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Abstract

A multi-valued Non-Impeding Noisy-AND (NIN-AND) tree model has linear complexity and is
more expressive than several Causal Independence Models (CIMs) for expressing Conditional
Probability Tables (CPTs) in Bayesian Networks (BNs). We show that it is also more general
than the well-known noisy-MAX. To exploit NIN-AND tree models in inference, we develop a
sound Multiplicative Factorization (MF) of multi-valued NIN-AND tree models. We show how to
apply the MF to NIN-AND tree modeled BNs, and how to compile such BNs for exact lazy infer-
ence. For BNs with sparse structures, we demonstrate experimentally significant gain of inference
efficiency in both space and time.

Keywords: Bayesian networks, causal independence models, noisy-MAX, multiplicative
factorization, NIN-AND tree models, NAT models.

1. Introduction

A Bayesian Network (BN) [2] quantifies the causal strength between an effect and itsn causes
by a CPT, with the number of parameters being exponential inn. Common CIMs such as noisy-OR
[2], noisy-AND [3], noisy-MAX [4], and recursive noisy-OR [5] reduce the number of parameters
to being linear inn, but are limited in expressiveness: expressing causal reinforcement only. NIN-
AND tree CIMs can express both causal reinforcement and undermining as well as their recursive
mixtures, with a linear number of parameters. A NIN-AND Tree (NAT) model can be binary (over
binary variables only) [6] or multi-valued [7]. It is shown in this work that multi-valued NAT
models are more expressive than noisy-MAX.

Although CIMs reduce the number of parameters from being exponential to linear, they cannot
be used directly by common BN inference algorithms, e.g., the cluster tree method [8]. A number
of techniques have been proposed to overcome the difficulty, e.g., [9, 10, 11, 12, 13]. One technique
is Multiplicative Factorization (MF) [10] and tensor rank-one decomposition [12] is closely related.
MF has been applied to binary NAT models [13]. However, binary NAT models are not sufficiently
general, limiting the applicability. MF for multi-valued NAT models is developed in this work,
removing this limitation. BNs whose CPTs are expressible by multi-valued NAT models are then
considered. Applying the MF to such BNs allows significantly more efficient inference both in

1This article significantly extends Xiang and Jin [1] as part of the FLAIRS 2016 Proceedings.
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space and in time. We demonstrate up to two orders of magnitude efficiency gain for sparse BNs
experimentally.

The main contributions of this paper are the following. We show that multi-valued NAT mod-
els are strictly more general and more expressive than the well-known noisy-MAX model. We
then develop MFs of four alternative NIN-AND gate models. MF of a NAT model is integrated
from MFs of these gate models. We establish the exactness of the MF through a formal analy-
sis. A computational framework that utilizes the MF for exact probabilistic inference through lazy
propagation is presented. We report our experimental result, where significant efficiency gain in
inference is achieved under the framework.

Sec. 2 covers background on NAT models. Sec. 3 shows that NAT models are more general
than noisy-MAX. The MFs of NIN-AND gates are developed in Sec. 4. The MF of NAT models
is developed in Sec. 5 with the soundness and space complexity analyzed in Sec. 6. How to apply
the MF to NAT-modeled BNs is shown in Sec. 7 with experimental evaluation described in Sec. 8.

2. Multi-Valued NAT Models

We overview multi-valued NAT models [7]. A multi-valued variablee is graded, if it has a fi-
nite ordered domainDe = {e0, e1, ..., eη} (η ≥ 1), where a higher index represents a higher inten-
sity. For example, fevere with De = {e0, e1, e2} represents conditions{normal, low fever, high
fever}. We refer to valuee0 asinactiveande1, , ..., eη asactive. We consider a set of causes and
their effect, all being graded variables. Hence, we usemulti-valuedandgradedinterchangeably.
We denote the effect bye and each cause byci (i = 1, 2, ...) of domainDi = {c0

i , c
1
i , ..., c

m
i }. We

denote a set of causes byX = {c1, c2, ...}. The set ofall causesof e is denoted byC, which may
include a leaky variable.

We categorize causal events from three perspectives. A causal event can be asuccessor failure,
depending on whethere is rendered active at certain intensity. It can besingle-causalor multi-
causal, depending on the number of active causes. It can also besimpleor congregate, depending
on the range of effect values involved. Asimple single-causal successek ← cj

i occurs whenci = cj
i

(j > 0) causede = ek (k > 0) to occur while every other cause is inactive. Thecausal probability
P (ek ← cj

i ) is
P (ek ← cj

i ) = P (ek|cj
i , c

0
m : ∀m 6= i). (1)

A congregate single-causal successe ≥ ek ← cj
i occurs whenci = cj

i (j > 0) causede to occur at
valueek (k > 0) or higher while every other cause is inactive. Its causal probability is

P (e ≥ ek ← cj
i ) = P (e ≥ ek|cj

i , c
0
m : ∀m 6= i). (2)

A multi-causal successinvolves a setX = {c1, ..., cn} (n > 1) of active causes. Asimple multi-
causal successek ← cj1

1 , ..., cjn
n (or ek ← x+) occurs when causes inX collectively causede = ek

(k > 0) to occur while every other causecm ∈ C \X is inactive. Its causal probability is

P (ek ← cj1
1 , ..., cjn

n ) = P (ek|cj1
1 , ..., cjn

n , c0
m : cm ∈ C \X). (3)

A congregate multi-causal successe ≥ ek ← x+ occurs when causes inX collectively causede
to occur atek (k > 0) or higher, while every cause inC \X is inactive. Its causal probability is

P (e ≥ ek ← cj1
1 , ..., cjn

n ) = P (e ≥ ek|cj1
1 , ..., cjn

n , c0
m : cm ∈ C \X). (4)
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A congregate single-causal failuree < ek ← cj
i occurs whenci = cj

i (j > 0) causede < ek

(k > 0) to occur while every other cause is inactive. It is a failure asci fails to produce the effect
with intensityek or higher. Its causal probability is

P (e < ek ← cj
i ) = P (e < ek|cj

i , c
0
m : ∀m 6= i). (5)

A congregate multi-causal failuree < ek ← cj1
1 , ..., cjn

n (or e < ek ← x+) occurs when a set
X = {c1, ..., cn} (n > 1) of active causes causede < ek (k > 0) to occur while every other cause
cm ∈ C \X is inactive. Its causal probability is

P (e < ek ← cj1
1 , ..., cjn

n ) = P (e < ek|cj1
1 , ..., cjn

n , c0
m : cm ∈ C \X). (6)

When all causes are inactive, casual probability of thenull causal eventis

P (ek ←⊥) = P (ek|c0
i : ∀i) =

{
1 (k = 0)
0 (k > 0)

(7)

Causal probabilities can be converted between one another, e.g., between congregate and sim-
ple as follows:

P (e ≥ ek ← x+) =

η∑

j=k

P (ej ← x+). (8)

A multi-valued NAT model is built upon multi-valued NIN-AND gates. Adirect gate involves
disjoint sets of causesW1, ...,Wm. Its input events aree ≥ ek ← w+

1 , ... ,e ≥ ek ← w+
m and its

output event ise ≥ ek ← w+
1 , ..., w+

m, all being causal successes. Fig. 1 (a) shows a direct gate
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Figure 1: (a) A multi-valued direct NIN-AND gate. (b) A dual NIN-AND gate. (c) A NAT.

where eachWi is a singleton{ci}. The causal probability of the output event satisfies

P (e ≥ ek ← w+
1 , ..., w+

m) =
m∏

i=1

P (e ≥ ek ← w+
i ), (9)

where each factor can be obtained from single-causal probabilities and Eqn. (8).
Input events of adual gate aree < ek ← w+

1 , ... , e < ek ← w+
m and its output event is

e < ek ← w+
1 , ..., w+

m, all being causal failures, as Fig. 1 (b). The output event satisfies

P (e < ek ← w+
1 , ..., w+

m) =

m∏

i=1

P (e < ek ← w+
i ). (10)

Causal interactions can be characterized as reinforcing or undermining as defined below.
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Definition 1. Let R = {W1,W2, ...} be a partition of a setX of causes ofe, R− ⊂ R, and
Y = ∪Wi∈R−Wi. Sets of causes inR reinforce each other relative to an active valueek (k > 0) of
effect, iff ∀R− P (e ≥ ek ← y+) ≤ P (e ≥ ek ← x+). Sets of causes inR undermine each other
relative toek, iff ∀R− P (e ≥ ek ← y+) > P (e ≥ ek ← x+).

A direct gate models undermining causal interactions, and a dual gate models reinforcing [7]. A
multi-valued NAT consists of multiple gates organized into a tree to express mixtures of reinforcing
and undermining recursively. Causes involved in the root events of a NAT are disjoint. From the
leaf up the NAT, gates at the same level are of the same type and gates at adjacent levels alternate
in types. See the above reference for the general definition.

Example 1. Fig. 1 (c) shows a NAT on surface enhancing, whereη = 1 for all variables. Acidic
surface enhancersh1 andh2 are more effective when used together. Basic surface enhancersb1

andb2 work together similarly. When both groups are applied to a product, their effectivenesse is
reduced. In the NAT,g2 andg3 are dual gates, white ovals signify inverse of events, andg1 is direct.
From the NAT and single-causal probabilities (four of them),P (e1|h1

1, h
1
2, b

1
1, b

1
2) can be obtained

processing from the roots to the leaf (see [7] for detailed numerical examples).

As shown in Example 1, each conditional probability is derived from a NAT and the relevant
single-causals. For instance,P (e1|h1

1, h
1
2, b

1
1, b

0
2) would be derived from a NAT distinct from Fig. 1

(c). Hence, a CPTP (e|C) is derived from a set of NATs whose size is exponential on|C|. Since
the entire set can be generated from a single NAT where all causes are active, a method has been
developed to computeP (e|C) from the NAT without explicitly generating the set [14]. With this
understood, we associate a CPT below with a single NAT.

As mentioned in Example 1, each value of CPT is computed from single causal probabilities
following the tree order of the NAT. On the other hand, common BN inference algorithms, e.g.,
the cluster tree method [8], are based on direct manipulation of conditional probabilities in CPTs
(rather than single causal probabilities) following the tree order of clusters. This prevents the NAT
model from being usable directly by these inference algorithms. In this work, we develop the MF
of NAT models to overcome this difficulty.

3. On the Expressiveness of NAT Models

We show that a NAT model is strictly more general and expressive than the well-known noisy-
MAX model (Sec. 3.1). We also clarify on some misconceptions that we perceived on NAT models
(Sec. 3.2).

3.1. Equivalence of Noisy-MAX to Dual NIN-AND Gates

We show that NAT models generalize noisy-MAX [4, 15]. In particular, we show that noisy-
MAX models are equivalent to multi-valued dual NIN-AND gate models, and hence are a special
case of multi-valued NAT models.

Theorem 1. Let X = {c1, ..., cn} (n ≥ 1) be a set of causes of effecte that interact according
to noisy-MAX. Letg be a dual NIN-AND gate, where each input event involves exactly oneci

(i = 1, ..., n). Then the causal probability of the output event ofg is identical to that of noisy-MAX.
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Proof: What qualifies as a noisy-MAX model is defined by Eqn. (36) of reference [15]. Specif-
ically, when causes interact according to noisy-MAX, they satisfy the following in our notation,
where0 < k′ ≤ η andji > 0 for eachi.

P (e ≤ ek′ ← cj1
1 , ..., cjn

n ) =
n∏

i=1

P (e ≤ ek′ ← cji

i ). (11)

For k′ < η, Eqn. (11) is identical to Eqn. (10) withk = k′ + 1, m = n, andw+
i = cji

i for eachi.
Fork′ = η, both noisy-MAX and NIN-AND gate result in probability 1 trivially. �

Example 2. Consider a noisy-MAX model (Example 2 [16] with variables renamed) overe ∈
{0, 1, 2} andc1, c2, c3 ∈ {0, 1} with the following parameters.

P (e = 1|c1 = 1, c2 = 0, c3 = 0) = 0.2, P (e = 2|c1 = 1, c2 = 0, c3 = 0) = 0.1,
P (e = 1|c1 = 0, c2 = 1, c3 = 0) = 0.2, P (e = 2|c1 = 0, c2 = 1, c3 = 0) = 0.3,
P (e = 1|c1 = 0, c2 = 0, c3 = 1) = 0.4, P (e = 2|c1 = 0, c2 = 0, c3 = 1) = 0.5.

The CPT from the noisy-MAX is the following.

c1 c2 c3 P (e = 1|c1, c2, c3) P (e = 2|c1, c2, c3) P (e = 2|c1, c2, c3)
0 0 0 1.0 0 0
0 0 1 0.1 0.4 0.5
0 1 0 0.5 0.2 0.3
0 1 1 0.05 0.3 0.65
1 0 0 0.7 0.2 0.1
1 0 1 0.07 0.38 0.55
1 1 0 0.35 0.28 0.37
1 1 1 0.035 0.28 0.685

Applying Eqn. (10) to the dual NIN-AND gate models of relevant subsets of{c1, c2, c3} with the
above single-causal probabilities produces exactly the same CPT.

By Theorem 1, a noisy-MAX can always be expressed by a dual NIN-AND gate with exactly
the same parameters. Since a dual gate models reinforcing, so does a noisy-MAX. On the other
hand, a NAT can have direct gates and multiple dual gates, and can model both reinforcing and
undermining as well as their recursive mixtures. Hence, NAT models are strictly more expressive
than noisy-MAX models, as summarized in Corollary 1.

Corollary 1. LetC be the set of all causes of an effecte. Then the following holds.

1. Whenever causes inC interact according to noisy-MAX, there exists a multi-valued NAT of
the same parameters as noisy-MAX, such that the CPTP (e|C) from the NAT model equals
that of the noisy-MAX.

2. There exist multi-valued NAT models overC ande, whose CPTP (e|C) cannot be encoded
by any noisy-MAX model overC ande.
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Example 2 illustrates the first statement of Corollary 1, and the NAT in Example 1 is a demon-
stration of the second statement.

A NAT model of a CPT is uniquely defined byC, e, a NAT, and a set of single-causals. A
distinct CPT (hence a distinct NAT model) is obtained if the NAT or the set of single-causals is
modified. The number of distinct NATs givenn is super-exponential inn [14] and the noisy-MAX
is equivalent to exactly one of them. Single-causals are real numbers. Hence, givenC ande, the
number of NAT models that satisfy the second statement of Corollary 1 is infinite.

Multi−valued NIN−AND tree models

Generalize on causal interactions

Binary NIN−AND tree models Noisy−MAX models

Generalize on causal interactions

Noisy−OR models

Generalize on variable domains

Generalize on causal interactions

DeMorgan models

Generalize on variable domains

Figure 2: Relations among five classes of CIMs.

Fig. 2 provides a unified view on noisy-OR, noisy-MAX, binary NAT, multi-valued NAT mod-
els, as well as DeMorgan models [17]. It reveals that multi-valued NAT models are the gener-
alization of noisy-OR models along two independent dimensions: domain sizes of variables and
causal interactions. When generalization is only on causal interactions, it results in the binary NAT
models. If generalization is only on variable domain sizes, the result is the noisy-MAX models.
The DeMorgan models are intermediate between noisy-OR and binary NAT models, as has been
shown [7].

3.2. Potential Misconceptions on NAT Models

An arbitrary combination of noisy-OR and noisy-AND gates is not equivalent to a NAT. This
discussion refers to noisy-OR rather than noisy-MAX, since noisy-MAX degenerates to noisy-OR
when all variables are binary. Limitation inherent to noisy-OR (other than being binary) cannot be
overcome by noisy-MAX (for instance, the first point below).

First, a noisy-OR gate represents reinforcement, not undermining (see analysis in [6]). Second,
a noisy-AND gate also represents reinforcement only, since a common noisy-AND gate is im-
peding (see [6]). Encoding cause variables through their complements in a noisy-AND gate does
not overcome this limitation as we show below. SupposeC = {c1, c2}, all variables are binary,
P (e1 ← c1

1) = q > 0, andP (e1 ← c1
2) = r > 0. A noisy-AND model produces the following

CPT, where the last two equalities in the left equation are the impeding behavior.

P (e1|c0
1, c

0
2) = P (e1|c1

1, c
0
2) = P (e1|c0

1, c
1
2) = 0, P (e1|c1

1, c
1
2) = q ∗ r > 0.

As more active causes make the effect more likely, the interaction is reinforcing. Suppose we
replace each variable value by its complement. The resultant noisy-AND has the CPT below.

P (e0|c1
1, c

1
2) = P (e0|c0

1, c
1
2) = P (e0|c1

1, c
0
2) = 0, P (e0|c0

1, c
0
2) > 0.
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It is equivalent to the following.

P (e1|c1
1, c

1
2) = P (e1|c0

1, c
1
2) = P (e1|c1

1, c
0
2) = 1, P (e1|c0

1, c
0
2) ∈ (0, 1).

The left equation makes each cause deterministic, and the right expression makes the effect active
when all causes are inactive: an unintuitive semantics. If we replace only cause variables by
complements, the resultant noisy-AND model produces the following CPT.

P (e1|c1
1, c

1
2) = P (e1|c0

1, c
1
2) = P (e1|c1

1, c
0
2) = 0, P (e1|c0

1, c
0
2) > 0.

The left equation makes the effect inactive when all causes are active, and the right inequality
suffers from the same problem above: an unintuitive semantics again. Hence, the noisy-AND
cannot model undermining.

Third, an arbitrary combination of several direct and dual NIN-AND gates does not constitute
a more general representation than a NAT. When several NIN-AND gates are combined arbitrarily,
the topology and causes involved in each root event are not subject to the syntactic restriction of
NATs. The resultant structure does not ensure a meaningful semantics required by a causal model.
On the other hand, the topology of a NAT and influences of its causes are regulated to ensure a
coherent semantics.

4. MF of NIN-AND Gate Models

A NAT model reduces the space of a BN CPT from being exponential to being linear onn.
However, as explained in the end of Sec. 2, NAT models cannot be directly used by common BN
inference algorithms. To overcome this difficulty, we develop MFs of multi-valued NAT models.
MFs for NIN-AND gates models are defined in this section, and MFs for NAT models are presented
in the next section.

MFs contain auxiliary variables (in addition to effects and causes) and generalized potentials
(with possibly negative values) over these variables. The potentials are so defined that their prod-
uct, after marginalizing out auxiliary variables, is exactly the intended CPT. The product and
marginalization operations, however, can be carried out in flexible orders. Hence, MFs trade cost
of operating on potentials over auxiliary variables with flexibility of computation order. The key
is to minimize the cost while ensuring exactness and order flexibility. Therefore, we develop MFs
according to the criteria below.

1. MF of a NAT model is a graphical model whose graph is consistent with the NAT topology.
2. Auxiliary variables in the MF are as few as possible.
3. Domains of auxiliary variables are as small as possible.

In the following, we develop MFs for NIN-AND gates models that observe these criteria.

4.1. MF of Dual NIN-AND Gate Models
We organize MF of a dual NIN-AND gate model according to a hybrid graph.

Definition 2. TheMF structure of a NIN-AND gate model over effecte ∈ {e0, e1, ..., eη} and its
causesci (i = 1, ..., n) is a hybrid graphG, whose nodes are labeled bye, ci (i = 1, ..., n), and
auxiliary variablesdj (j = 1, ..., η). Each link〈dj , ci〉 between an auxiliary variable and a cause
is aclink and is undirected. Each link(dj, e) is directed.

Each clink is assigned aclink potential f(dj , ci). Nodee is assigned afamily potential
f(d1, ..., dη, e) defined over its family determined by incoming directed links.
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Fig. 3 illustrates the MF structure of a dual NIN-AND gate model.
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Figure 3: Hybrid graphical model for MF of a NIN-AND gate.

For example, whenη = 2, n = 2, and |Di| = 3 for i = 1, 2, the MF has 4 clink poten-
tials f(d1, c1), f(d2, c1), f(d1, c2), f(d2, c2) and the family potentialf(d1, d2, e). Table 1 shows
f(d1, c1), f(d2, c1) andf(d1, d2, e). Each potential table starts with a double line, and the table
f(d1, d2, e) splits into two parts. Potential values are shown inf columns. Each table issectioned
by grouping rows according to the value(s) for one or more variables. If potential values are inde-
pendent of a variable, the corresponding section is compressed, e.g., the last section off(d1, c1).
Table 2 shows MF potentials in general. We refer to the collection of graphG and the potentials

Table 1: MF potentialsf(d1, c1), f(d2, c1) andf(d1, d2, e) of an example dual gate model

d1 c1 f
0 c0

1 1
0 c1

1 P (e < e1← c1
1)

0 c2
1 P (e < e1← c2

1)
1 c1 1

d2 c1 f
0 c0

1 1
0 c1

1 P (e < e2← c1
1)

0 c2
1 P (e < e2← c2

1)
1 c1 1

d1 d2 e f
0 0 e 0
0 1 e0 1
0 1 e1 -1
0 1 e2 0

d1 d2 e f
1 0 e0 0
1 0 e1 1
1 0 e2 -1
1 1 e0 0
1 1 e1 0
1 1 e2 1

Table 2: The clink and family potentialsf(dj , ci) andf(d1, ..., dη, e) of MDu

dj ci f
0 c0

i P (e < ej ←⊥) = 1
0 c1

i P (e < ej ← c1
i )

... ...
0 cm

i P (e < ej ← cm
i )

1 ci 1

line (d1, ..., dη, e) f
1 di = 0, ∀j 6=i dj = 1, e = ei−1 1
2 di = 0, ∀j 6=i dj = 1, e = ei -1
3 ∀i di = 1, e = eη 1
4 otherwise 0

as the MF of a Dual gate model (MDu). For analysis, we decompose the MF into thelink layer,
consisting of clinks (including end nodes) and their potentials, and thefamily layer, consisting of
the directed links and the family potential. Auxiliary variables are included in both layers.

In the remainder of the paper, we frequently obtain the product of several potentials over a set
of variables and then marginalize out some variables (may be none), such as the following.

f(e, c1, ..., cn) =
∑

d1 ,...,dη

f(d1, ..., dη, e)
∏

1≤j≤η,1≤i≤n

f(dj , ci).

We refer to the result as amarginalized potential product(MPP). When the relevant set of potentials
is clear from context, we mention the MPP, e.g.,f(e, c1, ..., cn), without elaborating the factor
potentials.
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By Theorem 1, MDu is equivalent to MF of noisy-MAX [10, 11], from which Corollary 2 on
the exactness of MDu follows.

Corollary 2. Let MDu be applied to a dual NIN-AND gate model whose CPT isP (e|c1, ..., cn).
The MPPf(e, c1, ..., cn) from potentials of the MDu satisfiesf(e, c1, ..., cn) = P (e|c1, ..., cn).

MDu has the same numerical parameters as the MF of noisy-MAX, but differs from the previ-
ous work [10, 11] as follows. The MF in [10] is not defined as a graphical model. The MF in [11]
is defined as a DAG model where potential assignment does not follow the family convention. We
define MDu as a hybrid graphical model with a rigorous syntax, where a potential is assigned to
each clink when the link is undirected or to the family when links are directed.

Def. 3 specifies a property of the link layer, where the MPP is obtained from the layer potentials.
It is used later to show exactness of MF of a NAT model. It is phrased to allow both single (k = 1)
and multiple causes. Its statement 1 abuses the notationP (e < ej ← c1, ..., ck) slightly for
simplicity, as some or all causes listed may be inactive, e.g., the first row in Table 2 (left).

Definition 3. [MDu link potential trait] Let {c1, ..., ck} (k ≥ 1) be a set of causes of MDu and
{d1, ..., dη} be a set of auxiliary variables. An MPPf(d1, ..., dη, c1, ..., ck) from the link layer of
the MDu satisfies the MDu link potential trait, if the following holds.

1. If ∃j dj = 0 and∀i 6=j di = 1, thenf(d1, ..., dη, c1, ..., ck) = P (e < ej ← c1, ..., ck).
2. If ∀i di = 1, thenf(d1, ..., dη, c1, ..., ck) = 1.

We refer to each statement in Def. 3 as asubtrait. We refer to the collection of statement
conditions (the premise in each subtrait) as preconditions of the trait. Prop. 1 shows that the above
property holds for MDu relative to a single cause.

Proposition 1. Let c be a cause in a dual NIN-AND gate model. The product of clink potentials
overc from the MDu of the model,f(d1, ..., dη, c) =

∏
1≤i≤η f(di, c), satisfies the MDu link poten-

tial trait (Def. 3) with k = 1.

Proof: From Table 2 (left), the first subtrait holds, since the factorf(dj , c) is from the section
wheredj = 0, and all other factors are from the section wheredi = 1 with value 1.

The second subtrait holds, since all factors are from the section wheref(di, c) = 1. �

Prop. 1, in fact, covers only products that satisfy preconditions in Def. 3. Prop. 2 says that these
products are all that matter. The other products overc make no contribution tof(e, c1, ..., cn) for
MDu.

Proposition 2. Let c be a cause in a dual NIN-AND gate model, and a product of clink potentials
over c from the MDu of the model bef(d1, ..., dη, c) =

∏
1≤i≤η f(di, c). Thenf(d1, ..., dη, c)

contributes tof(e, c1, ..., cn), only if preconditions of the MDu link potential trait (Def. 3) hold.

Proof: We havef(e, c1, ..., cn) =
∑

d1 ,...,dη
f(d1, ..., dη, e)

∏
1≤i≤n f(d1, ..., dη, ci). We show that

when the two preconditions do not hold for somec = ci, the factorf(d1, ..., dη, e) is zero, blocking
the productf(d1, ..., dη, c). This can be seen from Table 2 (right). If the first precondition does
not hold, lines 1 and 2 are ruled out. If the second precondition does not hold, line 3 is ruled out.
Hence,f(d1, ..., dη, e) is zero by line 4. �
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4.2. MF of Direct NIN-AND Gate Models

We develop MF of a direct gate model with the same hybrid structureG in Fig. 3, but each
dj ∈ {0, 1, 2}. Table 3 shows 2 clink potentials and the family potential whenη = 2, n = 2,

Table 3: MF potentialsf(d1, c1), f(d2, c1) andf(d1, d2, e) of an example direct gate model

d1 c1 f
0 c0

1 1
0 c1

1 P (e ≥ e1← c1
1)

0 c2
1 P (e ≥ e1← c2

1)
1 c1 1
2 c0

1 1
2 c1

1 0
2 c2

1 0

d2 c1 f
0 c0

1 1
0 c1

1 P (e ≥ e2 ← c1
1)

0 c2
1 P (e ≥ e2 ← c2

1)
1 c1 1
2 c0

1 1
2 c1

1 0
2 c2

1 0

d1 d2 e f
0 0 e 0
0 1 e0 -1
0 1 e1 1
0 1 e2 0
0 2 e 0
1 0 e0 0
1 0 e1 -1
1 0 e2 1

d1 d2 e f
1 1 e0 1
1 1 e1 0
1 1 e2 0
1 2 e 0
2 0 e0 1
2 0 e1 0
2 0 e2 -1
2 1 e 0
2 2 e 0

Table 4: The clink and family potentialsf(dj , ci) andf(d1, ..., dη, e) of MDi

dj ci f
0 c0

i 1
0 c1

i P (e ≥ ej ← c1
i )

... ...
0 cm

i P (e ≥ ej ← cm
i )

1 ci 1

dj ci f
2 c0

i 1
2 c1

i 0
... ...

2 cm
i 0

line (d1, ..., dη, e) f
1 di = 0, ∀j 6=i dj = 1, e = ei−1 -1
2 di = 0, ∀j 6=i dj = 1, e = ei 1
3 ∀i di = 1, e = e0 1
4 d1 = 2, ∀i>1 di = 0, e = e0 1
5 d1 = 2, ∀i>1 di = 0, e = eη -1
6 otherwise 0

and |Di| = 3 for i = 1, 2, with f(d1, c2) andf(d2, c2) left out. Note thatf(di = 0, c0
j ) = 1 is

not equal toP (e ≥ ei ← c0
j) = 0. Hence, unlike MDu,f(di = 0, ci) is not made entirely of

probabilities. We refer to the clink potential aspseudo-probabilistic. This is necessary as a value
0 would block other potential values in a product. To ensure exactness of MF (Theorem 2 below),
eachdj increases the domain size by 1 relative to MDu. Table 4 shows MF potentials in general.
We refer to the collection of graphG and the potentials as the MF of a Direct gate model (MDi).
Theorem 2 shows its exactness. The space complexity is discussed in Sec. 6.

Theorem 2. Let MDi be applied to a direct NIN-AND gate model whose CPT isP (e|c1, ..., cn).
The MPPf(e, c1, ..., cn) from potentials of the MDi satisfiesf(e, c1, ..., cn) = P (e|c1, ..., cn).

Proof: The MPPf(e, c1, ..., cn) =
∑

d1 ,...,dη
f(d1, ..., dη, e)

∏
1≤j≤η,1≤i≤n f(dj , ci) is defined from

potentials in Table 4. Consider the productf(dj , c1, ..., cn) =
∏

1≤i≤n f(dj , ci). If any ci is active,
by Table 4 (sectiondj = 0) and Eqn. (9), we havef(dj = 0, c1, ..., cn) = P (e ≥ ej ← x+), where
x+ denotes all activeci. Otherwise (eachci is inactive),f(dj = 0, c1, ..., cn) = 1 by row 1 of
Table 4. Fordj = 1, we havef(dj = 1, c1, ..., cn) = 1 from the last row of Table 4. Fordj = 2,
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Table 5: Summary onf(dj , c1, ..., cn)

f(dj, c1, ..., cn)
dj ∃ci ci > c0

i ∀ci ci = c0
i

0 (1) P (e ≥ ej ← x+) (4) 1
1 (2) 1 (5) 1
2 (3) 0 (6) 1

we havef(dj = 2, c1, ..., cn) = 0 if any ci is active andf(dj = 2, c1, ..., cn) = 1 otherwise, from
Table 4. This is summarized in Table 5.

The MPP becomesf(e, c1, ..., cn) =
∑

d1,...,dη
f(d1, ..., dη, e)f(d1, c1, ..., cn)...f(dη, c1, ..., cn),

wheref(d1, ..., dη, e) selects productsf(d1, c1, ..., cn)...f(dη, c1, ..., cn) for summation.
We consider two mutually exclusive and exhaustive cases: (1) someci is active, and (2) eachci

is inactive. Under case (1), we have the following intended causal probabilities, where0 < k < η
and justifications refer to Table 4 (right). Their derivations are explained after the equations.

f(e0, c1, ..., cn) = 1− P (e ≥ e1← x+) = P (e0← x+) (lines 3 and 1) (12)

f(ek, c1, ..., cn) = P (e ≥ ek ← x+)− P (e ≥ ek+1 ← x+)

= P (ek ← x+) (lines 2 and 1) (13)

f(eη, c1, ..., cn) = P (e ≥ eη ← x+) = P (eη ← x+) (line 2) (14)

For Eqn. (12), all productsf(d1, c1, ..., cn)...f(dη, c1, ..., cn) are zeros if anydj = 2 by Table 5
(3). Line 3 of Table 4 (right) yields 1. The product withd1 = 0 and all otherdj = 1 yields
−P (e ≥ e1← x+) by line 1 of Table 4 (right) and Table 5 (1). All remaining products are zeros by
line 6 of Table 4 (right). Hence, Eqn. (12) holds. For Eqn. (13), line 2 of Table 4 (right) and Table 5
(1) yield P (e ≥ ek ← x+). Line 1 of Table 4 (right) and Table 5 (1) yield−P (e ≥ ek+1 ← x+).
For Eqn. (14), line 2 of Table 4 (right) and Table 5 (1) yieldP (e ≥ eη ← x+).

Under case (2), all productsf(d1, c1, ..., cn)...f(dη, c1, ..., cn) equal 1 by Table 5 (4), (5) and
(6). Hence,f(c1, ..., cn, e) =

∑
d1 ,...,dη

f(d1, ..., dη, e) is completely determined by Table 4 (right).
We have the following intended causal probabilities.

f(e0, c1, ..., cn) = −1 + 1 + 1 = 1 = P (e0←⊥) (lines 1, 3 and 4)
f(ek, c1, ..., cn) = 1− 1 = 0 = P (ek ←⊥) (lines 2 and 1)
f(eη, c1, ..., cn) = 1− 1 = 0 = P (eη ←⊥) (lines 2 and 5)

It then follows thatf(e, c1, ..., cn) = P (e|c1, ..., cn). �

Def. 4 specifies a property of the link layer of MDi, where the MPP is obtained from layer
potentials. It is used later to show exactness of MF of a NAT model. It is phrased generally to
allow both single and multiple causes.

Definition 4. [MDi link potential trait] Let {c1, ..., ck} (k ≥ 1) be a set of causes of MDi and
{d1, ..., dη} be a set of auxiliary variables. An MPPf(d1, ..., dη, c1, ..., ck) from the link layer of
the MDi satisfies the MDi link potential trait, if the following holds.

1. If ∃j dj = 0, ∀i 6=j di = 1, and someci is active, then

f(d1, ..., dη, c1, ..., ck) = P (e ≥ ej ← c1, ..., ck).
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2. If ∃j dj = 0, ∀i 6=j di = 1, and eachci is inactive, thenf(d1, ..., dη, c1, ..., ck) = 1.

3. If ∀i di = 1, thenf(d1, ..., dη, c1, ..., ck) = 1.
4. If d1 = 2, ∀i>1 di = 0, and eachci is inactive, thenf(d1, ..., dη, c1, ..., ck) = 1.

Prop. 3 below shows that the above property holds for MDi relative to a single cause.

Proposition 3. Let c be a cause in a direct NIN-AND gate model. The product of clink potentials
overc from the MDi of the model,f(d1, ..., dη, c) =

∏
1≤i≤η f(di, c), satisfies the MDi link potential

trait (Def. 4) withk = 1.

Proof: All subtraits follow from Table 4 (left). We refer to the 3 sections wheredj = 0, 1, 2 as
section 0, 1 and 2, respectively. The first subtrait is derived from rows of section 0 other than the
first row and section 1. The second subtrait is from the first row of section 0 and section 1.

The third subtrait follows from section 1. The fourth subtrait is derived from the first rows of
sections 0 and 2. �

Prop. 3 covers effectively only products that satisfy preconditions of Def. 4. Prop. 4 says that
these products are all that matter. The other products overc make no contribution to the MPP
f(e, c1, ..., cn) of MDi.

Proposition 4. Let c be a cause in a direct NIN-AND gate model. The product of clink potentials
over c from the MDi of the model,f(d1, ..., dη, c) =

∏
1≤i≤η f(di, c), contributes to the MPP

f(e, c1, ..., cn) of the MDi, only if preconditions of the MDi link potential trait (Def. 4) hold.

Proof: We show that when the preconditions do not hold, either the factorf(d1, ..., dη, e) in the
MPP is zero, blocking productf(d1, ..., dη, c), or f(d1, ..., dη, c) is zero. This is seen from Table 4
(right). The first two preconditions combine into the condition∃j dj = 0 ∧ ∀i 6=j di = 1. If it does
not hold, lines 1 and 2 are ruled out. If the third precondition does not hold, line 3 is ruled out.

The fourth precondition has 3 subconditions. If the first two do not hold, lines 4 and 5 are ruled
out. If the first two subconditions hold but the third does not, the productf(d1, ..., dη, c) is zero by
Table 4 (left) from section 2 (rows other than the first).

In all other cases,f(d1, ..., dη, e) is zero by line 6 of Table 4 (right). �

5. MF of NAT Models

We develop the MF of NAT models by integrate NIN-AND gate models. We explain why the
stand-alone gate models presented above must be extended when they are embedded in a NAT
model. We then extend them into 4 distinct gate MFs as components of a NAT MF.

5.1. Overview

A nontrivial NAT has at least two NIN-AND gates, e.g., Fig. 4 (a) and (c), where event labels
are simplified and ovals into gates are omitted. The MF of a NAT model consists of a hybrid graph
G and a collection of potentials defined over each undirected link and each family inG. The graph
G is integrated from graphs of gate MFs according to the topology of the NAT, as shown in (b) and
(d). For instance, gateg2 in (a) induces the subgraph spanning{c1, c2, a1, a2, b} in (b). The child
variable from the MF of the leaf gate is still referred to as theeffectvariable and labeled bye, e.g.,
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the leaf gateg1 in (a) and (c). Child variables from MFs of other gates are referred to asinternal
variables and labeled differently. For instance, the child variable of MF forg2 in (a) is labeled asb
in (b). The graphG of the MF for a multi-valued NAT differs significantly from the graph of MF
for a binary NAT [13], in that the latter is a tree while the former is multiply connected.
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Figure 4: (a) A 2-gate NAT. (b) MF graph of (a). (c) A 4-gate NAT. (d) MF graph of (c).

SinceG is integrated according to the topology of the NAT, the input-output direction of the
NAT is maintained by the directed links inG. Hence, for each child node inG, its ancestor sub-
graph (containing the node and its ancestors) can be uniquely defined. For instance, the ancestor
subgraph ofb2 in Fig. 4 (d) is the subgraph spanned by{c1, c2, a1, a2, b1, c3, d1, d2, b2}. We also
refer to it as theancestor subgraph with leafb2. We refer to the collection of an ancestor subgraph
with leafx and potentials assigned to its links and families as thesubMF with leafx.

In graphG, the subgraph induced by a gate is identical to the graph of the MF for a standalone
gate. Due to several factors, however, variable domains, link potentials, and the family potential
associated with the subgraph may differ from those associated with the MF of a standalone gate.
First, an undirected link, e.g.,〈d1, b〉 in Fig. 4 (b), may connect an internal variableb. It is thus
called anilink and its link potential must be defined differently from that of a clink. Second, gates
in a NAT are located at different levels. The leaf gate is at level 1, e.g.,g1 in (a). A gate feeding the
leaf gate is at level 2, e.g.,g2 in (a). The MF of a gate must be adjusted according to its level. For
instance, the MF of a dual gate at level 2 is more sophisticated than that of a leaf dual gate. This is
because the former feeds into a gate at the next level while the latter is terminal.

Third, all gates at the same level have the same type (dual or direct) and gates at adjacent levels
differ in types [18]. Hence, a dual gate at level 2 receives input from direct gates at level 3, and
feeds into the direct leaf gate at level 1. The MF of a gate must be adjusted according to the gate
from which it receives input and the gate that it feeds into.

Fourth, a gate in a NAT may receive input from both clinks and ilinks. For instance, the MF
of g1 in Fig. 4 (b) receives input from clinks〈c3, dk〉 (k = 1, 2) as well as from ilinks〈b, dk〉. For
the family potential over{d1, d2, e} to work with both types of input uniformly, the product of po-
tentials over〈ci, aj〉, {a1, a2, b}, and〈b, dk〉, after marginalizing out{a1, a2, b}, must be equivalent
(syntactically and semantically) to the product of potentials over〈c3, dk〉. For example, assume
that the leaf gateg1 in Fig. 4 (a) is direct andg2 is dual. Recall from Sec. 4.2 that a clink potential
of a direct gate is pseudo-probabilistic. To render it probabilistic (as in Theorem 2), the domain
size of auxiliary variables is increased from 2 in MDu to 3 in MDi. Here, output from MF of the
dual gateg2 is probabilistic (Sec. 4.1). To be equivalent to clink potentials over〈c3, dk〉, the output
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needs to be rendered pseudo-probabilistic. As a result, the output variableb of g2 needs to have a
domain size ofe plus one, which will affect both the family potential for the MF of gateg2 and the
ilink potentials for the MF of gateg1.

Due to the above factors, we develop 4 distinct gate MFs for a NAT model: MDu enhanced
with ilink potentials, MDi enhanced with ilink potentials, Extended MDu (EDu), and Extended
MDi (EDi). A particular gate in a NAT is assigned one of the MFs depending on its gate type (dual
or direct) and its level in the NAT. The rule of assignment is shown in Table 6. For example, ifg1

Table 6: Rule of MF assignment for NIN-AND gates

gate MF
gate level dual direct
3 or higher EDu EDi
2 EDu MDi
1 MDu MDi

of Fig. 4 (c) is direct, the MF assignment for the gates is (g1: MDi; g2: EDu;g3: EDi; g4: EDu). If
g1 is dual, the MF assignment is (g1: MDu; g2: MDi; g3: EDu; g4: EDi).

Each gate MF consists of 4 types of variables. We denote an input cause variable byc, an input
internal variable byb, an auxiliary variable byd, and the output (child) variable byh if not e. Their
domain sizes depend on the gate MF. In MDu for dual gates,b has the domain size ofe andd is
binary. In EDu,d is ternary, andb andh have the domain size ofe plus one. In both MFs for direct
gates,b has the domain size ofe plus one due to input from EDu, andd is ternary. In MDi,h has
the domain size ofe. In EDi, h has the domain size ofe plus one. This is summarized in Table 7.

Table 7: Domain sizes for variablesb, d andh in a gate MF

domain size
var MDu EDu MDi EDi
b η + 1 η + 2 η + 2 η + 2
d 2 3 3 3
h η + 2 η + 1 η + 2

In MDu, MDi and EDi,d has the same domain size as in the MF of corresponding standalone
gate. For each clink〈c, d〉, assign the clink potential accordingly. In EDu, extend the clink potential
of MDu with f(d = 2, c) = (1, 0, ..., 0). Below, we describe each MF focusing on ilink and family
potentials. We illustrate the potentials for|De| = η + 1 = 3 and then present them in general.

5.2. MDu

The ilink potentialsf(di, b) for |De| = 3 are shown in Table 8.
If |De| increases by 1, each section (with the samedi value) off(di, b) has another row, and

another link potentialf(d3, b) is needed, whose first section is(1, 1, 1, 0). The general ilink po-
tential of MDu is shown in Table 9. The general clink and family potentials of MDu are shown in
Table 2.
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Table 8: The ilink potentialsf(d1, b) andf(d2, b) of an example MDu, and their product

d1 b f
0 b0 1
0 b1 0
0 b2 0
1 b 1

d2 b f
0 b0 1
0 b1 1
0 b2 0
1 b 1

d1 d2 f(d1, d2, b
0) f(d1, d2, b

1) f(d1, d2, b
2)

0 0 1 0 0
0 1 1 0 0
1 0 1 1 0
1 1 1 1 1

Table 9: The ilink potentialf(dj , b) (j = 1, ..., η) of MDu

line (dj, b) f
1 dj = 0, b = b0, ..., bj−1 1
2 dj = 0, b = bj, ..., bη 0
3 dj = 1 1

5.3. EDu

In EDu, each auxiliary variabledj has the domain size 3. Table 10 shows ilink potentials
f(di, b) and family potentialf(d1, ..., dη, h) for |De| = 3. Thef(di, b) extends that of MDu (Ta-
ble 8) by adding one row on each section and a new section. The row added to the first section is
1, the row added to the second section is 0, and the new section is(0, ..., 0, 1).

Table 10: The ilink and family potentialsf(d1, b), f(d2, b), andf(d1, d2, h) of an example EDu

d1 b f
0 b0 1
0 b1 0
0 b2 0
0 b3 1
1 b0 1
1 b1 1
1 b2 1
1 b3 0
2 b0 0
2 b1 0
2 b2 0
2 b3 1

d2 b f
0 b0 1
0 b1 1
0 b2 0
0 b3 1
1 b0 1
1 b1 1
1 b2 1
1 b3 0
2 b0 0
2 b1 0
2 b2 0
2 b3 1

d1 d2 h f
0 0 h 0
0 1 h0 1
0 1 h1 -1
0 1 h2 0
0 1 h3 0
0 2 h 0
1 0 h0 0
1 0 h1 1
1 0 h2 -1
1 0 h3 0

d1 d2 h f
1 1 h0 0
1 1 h1 0
1 1 h2 1
1 1 h3 0
1 2 h 0
2 0 h0 -1
2 0 h1 0
2 0 h2 1
2 0 h3 1
2 1 h 0
2 2 h 0

Thef(d1, ..., dη, h) extends that of MDu (Table 2) by adding one row of 0 on each section and
new sections wheredi = 2. The new sections are all zeros, except the section for(d1 = 2, d2 =
0, ..., dη = 0) is (−1, 0, ..., 1, 1).

Each clink potential extends that of MDu (Table 2, left) with the additional sectionf(dj =
2, ci) = (1, 0, ..., 0). The general clink, ilink and family potentials of EDu are shown in Table 11.
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Table 11: The clink, ilink and family potentialsf(dj , ci), f(dj , b) andf(d1, ..., dη, h) of EDu

dj ci f
0 ci P (e < ej ← ci)
1 ci 1
2 c0

i 1
2 ci > c0

i 0

line (dj , b) f
1 dj = 0, b = b0, ..., bj−1, bη+1 1
2 dj = 1, b = b0, ..., bη 1
3 dj = 2, b = bη+1 1
4 otherwise 0

line (d1, ..., dη, h) f
1 di = 0, ∀j 6=i dj = 1, h = hi−1 1
2 di = 0, ∀j 6=i dj = 1, h = hi -1
3 ∀i di = 1, h = hη 1
4 d1 = 2, ∀i>1 di = 0, h = h0 -1
5 d1 = 2, ∀i>1 di = 0, h = hη, hη+1 1
6 otherwise 0

5.4. MDi

The ilink potentialsf(di, b) for |De| = 3 are shown in Table 12. If|De| increases by 1, each

Table 12: The ilink potentialsf(d1, b) andf(d2, b) of an example MDi or EDi

d1 b f
0 b0 0
0 b1 1
0 b2 1
0 b3 1

d1 b f
1 b0 1
1 b1 1
1 b2 1
1 b3 0

d1 b f
2 b0 0
2 b1 0
2 b2 0
2 b3 1

d2 b f
0 b0 0
0 b1 0
0 b2 1
0 b3 1

d1 b f
1 b0 1
1 b1 1
1 b2 1
1 b3 0

d2 b f
2 b0 0
2 b1 0
2 b2 0
2 b3 1

Table 13: The ilink potentialf(dj , b) (j = 1, ..., η) of MDi and EDi

line (dj , b) f
1 dj = 0, b = bj, ..., bη+1 1
2 dj = 1, b = b0, ..., bη 1
3 dj = 2, b = bη+1 1
4 otherwise 0

section off(di, b) has another row, and another potentialf(d3, b) is needed. The first section
of f(d1, b) is (0, 1, 1, 1, 1) and that off(d3, b) is (0, 0, 0, 1, 1). The second section off(di, b) is
(1, 1, 1, 1, 0) and the third section is(0, 0, 0, 0, 1). The general ilink potential of MDi is shown in
Table 13. The general clink and family potentials of MDi are shown in Table 4.

5.5. EDi

For |De| = 3, ilink potentialsf(di, b) are identical to those of MDi in Table 12. The family
potentialf(d1, ..., dη, h) is shown in Table 14. Relative to MDi, the domain size ofh is increased
to |De|+1. The family potential is extended accordingly from that of MDi (Table 4) by adding one
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row of 0 on each section, except the row added to section(d1 = 2, d2 = 0, ..., dη = 0) is 1. The

Table 14: Family potentialf(d1, d2, h) of an example EDi

d1 d2 h f
0 0 h 0
0 1 h0 -1
0 1 h1 1
0 1 h2 0
0 1 h3 0

d1 d2 h f
0 2 h 0
1 0 h0 0
1 0 h1 -1
1 0 h2 1
1 0 h3 0

d1 d2 h f
1 1 h0 1
1 1 h1 0
1 1 h2 0
1 1 h3 0
1 2 h 0

d1 d2 h f
2 0 h0 1
2 0 h1 0
2 0 h2 -1
2 0 h3 1
2 1 h 0
2 2 h 0

general ilink and clink potentials of EDi are shown in Tables 13 and 4, respectively. The general
family potential of EDi is shown in Table 15.

Table 15: The family potentialf(d1, ..., dη, h) of EDi

line (d1, ..., dη, h) f
1 di = 0, ∀j 6=i dj = 1, h = hi−1 -1
2 di = 0, ∀j 6=i dj = 1, h = hi 1
3 ∀i di = 1, h = h0 1
4 d1 = 2, ∀i>1 di = 0, h = h0, hη+1 1
5 d1 = 2, ∀i>1 di = 0, h = hη -1
6 otherwise 0

6. Exactness and Complexity of MF of NAT Models

We analyze main properties of the MF of NAT models. Most of this section is devoted to
the exactness and the last subsection analyzes complexity. Since the MF of NAT models was
integrated from four gate MFs (last section), we analyze main properties of gate MFs and then
establish exactness of the MF of NAT models. When analyzing a gate MF, we must consider the
case, where all inputs are cause variables (referred to asterminal input), and the case, where some
inputs are internal from other gates. From Table 6, in a NAT model, only EDu, EDi and MDi can
have terminal-only inputs. They can have inputs from other gates as well. MDu, however, must
have inputs from other gates (unless the NAT is trivial: a single gate). Properties of MDu and MDi
with terminal inputs only have been analyzed in Sec. 4. Here, we analyze the following in that
order.

EDu 1. Output property without ilinks (terminal inputs only)
2. Output property with ilinks from EDi

EDi 1. Output property without ilinks (terminal inputs only)
2. Output property with ilinks from EDu

MDi Output property with ilinks from EDu
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MDu Output property with ilinks from MDi

The existence of four distinct gate MFs has a cost in establishing exactness when they are
interacting within a NAT model, as will be seen below. It is conceivable that by making domain
sizes ofb, d andh in MDu and MDi the same as those of EDu and EDi, (asη + 2, 3, andη +
2, respectively), the number of distinct gate MFs may be reduced to two and the corresponding
analysis may be simpler. Following the criteria stated in Sec. 4, we have instead made each gate
MF as space-efficient as possible (e.g., domain size ofb in MDu is smaller than that in EDu) even
though this increases sophistication in analysis.

Consider a subMF with leaf variableh. If h belongs to an EDu, we refer to the subMF as an
EDu-based subMF. For instance, if leaf gateg1 in Fig. 4 (c) is direct, the MF for gateg2 is EDu.
The subMF with leaf variableb3 in (d) is an EDu-based subMF. It includes the ancestor subgraph
with leafb3 and potentials associated with all undirected links and families in the subgraph. When
analyzing the output property of EDu, the focus is the output property of an EDu-based subMF.
The similar naming and focus of analysis apply to EDi, MDi and MDu as well.

6.1. Output Property of EDu

Our analysis aims to establish that an EDu-based subMF has the output property specified in
Def. 5.

Definition 5 (EDu output potential trait). Let {c1, ..., ck} (k > 1) be a set of causes andh be
the output variable of EDu. An MPPf(h, c1, ..., ck) satisfies the EDu output potential trait if the
following holds.

1. If h ≤ hη and someci is active, thenf(h, c1, ..., ck) = P (e|c1, ..., ck).
2. If h = hη+1 and someci is active, thenf(h, c1, ..., ck) = 0.
3. If h < hη and eachci is inactive, thenf(h, c1, ..., ck) = 0.
4. If h ≥ hη and eachci is inactive, thenf(h, c1, ..., ck) = 1.

The subtraits 3 and 4 show that the above trait is pseudo-probabilistic, sinceP (e < eη ←⊥) =
1 andP (e ≥ eη ←⊥) = 0. This is necessary as EDu feeds into MDi or EDi.

In the following, we first analyze an EDu-based subMF made of the EDu only (no ilinks).
Theorem 3 shows that the above property holds in such a subMF. In the theorem, each valuehi of
h corresponds to the valueei of e if 0 ≤ i ≤ η.

Theorem 3. Let EDu be applied to a dual NIN-AND gate model whose CPT isP (e|c1, ..., cn).
The MPPf(h, c1, ..., cn) from potentials of the EDu satisfies the EDu output potential trait (Def. 5)
with k = n.

Proof: The MPPf(h, c1, ..., cn) =
∑

d1 ,...,dη
f(d1, ..., dη, h)

∏
1≤j≤η,1≤i≤n f(dj , ci) is defined from

potentials in Table 11 (top left and bottom). Consider productf(dj , c1, ..., cn) =
∏

1≤i≤n f(dj , ci).
From Table 11 (top left), we havef(dj = 1, c1, ..., cn) = 1. If someci is active, we havef(dj =
0, c1, ..., cn) = P (e < ej ← x+) by Eqn. (10), wherex+ denotes all activeci, andf(dj =
2, c1, ..., cn) = 0. If eachci is inactive, we havef(dj = 0, c1, ..., cn) = 1, sinceP (e < ej ←⊥) = 1
by Eqn. (7), andf(dj = 2, c1, ..., cn) = 1. This is summarized in Table 16. The MPP now becomes
f(h, c1, ..., cn) =

∑
d1,...,dη

f(d1, ..., dη, h)f(d1, c1, ..., cn) ... f(dη, c1, ..., cn), wheref(d1, ..., dη, h)
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Table 16: Summary onf(dj , c1, ..., cn) (j = 1, ..., η)

f(dj, c1, ..., cn)
dj ∃ci ci > c0

i ∀ci ci = c0
i

0 (1) P (e < ej ← x+) (4) 1
1 (2) 1 (5) 1
2 (3) 0 (6) 1

selects productsf(d1, c1, ..., cn)...f(dη, c1, ..., cn) for summation. We consider the two cases: (1)
someci is active, and (2) eachci is inactive.

Under case (1), ifh = h0, f(d1, ..., dη, h) is non-zero by lines 1 and 4 of Table 11 (bottom).
However,f(d1 = 2, c1, ..., cn) = 0 by Table 16 (3). From Table 16 (2) and (1), we have

f(h0, c1, ..., cn) = f(d1 = 0, 1, ..., 1, h0)f(d1 = 0, c1, ..., cn) = P (e < e1← x+) = P (e0 ← x+).

If h = hη, f(d1, ..., dη, h) is non-zero by lines 2, 3 and 5 of Table 11 (bottom). By Table 16 (3),
f(d1 = 2, c1, ..., cn) = 0. From Table 16 (2) and (1), we have

f(hη, c1, ..., cn) = f(1, ..., 1, dη = 0, hη)f(dη = 0, c1, ..., cn) + f(1, ..., 1, hη)

= −P (e < eη ← x+) + 1 = P (eη ← x+).

If h = hk with 0 < k < η, f(d1, ..., dη, h) is non-zero by lines 1 and 2 of Table 11 (bottom). From
Table 16 (2) and (1), we have

f(hk, c1, ..., cn) = f(1, ..., 1, dk+1 = 0, 1, ..., 1, hk)f(dk+1 = 0, c1, ..., cn)

+ f(1, ..., 1, dk = 0, 1, ..., 1, hk)f(dk = 0, c1, ..., cn)

= P (e < ek+1 ← x+)− P (e < ek ← x+) = P (ek ← x+).

Hence, from Eqn. (3), the subtrait 1 holds.
If h = hη+1, thenf(d1, ..., dη, h) is non-zero by line 5 of Table 11 (bottom) whered1 = 2. As

f(d1 = 2, c1, ..., cn) = 0 by Table 16 (3), we havef(hη+1, c1, ..., cn) = 0, which is the subtrait 2.
Under case (2),f(dj , c1, ..., cn) = 1 by Table 16 (4), (5) and (6). The MPP now becomes

f(h, c1, ..., cn) =
∑

d1,...,dη
f(d1, ..., dη, h). Forh < hη, lines 1, 2 and 4 in Table 11 (bottom) are

non-zero. Ifh = h0, by lines 1 and 4, we have

f(h0, c1, ..., cn) = f(d1 = 0, 1, ..., 1, h0) + f(d1 = 2, 0, ..., 0, h0) = 1 − 1 = 0.

If h = hk with 0 < k < η, by lines 1 and 2, we have

f(hk, c1, ..., cn) = f(1, ..., 1, dk+1 = 0, 1, ..., 1, hk) + f(1, ..., 1, dk = 0, 1, ..., 1, hk) = 1− 1 = 0.

Hence, the subtrait 3 holds.
Forh ≥ hη, lines 2, 3 and 5 of Table 11 (bottom) are non-zero. Ifh = hη, we have

f(hη, c1, ..., cn) = f(1, ..., 1, dη = 0, hη)+f(1, ..., 1, hη)+f(d1 = 2, 0, ..., 0, hη) = −1+1+1 = 1.
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If h = hη+1, by line 5, we havef(hη+1, c1, ..., cn) = f(d1 = 2, 0, ..., 0, hη+1) = 1. Hence, the
subtrait 4 holds. �

We extend the two layers of MFs of standalone gates to subMFs. For an EDu-based subMF, the
family layer is the same as before, made of the family of the leaf variable and its family potential.
The link layer includes the rest of the ancestor subgraph and the associated potentials. In Fig. 4 (c),
if g1 is direct, the subMF with leafb3 in (d) is EDu-based. Its link layer consists of the subgraph
including and above nodesh1 andh2, as well as relevant potentials. Def. 6 summarizes a property
of the link layer in terms of an MPP defined over its potentials. It consists of 3 subtraits with the
first two being identical to the MDu link potential trait (Def. 3).

Definition 6 (EDu link potential trait). Let {c1, ..., ck} (k ≥ 1) be a set of causes of an EDu-
based subMF and{d1, ..., dη} be a set of auxiliary variables of the EDu. An MPP from the link
layer of the subMFf(d1, ..., dη, c1, ..., ck) satisifies the EDu link potential trait, if the MDu link
potential trait (Def. 3) holds as well as the following.

3. If d1 = 2, ∀i>1 di = 0, and eachci is inactive, thenf(d1, ..., dη, c1, ..., ck) = 1.

Prop. 5 shows that the above property holds for an EDu-based subMF made of the EDu only
(no ilinks).

Proposition 5. Let c be a cause in a dual NIN-AND gate model. The product of clink potentials
overc from the EDu of the model,f(d1, ..., dη, c) =

∏
1≤i≤η f(di, c), satisfies the EDu link potential

trait (Def. 6) withk = 1.

Proof: The clink potentials are defined in Table 11 (top left). We refer to sections wheredj = 0, 1, 2
as sections 0, 1, 2, respectively.

The subtrait 1 holds, since the factorf(dj , c) is from section 0 and all other factors are from
section 1. The subtrait 2 holds as all factors are from section 1. The subtrait 3 follows from the
first row of section 2 and from section 0, whereP (e < ei ←⊥) = 1 (i > 1). �

Prop. 5, in fact, covers only products of clink potentials that satisfy preconditions of the EDu
link potential trait. Prop. 6 shows that these products are all that matter. It plays a similar role as
Prop. 2, but the latter only applies to MDu.

Proposition 6. Let c be a cause in a dual NIN-AND gate model overc1, ..., cn. The product of
clink potentials from its EDuf(d1, ..., dη, c) =

∏
1≤i≤η f(di, c) contributes to MPPf(e, c1, ..., cn),

only if preconditions of the EDu link potential trait (Def. 6) hold withk = 1.

Proof: Thef(d1, ..., dη, c) contributes tof(e, c1, ..., cn) through its product with family potential
f(d1, ..., dη, h) in Table 11 (bottom). We show that if the preconditions fail, one of them is 0.

If none of preconditions 1, 2 and the first two subconditions of 3 holds, the first 5 lines of
Table 11 (bottom) do not apply. By line 6,f(d1, ..., dη, h) = 0. If d1 = 2, ∀i>1 di = 0, but c is
active,f(d1, ..., dη, c) = 0 by Table 11 (top left, last row). �

Below, we move on to analyze an EDu-based subMF with ilinks. By Table 6, each ilink of
the EDu is connected to the output variable of an EDi. To evaluate the impact from the EDi, we
specify an output property of an EDi-based subMF in Def. 7. We show that the property holds for
an EDi-based subMF in Section 6.2.
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Definition 7 (EDi output potential trait). Let {c1, ..., ck} (k > 1) be a set of causes of an EDi-
based subMF andh be the output variable of the EDi. An MPPf(h, c1, ..., ck) from the subMF
satisfies the EDi output potential trait, if the following holds.

1. If h ≤ hη, thenf(h, c1, ..., ck) = P (e|c1, ..., ck).
2. If h = hη+1 and eachci is inactive, thenf(h, c1, ..., ck) = 1.
3. If h = hη+1 and someci is active, thenf(h, c1, ..., ck) = 0.

Prop. 7 analyzes the behavior of the link layer with the focus on one input variable. It shows
that MPP from the relevant ilink potentials behaves equivalently to products of clink potentials as
analyzed in Prop. 5. Note thatb is the output variable of an EDi, and the above output property
of EDi is assumed. In Fig. 4 (c), if gateg1 is direct, then the MF ofg2 in (d) is EDu and Prop. 7
applies to it. Variableb in Prop. 7 refers tob2 in (d).

Proposition 7. Let b be the leaf variable of an EDi-based subMF over causesc1, ..., cn and an in-
put variable of an EDu with ilinks〈b, d1〉, ..., 〈b, dη〉. Let the MPP from the subMF bef(b, c1, ..., cn)
such that the EDi output potential trait (Def. 7) holds withk = n andh = b.

Then the MPPf(d1, ..., dη, c1, ..., cn) =
∑

b f(d1, b)...f(dη, b)f(b, c1, ..., cn) from the link layer
of the EDu-based subMF satisfies the EDu link potential trait (Def. 6) withk = n.

Proof: From Table 6,b is the output variable of an EDi, and has a domain size ofη + 2 by Table 7.
Table 11 (top right) defines ilink potentials in the MPP. Rewritef(d1, ..., dη, c1, ..., ck) as

f(d1, b
η+1)...f(dη, b

η+1)f(bη+1, c1, ..., ck) +
∑

b≤bη

f(d1, b)...f(dη, b)f(b, c1, ..., ck).

For the EDu subtrait 1, if∃j dj = 0 and∀i 6=j di = 1, the first term is 0, since we have
f(di 6=j = 1, bη+1) = 0 by Table 11 (top right, lines 2 and 4). By line 2, the second term is∑

b≤bη f(dj = 0, b)f(b, c1, ..., ck) and it becomes
∑

b0≤b≤bj−1 f(b, c1, ..., ck) by line 1. From the
EDi subtrait 1, the sum equalsP (e < ej ← c1, ..., ck), and the EDu subtrait 1 follows.

If ∀i di = 1, the first term above is 0 by Table 11 (top right, lines 2 and 4), and the second
becomes

∑
b≤bη f(b, c1, ..., ck) by line 2. From the EDi subtrait 1, the EDu subtrait 2 follows as the

probabilities sum to one.
If d1 = 2 and∀i>1 di = 0, the second term off(d1, ..., dη, c1, ..., ck) is 0 by Table 11 (top right,

lines 3 and 4) asf(d1 = 2, b ≤ bη) = 0. The first term isf(bη+1, c1, ..., ck) by lines 1 and 3. If each
ci is inactive, the value is 1 by the EDi subtrait 2. Hence, the EDu subtrait 3 holds. �

The MPPs covered in Prop. 7 include only those satisfying preconditions of the EDu link
potential trait. Prop. 8 shows that those are all that matter.

Proposition 8. Let c1, ..., cn be the set of causes of a NAT model. Letb be the leaf variable of a
subMF over causesc1, ..., cm (m < n) and an inputvariable of an EDu with ilinks〈b, d1〉, ..., 〈b, dη〉.
Let the MPP from the subMF bef(b, c1, ..., cm) such that the EDi output potential subtrait 3
(Def. 7) holds withk = m andh = b.

Then the MPPf(d1, ..., dη, c1, ..., cm) =
∑

b f(d1, b)...f(dη, b)f(b, c1, ..., cm) contributes to the
MPPf(e, c1, ..., cn) of the NAT model, only if preconditions of the EDu link potential trait (Def. 6)
holds withk = m.
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Proof: Thef(d1, ..., dη, c1, ..., cm) contributes tof(e, c1, ..., cn) by its product with family potential
f(d1, ..., dη, h) in Table 11 (bottom). We show that if the preconditions fail, one of them is 0.

If none of preconditions 1, 2 and the first two subconditions of 3 holds, the first 5 lines of
Table 11 (bottom) do not apply. By line 6,f(d1, ..., dη, h) = 0. If d1 = 2 and∀i>1 di = 0, but
someci is active (failing condition 3), rewritef(d1, ..., dη, c1, ..., cm) as

f(d1, b
η+1)...f(dη, b

η+1)f(bη+1, c1, ..., cm) +
∑

b≤bη

f(d1, b)...f(dη, b)f(b, c1, ..., cm).

The second term is 0 by Table 11 (top right, lines 3 and 4). The first term isf(bη+1, c1, ..., cm) by
lines 1 and 3. The value equals 0 by the EDi subtrait 3. Hence,f(d1, ..., dη, c1, ..., cm) = 0. �

We are now ready to show the output property of EDu when both clinks and ilinks exist.

Theorem 4. Let {c1, ..., cn} be the set of causes of an EDu-based subMF. For any input variable
b of the EDu such thatb is the leaf variable of an EDi-based subMF over causes{s1, ..., sm} ⊂
{c1, ..., cn} and the MPP from the EDi-based subMF isf(b, s1, ..., sm), the EDi output potential
trait (Def. 7) holds with the set of causes being{s1, ..., sm} andh = b.

Then the MPPf(h, c1, ..., cn) from the EDu-based subMF satisfies the EDu output potential
trait (Def. 5) withk = n.

Proof: By Theorem 3, the EDu output potential trait holds when the EDu-based subMF has clinks
only. By Prop. 5, this result is obtained when products of clink potentials of the subMF satisfy the
EDu link potential trait. Although the trait has preconditions, by Prop. 6, those products of clink
potentials obtained when the preconditions fail do not matter.

When the EDu-based subMF has ilinks, by Prop. 7, MPPs from ilink potentials of the subMF
also satisfy the EDu link potential trait, as long as input EDi-based subMF potentials satisfy the
EDi output potential trait. Although the trait has preconditions, by Prop. 8, those MPPs obtained
when the preconditions fail do not matter. Hence, MPPs from ilink potentials of the subMF behave
equivalently to products of clink potentials. Therefore, Theorem 3 can be generalized to the EDu-
based subMF with arbitrary combinations of ilinks and clinks, as long as input EDi-based subMF
potentials satisfy the EDi output potential trait. �

6.2. Output Property of EDi

An output property for an EDi-based subMF is specified in Def. 7. Theorem 5 shows that the
property holds in EDi when there are no ilinks. It is phrased in the context of a standalone direct
gate, as the property remains the same whether the gate is standalone or is in a NAT. In Fig. 4 (c),
if gate g1 is dual, then the MF ofg4 in (d) is EDi and Theorem 5 applies to it. In the theorem,
each valuehi of h corresponds to the valueei of e if 0 ≤ i ≤ η. The first subtrait says that when
output variableh is restricted to the domain ofe, the MPP is the exact CPT. The other subtraits are
relevant when the EDi feeds into an EDu-based subMF.

Theorem 5. Let EDi be applied to a direct NIN-AND gate model whose CPT isP (e|c1, ..., cn).
The MPPf(h, c1, ..., cn) from the EDi satisfies the EDi output potential trait (Def. 7) withk = n.
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Proof: The MPPf(h, c1, ..., cn) =
∑

d1 ,...,dη
f(d1, ..., dη, h)

∏
1≤j≤η,1≤i≤n f(dj , ci) is defined from

potentials in Tables 15 and 4. Compare the MPP with that of Theorem 2 on MDi. The clink
potentials (Table 4) are identical. The family potential in Table 15 differs from that in Table 4
only whenh = hη+1. Hence,f(h, c1, ..., cn) differs fromf(e, c1, ..., cn) in Theorem 2 only when
h = hη+1, from which the subtrait 1 follows.

Whenh = hη+1, the only non-zero family potential value isf(d1 = 2, 0, ..., 0, hη+1) by Ta-
ble 15 (line 4). Consider the corresponding productf(d1 = 2, d2 = 0, ..., dη = 0, c1, ..., cn) =∏

1≤j≤η,1≤i≤n f(dj , ci). If each cause is inactive,f(d1 = 2, d2 = 0, ..., dη = 0, c1, ..., cn) = 1 by
Table 4. Hence,f(hη+1, c1, ..., cn) = 1, which is the subtrait 2.

If some cause is active, thenf(d1 = 2, d2 = 0, ..., dη = 0, c1, ..., cn) = 0 by Table 4. Hence,
f(hη+1, c1, ..., cn) = 0, which is the subtrait 3. �

Prop. 3 reveals a property of products of clink potentials in MDi. Since clink potentials of
MDi and EDi are identical (Table 4), Prop. 3 is applicable to EDi as well. Prop. 9 below shows
that products covered in Prop. 3 are all that matter to EDi. It plays a similar role as Prop. 4, but
the latter only applies to MDi. Note that the first two preconditions of the MDi link potential trait
combine into∃j dj = 0 ∧ ∀i 6=j di = 1.

Proposition 9. Let c be a cause in a direct NIN-AND gate model. The product of clink potentials
from its EDif(d1, ..., dη, c) =

∏
1≤i≤η f(di, c) contributes to MPPf(e, c1, ..., cn) of the EDi, only

if preconditions of the MDi link potential trait (Def. 4) hold.

Proof: The proof of Prop. 4 can be directly applied. This is justified because the proof involves
only clink and family potentials. The clink potentials of EDi and MDi are identical (Table 4, left).
The family potential of EDi (Table 15) differs from that of MDi (Table 4, right) only onh = hη+1,
andh = hη+1 is irrelevant to preconditions of the MDi link potential trait. �

Next, we analyze an EDi-based subMF when ilinks exist. Prop. 10 shows that the MPP from
ilink potentials behaves equivalently to the product of clink potentials (Prop. 3). Note thatb is the
output variable of an EDu, and conditions on MPP from the subMF are consistent with those of
Theorem 4 on EDu. In Fig. 4 (c), if gateg1 is direct, then the MF ofg3 in (d) is EDi and Prop. 10
applies to it. Variableb in Prop. 10 refers tob1 in (d).

Proposition 10. Let b be the leaf variable of an EDu-based subMF over causesc1, ..., cn and an
input variable of an EDi with ilinks〈b, d1〉, ..., 〈b, dη〉. Let the MPP from the EDu-based subMF be
f(b, c1, ..., cn) such that the EDu output potential trait (Def. 5) holds withk = n andh = b.

Then the MPPf(d1, ..., dη, c1, ..., cn) =
∑

b f(d1, b)...f(dη, b)f(b, c1, ..., cn) from the link layer
of the EDi-based subMF satisfies the MDi link potential trait (Def. 4) withk = n.

Proof: Sinceb is the output variable of an EDu, its domain size isη + 2 by Table 7. Table 13
defines ilink potentials in the EDi MPP. Rewritef(d1, ..., dη, c1, ..., ck) as

f(d1, b
η+1)...f(dη, b

η+1)f(bη+1, c1, ..., ck) +
∑

b≤bη

f(d1, b)...f(dη, b)f(b, c1, ..., ck).

For the MDi subtrait 1, if ∃j dj = 0 and∀i 6=j di = 1, the first term off(d1, ..., dη, c1, ..., ck)
is 0 by Table 13 (lines 2 and 4). By line 2, the second term is

∑
b≤bη f(dj = 0, b)f(b, c1, ..., ck)
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and it becomes
∑

bj≤b≤bη f(b, c1, ..., ck) by lines 1 and 4. If someci is active, the sum equals
P (e ≥ ej ← c1, ..., ck) by the EDu subtrait 1, and the MDi subtrait 1 follows. If eachci is inactive,
the sum equals 1 from the EDu subtraits 3 and 4. Hence, the MDi subtrait 2 follows.

If ∀i di = 1, the first term off(d1, ..., dη, c1, ..., ck) is 0 by Table 13 (lines 2 and 4), and the
second is

∑
b≤bη f(b, c1, ..., ck) by line 2. If someci is active, the sum equals 1 according to the

EDu subtrait 1. If eachci is inactive, the sum equals 1 by the EDu subtraits 3 and 4. Hence, the
MDi subtrait 3 follows.

If d1 = 2 and∀i>1 di = 0, the second term off(d1, ..., dη, c1, ..., ck) is 0 by Table 13 (lines 3
and 4). The first term becomesf(bη+1, c1, ..., ck) by lines 1 and 3. If eachci is inactive, the value
is 1 by the EDu subtrait 4. Hence, the MDi subtrait 4 follows. �

The MPPs covered in Prop. 10 include only those satisfying preconditions of the EDi link
potential trait. Prop. 11 shows that those are all that matter.

Proposition 11. Let c1, ..., cn be the set of causes of a NAT model. Letb be the leaf variable of
an EDu-based subMF over causesc1, ..., cm (m < n) and an input variable of an EDi with ilinks
〈b, d1〉, ..., 〈b, dη〉. Let the MPP from the EDu-based subMF bef(b, c1, ..., cm) such that the EDu
output potential trait (Def. 5) holds withk = m andh = b.

Then the MPPf(d1, ..., dη, c1, ..., cm) =
∑

b f(d1, b)...f(dη, b)f(b, c1, ..., cm) from the link
layer of the EDi-based subMF contributes to the MPPf(e, c1, ..., cn) of the NAT model, only if
preconditions of the MDi link potential trait (Def. 4) hold.

Proof: The MPPf(d1, ..., dη, c1, ..., cm) contributes tof(e, c1, ..., cn) by product with the family
potentialf(d1, ..., dη, h) in Table 15. We show that if the preconditions fail, one of them is 0.

The first two preconditions combine into∃j dj = 0 ∧ ∀i 6=j di = 1. If none of this combined
condition, precondition 3, and the first two subconditions of precondition 4 holds, then the first 5
lines of Table 15 do not apply. By line 6,f(d1, ..., dη, h) = 0. If d1 = 2 and∀i>1 di = 0, but some
ci is active (failing the third subcondition of precondition 4), rewritef(d1, ..., dη, c1, ..., cm) as

f(d1, b
η+1)...f(dη, b

η+1)f(bη+1, c1, ..., cm) +
∑

b≤bη

f(d1, b)...f(dη, b)f(b, c1, ..., cm).

The second term is 0 by Table 13 (lines 3 and 4). The first term becomesf(bη+1, c1, ..., cm) by lines
1 and 3. The value equals 0 by the EDu subtrait 2. Hence,f(d1, ..., dη, c1, ..., cm) = 0. �

Theorem 6 shows the output property of an EDi-based subMF when both clinks and ilinks may
exist.

Theorem 6. Let {c1, ..., cn} be the set of causes of an EDi-based subMF. For any input variable
b of the EDi such thatb is the leaf variable of an EDu-based subMF over causes{s1, ..., sm} ⊂
{c1, ..., cn} and the MPP from the EDu-based subMF isf(b, s1, ..., sm), the EDu output poten-
tial trait (Def. 5) holds with the set of causes being{s1, ..., sm} and h = b. Then the MPP
f(h, c1, ..., cn) from the EDi-based subMF satisfies the EDi output potential trait (Def. 7) with
k = n.

Proof: By Theorem 5, the EDi output potential trait holds when the EDi-based subMF has clinks
only. By Prop. 3, this result is obtained when products of clink potentials of the subMF satisfy the
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EDi link potential trait. Although the trait has preconditions, by Prop. 9, those products of clink
potentials obtained when the preconditions fail do not matter.

When the EDi-based subMF has ilinks, by Prop. 10, MPPs from ilink potentials of the subMF
also satisfy the EDi link potential trait, as long as input EDu-based subMF potentials satisfy the
EDu output potential trait. Although the trait has preconditions, by Prop. 11, those MPPs obtained
when the preconditions fail do not matter. Hence, MPPs from ilink potentials of the subMF behave
equivalently to products of clink potentials. Therefore, Theorem 5 can be generalized to the EDi-
based subMF with arbitrary combinations of ilinks and clinks, as long as input EDu-based subMF
potentials satisfy the EDu output potential trait. �

6.3. Output Property of MDi

The output property for an MDi-based subMF without ilinks has been analyzed in Theorem 2.
To analyze the output property when ilinks exist, we compare with an EDi-based subMF. MDi and
EDi have the same clink potentials (Table 4, left) and ilink potentials (Table 13). By Table 6, both
MDi and EDi receive ilink input from EDu. In Table 7, the two only differ in that the domain size
of output variableh is η + 1 in MDi and η + 2 in EDi. As a result, the family potential of EDi
(Table 15) is the same as that of MDi (Table 4, right) everywhere except whenh = hη+1.

This comparison suggests that all analyses on EDi are applicable to MDi, except thath = hη+1

is undefined under MDi and any property of EDi onh = hη+1 must be ignored. Theorem 7 below
establishes the output property of an MDi-based subMF. It follows directly from Theorem 6 by
ignoring the statements onh = hη+1. In Fig. 4 (c), if gateg1 is direct, then the MF ofg1 in (d) is
MDi and Theorem 7 applies to it. Variableb in Theorem 7 refers tob3 in (d).

Theorem 7. Let {c1, ..., cn} be the set of causes in an MDi-based subMF. For any input variable
b of the MDi such thatb is the leaf variable of an EDu-based subMF over causes{s1, ..., sm} ⊂
{c1, ..., cn} and the MPP from the EDu-based subMF isf(b, s1, ..., sm), the EDu output potential
trait (Def. 5) holds with the set of causes being{s1, ..., sm} andh = b. Then the MPP from the
MDi-based subMF satisfiesf(h, c1, ..., cn) = P (e|c1, ..., cn).

6.4. Output Property of MDu

The output property for an MDu-based subMF without ilinks is stated in Corollary 2. To
analyze the output property when ilinks exist, Prop. 12 shows that MPPs from ilink potentials
behave equivalently to products of clink potentials (Prop. 1). By Table 6, an MDu only receives
input from MDi. Note thatb ande share the domain size.

Proposition 12. Let b be the leaf variable of an MDi-based subMF over causesc1, ..., cn and an
input variable of an MDu with ilinks〈b, d1〉, ..., 〈b, dη〉. Let the MPP from the MDi-based subMF
bef(b, c1, ..., cn) = P (e|c1, ..., cn). Then the MPP

f(d1, ..., dη, c1, ..., cn) =
∑

b

f(d1, b)...f(dη, b)f(b, c1, ..., cn)

from the MDu-based subMF satisfies the MDu link potential trait (Def. 3) withk = n.
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Proof: For the subtrait 1, suppose∃j dj = 0 and∀i 6=j di = 1. Consider the cased1 = 0. From line
2 in Table 9,f(d1 = 0, b) = 0 for all b ≥ b1. Hence, all terms in the summation of the proposition
whereb ≥ b1 are zeros. The only non-zero term is forb = b0. From line 1 in Table 9, we have
f(d1 = 0, b0) = 1. From line 3,f(dj = 1, b0) = 1 for all j > 1. This yields

f(d1 = 0, d2 = 1, ..., dη = 1, c1, ..., cn) = f(b0, c1, ..., cn)

= P (e0|c1, ..., cn) = P (e < e1← c1, ..., cn).

Next, consider the casedj = 0 (j > 1). From line 2 of Table 9, all terms of the summation
whereb ≥ bj are zeros. The non-zero terms are those whereb < bj. This yields

f(d1 = 1, ..., dj−1 = 1, dj = 0, dj+1 = 1, ..., dη = 1, c1, ..., cn)

= f(b0, c1, ..., cn) + ... + f(bj−1, c1, ..., cn)

= P (e0|c1, ..., cn) + ... + P (ej−1|c1, ..., cn) = P (e < ej ← c1, ..., cn).

Hence, the subtrait 1 holds.
If ∀i di = 1, we havef(di, b) = 1 for all i, by Table 9 (line 3). That is,

f(d1, ..., dη, c1, ..., cn) = P (e0|c1, ..., cn) + ... + P (eη|c1, ..., cn) = 1.

Hence, the subtrait 2 holds. �

The MPPs covered in Prop. 12 include only those satisfying preconditions of the MDu link
potential trait. Prop. 13 shows that those are all that matter.

Proposition 13. Let c1, ..., cn be the set of causes of a NAT model. Letb be the leaf variable of
an MDi-based subMF over causesc1, ..., cm (m < n) and an input variable of an MDu with ilinks
〈b, d1〉, ..., 〈b, dη〉. Let the MPP from the MDi-based subMF bef(b, c1, ..., cm) = P (e|c1, ..., cm).
Then the MPPf(d1, ..., dη, c1, ..., cm) =

∑
b f(d1, b)...f(dη, b)f(b, c1, ..., cm) from the link layer of

the MDu-based subMF contributes to the MPPf(e, c1, ..., cn) of the NAT model, only if precondi-
tions of the MDu link potential trait (Def. 3) hold.

Proof: The MPPf(d1, ..., dη, c1, ..., cm) contributes tof(e, c1, ..., cn) by product with the family
potentialf(d1, ..., dη, e) in Table 2 (right). If none of the two preconditions holds, then the first 3
lines of Table 2 (right) do not apply. By line 4,f(d1, ..., dη, e) = 0. �

Theorem 8 establishes the output property of an MDu-based subMF when both clinks and
ilinks may exist. From Table 6, MDu can only be applied to the leaf gate of a NAT model. Hence,
an MDu-based subMF is the MF of the NAT model in its entirety.

Theorem 8. Let {c1, ..., cn} be a set of causes of an MDu-based subMF. For any input variable
b of the MDu such thatb is the leaf variable of an MDi-based subMF over causes{s1, ..., sm} ⊂
{c1, ..., cn}, the MPP from the MDi-based subMF isf(b, s1, ..., sm) = P (e|s1, ..., sm). Then the
MPP from the MDu-based subMF satisfiesf(e, c1, ..., cn) = P (e|c1, ..., cn).

Proof: From Corollary 2, the condition onf(e, c1, ..., cn) holds when the MDu-based subMF has
no ilinks. By Prop. 1, this result is obtained when products of clink potentials of the subMF satisfy
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the MDu link potential trait. Although the trait has preconditions, by Prop. 2, those products
obtained when the preconditions do not hold do not matter.

When the MDu-based subMF has ilinks, by Prop. 12, MPPs from ilink potentials and input
MDi-based subMFs also satisfy the MDu link potential trait, as long as the MPP from each MDi-
based subMF is probabilistically exact. Although the trait has preconditions, by Prop. 13, those
MPPs obtained when the preconditions do not hold do not matter. Hence, MPPs from ilink poten-
tials and input MDi-based subMFs behave equivalently to products of clink potentials. Therefore,
Corollary 2 can be generalized to the MDu-based subMF with arbitrary combinations of ilinks and
clinks, as long as the MPP from each MDi-based subMF satisfiesf(b, s1, ..., sm) = P (e|s1, ..., sm).

�

6.5. Soundness of MF of NAT Models

We establish the exactness of NAT MF in Theorem 9.

Theorem 9. Let MF be applied to a NAT model over causesc1, ..., cn by applying MDu, EDu, MDi,
and EDi to appropriate gates. Then the MPP from all potentialsof the MF satisfiesf(e, c1, ..., cn) =
P (e|c1, ..., cn).

Proof: We prove by induction on the maximum levelL of the NAT. If L = 1, the NAT has a single
gate. The statement holds by Corollary 2 if the gate is dual and by Theorem 2 if the gate is direct.

If L = 2 and the leaf gate is dual, then apply MDi to all direct gates at level 2 and apply MDu
to the leaf gate. Since every gate at level 2 is terminal (all inputs are single-causal events), by
Theorem 2, the MPP is the exact CPT over causes in the MDi-based subMF. The subMF feeds into
the MDu of the leaf gate and satisfies the condition of Theorem 8. Hence, the statement holds by
Theorem 8.

If L = 2 and the leaf gate is direct, then apply EDu to all dual gates at level 2 and apply MDi to
the leaf gate. Since every gate at level 2 is terminal, by Theorem 3, the MPP from the EDu-based
subMF satisfies the EDu output potential trait. The subMF feeds into the MDi of the leaf gate and
satisfies the condition of Theorem 7. Hence, the statement holds by Theorem 7.

If L = 3 and the leaf gate is dual, apply EDu to each terminal dual gate at level3 and the MPP
from the EDu-based subMF satisfies the EDu output potential trait by Theorem 3. The subMF
feeds into a direct gate at level2 with MDi and satisfies the input condition of Theorem 7. By
Theorem 7, the MPP from the MDi-based subMF is the exact CPT over its causes. From the
analysis above onL = 2 with the dual leaf gate, the statement holds.

If L = 3 and the leaf gate is direct, apply EDi to each terminal direct gate at level3 and the
MPP from the EDi-based subMF satisfies the EDi output potential trait by Theorem 5. The subMF
feeds into a dual gate at level2 with EDu and satisfies the input condition of Theorem 4. By
Theorem 4, the MPP from the EDu-based subMF satisfies the EDu output potential trait. From the
analysis above onL = 2 with the direct leaf gate, the statement holds.

Assume that the statement holds whenL = k ≥ 3. Consider a NAT whereL = k + 1. If
the terminal gates at levelk + 1 are dual, apply EDu to each and the MPP from the EDu-based
subMF satisfies the EDu output potential trait by Theorem 3. The subMF feeds into a direct gate
at levelk with EDi. By Prop. 10, relative to the direct gate, the subMF behaves equivalently to
a terminal input single-causal event. As a result, the MF of the NAT behaves equivalently to one
whereL = k. By the inductive hypothesis, the statement holds forL = k + 1.
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If the terminal gates at levelk + 1 are direct, apply EDi to each and the MPP from the EDi-
based subMF satisfies the EDi output potential trait by Theorem 5. The subMF feeds into a dual
gate at levelk with EDu. By Prop. 7, relative to the dual gate, the subMF behaves equivalently to
a terminal input single-causal event. As a result, the MF of the NAT behaves equivalently to one
whereL = k. By the inductive hypothesis, the statement holds forL = k + 1. �

6.6. Space Complexity of MF of NAT Models

For space complexity of a gate MF, the size of a clink potential isO(3(m + 1)), wherem + 1
bounds the domain size of a cause. The size of an ilink potential isO(3(η + 2)). The size of a
family potential isO(3η(η + 2)). Denoting the number of inputs to a gate byn′, the gate MF has
n′η link potentials and one family potential. Assumingm = η, the space complexity of the gate
MF is O(3n′ η (η + 2) + 3η(η + 2)) = O((3n′ η + 3η) η).

Suppose that a NAT hask gates. Then its MF takesO((3n′ η+3η) η k) space. The productn′ k
counts the number of non-auxilary nodes (non-dj) in the graph of the MF and hencen′k < 2n. We
also havek < n. Hence, the space complexity of the MF of a NAT model isO(6 n η2 + 3η n η) ≈
O(n η (6 η + 3η)).

The existence of3η in the above complexity raises the question whether the MF of a NAT model
is more efficient than the corresponding CPT asη grows. We consider this below. To concentrate
on the main factors, we evaluate space complexity of a NAT MF byn η 3η and that of a full CPT
by ηn. We define their ratio as functiong(η, n) = ηn/(n η 3η). The derivative ofg(η, n) with
respect ton is as follows.

g′(η, n) = (η 3η)−1(ηn/n)′.

Since (ηn/n)′ = (ηn n−1)′ = (ηn)′ n−1 + (n−1)′ ηn = ln(η) ηn n−1 + (−1)n−2 ηn

= ln(η) ηn n−1 − n−2 ηn = n ln(η) ηn n−2 − ηn n−2 = (n ln(η)− 1) ηn n−2,

we have g′(η, n) = (η 3η)−1 (n ln(η)− 1) ηn n−2 = (n ln(η)− 1) ηn−1 n−2 3−η.

When η ≥ 3 and n ≥ 3, we have(n ln(η) − 1) > 0 and g′(η, n) > 0. Hence,g(η, n) is
monotonically increasing forη ≥ 3 andn ≥ 3. In other words, for each domain sizeη ≥ 3, asn
grows beyond some value, the NAT MF is always more efficient than a full CPT. For eachη, then
value at which the space of full CPT exceeds that of NAT MF is shown in Fig. 5.

Figure 5: For eachη value, the curve shows then value, where the space of full CPT exceeds that of NAT MF.
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For instance, forη between 3 and 7 inclusive, the space of full CPT exceeds that of NAT MF
as long asn ≥ 6. Forη between 8 and 11, the condition holds as long asn ≥ 7. Forη = 30, the
same occurs as long asn ≥ 12. In summary, NAT MF pays off for moderate and largen values.

7. Lazy Propagation with NAT-Modeled Bayesian Networks

We present a framework in which MFs of NAT models can be utilized for exact inference with
BNs through lazy propagation. The necessary background on lazy propagation is first introduced.
The framework and its exactness are then presented.

7.1. Overview of Lazy Propagation

Lazy propagation (LP) [19] is an inference method based on a junction tree (JT) compiled from
a BN over a setV of variables. Each cluster (a subset of variables) in the JT is assigned a set of
CPTs from the BN, but these CPTs are not multiplied as commonly performed [8]. We refer to
these CPTs as potentials, refer to the cluster of current focus byC, and refer to the set of potentials
atC by β. The product of potentials in all clusters, denoted byB(V ), equals the product of CPTs
of the BN, which in turn equals the joint probability distribution (JPD) of the BN.

The intersection of two adjacent clustersC andC ′ is their separatorS and it is associated with
two buffers. One stores message fromC ′ to C and the other fromC to C ′. For the given cluster
C and separatorS, we refer to the two buffers asin-buffer andout-buffer, respectively, relative
to C. The atomic operation at a clusterC relative to an adjacent clusterC ′ computes a set of
potentials over their separator as the message and sends it to the out-buffer withC ′. The message
is so computed that the size of each resultant potential is kept as small as possible. LP proceeds by
atomic operations performed at each JT separator in two passes. In the first pass, messages flow
towards an arbitrarily specified cluster. In the second pass, messages flow away from the cluster.
Prop. 14 summarizes the effect of LP. It says that after LP, the product of the local potentials at
each cluster and potentials in its in-buffers is the exact marginal of the JPD of the BN.

Proposition 14 (Proposition 3.4 in [20]). Let LP be performed in a JT. For any clusterC with
the potential setβ and the in-buffer messageβi from the adjacent separatorRi, denote the prod-
uct of potentials inβ as β(C) and the product of potentials inβi as βi(Ri). Then, we have
β(C)

∏
i βi(Ri) = const

∑
V \C B(V ), whereconst is a constant.

We denote the potential product at clusterC after LP byα(C) = β(C)
∏

i βi(Ri) and refer to
α(C) as thepost-LP cluster beliefatC.

7.2. Lazy Propagation with NAT-Modeled BNs

We present how to use MFs of NAT models to improve inference efficiency with BNs. Consider
a BN over a setV of variables with the DAGD. Each root ofD is assigned a prior, collected in a
setPR. Each single-parent non-root is assigned a CPT, collected in a setPS. We assume that the
family of each multi-parent non-root can be expressed as a NAT model, collected in setΨ. Then,
Γ = (V,D, PR,PS,Ψ) is a NAT modeled BN(NATBN). For efficient inference, we compile a
NATBN into a JT representation by Alg. 1.
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Algorithm 1.
Input: a NAT modeled BNΓ = (V,D, PR,PS,Ψ)

1 get the skeletonG of D by dropping direction of links;
2 for each multi-parent family{e, c1, ..., cn} in D, modifyG as follows:
3 replace subgraph spanned by{e, c1, ..., cn} with the MF graphSG of the NAT model inΨ;
4 for each family inSG, connect members pairwise and drop direction of links;
5 triangulateG into a chordal graphG′;
6 construct a junction treeT from maximum cliques ofG′;
7 assign each potential inPR ∪ PS ∪Ψ to a domain-containing cluster inT ;
8 returnT ;

The DAG of a trivial BN is shown in Fig. 6 (a). Suppose the family{e, c1, ..., c5} is modeled by
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Figure 6: (a) A NATBN. (b) Undirected structure of compiled NATBN.

the NAT in Fig. 4 (c), and the family{y, u, v, w} is modeled by the NAT in Fig. 4 (a). The graphG
after lines 1 to 4 is shown in Fig. 6 (b). The compilation does not include moralization ofD, and
potentials assigned to each JT cluster are not multiplied. We refer toT as the JT of Multiplicatively
Factorized NAT modeled BN (JTMFNB), to which LP is directly applicable. Note that the set of
variables inT includes those inV as well as auxiliary and output variables from MF.

Given a NATBNΓ = (V,D, PR,PS,Ψ), we define itspeer BNΓ′ = (V,D,CP ), whereCP
is a set of CPTs one per node inD. If the node has less than two parents, its CPT is the one
in PR or PS. Otherwise, the CPT is defined by the NAT model inΨ. Theorem 10 establishes
exactness of LP when applied to a JTMFNB. It says that after LP is performed in a JTMFNB, the
post-LP belief at every cluster, with auxiliary and output variables from MF being marginalized
out, is exactly the marginal probability over the cluster.

Theorem 10. LetΓ = (V,D, PR,PS,Ψ) be a NATBN,T be the JTMFNB fromΓ, U be the set of
all variables inT , and LP be performed inT . LetC be any cluster ofT andα(C) be the post-LP
cluster belief. LetΓ′ = (V,D,CP ) be the peer BN ofΓ andP ′(V ) be the product of CPTs inCP .
Then,

∑
U\V α(C) = const

∑
V \C P ′(V ).

Proof: By the chain rule of BNs,P ′(V ) is the JPD of the peer BNΓ′. By the definition of peer BN
Γ′, P ′(V ) is also the JPD of the NATBNΓ. Let P (U) be the product of all potentials assigned to
clusters inT before LP. By Theorem 9,

∑
U\V P (U) = P ′(V ). Marginalizing variables inV \ C
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from both sides, we get
∑

V \C

∑
U\V P (U) =

∑
V \C P ′(V ). Switching the order of marginaliza-

tions, the lefthand side becomes
∑

U\V (
∑

V \C P (U)) = const
∑

U\V α(C) by Prop. 14. Hence,∑
U\V α(C) = const

∑
V \C P ′(V ). �

8. Experimental Evaluation

A collection of 140 NATBNs are simulated, divided into 4 groups of 35 each. Each NATBN
contains 100 ternary variables. For NATBNs in the same group, the numbern of causes per NAT
model is identically upper-bounded. The bounds are 5, 7, 9 and 11, respectively. All NATBNs
have the same density (5% more links than singly-connected). Each is compiled into a JTMFNB.

A peer BNis derived from each NATBN, where each multi-parent variable is assigned the CPT
computed from the corresponding NAT model. Peer BNs are compiled for lazy inference normally,
which provides a golden standard for soundness and a baseline for efficiency.

For each NATBN and its peer BN, 5 randomly chosen variables are observed and posteriors for
all variables are computed. For each NATBN, exactly the same posteriors are obtained from the
JTMFNB and its peer BN, which empirically confirms soundness of the MF.

The performance is summarized in Table 17. Each row summarizes for one group of NATBNs.
The space efficiency of JTMFNB and peer BN is shown by the size of the state space of the JT
(with sample mean and standard deviation). The time efficiency is shown by lazy inference time.

Table 17: Experimental Results

Peer BN State SpaceJTMFNB State SpacePeer BN Time (ms) JTMFNB Time (ms)
n µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂
5 11070.8 590.1 9742.7 1317.9 63.8 12.0 31.3 0.5
7 25951.4 3800.3 10546.0 1570.3 212.5 65.7 30.3 3.5
9 80061.9 6076.6 11189.8 2721.7 1117.9 749.9 33.1 7.3

11 575750.3 37149.6 10996.1 1550.2 12160.8 7658.3 30.7 2.5

As n grows from 5 to 11, peer BN JTs grow in space by 52 times, while JTMFNBs grow only
1.1 times. The runtime with peer BN JTs grows by 193 times, while lazy inference with JTMFNBs
takes about the same time. Forn = 11, inference with JTMFNBs is about 400 times faster than
peer BN JTs. The experiment shows that the MF of NAT models allows significant improvement
in space and time efficiency for sparse NAT modeled BNs.

9. Conclusion

The main contributions of this work are the following. We show that a multi-valued, dual
NIN-AND gate is equivalent to noisy-MAX, and hence, a multi-valued NAT model is strictly more
expressive than noisy-MAX. We developed the MF of multi-valued NAT models. It extends the MF
of binary NAT models in that the MF graph of a binary NAT model is a tree while the MF graph of a
multi-valued NAT model is multiply connected. The space complexity of the MFO(nη(6m+3η))
is linear on the number of causesn, and the domain size of causesm, and is exponential on the do-
main size of effectη+1 with a constant base 3. We proposed a scheme to multiplicatively factorize
NATBNs and compile them for lazy inference. This scheme is more powerful than lazy inference
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based on MF of noisy-MAX [11], since NATBNs are strictly more expressive than noisy-MAX
modeled BNs. We experimentally demonstrated that JTMFNBs compiled from sparse NATBNs
allow exact lazy inference that is significantly more efficient in both space and time.

This work opens a promising direction along which significantly less computational resource is
necessary for probabilistic reasoning with BNs, making them deployable on pervasive computing
devices.
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