,
where the probability for each root node event is specified in the range (0, 1). Let
P (v) be returned by GetCausalEventProb.

Then P (v) combines the given probabilities according to reinforcement and
undermining expressed by the topology of T , with each generalized direct NIN-
AND gate corresponding to undermining and each generalized dual NIN-AND
gate corresponding to reinforcement, relative to ek.

Proof:
GetCausalEventProb first evaluates the output event for each gate node

whose inputs are root events. If the root events are graded causal successes,
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Table 2: CPT for generalized NIN-AND tree in Fig. 6

P (e0|c0
1, c

0
2, c

0
3) = 1.0 P (e1|c0

1, c
0
2, c

0
3) = 0.0 P (e2|c0

1, c
0
2, c

0
3) = 0.0

P (e0|c0
1, c

0
2, c

1
3) = 0.04000 P (e1|c0

1, c
0
2, c

1
3) = 0.32 P (e2|c0

1, c
0
2, c

1
3) = 0.64

P (e0|c0
1, c

0
2, c

2
3) = 0.24000 P (e1|c0

1, c
0
2, c

2
3) = 0.16 P (e2|c0

1, c
0
2, c

2
3) = 0.6

P (e0|c0
1, c

1
2, c

0
3) = 0.4 P (e1|c0

1, c
1
2, c

0
3) = 0.25 P (e2|c0

1, c
1
2, c

0
3) = 0.35

P (e0|c0
1, c

1
2, c

1
3) = 0.01600 P (e1|c0

1, c
1
2, c

1
3) = 0.21799 P (e2|c0

1, c
1
2, c

1
3) = 0.76600

P (e0|c0
1, c

1
2, c

2
3) = 0.09600 P (e1|c0

1, c
1
2, c

2
3) = 0.16399 P (e2|c0

1, c
1
2, c

2
3) = 0.74

P (e0|c0
1, c

2
2, c

0
3) = 0.22999 P (e1|c0

1, c
2
2, c

0
3) = 0.44 P (e2|c0

1, c
2
2, c

0
3) = 0.33

P (e0|c0
1, c

2
2, c

1
3) = 0.00919 P (e1|c0

1, c
2
2, c

1
3) = 0.232 P (e2|c0

1, c
2
2, c

1
3) = 0.7588

P (e0|c0
1, c

2
2, c

2
3) = 0.05519 P (e1|c0

1, c
2
2, c

2
3) = 0.21280 P (e2|c0

1, c
2
2, c

2
3) = 0.732

P (e0|c1
1, c

0
2, c

0
3) = 0.4 P (e1|c1

1, c
0
2, c

0
3) = 0.2 P (e2|c1

1, c
0
2, c

0
3) = 0.4

P (e0|c1
1, c

0
2, c

1
3) = 0.42399 P (e1|c1

1, c
0
2, c

1
3) = 0.32 P (e2|c1

1, c
0
2, c

1
3) = 0.25600

P (e0|c1
1, c

0
2, c

2
3) = 0.544 P (e1|c1

1, c
0
2, c

2
3) = 0.21599 P (e2|c1

1, c
0
2, c

2
3) = 0.24000

P (e0|c1
1, c

1
2, c

0
3) = 0.15999 P (e1|c1

1, c
1
2, c

0
3) = 0.23000 P (e2|c1

1, c
1
2, c

0
3) = 0.61

P (e0|c1
1, c

1
2, c

1
3) = 0.16960 P (e1|c1

1, c
1
2, c

1
3) = 0.31399 P (e2|c1

1, c
1
2, c

1
3) = 0.51640

P (e0|c1
1, c

1
2, c

2
3) = 0.21759 P (e1|c1

1, c
1
2, c

2
3) = 0.27639 P (e2|c1

1, c
1
2, c

2
3) = 0.50600

P (e0|c1
1, c

2
2, c

0
3) = 0.09200 P (e1|c1

1, c
2
2, c

0
3) = 0.30999 P (e2|c1

1, c
2
2, c

0
3) = 0.59800

P (e0|c1
1, c

2
2, c

1
3) = 0.09751 P (e1|c1

1, c
2
2, c

1
3) = 0.40095 P (e2|c1

1, c
2
2, c

1
3) = 0.50152

P (e0|c1
1, c

2
2, c

2
3) = 0.12512 P (e1|c1

1, c
2
2, c

2
3) = 0.38407 P (e2|c1

1, c
2
2, c

2
3) = 0.49080

P (e0|c2
1, c

0
2, c

0
3) = 0.19999 P (e1|c2

1, c
0
2, c

0
3) = 0.3 P (e2|c2

1, c
0
2, c

0
3) = 0.5

P (e0|c2
1, c

0
2, c

1
3) = 0.232 P (e1|c2

1, c
0
2, c

1
3) = 0.448 P (e2|c2

1, c
0
2, c

1
3) = 0.32

P (e0|c2
1, c

0
2, c

2
3) = 0.39200 P (e1|c2

1, c
0
2, c

2
3) = 0.30799 P (e2|c2

1, c
0
2, c

2
3) = 0.3

P (e0|c2
1, c

1
2, c

0
3) = 0.07999 P (e1|c2

1, c
1
2, c

0
3) = 0.245 P (e2|c2

1, c
1
2, c

0
3) = 0.675

P (e0|c2
1, c

1
2, c

1
3) = 0.09280 P (e1|c2

1, c
1
2, c

1
3) = 0.3492 P (e2|c2

1, c
1
2, c

1
3) = 0.55799

P (e0|c2
1, c

1
2, c

2
3) = 0.15680 P (e1|c2

1, c
1
2, c

2
3) = 0.29819 P (e2|c2

1, c
1
2, c

2
3) = 0.545

P (e0|c2
1, c

2
2, c

0
3) = 0.04600 P (e1|c2

1, c
2
2, c

0
3) = 0.28899 P (e2|c2

1, c
2
2, c

0
3) = 0.665

P (e0|c2
1, c

2
2, c

1
3) = 0.05335 P (e1|c2

1, c
2
2, c

1
3) = 0.40223 P (e2|c2

1, c
2
2, c

1
3) = 0.54440

P (e0|c2
1, c

2
2, c

2
3) = 0.09016 P (e1|c2

1, c
2
2, c

2
3) = 0.37883 P (e2|c2

1, c
2
2, c

2
3) = 0.531

then the gate is a generalized direct NIN-AND gate. By Proposition 2, the
probability of the output event reflects the result of undermining, relative to
ek. Otherwise, the root events are graded causal failures, and the gate is a
generalized dual NIN-AND gate. By Proposition 3, the probability of the output
event reflects the result of reinforcement, relative to ek.

After the evaluation, root nodes, gate nodes connected to them, and links
incident to both no longer participate in further evaluations and can be deleted.
The remaining subtree is still a generalized NIN-AND tree with the depth re-
duced by one. Note that the depth of the tree is the maximum number of gate
nodes on a path starting at the leaf node. GetCausalEventProb repeats the
above computation until the depth reduces to zero. The statement is true for
the evaluation performed at each depth and hence the theorem holds. 2
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Theorem 2 below establishes the soundness relative to a family of consistent,
generalized NIN-AND trees that collectively defines the CPT over an effect and
its causes.

Theorem 2. Let T be a generalized NIN-AND tree over effect e and its set C
of all causes. Let SSCP be a set of all simple single-causal probabilities, each
over an active ek and an active cause of C. Let P (e|C) be the CPT returned by
GetCptFromGenNinAndTree.

Then for every active ek and every active instantiation x+ of X ⊆ C,
P (e|x+) models reinforcement and undermining among elements of X that are
expressed by the topology of T .

Proof:
For each x+, the distribution P (e|x+) is sufficient to determine P (e ≥ ek ←

x+) for k = 1, ..., η. For each ek, P (e ≥ ek ← x+) models reinforcement and
undermining among elements of X that are expressed by the topology of a
generalized NIN-AND tree T ′ according to Theorem 1. Since T ′ is consistent
with T according to GetCptFromGenNinAndTree, P (e ≥ ek ← x+) models
reinforcement and undermining among elements of X that are expressed by the
topology of T . 2

Next, we consider the efficiency issue for acquisition of a generalized NIN-
AND tree model. Acquisition of T , a generalized NIN-AND tree over e and C,
is efficient as T has O(n) nodes and links, where n = |C|. The following theorem
establishes that acquisition of required numerical parameters is also efficient.

Theorem 3. Let C = {c1, ..., cn} be the set of all causes of effect e and the CPT
P (e|C) is to be evaluated by GetCptFromGenNinAndTree. Denote |De| by η +1
and |Di| by βi+1 (i = 1, ..., n). Then the complexity of acquisition for numerical
parameters required by GetCptFromGenNinAndTree is O(η (β1 + ... + βn)).

Proof:
The task of acquisition for numerical parameters is to acquire the set SSCP.

Each simple single-causal probability in SSCP involves a unique combination of
an active ek and an active cause cj

i . Hence, the statement follows. 2

Assuming η = βi for i = 1, ..., n, the above complexity becomes O(n η2) and
is hence linear in n.

The following proposition shows that binary NIN-AND tree models are spe-
cial cases of generalized NIN-AND tree models. That is, a generalized NIN-AND
tree model with all variables being binary degenerates to a binary NIN-AND
tree model.

Proposition 4. Let T be a generalized NIN-AND tree over effect e and its set
C of all causes, where all variables are binary, SSCP be a set of all simple
single-causal probabilities, each over an active ek and an active cause of C.

Then T and SSCP defines a binary NIN-AND tree model.
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Proof:
Denote C = {c1, ..., cn}. First, we consider the causal interaction structure

T . Since all variables are binary, for each root node, the causal event is either
e ≥ e1 ← c1

i or e < e1 ← c1
i . Event e ≥ e1 ← c1

i is equivalent to e+ ← c+
i ,

and e < e1 ← c1
i is equivalent to e− ← c+

i , which are events associated with
a binary NIN-AND tree. This equivalence also leads to the conclusion that
generalized direct and dual NIN-AND gates degenerate to (binary) direct and
dual NIN-AND gates.

When all variables are binary, SSCP consists of

P (e1 ← c1
i ) (n = 1, 2, ..., n).

They correspond exactly to the numerical parameters

P (e+ ← c+
i ) (n = 1, 2, ..., n)

as required by a binary NIN-AND tree model over e and C. Hence, the statement
holds. 2

Given an effect e and its set C of all causes in a practical application do-
main, to construct a NIN-AND tree model, both the NIN-AND tree topology
and causal probabilities of the root events must be obtained. The causal proba-
bilities can be obtained using its relation with conditional probabilities. A direct
approach to elicit the tree topology requires a domain expert to specify a partial
order in which causes interact in terms of either reinforcement (a dual gate on
the tree) or undermining (a direct gate). A number of alternative approaches
have also been developed that either aid topology elicitation with an automated
tool or indirectly elicit the topology [14, 15].

8. Conclusion

In this contribution, we generalize the binary NIN-AND tree causal models
to multi-valued effects and causes. Generalized NIN-AND trees model explicitly
reinforcement and undermining among causes, as well as their mixture at multi-
ple levels, relative to each active value of the effect. Acquisition of a generalized
NIN-AND tree model is shown to be efficient (Theorem 3). Hence, this con-
tribution will allow CPTs of discrete Bayesian networks of arbitrary variables
(binary or multi-valued) to be specified efficiently through the intuitive concepts
of reinforcement and undermining.

The focus of algorithm GetCptFromGenNinAndTree presented is on how to
evaluate CPT from a generalized NIN-AND tree model, rather than how to
make the computation most efficient. Methods have been developed to improve
efficiency in computing CPT from a binary NIN-AND tree model [8]. How to
apply them for efficiency gain in GetCptFromGenNinAndTree requires future
investigation.

In this work, we focus on generalized NIN-AND tree where all root nodes
are single-causal. This is equivalent to an assumption that every pair of causes
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interact according to the success or failure conjunction and independence as
specified by the tree structure. This assumption, however, can be relaxed when
necessary. Future work is needed to formalize the relaxation.
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