Efficient Probabilistic Inference in Bayesian Networks
with Multi-Valued NIN-AND Tree Local Models

Yang Xiang and Yiting Jin

School of Computer Science, University of Guelph, Canada

Abstract

A multi-valued Non-Impeding Noisy-AND (NIN-AND) tree model has linear complexity and is
more expressive than several Causal Independence Models (CIMs) for expressing Conditional
Probability Tables (CPTs) in Bayesian Networks (BNs). We show that it is also more general
than the well-known noisy-MAX. To exploit NIN-AND tree models in inference, we develop a
sound Multiplicative Factorization (MF) of multi-valued NIN-AND tree models. We show how to
apply the MF to NIN-AND tree modeled BNs, and how to compile such BNs for exact lazy infer-
ence. For BNs with sparse structures, we demonstrate experimentally significant gain of inference
efficiency in both space and time.

Keywords: Bayesian networks, causal independence models, noisy-MAX, multiplicative
factorization, NIN-AND tree models, NAT models.

1. Introduction

A Bayesian Network (BN) [2] quantifies the causal strength between an effect andaisses
by a CPT, with the number of parameters being exponential @ommon CIMs such as noisy-OR
[2], noisy-AND [3], noisy-MAX [4], and recursive noisy-OR [5] reduce the number of parameters
to being linear im, but are limited in expressiveness: expressing causal reinforcement only. NIN-
AND tree CIMs can express both causal reinforcement and undermining as well as their recursive
mixtures, with a linear number of parameters. A NIN-AND Tree (NAT) model can be binary (over
binary variables only) [6] or multi-valued [7]. It is shown in this work that multi-valued NAT
models are more expressive than noisy-MAX.

Although CIMs reduce the number of parameters from being exponential to linear, they cannot
be used directly by common BN inference algorithms, e.g., the cluster tree method [8]. A number
of techniques have been proposed to overcome the difficulty, e.g., [9, 10, 11, 12, 13]. One technique
is Multiplicative Factorization (MF) [10] and tensor rank-one decomposition [12] is closely related.
MF has been applied to binary NAT models [13]. However, binary NAT models are not sufficiently
general, limiting the applicability. MF for multi-valued NAT models is developed in this work,
removing this limitation. BNs whose CPTs are expressible by multi-valued NAT models are then
considered. Applying the MF to such BNs allows significantly more efficient inference both in

1This article significantly extends Xiang and Jin [1] as part of the FLAIRS 2016 Proceedings.
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space and in time. We demonstrate up to two orders of magnitude efficiency gain for sparse BNs
experimentally.

The main contributions of this paper are the following. We show that multi-valued NAT mod-
els are strictly more general and more expressive than the well-known noisy-MAX model. We
then develop MFs of four alternative NIN-AND gate models. MF of a NAT model is integrated
from MFs of these gate models. We establish the exactness of the MF through a formal analy-
sis. A computational framework that utilizes the MF for exact probabilistic inference through lazy
propagation is presented. We report our experimental result, where significant efficiency gain in
inference is achieved under the framework.

Sec. 2 covers background on NAT models. Sec. 3 shows that NAT models are more general
than noisy-MAX. The MFs of NIN-AND gates are developed in Sec. 4. The MF of NAT models
is developed in Sec. 5 with the soundness and space complexity analyzed in Sec. 6. How to apply
the MF to NAT-modeled BNs is shown in Sec. 7 with experimental evaluation described in Sec. 8.

2. Multi-Valued NAT Models

We overview multi-valued NAT models [7]. A multi-valued variablas graded if it has a fi-
nite ordered domai®, = {e°, e!, ..., "} (n > 1), where a higher index represents a higher inten-
sity. For example, fever with D, = {e°, ¢!, ¢?} represents conditiongwormal, low fever, high
fever}. We refer to value® asinactiveande?, , ..., ¢” asactive We consider a set of causes and
their effect, all being graded variables. Hence, we ms#ti-valuedandgradedinterchangeably.
We denote the effect by and each cause hy (i = 1,2, ...) of domainD; = {?, ¢}, ..., c"}. We
denote a set of causes By = {c;, ¢z, ...}. The set ofall causesof e is denoted by”, which may
include a leaky variable.

We categorize causal events from three perspectives. A causal event candoessr failure,
depending on whether is rendered active at certain intensity. It candiegle-causabr multi-
causal depending on the number of active causes. It can alsabpleor congregatedepending
on the range of effect values involved.sknple single-causal success«— ¢/ occurs when; = ¢/
(j > 0) causec: = e (k > 0) to occur while every other cause is inactive. Tdaaisal probability
P(eF — ) is

Pl — ) = P(e¥|c, &b, - ¥m # ). (1)
A congregate single-causal succesy e* « cZ occurs whemn; = cZ ( > 0) causect to occur at
valuee® (k > 0) or higher while every other cause is inactive. Its causal probability is

Ple> e — )= Ple>eb|dd, & - Vm #1). (2)

i Um

A multi-causal succesisvolves a setX = {ci, ...,c,} (n > 1) of active causes. Aimple multi-
causal success® — ¢!, ..., c» (ore* «— xT) occurs when causes i collectively caused = ¢*
(k > 0) to occur while every other causg, € C'\ X isinactive. Its causal probability is

Plek — ... ") = Pk, .., & e € C\ X). (3)

n

A congregate multi-causal success> e* « x* occurs when causes i collectively caused
to occur ate® (k > 0) or higher, while every cause il \ X is inactive. Its causal probability is

Ple>eb — ' .. d)=Ple>e|d,....d" &L e e C\ X). 4)

n
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A congregate single-causal failue < ¢* «— ¢/ occurs when; = ¢/ (j > 0) caused: < ¢*
(k > 0) to occur while every other cause is inactive. It is a failure:agils to produce the effect
with intensitye” or higher. Its causal probability is

Ple < éf — ) = P(e < é|c], L - Vm # i). (5)

A congregate multi-causal failure < e* «— c{l,...,cg'; (ore < e* «— z%) occurs when a set
X = {ci,...,ca} (n > 1) of active causes caused< e* (k > 0) to occur while every other cause
cm € C'\ X is inactive. Its causal probability is

Ple<et ' ... d")=Ple<e|d,...,d" & e, €C\X). (6)
When all causes are inactive, casual probability ofrthk causal evenis

P(e* —1) = P(e"c0 : Vi) = { é EZ Ny 8; )

Causal probabilities can be converted between one another, e.g., between congregate and sim-
ple as follows:

n
Ple>ef —z™) ZP@“—x (8)
j=k
A multi-valued NAT model is built upon multi-valued NIN-AND gates. direct gate involves
disjoint sets of caused’y, ..., W,,.. Its input events are > ¢ — wi, ... ,e > ¢F «— w' and its
output event i > e* «— w,...,w?, all being causal successes. Fig. 1 (a) shows a direct gate
exefe—cl exeke—cl| eceke ¢l e<ekecli| e<ele hi e<ele—hi e<ele bl e<ele bl
9, 93
)i i e<el-— hi, h} e<e'-— bi, b
exek-—ci,...cr ()] e<e~—cp,...cw  (b)| exe’~—hi hi bl b} & (©

Figure 1: (a) A multi-valued direct NIN-AND gate. (b) A dual NIN-AND gate. (c) A NAT.

where eachV; is a singleton{¢; }. The causal probability of the output event satisfies

m

Ple > ¢ —wf, .. w)) =[] Ple = ¢ — wy), 9)

m
i=1

where each factor can be obtained from single-causal probabilities and Eqn. (8).
Input events of alual gate aree < ¢f «— w, ... ,e < ¥ « w' and its output event is
e < ef —w, ... wh, all being causal failures, as Fig. 1 (b). The output event satisfies

Ple <ef —wf, ... wh) :HP(e<ek<—w;r). (10)

Causal interactions can be characterized as reinforcing or undermining as defined below.
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Definition 1. Let R = {W;, W, ...} be a partition of a setX of causes ot, R~ C R, and
Y = Uw,cr-Wi;. Sets of causes iR reinforce each other relative to an active valefe(k > 0) of
effect, iff VR~ P(e > e* «— y*) < P(e > €* «— z™). Sets of causes iR undermine each other
relative toe”, iff VR~ P(e > ef «— yt) > P(e > " — ™).

A direct gate models undermining causal interactions, and a dual gate models reinforcing [7]. A
multi-valued NAT consists of multiple gates organized into a tree to express mixtures of reinforcing
and undermining recursively. Causes involved in the root events of a NAT are disjoint. From the
leaf up the NAT, gates at the same level are of the same type and gates at adjacent levels alternate
in types. See the above reference for the general definition.

Example 1. Fig. 1 (c) shows a NAT on surface enhancing, where 1 for all variables. Acidic
surface enhancerg, and h, are more effective when used together. Basic surface enhabcers
andb, work together similarly. When both groups are applied to a product, their effectiveriess
reduced. Inthe NAT;, andg; are dual gates, white ovals signify inverse of events,ansldirect.
From the NAT and single-causal probabilities (four of themR)e'|h], hi, b1, b) can be obtained
processing from the roots to the leaf (see [7] for detailed numerical examples).

As shown in Example 1, each conditional probability is derived from a NAT and the relevant
single-causals. For instanc@(e!|hi, ki, bl, b3) would be derived from a NAT distinct from Fig. 1
(c). Hence, a CPP(e|C) is derived from a set of NATs whose size is exponentia|@h Since
the entire set can be generated from a single NAT where all causes are active, a method has been
developed to comput®(e|C') from the NAT without explicitly generating the set [14]. With this
understood, we associate a CPT below with a single NAT.

As mentioned in Example 1, each value of CPT is computed from single causal probabilities
following the tree order of the NAT. On the other hand, common BN inference algorithms, e.g.,
the cluster tree method [8], are based on direct manipulation of conditional probabilities in CPTs
(rather than single causal probabilities) following the tree order of clusters. This prevents the NAT
model from being usable directly by these inference algorithms. In this work, we develop the MF
of NAT models to overcome this difficulty.

3. On the Expressiveness of NAT Models

We show that a NAT model is strictly more general and expressive than the well-known noisy-
MAX model (Sec. 3.1). We also clarify on some misconceptions that we perceived on NAT models
(Sec. 3.2).

3.1. Equivalence of Noisy-MAX to Dual NIN-AND Gates

We show that NAT models generalize noisy-MAX [4, 15]. In particular, we show that noisy-
MAX models are equivalent to multi-valued dual NIN-AND gate models, and hence are a special
case of multi-valued NAT models.

Theorem 1. Let X = {cy,...,c,} (n > 1) be a set of causes of effecthat interact according
to noisy-MAX. Lety be a dual NIN-AND gate, where each input event involves exactlyone
(: = 1,...,n). Then the causal probability of the output evenya$ identical to that of noisy-MAX.



Proof: What qualifies as a noisy-MAX model is defined by Eqgn. (36) of reference [15]. Specif-
ically, when causes interact according to noisy-MAX, they satisfy the following in our notation,
where0 < k' < nandy; > 0 for each.

Ple<e® —c',..dn) =] Ple< e —d). (11)

i=1
Fork’ < n, Egn. (11) is identical to Eqn. (10) with = ¥’ + 1, m = n, andw; = c{ for eachs.
For k&’ = n, both noisy-MAX and NIN-AND gate result in probability 1 trivially. [

Example 2. Consider a noisy-MAX model (Example 2 [16] with variables renamed) ever
{0,1,2} andcy, ¢, c5 € {0, 1} with the following parameters.

Ple=1lci;=1,c0=0,c3=0)=0.2, Ple=2|c; =1,c0=0,c5 =0)=0.1,
Ple=1lc;=0,c0=1,c3=0) =0.2, Ple=2|c; =0,c0 =1,¢5=0)=0.3,
Ple=1lc;=0,c0=0,c3=1) =04, Ple=2|c; =0,c0=0,c5=1)=0.5.

The CPT from the noisy-MAX is the following.

¢ ¢y c3| Ple=1|ey,eo,c3) | Ple=2|cy,co,c3) | Ple=2|cy,ca,c3)
0O 0 0|10 0 0

0O 0 1|01 0.4 0.5

0O 1 0|05 0.2 0.3

0 1 1005 0.3 0.65

1 0 007 0.2 0.1

1 0 1]0.07 0.38 0.55

1 1 0035 0.28 0.37

1 1 1)0.035 0.28 0.685

Applying Eqgn. (10) to the dual NIN-AND gate models of relevant subsefs, of,, c3} with the
above single-causal probabilities produces exactly the same CPT.

By Theorem 1, a noisy-MAX can always be expressed by a dual NIN-AND gate with exactly
the same parameters. Since a dual gate models reinforcing, so does a noisy-MAX. On the other
hand, a NAT can have direct gates and multiple dual gates, and can model both reinforcing and
undermining as well as their recursive mixtures. Hence, NAT models are strictly more expressive
than noisy-MAX models, as summarized in Corollary 1.

Corollary 1. LetC' be the set of all causes of an effectThen the following holds.

1. Whenever causes (i interact according to noisy-MAX, there exists a multi-valued NAT of
the same parameters as noisy-MAX, such that the @RIC') from the NAT model equals
that of the noisy-MAX.

2. There exist multi-valued NAT models ovémland e, whose CPTP(e|C') cannot be encoded
by any noisy-MAX model ovér ande.



Example 2 illustrates the first statement of Corollary 1, and the NAT in Example 1 is a demon-
stration of the second statement.

A NAT model of a CPT is uniquely defined by, ¢, a NAT, and a set of single-causals. A
distinct CPT (hence a distinct NAT model) is obtained if the NAT or the set of single-causals is
modified. The number of distinct NATs givenis super-exponential in [14] and the noisy-MAX
is equivalent to exactly one of them. Single-causals are real numbers. Hence(garat, the
number of NAT models that satisfy the second statement of Corollary 1 is infinite.

Multi-valued NIN-AND tree models
Generalize on variable domains \ Generalize on causal interactions
Binary NIN—AND tree models Noisy—-MAX models
Generalize on causal interactions \

DeMorgan models Generalize on variable domains

Generalize on causal interactions

Noisy—OR models

Figure 2: Relations among five classes of CIMs.

Fig. 2 provides a unified view on noisy-OR, noisy-MAX, binary NAT, multi-valued NAT mod-
els, as well as DeMorgan models [17]. It reveals that multi-valued NAT models are the gener-
alization of noisy-OR models along two independent dimensions: domain sizes of variables and
causal interactions. When generalization is only on causal interactions, it results in the binary NAT
models. If generalization is only on variable domain sizes, the result is the noisy-MAX models.
The DeMorgan models are intermediate between noisy-OR and binary NAT models, as has been
shown [7].

3.2. Potential Misconceptions on NAT Models

An arbitrary combination of noisy-OR and noisy-AND gates is not equivalent to a NAT. This
discussion refers to noisy-OR rather than noisy-MAX, since noisy-MAX degenerates to noisy-OR
when all variables are binary. Limitation inherent to noisy-OR (other than being binary) cannot be
overcome by noisy-MAX (for instance, the first point below).

First, a noisy-OR gate represents reinforcement, not undermining (see analysis in [6]). Second,
a noisy-AND gate also represents reinforcement only, since a common noisy-AND gate is im-
peding (see [6]). Encoding cause variables through their complements in a noisy-AND gate does
not overcome this limitation as we show below. Supp6ése- {ci, c;}, all variables are binary,

P(e! «— ¢cl) = ¢ > 0, andP(e! « ) = r > 0. A noisy-AND model produces the following
CPT, where the last two equalities in the left equation are the impeding behavior.

P(e'|e}, cy) = P(e'|ey, c) = Pe'le}, c3) = 0, P(e]ey,c3) = q 7> 0.

As more active causes make the effect more likely, the interaction is reinforcing. Suppose we
replace each variable value by its complement. The resultant noisy-AND has the CPT below.

P(6O|C%,C%) = P(60|C(1]76§) = P(€O|C%,Cg) =0, P(60|C(1]70(2]) > 0.
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It is equivalent to the following.
P(e'|c}, e3) = P(e'[e]. ¢) = Ple'|er, c3) = 1, P(e'|e}, &) € (0,1).

The left equation makes each cause deterministic, and the right expression makes the effect active
when all causes are inactive: an unintuitive semantics. If we replace only cause variables by
complements, the resultant noisy-AND model produces the following CPT.

P(e'ler, c) = Ple'|c), c3) = Ple|er, i3) = 0, Ple'le}, c3) > 0.

The left equation makes the effect inactive when all causes are active, and the right inequality
suffers from the same problem above: an unintuitive semantics again. Hence, the noisy-AND
cannot model undermining.

Third, an arbitrary combination of several direct and dual NIN-AND gates does not constitute
a more general representation than a NAT. When several NIN-AND gates are combined arbitrarily,
the topology and causes involved in each root event are not subject to the syntactic restriction of
NATs. The resultant structure does not ensure a meaningful semantics required by a causal model.
On the other hand, the topology of a NAT and influences of its causes are regulated to ensure a
coherent semantics.

4. MF of NIN-AND Gate Models

A NAT model reduces the space of a BN CPT from being exponential to being linear on
However, as explained in the end of Sec. 2, NAT models cannot be directly used by common BN
inference algorithms. To overcome this difficulty, we develop MFs of multi-valued NAT models.
MFs for NIN-AND gates models are defined in this section, and MFs for NAT models are presented
in the next section.

MFs contain auxiliary variables (in addition to effects and causes) and generalized potentials
(with possibly negative values) over these variables. The potentials are so defined that their prod-
uct, after marginalizing out auxiliary variables, is exactly the intended CPT. The product and
marginalization operations, however, can be carried out in flexible orders. Hence, MFs trade cost
of operating on potentials over auxiliary variables with flexibility of computation order. The key
is to minimize the cost while ensuring exactness and order flexibility. Therefore, we develop MFs
according to the criteria below.

1. MF of a NAT model is a graphical model whose graph is consistent with the NAT topology.
2. Auxiliary variables in the MF are as few as possible.
3. Domains of auxiliary variables are as small as possible.

In the following, we develop MFs for NIN-AND gates models that observe these criteria.

4.1. MF of Dual NIN-AND Gate Models
We organize MF of a dual NIN-AND gate model according to a hybrid graph.

Definition 2. TheMF structure of a NIN-AND gate model over effecte {c°, ¢!, ..., "} and its
causes; (i = 1,...,n) is a hybrid graph, whose nodes are labeled byc; (i = 1, ...,n), and
auxiliary variablesd; (j = 1, ...,n). Each link(d;, ¢;) between an auxiliary variable and a cause
is aclink and is undirected. Each linki;, e) is directed.

Each clink is assigned alink potential f(d;,c;). Nodee is assigned d@amily potential
f(dy, ..., d,, e) defined over its family determined by incoming directed links.
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Fig. 3 illustrates the MF structure of a dual NIN-AND gate model.

o Cn
f(q,w, G)
eNe* f(d,...d, e

Figure 3: Hybrid graphical model for MF of a NIN-AND gate.

For example, whem = 2, n = 2, and|D;| = 3 for ¢ = 1,2, the MF has 4 clink poten-
tials f(dy, 1), f(d2, 1), f(di,c2), f(dz,c2) and the family potentiaf (d;, ds, e). Table 1 shows
f(di,c1), f(da,cr) and f(dy, do, €). Each potential table starts with a double line, and the table
f(dy, da, ) splits into two parts. Potential values are showrficolumns. Each table sectioned
by grouping rows according to the value(s) for one or more variables. If potential values are inde-
pendent of a variable, the corresponding section is compressed, e.g., the last sef{idn @f.
Table 2 shows MF potentials in general. We refer to the collection of g€apind the potentials

Table 1: MF potentialg'(di, c1), f(d2, c1) and f(d1, ds, €) of an example dual gate model

d1 C1 f d2 C1 f d1 d2 e f d1 dg e f
0 &1 0 &1 0 0 e |O0]1 0 €]0
0 c|Ple<ele—c)||0 c|Ple<ee—c)|[0 1T &]1]1 0 €]1
0 &|Ple<el—A)||0 |Ple<e2—c)|]0 1 e |-1(1 0 ¢€]|-1
1 |1 1 |1 0 1 e2|0|ll 1 &]O0

1 1 ¢]0

1 1 2|1

Table 2: The clink and family potentialf(d;, c¢;) and f(d1, ..., d,,, ) of MDu

dj C; f line (dl, ceey d777 6) f
0 Cg P(€<€j<—J_):1 1 d; =0, Vj;éidj:1,€:€i_1 1
0 ¢ |Ple<el —c) di=0,Vjud;j=1e=¢e |-1
1
0

2
3 Vidizl,e:e”
4

0 d"| Ple<el M) otherwise

1 C; 1
as the MF of a Dual gate model (MDu). For analysis, we decompose the MF intmkiayer,
consisting of clinks (including end nodes) and their potentials, andiaimdly layer, consisting of
the directed links and the family potential. Auxiliary variables are included in both layers.

In the remainder of the paper, we frequently obtain the product of several potentials over a set
of variables and then marginalize out some variables (may be none), such as the following.

fleser,en) = > fldi,dye) ] fdj.co.

dyyeensdy 1<j<n,1<i<n

We refer to the result asraarginalized potential produg¢MPP). When the relevant set of potentials
is clear from context, we mention the MPP, e.f(¢, c1, ..., ¢,), without elaborating the factor
potentials.



By Theorem 1, MDu is equivalent to MF of noisy-MAX [10, 11], from which Corollary 2 on
the exactness of MDu follows.

Corollary 2. Let MDu be applied to a dual NIN-AND gate model whose CPP(8g|cy, ..., c;,).
The MPPf (e, cy, ..., ¢,,) from potentials of the MDu satisfie§e, ¢y, ..., ¢,) = P(e|cy, ..., ¢p).

MDu has the same numerical parameters as the MF of noisy-MAX, but differs from the previ-
ous work [10, 11] as follows. The MF in [10] is not defined as a graphical model. The MF in [11]
is defined as a DAG model where potential assignment does not follow the family convention. We
define MDu as a hybrid graphical model with a rigorous syntax, where a potential is assigned to
each clink when the link is undirected or to the family when links are directed.

Def. 3 specifies a property of the link layer, where the MPP is obtained from the layer potentials.
It is used later to show exactness of MF of a NAT model. Itis phrased to allow both singiel §
and multiple causes. Its statement 1 abuses the notd&tien< e/ « ci,...,c) slightly for
simplicity, as some or all causes listed may be inactive, e.g., the first row in Table 2 (left).

Definition 3. [MDu link potential trait] Let {ci, ...,cx} (kK > 1) be a set of causes of MDu and
{d1,...,d,} be a set of auxiliary variables. An MPP(d,, ..., d,, c1, ..., ¢;;) from the link layer of
the MDu satisfies the MDu link potential trait, if the following holds.

1. 10f Elj dj =0 andvi;éj d; =1, thenf(dl, “‘7d777 Cq, ...,Ck) = P(€ <el Cq, ...,Ck).
2. 1f V; d; =1, thenf(dl, ...,dn,Cl, ...,Ck) = 1.

We refer to each statement in Def. 3 asubtrait We refer to the collection of statement
conditions (the premise in each subtrait) as preconditions of the trait. Prop. 1 shows that the above
property holds for MDu relative to a single cause.

Proposition 1. Letc be a cause in a dual NIN-AND gate model. The product of clink potentials
overc from the MDu of the model(d;., ..., dy, ¢) = [[,<,, f(di, ¢), satisfies the MDu link poten-
tial trait (Def. 3) with & = 1. o

Proof: From Table 2 (left), the first subtrait holds, since the fagtat;, c) is from the section
whered; = 0, and all other factors are from the section whéye- 1 with value 1.
The second subtrait holds, since all factors are from the section wiére:) = 1. O

Prop. 1, in fact, covers only products that satisfy preconditions in Def. 3. Prop. 2 says that these
products are all that matter. The other products everake no contribution tg (e, cy, ..., ¢,,) for
MDu.

Proposition 2. Letc be a cause in a dual NIN-AND gate model, and a product of clink potentials
over ¢ from the MDu of the model bg(di, ..., d,, ¢) = [ <<, f(di;c). Thenf(d,...,dy,c)
contributes tof (e, ¢4, ..., ¢,), only if preconditions of the MDu link potential trait (Def. 3) hold.

Proof: We havef(e,c1,...,cn) = 324, o fdr,.idy ) IT e, f(dr, ..., dy, ;). We show that
when the two preconditions do not hold for some ¢;, the fa_ct_orf(dl, ...,dp, e) is zero, blocking

the productf(ds, ..., d,, c). This can be seen from Table 2 (right). If the first precondition does
not hold, lines 1 and 2 are ruled out. If the second precondition does not hold, line 3 is ruled out.
Hence,f(d:, ..., d,, e) is zero by line 4. [



4.2. MF of Direct NIN-AND Gate Models

We develop MF of a direct gate model with the same hybrid strucfire Fig. 3, but each
d; € {0,1,2}. Table 3 shows 2 clink potentials and the family potential whes 2, n = 2,

Table 3: MF potentialg(di, ¢1), f(d2, c1) andf(dy, dz, €) of an example direct gate model

dy ci|f dy ci|f di dy e | flldi dp e | f
0 &1 0 &1 0 0 e |[Of1 1 )1
0 c|Ple>ete—c)||0 c|Ple>et—c)|[0 1 €f[-1||1 1 |0
0 & |Ple>et—A)||0 E|Pe>e2—c)||0 1 |11 1 |0
1 C1 1 1 C1 1 0 1 62 0 1 2 € 0
2 A1 2 A1 0 2 ¢ [0]2 0 )1
2 o 2 o 1 0 &f[0fj2 0 €10
2 210 2 210 1 0 e|-1)2 0 ¢]-1
1 0 e 1]2 1 e |0
2 2 e |0
Table 4: The clink and family potential&d;, ¢;) and f(d1, ..., d,, e) of MDi

dj C; f dj C; f line (dl, ceey d777 6) f

0 Cg 1 2 Cg 1 d; = 0, vj;,gl dj =1, e= e~ -1

0 CZ1 P(626j<—cll) 2 CZ1 0 diZO,Vj¢idj:1,6:6i 1

VZ- dl = 1, € = 60 1
d1:2, vi>1di:0,€:€0 1
d1 = 2, VZ->1 dl = 0, e=-c¢e -1
otherwise 0

0 "|Ple>ed—c" |2 |0
1 C; 1

DU, WNPE

and|D;| = 3 fori = 1,2, with f(dy, c2) and f(ds, c2) left out. Note thatf(d; = 0,c) = 1 is

not equal toP(e > ¢’ « ¢}) = 0. Hence, unlike MDu,f(d; = 0,¢;) is not made entirely of
probabilities. We refer to the clink potential pseudo-probabilistic This is necessary as a value

0 would block other potential values in a product. To ensure exactness of MF (Theorem 2 below),
eachd; increases the domain size by 1 relative to MDu. Table 4 shows MF potentials in general.
We refer to the collection of grapi and the potentials as the MF of a Direct gate model (MDi).
Theorem 2 shows its exactness. The space complexity is discussed in Sec. 6.

Theorem 2. Let MDi be applied to a direct NIN-AND gate model whose CPPig|cy, ..., ¢,).
The MPPf (e, cy, ..., ¢,,) from potentials of the MDi satisfieg(e, ci, ..., c,) = P(e|cy, ..., cn)-

Proof: The MPPf (e, c1,....cn) = 224, a4 fdi, .. dn€) [1i<j<p1<icn f(dj, ci) is defined from
potentials in Table 4. Consider the prody¢t);, c1, ..., ¢,) = [ [,<,<,, f(d;, c;). If any ¢; is active,
by Table 4 (sectiod; = 0) and Eqn. (9), we havé(d; = 0, ¢y, ...,c,) = P(e > ¢ « zt), where
zt denotes all active;. Otherwise (eacl; is inactive), f(d; = 0,¢1,...,¢,) = 1 by row 1 of

Table 4. Ford; = 1, we havef(d; = 1,ci,...,c,) = 1 from the last row of Table 4. Faf; = 2,
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Table 5: Summary otf(d;, c1, ..., ¢,)
f(dj, Cly.nny Cn)
dj | Jeici > Ve =Y
0 |(O)Ple>ed—z)|(4)1
1|21 (5)1
2 1 (3)0 (6) 1

we havef(d; = 2,¢1,...,c,) = 0 if any ¢; is active andf(d; = 2, ¢4, ..., c,) = 1 otherwise, from
Table 4. This is summarized in Table 5.

The MPP becomeg(e, c1,...,cn) = >4 4 f(di,..;dy,e) fdi,cr,.ycn). f(dys cay oy cn),
wheref(ds, ..., d,, e) selects product$(d;, c1, ... cn) - f(dy, c1, ..., ¢,) for summation.

We consider two mutually exclusive and exhaustive cases: (1) spimactive, and (2) each
is inactive. Under case (1), we have the following intended causal probabilities, Wkere < 7

and justifications refer to Table 4 (right). Their derivations are explained after the equations.

fe cr,.yen)= 1—Ple>e! «zt) =P« 2") (lines3and1) (12)
fle¥ cr, . en) = Ple>ek «—xt) — Ple > eFt! «— zt)

= P(eF «— z7T) (lines 2 and 1) (13)
fle’ ey, .ycn) = Ple>e"«— xt) = P(e" « z7) (line 2) (14)

For Eqn. (12), all product$(ds, c1, ..., cn)...f(dy, 1, ..., ¢,,) are zeros if anyl; = 2 by Table 5
(3). Line 3 of Table 4 (right) yields 1. The product with = 0 and all otherd; = 1 yields
—P(e > e! «— z1) by line 1 of Table 4 (right) and Table 5 (1). All remaining products are zeros by
line 6 of Table 4 (right). Hence, Eqgn. (12) holds. For Egn. (13), line 2 of Table 4 (right) and Table 5
(1) yield P(e > e* « z*). Line 1 of Table 4 (right) and Table 5 (1) yield P(e > e**! «— z7T).
For Egn. (14), line 2 of Table 4 (right) and Table 5 (1) yigide > e «— z ™).

Under case (2), all product§(d, c1, ..., ¢,)... f(dy, c1, ..., ¢,) €qual 1 by Table 5 (4), (5) and
(6). Hencef(ci, ..., cn ) = 3y, d f(d,...,d,, e) is completely determined by Table 4 (right).

.....

We have the following intended causal probabilities.

fe e, .,cn)= —14+14+1=1=P(e" —1) (lines1,3and4)
fleF cry.en)= 1—1=0= P(e¥ 1) (lines 2 and 1)
fle" ci,.yen) = 1—=1=0= P(e? 1) (lines 2 and 5)

It then follows thatf (e, c1, ..., ¢,) = P(e|ci, ..., cn). O

Def. 4 specifies a property of the link layer of MDi, where the MPP is obtained from layer
potentials. It is used later to show exactness of MF of a NAT model. It is phrased generally to
allow both single and multiple causes.

Definition 4. [MDi link potential trait] Let {ci,...,cx} (K > 1) be a set of causes of MDi and
{d1,...,d,} be a set of auxiliary variables. An MPP(d,, ..., d,, c1, ..., ¢;;) from the link layer of
the MDi satisfies the MDi link potential trait, if the following holds.

1. If 3,d; =0,V d; = 1, and some; is active, then

fdy,..idy ey .oycx) = Ple > € ¢y, ..., cp).
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2. If 3;d; =0,V,4; d; =1, and each; is inactive, thenf(ds, ..., d,, c1, ..., cx) = 1.
3. If V; d; =1, thenf(dl, ...,dn,Cl, ...,Ck) = 1.
4. If dy =2, V51 d; =0, and each; is inactive, thenf(ds, ..., d,, c1, ..., c;) = 1.

Prop. 3 below shows that the above property holds for MDi relative to a single cause.

Proposition 3. Letc be a cause in a direct NIN-AND gate model. The product of clink potentials
overcfrom the MDi of the modelf (di, ..., d, ¢) = [ ], <,<, f(di, ¢), satisfies the MDi link potential
trait (Def. 4) withk = 1. o

Proof: All subtraits follow from Table 4 (left). We refer to the 3 sections wheye= 0,1,2 as
section 0, 1 and 2, respectively. The first subtrait is derived from rows of section 0 other than the
first row and section 1. The second subtrait is from the first row of section 0 and section 1.

The third subtrait follows from section 1. The fourth subtrait is derived from the first rows of
sectionsOand 2. [

Prop. 3 covers effectively only products that satisfy preconditions of Def. 4. Prop. 4 says that
these products are all that matter. The other products oveake no contribution to the MPP
f(e,c1, ..., c,) of MDi.

Proposition 4. Letc be a cause in a direct NIN-AND gate model. The product of clink potentials
over ¢ from the MDi of the modelf(ds, ....d,,c) = HKM7 f(d;, ), contributes to the MPP
f(e,c, ..., c,) of the MDi, only if preconditions of the MDi link potential trait (Def. 4) hold.

Proof: We show that when the preconditions do not hold, either the fgctar, ..., d,, e) in the
MPP is zero, blocking produdt(d,, ..., d,, ¢), or f(dx, ..., d,, ¢) is zero. This is seen from Table 4
(right). The first two preconditions combine into the conditidnd; = 0 A V,; d; = 1. If it does
not hold, lines 1 and 2 are ruled out. If the third precondition does not hold, line 3 is ruled out.
The fourth precondition has 3 subconditions. If the first two do not hold, lines 4 and 5 are ruled
out. If the first two subconditions hold but the third does not, the prod(ét, ..., d,, ¢) is zero by
Table 4 (left) from section 2 (rows other than the first).
In all other casesf(ds, ..., d,, e) is zero by line 6 of Table 4 (right). O

5. MF of NAT Models

We develop the MF of NAT models by integrate NIN-AND gate models. We explain why the
stand-alone gate models presented above must be extended when they are embedded in a NAT
model. We then extend them into 4 distinct gate MFs as components of a NAT MF.

5.1. Overview

A nontrivial NAT has at least two NIN-AND gates, e.g., Fig. 4 (a) and (c), where event labels
are simplified and ovals into gates are omitted. The MF of a NAT model consists of a hybrid graph
G and a collection of potentials defined over each undirected link and each fandilyTime graph
G isintegrated from graphs of gate MFs according to the topology of the NAT, as shown in (b) and
(d). For instance, gatg, in (a) induces the subgraph spannifig, c, a1, as, b} in (b). The child
variable from the MF of the leaf gate is still referred to as ¢ffectvariable and labeled by, e.qg.,
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the leaf gatey, in (a) and (c). Child variables from MFs of other gates are referred iotasal
variables and labeled differently. For instance, the child variable of Mlfam (a) is labeled as

in (b). The graph= of the MF for a multi-valued NAT differs significantly from the graph of MF
for a binary NAT [13], in that the latter is a tree while the former is multiply connected.
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Figure 4: (a) A 2-gate NAT. (b) MF graph of (a). (c) A 4-gate NAT. (d) MF graph of (c).

Since( is integrated according to the topology of the NAT, the input-output direction of the
NAT is maintained by the directed links i@. Hence, for each child node fd, its ancestor sub-
graph (containing the node and its ancestors) can be uniquely defined. For instance, the ancestor
subgraph ob, in Fig. 4 (d) is the subgraph spanned §yi, co, a1, as, by, c3, dy, d2, bo}. We also
refer to it as thencestor subgraph with leaf. We refer to the collection of an ancestor subgraph
with leaf z and potentials assigned to its links and families asstit@VIF with leafz.

In graphd, the subgraph induced by a gate is identical to the graph of the MF for a standalone
gate. Due to several factors, however, variable domains, link potentials, and the family potential
associated with the subgraph may differ from those associated with the MF of a standalone gate.
First, an undirected link, e.g{d;, ) in Fig. 4 (b), may connect an internal variatdle It is thus
called anlink and its link potential must be defined differently from that of a clink. Second, gates
in a NAT are located at different levels. The leaf gate is at level 1, g.an,(a). A gate feeding the
leaf gate is at level 2, e.gy; in (2). The MF of a gate must be adjusted according to its level. For
instance, the MF of a dual gate at level 2 is more sophisticated than that of a leaf dual gate. This is
because the former feeds into a gate at the next level while the latter is terminal.

Third, all gates at the same level have the same type (dual or direct) and gates at adjacent levels
differ in types [18]. Hence, a dual gate at level 2 receives input from direct gates at level 3, and
feeds into the direct leaf gate at level 1. The MF of a gate must be adjusted according to the gate
from which it receives input and the gate that it feeds into.

Fourth, a gate in a NAT may receive input from both clinks and ilinks. For instance, the MF
of ¢, in Fig. 4 (b) receives input from clink&:;, di) (k = 1,2) as well as from ilinks(b, d.). For
the family potential ovefd,, ds, e} to work with both types of input uniformly, the product of po-
tentials over(c;, a;), {a1, az, b}, and(b, di,), after marginalizing oufa, as, b}, must be equivalent
(syntactically and semantically) to the product of potentials dvgrdy). For example, assume
that the leaf gate, in Fig. 4 (a) is direct and is dual. Recall from Sec. 4.2 that a clink potential
of a direct gate is pseudo-probabilistic. To render it probabilistic (as in Theorem 2), the domain
size of auxiliary variables is increased from 2 in MDu to 3 in MDi. Here, output from MF of the
dual gatey, is probabilistic (Sec. 4.1). To be equivalent to clink potentials dverdy ), the output
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needs to be rendered pseudo-probabilistic. As a result, the output vdriablg needs to have a
domain size ot plus one, which will affect both the family potential for the MF of ggteand the
ilink potentials for the MF of gate;.

Due to the above factors, we develop 4 distinct gate MFs for a NAT model: MDu enhanced
with ilink potentials, MDi enhanced with ilink potentials, Extended MDu (EDu), and Extended
MDi (EDi). A particular gate in a NAT is assigned one of the MFs depending on its gate type (dual
or direct) and its level in the NAT. The rule of assignment is shown in Table 6. For example, if

Table 6: Rule of MF assignment for NIN-AND gates

gate MF
gate level | dual direct
3 or higher| EDu EDi
2 EDu MDi
1 MDu MDi

of Fig. 4 (c) is direct, the MF assignment for the gatesjis MDi; g,: EDu; g3: EDi; g4: EDuU). If
g1 is dual, the MF assignment ig,( MDu; g.: MDi; g5: EDu; g4: EDI).

Each gate MF consists of 4 types of variables. We denote an input cause variabbnlpput
internal variable by, an auxiliary variable by, and the output (child) variable byif not e. Their
domain sizes depend on the gate MF. In MDu for dual gdtéms the domain size efandd is
binary. In EDu is ternary, and andh have the domain size efplus one. In both MFs for direct
gates) has the domain size efplus one due to input from EDu, antis ternary. In MDi,h has
the domain size of. In EDIi, i has the domain size efplus one. This is summarized in Table 7.

Table 7: Domain sizes for variablésd andh in a gate MF

domain size
var| MDu EDu MDi EDi
n+1l n+2 n+2 n+2
2 3 3 3
n+2 n+1 n+2

IS STIRS

In MDu, MDi and EDi, d has the same domain size as in the MF of corresponding standalone
gate. For each clinke, d), assign the clink potential accordingly. In EDu, extend the clink potential
of MDu with f(d = 2,¢) = (1,0, ...,0). Below, we describe each MF focusing on ilink and family
potentials. We illustrate the potentials fdb.| = n + 1 = 3 and then present them in general.

5.2. MDu

The ilink potentialsf (d;, b) for | D.| = 3 are shown in Table 8.

If |D,| increases by 1, each section (with the sainealue) of f(d;, b) has another row, and
another link potentialf (ds, b) is needed, whose first section(is 1, 1,0). The general ilink po-
tential of MDu is shown in Table 9. The general clink and family potentials of MDu are shown in
Table 2.
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Table 8: The ilink potentialg(d;, b) and f(d2, b) of an example MDu, and their product

di b | f dy b | f di dy | f(di,d2,0%) | f(di,da,b") | f(di,dp, %)
0o |1 0 i1 0O 0|1 0 0
0 1|0 0O |1 0O 1|1 0 0
0 »|0 0 |0 1 0|1 1 0
1 b |1 1 b |1 1 1|1 1 1
Table 9: The ilink potentiaf (d;,b) (j = 1, ...,n) of MDu

line | (d;,b) f

1 dj=0,b= RN e ]

2 d; =0, b=10,..,b" 0

3 |di=1 1

5.3. EDu

In EDu, each auxiliary variablé; has the domain size 3. Table 10 shows ilink potentials
f(d;,b) and family potentialf(d;, ..., d,, h) for |D.| = 3. The f(d;,b) extends that of MDu (Ta-
ble 8) by adding one row on each section and a new section. The row added to the first section is
1, the row added to the second section is 0, and the new sectioniso, 1).

Table 10: The ilink and family potentialf(d;, b), f(d2,b), andf(d;, dz, h) of an example EDu

d b |f d, b |f di do h | flldi do h | f
0 |1 0 |1 0 0 A |O|l1 1 &°JO
0 |0 0 |1 0 1 m[ 1)1 1 A]O
0 |0 0 |0 0 1 A]-1|l1 1 A|1
0 |1 0 »¥|1 0 1 A|o0|1l 1 R|O
1 |1 1 |1 0 1 m|olll 2 n|O
1 |1 1 b1 0 2 h|0]l2 0 A1
1 2|1 1 2|1 1 0 Al o0ll2 0 A'|O
1 »¥|0 1 »¥|0 1 0 A 12 0 Rr*|1
2 |0 2 |0 1 0 A2|-1]l2 0O Ar*| 1
2 b0 2 b0 1 0 R|lo0l|2 1 KO
2 1|0 2 1|0 2 2 h|O
2 vl 2 vl

The f(ds, ..., d,, h) extends that of MDu (Table 2) by adding one row of 0 on each section and
new sections wheré; = 2. The new sections are all zeros, except the sectiofidpr= 2,d; =
0,...,d, = 0)is (—1,0,...,1,1).

Each clink potential extends that of MDu (Table 2, left) with the additional secfigf) =
2,¢;) = (1,0,...,0). The general clink, ilink and family potentials of EDu are shown in Table 11.
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Table 11: The clink, ilink and family potential&(d;, ¢;), f(d;,b) and f(d1, ..., d,,, ) of EDu
d i line | (d;,0) i
0 ¢ Ple < e « ¢;) 1 dj=0,b=0" . 00" ot | 1
1 C; 1 2 dj = 1, b:bo,...,bn 1
2 & 1 3 dj:2,b:b77+1 1
2 >0 4 otherwise 0

line | (di,...,dy, h) f
1 d; =0, vj;,gl dj =1, h= hi=t 1
2 d; =0, Vj#dj:l,h:hi -1
3 Vid; =1, h=~h" 1
4 di =2, Vis1d; =0, h =h° -1
5 di =2, Vis1d; =0, h=h" A" | 1
6 otherwise 0
5.4. MDi

The ilink potentialsf(d;, b) for |D.| = 3 are shown in Table 12. IfD.| increases by 1, each

Table 12: The ilink potentialg(d;, b) and f(ds, b) of an example MDi or EDi

di b [ fllde b [ f|di b |f] [dy b |f
0 o1 #[1][2 |0 0 |0
0O »l2|/1 |12 b0 0O |0
0O »|1(1 »¥|1]2 »|O0 0 »|1
0o »|1|/1 |02 |1 0 |1

Table 13: The ilink potentiaf (d;, b) (j = 1,

di b | fl[ds b |7
1 0|12 |0
1 b|1]2 |0
1 »|1]2 ®|o
1 v¥|ol|2 |1

line | (d;,b) f
1 dj=0,b=0b,.,0"" |1
2 dj=1,b="08"..0" 1
3 dj =2, b=pmtt 1
4 otherwise 0

..., ) of MDi and EDi

section of f(d;,b) has another row, and another potentiélls, b) is needed. The first section
of f(dy,b)is (0,1,1,1,1) and that off(ds,b) is (0,0,0,1,1). The second section gf(d;, b) is
(1,1,1,1,0) and the third section i§), 0, 0,0, 1). The general ilink potential of MDi is shown in
Table 13. The general clink and family potentials of MDi are shown in Table 4.

5.5. EDi

For |D.| = 3, ilink potentials f(d;, b) are identical to those of MDi in Table 12. The family
potential f(d1, ..., d,, h) is shown in Table 14. Relative to MDi, the domain sizehds increased
to | D.|+ 1. The family potential is extended accordingly from that of MDi (Table 4) by adding one
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row of 0 on each section, except the row added to seciipr= 2,d, = 0,...,d,, = 0) is 1. The

Table 14: Family potentiaf (d;, do, h) of an example EDi

G d b 1 f[di & h | f][d do h [f|[d do b S
0 0 h|0||0 2 n|oO|[T 1T A[1|[2 0 A1
0 1 °|1||1 0 A°[0||1 1 A|0||2 0 n'|oO
0 1 Al 1|1 0 A |-1||1 1 R|O||2 0 |-l
o 1 r2|oll1 0 m2|1||1 1 m|0o||2 0 m|1
0 1 ml|ol||1 o m|o|[1T 2 K|0|[2 1 n|O

2 2 |0

general ilink and clink potentials of EDi are shown in Tables 13 and 4, respectively. The general
family potential of EDi is shown in Table 15.

Table 15: The family potentiaf (d., ..., d,,, h) of EDi
line | (di,...,dy, h) f
1 d; =0, vj;,gl dj =1, h= hi—t -1
2 di:(),vj#dj:l,h—hi 1
3 Vidi=1, h="n 1
4 di =2, Vis1di =0, h=h°, k71 | 1
5 dy=2,V;~1d; =0, h=~h" -1
6 otherwise 0

6. Exactness and Complexity of MF of NAT Models

We analyze main properties of the MF of NAT models. Most of this section is devoted to
the exactness and the last subsection analyzes complexity. Since the MF of NAT models was
integrated from four gate MFs (last section), we analyze main properties of gate MFs and then
establish exactness of the MF of NAT models. When analyzing a gate MF, we must consider the
case, where all inputs are cause variables (referredterasnalinput), and the case, where some
inputs are internal from other gates. From Table 6, in a NAT model, only EDu, EDi and MDi can
have terminal-only inputs. They can have inputs from other gates as well. MDu, however, must
have inputs from other gates (unless the NAT is trivial: a single gate). Properties of MDu and MDi
with terminal inputs only have been analyzed in Sec. 4. Here, we analyze the following in that

order.
EDu

2. Output property with ilinks from EDi

EDi

2. Output property with ilinks from EDu

MDi Output property with ilinks from EDu
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MDu Output property with ilinks from MDi

The existence of four distinct gate MFs has a cost in establishing exactness when they are
interacting within a NAT model, as will be seen below. It is conceivable that by making domain
sizes ofb, d andh in MDu and MDi the same as those of EDu and EDi, {a$ 2, 3, andn +
2, respectively), the number of distinct gate MFs may be reduced to two and the corresponding
analysis may be simpler. Following the criteria stated in Sec. 4, we have instead made each gate
MF as space-efficient as possible (e.g., domain sizeMDu is smaller than that in EDu) even
though this increases sophistication in analysis.

Consider a subMF with leaf variable If h belongs to an EDu, we refer to the subMF as an
EDu-based subMF. For instance, if leaf gatan Fig. 4 (c) is direct, the MF for gate, is EDu.

The subMF with leaf variablé; in (d) is an EDu-based subMF. It includes the ancestor subgraph
with leaf b3 and potentials associated with all undirected links and families in the subgraph. When
analyzing the output property of EDu, the focus is the output property of an EDu-based subMF.
The similar naming and focus of analysis apply to EDi, MDi and MDu as well.

6.1. Output Property of EDu

Our analysis aims to establish that an EDu-based subMF has the output property specified in
Def. 5.

Definition 5 (EDu output potential trait). Let {ci,...,cx} (k > 1) be a set of causes aridbe
the output variable of EDu. An MPR(h, ¢y, ..., ¢x;) Satisfies the EDu output potential trait if the
following holds.

1. If h < A" and some;; is active, thenf (h, ¢y, ..., ck) = P(e|cy, ..., ck).
2. If h = h"! and some; is active, thery(h, cy, ..., ;) = 0.
3. If h < k" and each; is inactive, thenf(h, ¢y, ..., cx) = 0.
4. If h > h" and eackh; is inactive, thenf(h, ci, ..., c;) = 1.

The subtraits 3 and 4 show that the above trait is pseudo-probabilistic, Bjace e¢” — 1) =
landP(e > e" 1) = 0. This is necessary as EDu feeds into MDi or EDi.

In the following, we first analyze an EDu-based subMF made of the EDu only (no ilinks).
Theorem 3 shows that the above property holds in such a subMF. In the theorem, eadit wdlue
h corresponds to the valué of ¢ if 0 <7 <.

Theorem 3. Let EDu be applied to a dual NIN-AND gate model whose CPP(s|cy, ..., c,).
The MPPf(h, ci, ..., ¢,) from potentials of the EDu satisfies the EDu output potential trait (Def. 5)
with k& = n.

Proof: The MPPf(h, c1,....;cn) = 324, o f(d,oidy, ) [T <<y 1<icn f(dj, i) is defined from
potentials in Table 11 (top left and bottom). Consider prodi(a;, c1, ..., ¢,) = [[,<;<,, f(dj, ).
From Table 11 (top left), we havg(d; = 1,ci,...,¢,) = 1. If someg; is active, we havef (d; =
0,c1,...,cn) = Ple < € « ) by Eqgn. (10), wherez™ denotes all active;, and f(d; =
2,c1,...,¢,) = 0. If eache; isinactive, we havg (d; = 0, ¢y, ..., ¢,) = 1, sinceP(e < e/ «—1) =1
by Eqn. (7), andf(d; = 2, ¢4, ..., ¢,) = 1. Thisis summarized in Table 16. The MPP now becomes

f(h, Cq, ...,Cn) = Zdl dy f(dl, “‘7d777 h)f(dl,cl, ...,Cn) f(dn,cl, ...,Cn), Wheref(dl, “‘7d777 h)

.....
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Table 16: Summary orfi(d;, c1, ...,cn) (j = 1,...,m)

f(dj7 Ciy.-ry Cn)
dj | Jeic; > Ve e =)
0 |(DPle<el —zh) | (4)1
1 @1 (5)1
2 [ (3)0 6) 1

selects productg(dy, 1, ..., ¢,)... f(dy, c1, ..., ¢,,) fOr summation. We consider the two cases: (1)
some; is active, and (2) each) is inactive.

Under case (1), it = %, f(di,...,d,, h) is non-zero by lines 1 and 4 of Table 11 (bottom).
However,f(d; = 2, ¢y, ..., ¢,) = 0 by Table 16 (3). From Table 16 (2) and (1), we have

f(R% cryven) = f(di =0,1,.... 1,k f(dy = 0,¢1,....¢cp) = Ple < e« aT) = P(e” «— z™).

If h = h", f(di,...,d,, h) is non-zero by lines 2, 3 and 5 of Table 11 (bottom). By Table 16 (3),
f(dy = 2,¢4,...,¢,) = 0. From Table 16 (2) and (1), we have

f(h" cry.en) = f(1,...,1,d, =0,h")f(d,, = 0,¢1, ..., ) + f(L,..., 1, A7)
= —Ple<e’—z")+1=Ple"—z").

If h = h*with0 < k <, f(dy,...,d,, h) is non-zero by lines 1 and 2 of Table 11 (bottom). From
Table 16 (2) and (1), we have

f(R* cr,oven) = F(1, L deer = 0,1, .., 1L, A" f(dryr = 0, ¢, ..., )
+ f(1,..,1,d,=0,1,...., 1, A" f(dp = 0,c1,..., Cn)

= Ple<e™gh) - Ple<e «am) = Plef — 2™).

Hence, from Eqn. (3), the subtrait 1 holds.
If h = h"*Y thenf(ds, ..., d,, h) is non-zero by line 5 of Table 11 (bottom) whete= 2. As
f(dy =2,c1,...,c,) = 0 by Table 16 (3), we hav¢(h"*, ¢y, ..., ¢,) = 0, which is the subtrait 2.
Under case (2)f(d;,c1,...,c,) = 1 by Table 16 (4), (5) and (6). The MPP now becomes
flhocr,oen) = 24 d f(dy,...,d,, h). Forh < h", lines 1, 2 and 4 in Table 11 (bottom) are

.....

non-zero. Ifh = h°, by lines 1 and 4, we have
f(R%,c1,.yen) = f(di =0,1,...,1,h°) + f(dy = 2,0,...,0,h") =1 -1 =0.
If h =h*with0 < k < n, by lines 1 and 2, we have
f(R* cr,oven) = f(, L, dyr = 0,1, ., L,AR) + f(1,...,1,dp = 0,1,...,1,h") =1 -1 =0.

Hence, the subtrait 3 holds.
Forh > k", lines 2, 3 and 5 of Table 11 (bottom) are non-zerch ¥ A", we have

Fh 1y oe) = F(1, 1, dy = 0, BN+ f(1, .., 1, ")+ f(dy = 2,0,...,0,h") = —1+1+1 = 1.
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If h = A", by line 5, we havef(h" cy,...,c,) = f(dy = 2,0,...,0,h7™!) = 1. Hence, the
subtrait 4 holds. O

We extend the two layers of MFs of standalone gates to subMFs. For an EDu-based subMF, the
family layer is the same as before, made of the family of the leaf variable and its family potential.
The link layer includes the rest of the ancestor subgraph and the associated potentials. In Fig. 4 (c),
if g, is direct, the subMF with leaf; in (d) is EDu-based. Its link layer consists of the subgraph
including and above nodés andhs, as well as relevant potentials. Def. 6 summarizes a property
of the link layer in terms of an MPP defined over its potentials. It consists of 3 subtraits with the
first two being identical to the MDu link potential trait (Def. 3).

Definition 6 (EDu link potential trait). Let {cy,...,cx} (kK > 1) be a set of causes of an EDu-
based subMF andd;, ...,d,} be a set of auxiliary variables of the EDu. An MPP from the link
layer of the subMFf(dy, ..., d,, c1, ..., ¢x) satisifies the EDu link potential trait, if the MDu link
potential trait (Def. 3) holds as well as the following.

3. If dy =2,V,51 d; =0, and eachy; is inactive, thenf(di, ..., d,, c1, ..., ;) = 1.

Prop. 5 shows that the above property holds for an EDu-based subMF made of the EDu only
(no ilinks).

Proposition 5. Letc be a cause in a dual NIN-AND gate model. The product of clink potentials
overcfrom the EDu of the modef(d;. ..., d;, ¢) = [],,, f(di, ¢), satisfies the EDu link potential
trait (Def. 6) withk = 1. o

Proof: The clink potentials are defined in Table 11 (top left). We refer to sections wheré), 1, 2
as sections 0, 1, 2, respectively.

The subtrait 1 holds, since the factffd;, c) is from section 0 and all other factors are from
section 1. The subtrait 2 holds as all factors are from section 1. The subtrait 3 follows from the
first row of section 2 and from section 0, whePée < ¢' «— 1) =1 (i > 1). O

Prop. 5, in fact, covers only products of clink potentials that satisfy preconditions of the EDu
link potential trait. Prop. 6 shows that these products are all that matter. It plays a similar role as
Prop. 2, but the latter only applies to MDu.

Proposition 6. Let c be a cause in a dual NIN-AND gate model over...,c,. The product of
clink potentials from its EDY (d, ..., d,, ¢) = ngign f(d;, c) contributes to MPPf (e, ¢y, ..., ¢,),
only if preconditions of the EDu link potential trait (Def. 6) hold with= 1.

Proof: Thef(d, ..., d,, c) contributes tof (e, c1, ..., ¢,) through its product with family potential
f(d,...,d,, h) in Table 11 (bottom). We show that if the preconditions fail, one of themis 0.

If none of preconditions 1, 2 and the first two subconditions of 3 holds, the first 5 lines of
Table 11 (bottom) do not apply. By line §(d,,....,d,,h) = 0. If d; = 2, V,>1 d; = 0, butcis
active, f(dy, ..., d,, c¢) = 0 by Table 11 (top left, last row). OJ

Below, we move on to analyze an EDu-based subMF with ilinks. By Table 6, each ilink of
the EDu is connected to the output variable of an EDi. To evaluate the impact from the EDi, we
specify an output property of an EDi-based subMF in Def. 7. We show that the property holds for
an EDi-based subMF in Section 6.2.
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Definition 7 (EDi output potential trait). Let{cy,...,cx} (k > 1) be a set of causes of an EDi-
based subMF and be the output variable of the EDi. An MPRh, ¢y, ..., ¢x) from the subMF
satisfies the EDi output potential trait, if the following holds.

1. If h < h" thenf(h,cy,....,ck) = Ple|cy, ..., ck).
2. If h = b and each; is inactive, thenf(h, ¢y, ..., c;) = 1.
3. If h = h"! and some; is active, thery(h, cy, ..., ;) = 0.

Prop. 7 analyzes the behavior of the link layer with the focus on one input variable. It shows
that MPP from the relevant ilink potentials behaves equivalently to products of clink potentials as
analyzed in Prop. 5. Note thatis the output variable of an EDi, and the above output property
of EDi is assumed. In Fig. 4 (c), if gatg is direct, then the MF of, in (d) is EDu and Prop. 7
applies to it. Variablé in Prop. 7 refers td, in (d).

Proposition 7. Letb be the leaf variable of an EDi-based subMF over causes., ¢, and an in-
putvariable of an EDu withilinkgb, d), ..., (b, d,)). Letthe MPP from the subMF b, ¢4, ..., ¢,)
such that the EDi output potential trait (Def. 7) holds with= n andh = b.

Thenthe MPP (dy, ..., dy, c1, ..., cn) = >, f(di,b)... f(dy, 0) £ (b, 1, ..., cn) from the link layer
of the EDu-based subMF satisfies the EDu link potential trait (Def. 6) With n.

Proof: From Table 65 is the output variable of an EDi, and has a domain size-ef2 by Table 7.
Table 11 (top right) defines ilink potentials in the MPP. Rewrfite, ..., d,, c1, ..., ¢x) as

Fdo, 7Y (dy, T £ )+ > F(dy, b f(di b) F(b, ey i)

b<bn

For the EDu subtrait 1, if3; d; = 0 andV,.; d; = 1, the first term is O, since we have
f(diz; = 1,0") = 0 by Table 11 (top right, lines 2 and 4). By line 2, the second term is
Y e f(dj = 0,0)f(b,cq, ..., c;) and it becomes o i-1 f(b, 1, ..., cx) Dy line 1. From the
EDi subtrait 1, the sum equal¥(e < ¢’ « ci, ..., ¢), and the EDu subtrait 1 follows.

If V;d; = 1, the first term above is 0 by Table 11 (top right, lines 2 and 4), and the second
becomes ,_,, f(b,c1, ..., cx) by line 2. From the EDi subtrait 1, the EDu subtrait 2 follows as the
probabilities sum to one.

If dy = 2andV,.; d; = 0, the second term of (d, ..., d,, c1, ..., ) is O by Table 11 (top right,
lines 3 and 4) ag(d; = 2,b < b"7) = 0. The firsttermisf (b7, ¢y, ..., cx) by lines 1 and 3. If each
¢; is inactive, the value is 1 by the EDi subtrait 2. Hence, the EDu subtrait 3 holds. [

The MPPs covered in Prop. 7 include only those satisfying preconditions of the EDu link
potential trait. Prop. 8 shows that those are all that matter.

Proposition 8. Letcy, ..., ¢, be the set of causes of a NAT model. bk the leaf variable of a
subMF over causes, ..., ¢, (m < n) and an inputvariable of an EDu with ilink&®, d, ), ..., (b, d,,).
Let the MPP from the subMF bé(b, ¢y, ..., ¢,,) such that the EDi output potential subtrait 3
(Def. 7) holds withk = m andh = b.

Thenthe MPPf(dy, ..., dy, c1, ..., cm) = >, f(di,b)... f(dy, b) f(D, c1, ..., ) CONtributes to the
MPP f(e,cy, ..., c,,) Of the NAT model only if preconditions of the EDu link potential trait (Def. 6)
holds withk = m.
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Proof: Thef(ds, ..., d,, c1, ..., c,) contributes tof (e, ¢4, ..., ¢,) by its product with family potential
f(d,...,d,, h) in Table 11 (bottom). We show that if the preconditions fail, one of themis 0.

If none of preconditions 1, 2 and the first two subconditions of 3 holds, the first 5 lines of
Table 11 (bottom) do not apply. By line §(d,,....d,,h) = 0. If & = 2 andV,>, d; = 0, but
somey; is active (failing condition 3), rewrit¢ (d,, ..., d,, c1, ..., ¢,,) @S

Py, b7 f(dg ) FOT e, ) + > F(dr b)) F(D, 1, oy )

b<bn

The second term is 0 by Table 11 (top right, lines 3 and 4). The first terftbis™, cy, ..., ¢,,) by
lines 1 and 3. The value equals 0 by the EDi subtrait 3. Hef\@8,, ..., d,, c1,...,¢) = 0. O

We are now ready to show the output property of EDu when both clinks and ilinks exist.

Theorem 4. Let{cy, ..., ¢, } be the set of causes of an EDu-based subMF. For any input variable
b of the EDu such thak is the leaf variable of an EDi-based subMF over cau$es ..., s,,} C
{c1,...,¢,} and the MPP from the EDi-based subMF figb, s, ..., s,,), the EDi output potential
trait (Def. 7) holds with the set of causes beifig, ..., s,,} andh = b.

Then the MPPf(h, ¢y, ..., ¢,) from the EDu-based subMF satisfies the EDu output potential
trait (Def. 5) withk = n.

Proof: By Theorem 3, the EDu output potential trait holds when the EDu-based subMF has clinks
only. By Prop. 5, this result is obtained when products of clink potentials of the subMF satisfy the
EDu link potential trait. Although the trait has preconditions, by Prop. 6, those products of clink

potentials obtained when the preconditions fail do not matter.

When the EDu-based subMF has ilinks, by Prop. 7, MPPs from ilink potentials of the subMF
also satisfy the EDu link potential trait, as long as input EDi-based subMF potentials satisfy the
EDi output potential trait. Although the trait has preconditions, by Prop. 8, those MPPs obtained
when the preconditions fail do not matter. Hence, MPPs from ilink potentials of the subMF behave
equivalently to products of clink potentials. Therefore, Theorem 3 can be generalized to the EDu-
based subMF with arbitrary combinations of ilinks and clinks, as long as input EDi-based subMF
potentials satisfy the EDi output potential trait. 0J

6.2. Output Property of EDi

An output property for an EDi-based subMF is specified in Def. 7. Theorem 5 shows that the
property holds in EDi when there are no ilinks. It is phrased in the context of a standalone direct
gate, as the property remains the same whether the gate is standalone or is in a NAT. In Fig. 4 (c),
if gate ¢, is dual, then the MF ofj, in (d) is EDi and Theorem 5 applies to it. In the theorem,
each valué’ of h corresponds to the valug of e if 0 < 7 < 5. The first subtrait says that when
output variable is restricted to the domain ef the MPP is the exact CPT. The other subtraits are
relevant when the EDi feeds into an EDu-based subMF.

Theorem 5. Let EDi be applied to a direct NIN-AND gate model whose CPPsg|cy, ..., c,).
The MPPf(h, ¢y, ..., ¢,,) from the EDi satisfies the EDi output potential trait (Def. 7) with= n.
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Proof: The MPPf(h, c1,....cn) = 320, o f(dr,.sdy, B) TT < ey 1 <icn £(dj, i) Is defined from
potentials in Tables 15 and 4. Compare the MPP with that of Theorem 2 on MDi. The clink
potentials (Table 4) are identical. The family potential in Table 15 differs from that in Table 4
only whenh = h"1. Hence,f(h,ci, ..., c,) differs from f(e, ci, ..., ¢,) in Theorem 2 only when
h = h"*™1, from which the subtrait 1 follows.

Whenh = k"1, the only non-zero family potential value gd; = 2,0, ...,0, h"™!) by Ta-
ble 15 (line 4). Consider the corresponding prodfigl; = 2,dy = 0,...,d,, = 0,¢1,...,¢,) =
[Ticj<ni<icn f(dj, ci). If each cause is inactivef(d; = 2,d, = 0,...,d = 0 ClyeyCp) = 1
Table 4. Hencef (h"!, ¢y, ..., c,) = 1, which is the subtrait 2.

If some cause is active, thefid; = 2,d, = 0,...,d, = 0,¢4,...,¢,) = 0 by Table 4. Hence,
f(h"t ¢y, ..., c,) = 0, which is the subtrait 3. O

by

Prop. 3 reveals a property of products of clink potentials in MDi. Since clink potentials of
MDi and EDi are identical (Table 4), Prop. 3 is applicable to EDi as well. Prop. 9 below shows
that products covered in Prop. 3 are all that matter to EDi. It plays a similar role as Prop. 4, but
the latter only applies to MDi. Note that the first two preconditions of the MDi link potential trait
combine into Elj dj =0A VZ# d; = 1.

Proposition 9. Letc be a cause in a direct NIN-AND gate model. The product of clink potentials
fromits EDi f(ds, ..., dy, ¢) = [],<;, f(d;, c) contributes to MPPf (e, c1, ..., ¢,) of the EDi, only
if preconditions of the MD| link potentlal trait (Def. 4) hold.

Proof: The proof of Prop. 4 can be directly applied. This is justified because the proof involves
only clink and family potentials. The clink potentials of EDi and MDi are identical (Table 4, left).
The family potential of EDi (Table 15) differs from that of MDi (Table 4, right) only br= 71,

andh = h"*! isirrelevant to preconditions of the MDi link potential trait. 0J

Next, we analyze an EDi-based subMF when ilinks exist. Prop. 10 shows that the MPP from
ilink potentials behaves equivalently to the product of clink potentials (Prop. 3). Noté thahe
output variable of an EDu, and conditions on MPP from the subMF are consistent with those of
Theorem 4 on EDu. In Fig. 4 (c), if gatg is direct, then the MF o5 in (d) is EDi and Prop. 10
applies to it. Variablé in Prop. 10 refers td, in (d).

Proposition 10. Letb be the leaf variable of an EDu-based subMF over causes., ¢, and an
input variable of an EDi with ilinks(b, d,), ..., (b, d,)). Let the MPP from the EDu-based subMF be
f(b, e, ..., c,) such that the EDu output potential trait (Def. 5) holds with=n andh = b.

Thenthe MPP (dy, ..., dy, c1, ..., cn) = >, f(di,b)... f(dy, b) £ (b, 1, ..., cn) from the link layer
of the EDi-based subMF satisfies the MDi link potential trait (Def. 4) with- n.

Proof: Sinceb is the output variable of an EDu, its domain sizejis- 2 by Table 7. Table 13
defines ilink potentials in the EDi MPP. Rewrifgd,, ..., d,, c1, ..., cx) as

Fdo, 7YY (dy, BT F(BT )+ > Fldr,b)e f(dy ) f (b, ooy ).

b<bn

For the MDi subtrait 1, if3; d; = 0 andV,; d; = 1, the first term off (ds, ..., d,, c1, ..., cx)
is O by Table 13 (lines 2 and 4). By line 2, the second ter@%bn f(d; =0,0)f(b,cq, ..., c)
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and it becomes ,; ., f(b,c1,...,cx) by lines 1 and 4. If some; is active, the sum equals
P(e > e’ « ci,..., ;) by the EDu subtrait 1, and the MDi subtrait 1 follows. If eaglis inactive,
the sum equals 1 from the EDu subtraits 3 and 4. Hence, the MDi subtrait 2 follows.

If V;d; =1, the first term off(d, ..., d,, c1, ..., cx) is O by Table 13 (lines 2 and 4), and the
second isy_, ., f(b,c1,...,ci) by line 2. If someg; is active, the sum equals 1 according to the
EDu subtrait 1. If eacls; is inactive, the sum equals 1 by the EDu subtraits 3 and 4. Hence, the
MDi subtrait 3 follows.

If d; = 2andV,., d; = 0, the second term of (d1, ..., d,, c1, ..., ¢;) is O by Table 13 (lines 3
and 4). The first term becomg$b”*!, ¢y, ..., cx) by lines 1 and 3. If each; is inactive, the value
is 1 by the EDu subtrait 4. Hence, the MDi subtrait 4 follows. O

The MPPs covered in Prop. 10 include only those satisfying preconditions of the EDi link
potential trait. Prop. 11 shows that those are all that matter.

Proposition 11. Letcy, ..., ¢, be the set of causes of a NAT model. Lée the leaf variable of
an EDu-based subMF over causss..., ¢,, (m < n) and an input variable of an EDi with ilinks
(b,d1), ..., (b,d,). Letthe MPP from the EDu-based subMF p@, c1, ..., ¢,,) such that the EDu
output potential trait (Def. 5) holds with = m andh = b.

Then the MPPf(dy,....d,, c1,...;cm) = Y, f(d1,b)...f(dy, ) f(b,cq, ..., c) from the link
layer of the EDi-based subMF contributes to the MPR, ¢y, ..., ¢,,) of the NAT model, only if
preconditions of the MDi link potential trait (Def. 4) hold.

Proof: The MPPf(dy, ...,d,, c1, ..., ciy) cONtributes tof (e, ¢y, ..., ¢,) by product with the family
potentialf(d,, ..., d,, h) in Table 15. We show that if the preconditions fail, one of themis 0.

The first two preconditions combine int@; d; = 0 A V;»; d; = 1. If none of this combined
condition, precondition 3, and the first two subconditions of precondition 4 holds, then the first 5
lines of Table 15 do not apply. By line §(d,, ...,d,, h) = 0. If d; = 2 andV,-, d; = 0, but some
¢; is active (failing the third subcondition of precondition 4), rewrfigly, ..., d,, c1, ..., ¢;,) @S

Fldy, b7 ) f(dg T F O e, ) + > F(drb)en f (i, D) F(D, 1, oy )

b<bn

The second term is 0 by Table 13 (lines 3 and 4). The first term becgthes', ¢y, ..., ¢,,) by lines
1 and 3. The value equals 0 by the EDu subtrait 2. Hefig8,, ..., d,, c1, ..., ¢,) = 0. O

Theorem 6 shows the output property of an EDi-based subMF when both clinks and ilinks may
exist.

Theorem 6. Let {cy, ..., ¢, } be the set of causes of an EDi-based subMF. For any input variable
b of the EDi such thab is the leaf variable of an EDu-based subMF over cau§es..., s,,} C
{c1,...,c,} and the MPP from the EDu-based subMFfi&, sy, ..., s,,), the EDu output poten-
tial trait (Def. 5) holds with the set of causes beidg;, ..., s,,} and h = b. Then the MPP
f(h,c1,...,c,) from the EDi-based subMF satisfies the EDi output potential trait (Def. 7) with
k =n.

Proof: By Theorem 5, the EDi output potential trait holds when the EDi-based subMF has clinks
only. By Prop. 3, this result is obtained when products of clink potentials of the subMF satisfy the
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EDi link potential trait. Although the trait has preconditions, by Prop. 9, those products of clink
potentials obtained when the preconditions fail do not matter.

When the EDi-based subMF has ilinks, by Prop. 10, MPPs from ilink potentials of the subMF
also satisfy the EDi link potential trait, as long as input EDu-based subMF potentials satisfy the
EDu output potential trait. Although the trait has preconditions, by Prop. 11, those MPPs obtained
when the preconditions fail do not matter. Hence, MPPs from ilink potentials of the subMF behave
equivalently to products of clink potentials. Therefore, Theorem 5 can be generalized to the EDi-
based subMF with arbitrary combinations of ilinks and clinks, as long as input EDu-based subMF
potentials satisfy the EDu output potential trait. OJ

6.3. Output Property of MDi

The output property for an MDi-based subMF without ilinks has been analyzed in Theorem 2.
To analyze the output property when ilinks exist, we compare with an EDi-based subMF. MDi and
EDi have the same clink potentials (Table 4, left) and ilink potentials (Table 13). By Table 6, both
MDi and EDi receive ilink input from EDu. In Table 7, the two only differ in that the domain size
of output variableh isn + 1 in MDi and n + 2 in EDi. As a result, the family potential of EDi
(Table 15) is the same as that of MDi (Table 4, right) everywhere except Whe+!.

This comparison suggests that all analyses on EDi are applicable to MDi, exceptthat !
is undefined under MDi and any property of EDi bn= 17+! must be ignored. Theorem 7 below
establishes the output property of an MDi-based subMF. It follows directly from Theorem 6 by
ignoring the statements dn= h""!. In Fig. 4 (c), if gatey, is direct, then the MF of; in (d) is
MDi and Theorem 7 applies to it. Variabban Theorem 7 refers to; in (d).

Theorem 7. Let{cy, ..., ¢, } be the set of causes in an MDi-based subMF. For any input variable
b of the MDi such thabt is the leaf variable of an EDu-based subMF over cauges..., s,,} C
{c1,...,¢,} and the MPP from the EDu-based subMFfi@, sy, ..., s,,), the EDu output potential
trait (Def. 5) holds with the set of causes beifig, ..., s,,} andh = b. Then the MPP from the
MDi-based subMF satisfies(h, c1, ..., ¢,) = P(e|cy, ..., ).

6.4. Output Property of MDu

The output property for an MDu-based subMF without ilinks is stated in Corollary 2. To
analyze the output property when ilinks exist, Prop. 12 shows that MPPs from ilink potentials
behave equivalently to products of clink potentials (Prop. 1). By Table 6, an MDu only receives
input from MDi. Note that) ande share the domain size.

Proposition 12. Letb be the leaf variable of an MDi-based subMF over causes.., ¢, and an
input variable of an MDu with ilinks(b, d,), ..., (b, d,). Let the MPP from the MDi-based subMF
bef(b,ci,...,cn) = P(e|ca, ..., ¢,). Then the MPP

Fldy, oody 1y oycn) = f(dr,0). f(dy, b) f(byca, ooy )
b

from the MDu-based subMF satisfies the MDu link potential trait (Def. 3) Witk n.

25



Proof: For the subtrait 1, supposg d; = 0 andV;.; d; = 1. Consider the casé = 0. From line
2in Table 9,f(d, = 0,b) = 0 for all b > b*. Hence, all terms in the summation of the proposition
whereb > b' are zeros. The only non-zero term is for= 1°. From line 1 in Table 9, we have
f(dy =0,0°) = 1. Fromline 3,f(d; = 1,0°) = 1 forall j > 1. This yields

f(dl = O,dg = 1, “‘7d77 = 1701, ...,Cn) = f(bO,Cl, ...,Cn)

= P(%c1,...,cn) = Ple <e' «—c1,....cp).

Next, consider the casg = 0 (; > 1). From line 2 of Table 9, all terms of the summation
whereb > b’ are zeros. The non-zero terms are those whetey’. This yields

( J 1—1d —0 dj_,_l—l dnzl,cl,...,cn)
= f(°cy, ..y cn)—l— A+ ey cn)
= P(c1y . cp) .+ Pl 1|01, ) =Ple< el —cp, .. cp).

Hence, the subtrait 1 holds.
If V; d; = 1, we havef(d;,b) = 1 for all 7, by Table 9 (line 3). That is,

f(dy,..;dycryoescn) = P(e¥er, oy cn) + oo+ P"eq, oy cp) = 1.

Hence, the subtrait 2 holds. O

The MPPs covered in Prop. 12 include only those satisfying preconditions of the MDu link
potential trait. Prop. 13 shows that those are all that matter.

Proposition 13. Let ¢y, ..., ¢, be the set of causes of a NAT model. Lk the leaf variable of
an MDi-based subMF over causes ..., ¢, (m < n) and an input variable of an MDu with ilinks
(b,d1), ..., (b,d,). Letthe MPP from the MDi-based SubMF Béb, c1, ..., c,,) = P(elci, ..., cm).
Then the MPPYf (dy, ..., d,, c1, ..., cm) = D, f(d1,b)... f(d,,b) f(b, c1, ..., cn) from the link layer of
the MDu-based subMF contrlbutes to the MPR, ¢4, ..., ¢,,) of the NAT model, only if precondi-
tions of the MDu link potential trait (Def. 3) hold.

Proof: The MPPf(dy, ...,d,, c1, ..., ciy) CcONtributes tof (e, ¢y, ..., ¢,) by product with the family
potential f(d1, ..., d,, e) in Table 2 (right). If none of the two preconditions holds, then the first 3
lines of Table 2 (right) do not apply. By line 4(d;, ...,d,,e) = 0. OJ

Theorem 8 establishes the output property of an MDu-based subMF when both clinks and
ilinks may exist. From Table 6, MDu can only be applied to the leaf gate of a NAT model. Hence,
an MDu-based subMF is the MF of the NAT model in its entirety.

Theorem 8. Let {cy, ..., c,} be a set of causes of an MDu-based subMF. For any input variable
b of the MDu such thab is the leaf variable of an MDi-based subMF over causes, ..., s,,} C
{c1,..., ¢y}, the MPP from the MDi-based subMF &b, sy, ..., s,,) = P(elsi, ..., $m). Then the
MPP from the MDu-based subMF satisfig&, ci, ..., c,) = P(e|cy, ..., cp)-

Proof: From Corollary 2, the condition ofye, ¢y, ..., ¢,) holds when the MDu-based subMF has
no ilinks. By Prop. 1, this result is obtained when products of clink potentials of the subMF satisfy
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the MDu link potential trait. Although the trait has preconditions, by Prop. 2, those products
obtained when the preconditions do not hold do not matter.

When the MDu-based subMF has ilinks, by Prop. 12, MPPs from ilink potentials and input
MDi-based subMFs also satisfy the MDu link potential trait, as long as the MPP from each MDi-
based subMF is probabilistically exact. Although the trait has preconditions, by Prop. 13, those
MPPs obtained when the preconditions do not hold do not matter. Hence, MPPs from ilink poten-
tials and input MDi-based subMFs behave equivalently to products of clink potentials. Therefore,
Corollary 2 can be generalized to the MDu-based subMF with arbitrary combinations of ilinks and
clinks, as long as the MPP from each MDi-based subMF satigfies:, ..., s,m) = P(e|s1, ..., Sm)-

O

6.5. Soundness of MF of NAT Models
We establish the exactness of NAT MF in Theorem 9.

Theorem 9. Let MF be applied to a NAT model over causes.., ¢, by applying MDu, EDu, MDi,
and EDi to appropriate gates. Then the MPP from all potentials of the MF satigfies:, ..., ¢,) =
P(elcy, ..., cn).

Proof: We prove by induction on the maximum levebf the NAT. If L = 1, the NAT has a single
gate. The statement holds by Corollary 2 if the gate is dual and by Theorem 2 if the gate is direct.

If L = 2 and the leaf gate is dual, then apply MDi to all direct gates at level 2 and apply MDu
to the leaf gate. Since every gate at level 2 is terminal (all inputs are single-causal events), by
Theorem 2, the MPP is the exact CPT over causes in the MDi-based subMF. The subMF feeds into
the MDu of the leaf gate and satisfies the condition of Theorem 8. Hence, the statement holds by
Theorem 8.

If L =2 and the leaf gate is direct, then apply EDu to all dual gates at level 2 and apply MDi to
the leaf gate. Since every gate at level 2 is terminal, by Theorem 3, the MPP from the EDu-based
subMF satisfies the EDu output potential trait. The subMF feeds into the MDi of the leaf gate and
satisfies the condition of Theorem 7. Hence, the statement holds by Theorem 7.

If L = 3 and the leaf gate is dual, apply EDu to each terminal dual gate atdevsd the MPP
from the EDu-based subMF satisfies the EDu output potential trait by Theorem 3. The subMF
feeds into a direct gate at levelwith MDi and satisfies the input condition of Theorem 7. By
Theorem 7, the MPP from the MDi-based subMF is the exact CPT over its causes. From the
analysis above o = 2 with the dual leaf gate, the statement holds.

If L = 3 and the leaf gate is direct, apply EDi to each terminal direct gate at feged the
MPP from the EDi-based subMF satisfies the EDi output potential trait by Theorem 5. The subMF
feeds into a dual gate at levelwith EDu and satisfies the input condition of Theorem 4. By
Theorem 4, the MPP from the EDu-based subMF satisfies the EDu output potential trait. From the
analysis above o = 2 with the direct leaf gate, the statement holds.

Assume that the statement holds when= k£ > 3. Consider a NAT wherd, = k£ + 1. If
the terminal gates at levél + 1 are dual, apply EDu to each and the MPP from the EDu-based
subMF satisfies the EDu output potential trait by Theorem 3. The subMF feeds into a direct gate
at level £ with EDi. By Prop. 10, relative to the direct gate, the subMF behaves equivalently to
a terminal input single-causal event. As a result, the MF of the NAT behaves equivalently to one
whereL = k. By the inductive hypothesis, the statement holds/fet k + 1.
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If the terminal gates at levél + 1 are direct, apply EDi to each and the MPP from the EDi-
based subMF satisfies the EDi output potential trait by Theorem 5. The subMF feeds into a dual
gate at levek with EDu. By Prop. 7, relative to the dual gate, the subMF behaves equivalently to
a terminal input single-causal event. As a result, the MF of the NAT behaves equivalently to one
whereL = k. By the inductive hypothesis, the statement holds/fet k + 1. O

6.6. Space Complexity of MF of NAT Models

For space complexity of a gate MF, the size of a clink potential(8(m + 1)), wherem + 1
bounds the domain size of a cause. The size of an ilink potenti@(3sn + 2)). The size of a
family potential isO(3"(n + 2)). Denoting the number of inputs to a gate by the gate MF has
n'n link potentials and one family potential. Assuming= 7, the space complexity of the gate
MFis O(3n' n (n+2)+3"(n+2)) = O((3n' n+ 3") n).

Suppose that a NAT hasgates. Then its MF take3((3n’ n+3") n k) space. The produet k
counts the number of non-auxilary nodes (néjiin the graph of the MF and henegk < 2n. We
also havek < n. Hence, the space complexity of the MF of a NAT modeDi$ n n? + 3" n n) ~
O(nn(6n+37)).

The existence di” in the above complexity raises the question whether the MF of a NAT model
is more efficient than the corresponding CPThagrows. We consider this below. To concentrate
on the main factors, we evaluate space complexity of a NAT Mk by3" and that of a full CPT
by n™. We define their ratio as functiog(n,n) = n"/(n n 3"). The derivative ofy(n,n) with
respect to is as follows.

g'(n,n) = (n3") " (n"/n)"
Since (n"/n) = (0" n™") = (0") 07+ (07 0" =In(n) 0" 07+ (=7 "

n

=Inmn"n™ =02y =nin(n) n" n? —n"n = (nin(n) = 1) " n7%
we have ¢'(n,n) = (n3")" (nin(n) —1) 1" n™? = (nin(n) = 1) n" ' 237",
Whenn > 3 andn > 3, we have(n In(n) — 1) > 0 andg'(n,n) > 0. Hence,g(n,n) is
monotonically increasing fon > 3 andn > 3. In other words, for each domain size> 3, asn

grows beyond some value, the NAT MF is always more efficient than a full CPT. Fongdican
value at which the space of full CPT exceeds that of NAT MF is shown in Fig. 5.

n
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Figure 5: For eachy value, the curve shows thevalue, where the space of full CPT exceeds that of NAT MF.
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For instance, for) between 3 and 7 inclusive, the space of full CPT exceeds that of NAT MF
as long as > 6. Forn between 8 and 11, the condition holds as long.as 7. Forn = 30, the
same occurs as long as> 12. In summary, NAT MF pays off for moderate and larg&alues.

7. Lazy Propagation with NAT-Modeled Bayesian Networks

We present a framework in which MFs of NAT models can be utilized for exact inference with
BNs through lazy propagation. The necessary background on lazy propagation is first introduced.
The framework and its exactness are then presented.

7.1. Overview of Lazy Propagation

Lazy propagation (LP) [19] is an inference method based on a junction tree (JT) compiled from
a BN over a set/ of variables. Each cluster (a subset of variables) in the JT is assigned a set of
CPTs from the BN, but these CPTs are not multiplied as commonly performed [8]. We refer to
these CPTs as potentials, refer to the cluster of current focds laynd refer to the set of potentials
atC by (. The product of potentials in all clusters, denoted®y ), equals the product of CPTs
of the BN, which in turn equals the joint probability distribution (JPD) of the BN.

The intersection of two adjacent clustérsandC’ is their separatof and it is associated with
two buffers. One stores message fréihto C' and the other fron” to C’. For the given cluster
C and separatof, we refer to the two buffers as-buffer and out-buffer, respectively, relative
to C'. The atomic operation at a clustér relative to an adjacent clustér computes a set of
potentials over their separator as the message and sends it to the out-bufféf withe message
is so computed that the size of each resultant potential is kept as small as possible. LP proceeds by
atomic operations performed at each JT separator in two passes. In the first pass, messages flow
towards an arbitrarily specified cluster. In the second pass, messages flow away from the cluster.
Prop. 14 summarizes the effect of LP. It says that after LP, the product of the local potentials at
each cluster and potentials in its in-buffers is the exact marginal of the JPD of the BN.

Proposition 14 (Proposition 3.4 in [20]). Let LP be performed in a JT. For any clustér with
the potential sepf and the in-buffer messagg from the adjacent separatak;, denote the prod-
uct of potentials ing as 5(C') and the product of potentials i; as 5;(R;). Then, we have
B(C) 11, Bi(R:) = const 3y B(V), whereconst is a constant.

We denote the potential product at clustéafter LP by« (C) = 5(C) [], 3:(R;) and refer to
a(C') as thepost-LP cluster belieat C.

7.2. Lazy Propagation with NAT-Modeled BNs

We present how to use MFs of NAT models to improve inference efficiency with BNs. Consider
a BN over a set’ of variables with the DAGD. Each root ofD is assigned a prior, collected in a
setPR. Each single-parent non-root is assigned a CPT, collected inR%seWWe assume that the
family of each multi-parent non-root can be expressed as a NAT model, collectedin 3éten,
I' = (V,D,PR, PS, V) is aNAT modeled BNNATBN). For efficient inference, we compile a
NATBN into a JT representation by Alg. 1.
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Algorithm 1.
Input: a NAT modeled BN = (V, D, PR, PS, V)

1 get the skeletoty of D by dropping direction of links;

2 for each multi-parent familyfe, ¢y, ..., ¢,,} in D, modifyG as follows:

3 replace subgraph spanned by, ci, ..., ¢, } with the MF graphSG of the NAT model inl;
4  for each family inSG, connect members pairwise and drop direction of links;

5 triangulateG into a chordal graphGG’;

6 construct a junction tre@” from maximum cliques d@¥’;

7 assign each potential i’ R U PS U ¥ to a domain-containing cluster iff’;

8 returnT’;

The DAG of a trivial BN is shown in Fig. 6 (a). Suppose the farity ¢4, ..., ¢5} is modeled by

Cy
ay ¢
¢, % ¢
¢ L//',/\V‘ w
Cs
e .\ y
(@) (b)

Figure 6: (a) A NATBN. (b) Undirected structure of compiled NATBN.

the NAT in Fig. 4 (c), and the familyy, u, v, w} is modeled by the NAT in Fig. 4 (a). The graph
after lines 1 to 4 is shown in Fig. 6 (b). The compilation does not include moralizatidh eihd
potentials assigned to each JT cluster are not multiplied. We refeatothe JT of Multiplicatively
Factorized NAT modeled BN (JTMFNB), to which LP is directly applicable. Note that the set of
variables in7" includes those iV as well as auxiliary and output variables from MF.

Given a NATBNI" = (V, D, PR, PS, V), we define itpeer BNI" = (V, D, C'P), whereC' P
is a set of CPTs one per node in. If the node has less than two parents, its CPT is the one
in PR or PS. Otherwise, the CPT is defined by the NAT modeNm Theorem 10 establishes
exactness of LP when applied to a JTMFNB. It says that after LP is performed in a JTMFNB, the
post-LP belief at every cluster, with auxiliary and output variables from MF being marginalized
out, is exactly the marginal probability over the cluster.

Theorem 10. LetI’ = (V, D, PR, PS,V) be a NATBNY be the JTMFNB froni', U be the set of
all variables inT", and LP be performed ii". LetC be any cluster of” anda(C') be the post-LP
cluster belief. Let” = (V, D, C'P) be the peer BN df and P'(V') be the product of CPTs i&'P.

Then,> .y a(C) = const 3 i\ o P'(V).

Proof: By the chain rule of BNs”' (V') is the JPD of the peer BN'. By the definition of peer BN
IV, P'(V) is also the JPD of the NATBN. Let P(U) be the product of all potentials assigned to
clusters inI" before LP. By Theorem &\, P(U) = P'(V)). Marginalizing variables i’ \ C
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from both sides, we g€t_,\ o >y P(U) = 32\ o (V). Switching the order of marginaliza-
tions, the lefthand side becom®s,;\,(3_y\o P(U)) = const >\ a(C) by Prop. 14. Hence,
> a(C) = const 32y o PI(V). O

8. Experimental Evaluation

A collection of 140 NATBNSs are simulated, divided into 4 groups of 35 each. Each NATBN
contains 100 ternary variables. For NATBNSs in the same group, the numbkcauses per NAT
model is identically upper-bounded. The bounds are 5, 7, 9 and 11, respectively. All NATBNs
have the same density (5% more links than singly-connected). Each is compiled into a JTMFNB.

A peer BNis derived from each NATBN, where each multi-parent variable is assigned the CPT
computed from the corresponding NAT model. Peer BNs are compiled for lazy inference normally,
which provides a golden standard for soundness and a baseline for efficiency.

For each NATBN and its peer BN, 5 randomly chosen variables are observed and posteriors for
all variables are computed. For each NATBN, exactly the same posteriors are obtained from the
JTMFNB and its peer BN, which empirically confirms soundness of the MF.

The performance is summarized in Table 17. Each row summarizes for one group of NATBNs.
The space efficiency of JTMFNB and peer BN is shown by the size of the state space of the JT
(with sample mean and standard deviation). The time efficiency is shown by lazy inference time.

Table 17: Experimental Results

Peer BN State SpaceJTMFNB State Space Peer BN Time (ms) JTMFNB Time (ms)
n il o il o il o il o
5| 11070.8 590.1 9742.7 1317.9 63.8 12.0] 31.3 0.5
7| 25951.4  3800.3 10546.0 1570.3 2125 65.7| 30.3 3.5
9| 80061.9 6076.6 11189.8 2721.7 1117.9 749.9 33.1 7.3
11| 575750.3 37149.6 10996.1 1550.2 12160.8 7658.3 30.7 2.5

Asn grows from 5 to 11, peer BN JTs grow in space by 52 times, while JTMFNBs grow only
1.1 times. The runtime with peer BN JTs grows by 193 times, while lazy inference with JTMFNBs
takes about the same time. For= 11, inference with JTMFNBs is about 400 times faster than
peer BN JTs. The experiment shows that the MF of NAT models allows significant improvement
in space and time efficiency for sparse NAT modeled BNs.

9. Conclusion

The main contributions of this work are the following. We show that a multi-valued, dual
NIN-AND gate is equivalent to noisy-MAX, and hence, a multi-valued NAT model is strictly more
expressive than noisy-MAX. We developed the MF of multi-valued NAT models. It extends the MF
of binary NAT models in that the MF graph of a binary NAT model is a tree while the MF graph of a
multi-valued NAT model is multiply connected. The space complexity of the®{kn(6m + 37))
is linear on the number of causesand the domain size of causes and is exponential on the do-
main size of effecty+ 1 with a constant base 3. We proposed a scheme to multiplicatively factorize
NATBNs and compile them for lazy inference. This scheme is more powerful than lazy inference
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based on MF of noisy-MAX [11], since NATBNSs are strictly more expressive than noisy-MAX
modeled BNs. We experimentally demonstrated that JTMFNBs compiled from sparse NATBNs
allow exact lazy inference that is significantly more efficient in both space and time.

This work opens a promising direction along which significantly less computational resource is
necessary for probabilistic reasoning with BNs, making them deployable on pervasive computing
devices.
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