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Abstract

Non-impeding noisy-And Trees (NATs) provide a general, expressive, and
efficient causal model for conditional probability tables (CPTs) in discrete
Bayesian networks (BNs). A CPT may be directly expressed as a NAT model
or compressed into a NAT model. Once CPTs are NAT-modeled, efficiency
of BN inference (both space and time) can be significantly improved. One
of the critical operations in NAT modeling CPTs is extracting NAT struc-
tures from interaction patterns between causes. The existing method does so
through NAT databases coupled with search trees. Although the databases
and search trees are compiled offline, the computation is costly and the de-
pendency of NAT extraction on them adds a resource requirement for online
computation. We present a novel method for direct NAT structure extrac-
tion from full and valid causal interaction patterns, based on bipartitions of
causes. We then extend the method to NAT extraction from partial and in-
valid interaction patterns. The resultant algorithm suite enables direct NAT
extraction from all conceivable practical scenarios, with significantly reduced
computational complexity, while eliminating dependency on NAT databases
and search trees.

Keywords: Graphical models; probabilistic inference; machine learning;
Bayesian networks; causal models; non-impeding noisy-AND trees

1. Introduction

Although conditional independence expressed by the structure of BNs
avoids combinatorial explosion on the number of variables, BNs are still sub-
ject to exponential growth of space and inference time on the number of
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causes per effect variable in each CPT 1. Several local models have been
proposed for space-efficient encoding of dependency between an effect and
its causes. They include noisy-OR [1], noisy-MAX [2, 3], context-specific
independence (CSI) [4], probability trees [5], recursive noisy-OR [6], Non-
Impeding Noisy-AND Tree (NIN-AND Tree or NAT) [7], DeMorgan [8],
tensor-decomposition [9], and cancellation model [10]. These local models
not only reduce the number of parameters needed to acquire CPTs, but also
enable significant reduction in inference time, e.g., by exploiting CSI in arith-
metic circuits (ACs) and sum-product networks (SPNs) [11, 12, 13], or by
exploiting causal independence in NAT models [14].

This work focuses on representing BN CPTs as NAT models [15] or com-
pressing them into NAT models. Merits of NAT models include the following:

1. Linear space on the number of causes per effect.

2. Based on simple causal interactions: reinforcement and undermining.

3. Expressiveness. They support recursive mixture of basic causal inter-
actions. They allow multi-valued variables that are either ordinal or
nominal (relaxing the common restriction of being graded [16]).

4. Generality. They generalize other local models, including noisy-OR,
noisy-MAX [14], and DeMorgan [15]. It has been shown [16] that com-
pression of general CPTs into NAT models has superior accuracy than
noisy-MAX (and hence also noisy-OR). Due to the generality of NAT
models, such superiority is also expected relative to DeMorgan.

5. Supporting more efficient inference. Two orders of magnitude speedup
in lazy propagation is achieved in very sparse NAT-modeled BNs [14].

6. Causal independence in NAT models is orthogonal to CSI. Hence, they
provide an alternative to CSI for more efficient inference in BNs.

A NAT model over an effect and n causes consists of a NAT topology
(whose size is linear on n) and a set of numerical parameters (whose car-
dinality is linear on n). It compactly represents a BN CPT. Every pair of
causes in a NAT model either undermines each other in causing the effect,

1We use causality interchangeably with asymmetric dependency. Each child variable is
treated as an effect and its parent variables as the causes.
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or reinforcing each other. The interaction can be specified with one bit of
value u (undermining) or r (reinforcing). The collection of such bits over all
pairs of causes defines a pairwise causal interaction (PCI) pattern [17].

A PCI pattern may be full (with one bit for each cause pair) or par-
tial (with missing bits). A PCI pattern may also be valid (produced by at
least one NAT) or invalid (cannot be generated by any NAT). A full, valid
PCI pattern uniquely identifies a NAT [17, 18]. This property enables PCI
patterns to play a critical role in NAT topology acquisition, either when com-
pressing a given BN CPT into a NAT model or when learning a BN CPT
from data as a NAT model. The task of topology acquisition takes a PCI
pattern as input and returns a NAT topology. This operation is referred to
as NAT structure extraction.

For instance, a target BN CPT can be compressed into a NAT model as
follows [19, 20]: One or more full or partial PCI patterns are first obtained
from the target CPT. From the patterns, compatible candidate NATs are
extracted from a NAT database through a search tree. All candidate NATs
are parameterized into NAT models. The output NAT is selected to minimize
a distance measure between target CPT and CPT of the output NAT model.

To support more efficient inference with BNs, NAT modeling can be ap-
plied as follows: First, compress each CPT in the BN into a NAT model
[19, 20]. Since common BN inference algorithms cannot directly operate on
NAT models, the NAT-modeled BN is further converted using one of two
techniques. One technique applies multiplicative factorization to each NAT
model in the BN, converting the NAT-modeled BN into an equivalent Markov
network [21]. Another technique applies de-causalization [22] to convert the
NAT-modeled BN into an equivalent normal BN. After either conversion,
the resultant representation is operable by standard inference algorithms.
For instance, up to two orders of magnitude speedup in lazy propagation is
achieved in a wide range of sparse BNs [22].

The role of the two conversion techniques is the following: A NAT model
specifies a CPT of exponential size by a linear number of parameters. Stan-
dard BN inference algorithms need to reference values in CPT, and cannot
use NAT parameters directly. To determine values in CPT from NAT param-
eters, traversal of the NAT topology is typically needed [23, 24], which does
not integrate efficiently with the control structure of standard BN inference
algorithms. On the other hand, if the CPT of a NAT model is pre-computed
before inference, the advantage of NAT models (linear complexity) is lost.
Multiplicative factorization and de-causalization techniques convert NAT-
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modeled BNs to standard graphical models, while retaining the space effi-
ciency of NAT models. Hence, they allow standard BN inference algorithms
to take advantage of efficiency of NAT models without any modification.

The NAT structure extraction utilized in the existing compression pro-
cess requires a NAT database for each n value, that encodes all alternative
NATs for n causes, as well as an associated search tree. Since the number of
distinct NATs over n causes grows super-exponentially on n, so does the size
of NAT database. For instance, it takes 40 hours to generate (offline) the
NAT database and search tree for n = 9 [19]. Hence, requirement of NAT
databases is a source of computational burden, both for offline generation
(compute time) and for online extraction (storage space and loading time).

The contribution of this research is a novel framework and associated
algorithms that directly extract NATs from PCI patterns without needing
the support of NAT databases and associated search trees. First, we present
a new approach to analyze a PCI pattern through bipartitions of its causes.
We uncover several useful properties of such bipartitions. Second, we develop
an algorithm to extract a NAT structure directly from a full, valid PCI
pattern, driven by bipartition analysis. Third, we relax the requirement of
full patterns so that NAT structures can be extracted from partial, valid PCI
patterns. Finally, we go beyond the previous work [19] where only valid PCI
patterns were considered, and further extend the direct algorithm to NAT
extraction from invalid patterns.

These advancements accomplish NAT structure extraction in all conceiv-
able application scenarios: full valid PCI patterns, partial valid patterns,
full invalid patterns, and partial invalid patterns. They all operate on direct
extraction, eliminating the burden of NAT databases and search trees.

Section 2 reviews background on NAT models. The task of fault tolerant,
direct NAT structure extraction is specified in Section 3. Section 4 formally
analyzes properties of cause bipartitions, which leads to the direct extrac-
tion algorithm from full valid PCI patterns, covered in Section 5. Additional
properties of cause bipartitions are revealed in Section 6 to characterize in-
valid PCI patterns. They lay the theoretical foundation for extending the
algorithm to direct extraction from full invalid PCI patterns, presented in
Section 7. Further extension to extraction from partial, possibly invalid pat-
terns is presented in Section 8. Section 9 reports experimental evaluation of
the algorithm suite.
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2. Background

We briefly review background on NAT models [15, 16]. NAT models are
defined over causal variables that may be ordinal or nominal, and are more
general than graded variables [16] as commonly assumed in local models.

Definition 1. A variable x that can be either inactive or be active possibly
in multiple ways, and is involved in a causal relation, is a causal variable if
when all causes of the effect are inactive, the effect is inactive with certainty.

A NAT model is defined over an effect e and a set of n ≥ 2 causes
C = {c1, ..., cn}, all of which are causal variables. Possible values of effect e
are e0, ..., eη (η ≥ 1), written as e ∈ {e0, ..., eη}, and possible values of cause
ci are c0i , ..., c

mi
i , where i = 1, ..., n and mi ≥ 1. C and e form a single family

of variables in a BN, where C is the set of parents of e. Values e0 and c0i
are inactive. Other values (may be written as e+ or c+i ) are active. A higher
index may signify higher intensity (required by graded variables), but it is
not necessary.

Example 1. Owning a pet (op) has health benefit of fewer doctor visits (fv),
and so does regular walking (rw). Here, op and rw are causes of the effect fv,
and other causes also exist. Suppose op ∈ {none, dog, cat, fish, bird, other}
and fv ∈ {none, 1 − 4%, 5 − 8%, 9 − 12%, 13%+}. Both op and fv are
causal variables, whose inactive values are none. When op = none and all
other causes of fv are also inactive, the effect takes value fv = none with
certainty. Effect fv is ordinal. Cause op is nominal and is not graded. Its
values none, dog, ..., other can be denoted op0, op1, ..., op5, respectively.

A causal event is a success or failure depending on whether e is rendered
active at a certain range of values, is single- or multi-causal depending on the
number of active causes, and is simple or congregate depending on the value
range of e. In particular, P (ek ← cji ) = P (ek|cji , c0z : ∀z 6= i) (j > 0) is the

probability of a simple single-causal success, and P (e ≥ ek ← cj11 , ..., c
jq
q ) =

P (e ≥ ek|cj11 , ..., c
jq
q , c0z : cz ∈ C \X) is the probability of a congregate multi-

causal success, where j1, ..., jq > 0, X = {c1, ..., cq} (q > 1), possibly denoted
as P (e ≥ ek ← x+). Interactions among causes may be one of the followings:

Definition 2. Let ek be an active effect value, R = {W1, ...,Wm} (m ≥ 2)
be a partition of a set X ⊆ C of causes, S ⊂ R, and Y = ∪Wi∈SWi. Sets of
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causes in R reinforce each other relative to ek, iff ∀S P (e ≥ ek ← y+) ≤
P (e ≥ ek ← x+). They undermine each other iff ∀S P (e ≥ ek ← y+) >

P (e ≥ ek ← x+).

Causal interactions are expressed in a NAT model by NIN-AND gates.
A direct gate involves disjoint sets of causes W1, ...,Wm. Each input event
is a success e ≥ ek ← w+

i (i = 1, ...,m), e.g., Fig. 1 (a) where each Wi

is a singleton. The output event is the success e ≥ ek ← w+
1 , ..., w

+
m. Its

probability is P (e ≥ ek ← w+
1 , ..., w

+
m) =

∏m
i=1 P (e ≥ ek ← w+

i ), which
encodes undermining causal interaction.

Figure 1: (a) A direct NIN-AND gate. (b) A dual NIN-AND gate.

Each input event of a dual gate is a failure e < ek ← w+
i , e.g., Fig. 1

(b). The output event is the failure e < ek ← w+
1 , ..., w

+
m. Its probability

P (e < ek ← w+
1 , ..., w

+
m) =

∏m
i=1 P (e < ek ← w+

i ) encodes reinforcement.
A NAT consists of multiple NIN-AND gates arranged in a tree topology.

Its input events involve disjoint subsets of causes. There is a single output
gate (the leaf gate), whose output is a causal event that involve all causes.

Example 2. Consider surface enhancers for furniture and home renovation.
Acidic enhancers h1 and h2 are more effective when both are applied. Basic
enhancers b1 and b2 work similarly. However, when both types are combined,
their effectiveness is reduced. Fig. 2 shows a NAT, where causes h1 and h2
reinforce each other, so do b1 and b2, but the two groups undermine each
other. Ovals at the input of g1 negate output events from g2 and g3.

A NAT model consists of a NAT and a set of numerical parameters. Each
input event of a NAT typically involves a single cause. In that case, each
parameter is a single-causal probability such as P (ek ← cji ), where ek and cji
are active values. The NAT and the set of parameters uniquely define a CPT
over e and C.
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Figure 2: A NAT to model causal interaction among surface enhancers.

Example 3. Suppose all variables in the NAT of Fig. 2 are ternary (indi-
cated by superscripts 0, 1, and 2). Then a NAT model consists of the NAT
and a set of 2 × 2 × 4 = 16 single-causal probabilities. The 4 probabilities
that involves h1 are in the form P (ek ← hj1), where k = 1, 2 and j = 1, 2.
From the NAT and the 16 parameters, the CPT P (e|h1, h2, b1, b2) is uniquely
defined, whose space has the size of 35 = 243.

A NAT can be depicted compactly by a Root-Labeled-Tree (RLT).

Definition 3. Let T be a NAT where each root label involves a single cause.
The RLT of T is a directed graph obtained from T as follows: (1) Delete
each gate and direct its inputs to output. (2) Delete each non-root label. (3)
Replace each root label by the corresponding cause.

The leaf gate of a NAT is at level 1. A gate that feeds into the leaf gate
is at level 2, and so on. All gates in the same level of a NAT have the same
type (dual or direct), and gates in adjacent levels differ. For instance, g2 and
g3 in Fig. 2 are both dual, and g1 is direct.

Figure 3: A NAT (a) and its RLT (b).

The RLT of the NAT in Fig. 3 (a) is shown in (b). The leaf of RLT
corresponds to the leaf gate of the NAT. When the leaf gate is dual (or
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direct), the leaf of RLT is said to be dual (or direct). Levels of nodes of a
RLT are specified similarly to levels of gates in the NAT. For example, the
leaf in Fig. 3 (b) is direct at level 1, node c2 is at level 2, and c1 is at level 3.
A RLT and its leaf type uniquely specify a NAT. For instance, from the RLT
in Fig. 3 (b) and direct leaf type, the NAT in (a) can be uniquely recovered.
Since RLTs are more compact, we often study NATs in terms of their RLTs,
and refer to a RLT with a given leaf type as a NAT.

A NAT T has a single leaf z and z has at least two parents. Each parent
v of z is the leaf of a subtree induced by z. When v is a root, it is referred to
as a root parent of z, and the induced subtree is trivial. In Fig. 3 (b), there
are two subtrees induced by the leaf. One subtree is trivial, where c2 is a
root parent of the leaf, and the root set of the subtree is {c2}. The root set
of the other subtree is {c1, c3}.

Each NAT uniquely defines the pairwise causal interaction between each
pair of causes ci and cj (i 6= j), denoted by a PCI bit π(ci, cj) ∈ {u, r}. The
value π(ci, cj) is defined by the common gate of ci and cj at the highest level
[17]. A collection of PCI bits is a PCI pattern π. If π includes one bit for
each cause pair, it is a full pattern. Otherwise, it is partial.

Example 4. The NAT in Fig. 2 involves 4 causes. A full PCI pattern con-
sists of C(4, 2) = 6 PCI bits. For instance, π(h1, h2) = r, since g2 is dual.
PCI bit π(h1, b2) = u, since g1 is direct.

3. Direct NAT Structure Extraction

Given a full PCI pattern generated from a NAT, the pattern uniquely
identifies the NAT [17, 18]. This enables PCI patterns to play a critical role
in NAT topology acquisition, either when compressing a given BN CPT into
a NAT model or when learning a BN CPT from data as a NAT model.

For example, to improve inference efficiency, each BN CPT can be com-
pressed into a NAT model [19, 20]. Let PT (e|c1, ..., cn) be a target CPT over
a BN family. The output is a NAT model M over e, c1, ..., cn. The criterion
is that CPT PM(e|c1, ..., cn) defined by M minimizes a distance measure be-
tween PM and PT , such as Kullback-Leibler (KL) divergence. Main steps of
compression are the following:

1. Obtain possibly multiple competing PCI patterns from PT . This is
achieved by analyzing probabilities in PT that are relevant to each PCI
bit.
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For instance, to determine π(ci, cj) where e, ci, cj are binary, 3 probabil-
ities from PT are compared: p = P (e ≥ e1 ← c1i ), q = P (e ≥ e1 ← c1j),
and s = P (e ≥ e1 ← c1i , c

1
j). If s < min(p, q), then π(ci, cj) = u. If

s ≥ max(p, q), then π(ci, cj) = r. If one of them holds for every pair of
ci, cj, a full PCI pattern is obtained. If none of them holds, π(ci, cj) is a
missing bit, and the final PCI pattern is partial. See [16] for a general
treatment of PCI pattern computation. Given ci, cj, computing s takes
O(η) time. Since the number of PCI bits is C(n, 2), the complexity of
PCI pattern computation is O(η n2).

2. From each PCI pattern, extract one candidate NAT if the pattern is
full, and multiple candidate NATs if it is partial.

3. For each candidate NAT, estimate parameters to fully specify a corre-
sponding NAT model. This is achieved by constrained gradient descent.

4. Compute PM for each NAT model M and its distance from PT . Return
a NAT model with the minimal distance from PT .

Before illustrating compression with an example, we comment on its ex-
perimental computation cost in time and space. The runtime is reported in
[16], where the largest target CPT has n = 6 and each variable has k = 4
possible values. This results in a CPT size of 47 = 16, 384. The average
runtime of compression is 102 seconds (including all 4 steps above). Step 3
consumes most of the time, and time by other steps are negligible in com-
parison. The above reports on runtime. To conduct step 2, a NAT database
and an associated search tree are constructed offline, which takes 40 hours
for n = 9 (see below).

For space, the most expensive is step 2, due to the need of a NAT database
and the associated search tree, each of whcih has a size super-exponentially
on n (see below). For n = 9, the database has a size of 108 MByte. The
other steps require space not much more than that for storing the target
CPT (exponential on n). For the above CPT, the space to store it is 16,384.

In this work, we present a novel approach for step 2, which eliminates
the expensive offline computation time associated with step 2, as well as
the super-exponential space associated with that step. Next, we illustrate
compression with an example.
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Example 5. Consider the well-known Alarm BN [25]. Let the target CPT
be P (V entLung|V entTube,KinkedTube, Intubation), where variables have
domain sizes 4, 4, 2, 3, respectively. The CPT has 72 parameters.

This CPT has a persistent leaky cause [16], which we denote by c0. Hence,
the output NAT model is over effect e = V entLung and the set of causes
C = {c0, V entTube,KinkedTube, Intubation}. For simplicity, we denote
C = {c0, v, k, i}. Its full PCI pattern has C(4, 2) = 6 PCI bits. From the
target CPT, two full PCI patterns are obtained:

{π1(c0, v) = u, π1(c0, k) = r, π1(c0, i) = u, π1(v, k) = r, π1(v, i) = u, π1(k, i) = u},
{π2(c0, v) = u, π2(c0, k) = u, π2(c0, i) = u, π2(v, k) = r, π2(v, i) = u, π2(k, i) = u}.

Subsequently, NAT T1 in Fig. 4 (a) is extracted from π1, and T2 in (b) is
extracted from π2.

Figure 4: (a) NAT extracted from PCI pattern π1. (b) NAT extracted from π2.

Single-causal probabilities for each Ti are then parameterized by constrained
gradient descent, which transforms T1 and T2 into NAT models M1 and M2.
The single-causals for M2 are the following:

P (e1 ← c10) = 0.184 P (e2 ← c10) = 0.01 P (e3 ← c10) = 0.368
P (e1 ← v1) = 0.01 P (e2 ← v1) = 0.011 P (e3 ← v1) = 0.026
P (e1 ← v2) = 0.218 P (e2 ← v2) = 0.361 P (e3 ← v2) = 0.320
P (e1 ← v3) = 0.01 P (e2 ← v3) = 0.01 P (e3 ← v3) = 0.093
P (e1 ← k1) = 0.234 P (e2 ← k1) = 0.086 P (e3 ← k1) = 0.578
P (e1 ← i1) = 0.153 P (e2 ← i1) = 0.587 P (e3 ← i1) = 0.052
P (e1 ← i2) = 0.097 P (e2 ← i2) = 0.208 P (e3 ← i2) = 0.594

The KL distance between the CPT of each Mi and the target CPT is
evaluated. As the result, M2 has the smaller distance and is the output NAT
model. It reduces the number of parameters from 72 of target CPT to 21
single-causals. Its Euclidean distance is 0.30 and its KL distance is 0.63.
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The focus of this work is on the second operation above. The input of the
operation is a full or partial PCI pattern, and the output is one or more corre-
sponding NATs. We refer to the task as NAT structure extraction. Although
a full PCI pattern uniquely determines a NAT, it is not obvious which NAT
matches a given pattern over n causes and the number of candidate NATs
is O(2n(n−1)/2). The existing method constructs offline a NAT database and
an associated search tree for each n value [19]. Since the database stores all
alternative NATs over n causes, and each leaf node of the search tree maps
to a unique NAT in the database, the space complexity of both the database
and the search tree is O(2n(n−1)/2). During online compression, for each PCI
pattern over n causes, the corresponding search tree retrieves one or more
NATs from the database. We refer to the method as database supported
extraction.

Table 1 shows the total number K of alternative NATs for n = 2, ..., 9
[18, 26]. It illustrates how the sizes of NAT databases and search trees grow

Table 1: Total numbers of distinct NATs for n values 2 through 9.

n 2 3 4 5 6 7 8 9
K 2 8 52 472 5,504 78,416 1,320,064 25,637,824

super-exponentially on n. Although constructed offline, they are a source of
computational burden. For n = 9, it takes 40 hours to generate the database
and search tree [19]. Since NAT models are local models (one BN family
per model), n does not grow unboundedly, due to conditional independence
encoded in BNs. Nevertheless, it is costly to generate NAT databases and
search trees when n grows beyond 9.

To alleviate these costs, we present a novel approach for NAT extraction
without requiring support of NAT databases and search trees. We refer to
the approach as direct extraction.

The input to direct extraction is a PCI pattern that may be full or partial.
In addition, the pattern may be valid or invalid as defined below. First, we
relate two PCI patterns over the same set of causes.

Definition 4. Let π and ψ be PCI patterns over a set C of causes. If for
each pair of ci, cj ∈ C (i 6= j), we have π(ci, cj) = ψ(ci, cj) whenever both
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π(ci, cj) and ψ(ci, cj) are defined, then π and ψ are compatible. Otherwise,
they are incompatible.

Either π or ψ may be partial. Only PCI bits defined under both π and ψ
are relevant to compatibility. Next, we relate a PCI pattern to a NAT over
the same set of causes.

Definition 5. Let π be a PCI pattern over a set C of causes. Then π is
valid if there exists a NAT over C whose PCI pattern ψ is compatible with
π. Otherwise, π is invalid.

The above π may be partial. A full PCI pattern over n causes has C(n, 2)
bits and 2C(n,2) variations, not all of which are valid. For n = 2, there are
2 NATs (Table 1). A full pattern has C(2, 2) = 1 bit and is always valid.
For n = 3, there are 8 NATs. A full pattern has C(3, 2) = 3 bits. Hence,
every PCI pattern is valid. For n = 4, there are 52 NATs. There are
2C(4,2) = 26 = 64 full patterns, of which 64 - 52 = 12 patterns are invalid.
For n = 7, there are 221 = 2, 097, 152 full patterns and 78,416 NATs. The
number of invalid full patterns is 2,018,736. In the remainder of the paper,
we present direct extraction of NAT structure from PCI patterns that are
either full or partial, and are either valid or invalid.

4. Properties of Cause Bipartitions

Our method of direct extraction is based on bipartitioning causes in C.
We introduce cause bipartitions from two alternative perspectives in Sec-
tion 4.1, the uniform causal bipartition and the subtree-consistent bipartition,
and analyze their properties in Section 4.2.

4.1. Alternative Cause Bipartitions

Causes in C can be divided according to causal interactions.

Definition 6. Let C (|C| ≥ 2) be a set of causes, X and Y be non-empty
subsets of C where X ∩ Y = ∅ and X ∪ Y = C, and π be a full PCI pattern
over C. Then {X, Y } is a uniform causal bipartition of C under π, if
(1) ∀x ∈ X, ∀y ∈ Y, π(x, y) = r, or (2) ∀x ∈ X, ∀y ∈ Y, π(x, y) = u.
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Note that π may be invalid. When C = {x, y}, π has one bit, and
{{x}, {y}} forms a uniform causal bipartition trivially. For C = {x, y, z},
every π is valid and identifies a NAT T , as discussed above. At least one cause
x is parent of the leaf in T , and {{x}, {y, z}} is a uniform causal bipartition.

A PCI pattern can be alternatively expressed as a PCI matrix. Fig. 5
(a) shows the RLT expression of a NAT over 6 causes. Its PCI matrix is
shown in (b). Although PCI matrices are less compact than equivalent PCI

Figure 5: (a) A NAT. (b) Its PCI matrix. (c) Visually checking uniform causal bipartition.

patterns, uniform causal bipartitions can be visually identified more easily
through PCI matrices. Let π be the PCI pattern expressed in Fig. 5 (b).
Consider cause bipartition {X = {a, b, h}, Y = {c, d, f}} under π. Identify
matrix cells at the intersection of rows indexed by X and columns indexed
by Y , as underlined in Fig. 5 (c). Since these cells have the same bit value r,
{X, Y } is a uniform causal bipartition. We often use PCI matrices below in
place of PCI patterns, refer to them interchangeably, and denote both by π.

Given a PCI pattern π, there may not exist any uniform causal bipartition
under π.

Definition 7. Let π be a full PCI pattern over a set C (|C| ≥ 2) of causes.
If there exists no uniform causal bipartition under π, then π is a PCI core
and C is the domain of the PCI core.

From discussion following Def. 6, there exists no PCI core when |C| = 2
and 3. Consider the PCI matrix π in Fig. 6 (a). Since the row indexed by a
is not uniform, {{a}, {b, c, d}} is not a uniform causal bipartition. Checking
each row indexed by b, c, and d, none of the bipartitions {X, Y } is causally
uniform when |X| = 1. For X = {a, d} and Y = {b, c}, consider cells at the
intersection of rows indexed by X and columns indexed by Y , as underlined
in Fig. 6 (b). Since underlined values are not uniform, {{a, d}, {b, c}} is not
a uniform causal bipartition. It can be verified that none of the bipartitions
{X, Y } is causally uniform when |X| = 2. Hence, π is a PCI core. The
smallest PCI core (over the least number of causes) occurs when |C| = 4.
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Figure 6: (a) PCI matrix over C = {a, b, c, d}. (b) Visually checking bipartition.

Given a NAT over C, causes can also be divided based on NAT topology.

Definition 8. Let T be a NAT over C and {X, Y } be a bipartition of C,
where X 6= ∅, Y 6= ∅, X ∩ Y = ∅, and X ∪ Y = C. If for each leaf-induced
subtree of T and its root set R, either R ⊆ X or R ⊆ Y holds, then {X, Y }
is a subtree-consistent bipartition of C with respect to T .

In Fig. 3, {{c2}, {c1, c3}} is a subtree-consistent bipartition of C, but
{{c1}, {c2, c3}} is not. Theorem 1 establishes existence of subtree-consistent
bipartitions.

Theorem 1. Every NAT T over a set C (|C| ≥ 2) of causes has at least
one subtree-consistent bipartition of C.

Proof: We regard T as RLT of the NAT. Let z be the leaf of T . Since
|C| ≥ 2, z has at least two parents. Let x be a parent of z. If x is a root,
then {{x}, C \ {x}} is a subtree-consistent bipartition with respect to T .
Otherwise, x is the leaf of a subtree. Let X be the root set of the subtree.
Then {X,C \X} is a subtree-consistent bipartition with respect to T . �

4.2. Relation of Cause Bipartitions

We use RLT representation of a NAT below, as in the above proof. The-
orem 2 relates the two types of bipartitions: Whenever a bipartition of C is
subtree-consistent, it is also a uniform causal bipartition.

Theorem 2. Let T be a NAT over C and π be the PCI pattern of T . Ev-
ery subtree-consistent bipartition of C with respect to T is a uniform causal
bipartition under π.
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Proof: By Theorem 1, a subtree-consistent bipartition of C with respect to
T exists. Denote the bipartition by {X, Y }, where X 6= ∅, Y 6= ∅, X∩Y = ∅,
and X ∪ Y = C.

Let z be the leaf of T . For each pair of x ∈ X and y ∈ Y , their only
common descendent is z, which corresponds to their unique common gate in
the NAT. Hence, if z is dual, π(x, y) = r and condition (1) of Def. 6 is true.
If z is direct, π(x, y) = u and condition (2) of Def. 6 is true. �

Correlation of subtree-consistent bipartitions and uniform causal biparti-
tions established by Theorem 2 raises the question whether subtree-consistent
bipartitions can be identified through uniform causal bipartitions. Theorem 3
asserts this positively.

Theorem 3. Let T be a NAT over C, π be the PCI pattern of T , and {X, Y }
be a uniform causal bipartition of C under π. Then, {X, Y } is a subtree-
consistent bipartition with respect to T .

Proof: We show that if {X, Y } is not subtree-consistent, then it is not a
uniform causal bipartition. In particular, we show that neither condition (1)
nor (2) of Def. 6 holds.

Assume that {X, Y } is not subtree-consistent relative to T . Denote the
leaf of T by z. There exists a subtree ST induced by z, where one root x of
ST satisfies x ∈ X and another root y of ST satisfies y ∈ Y (Fig. 7 (a)).

Figure 7: Illustration of proof for Theorem 3.

Leaf z has at least two parents, and subtrees induced by z have disjoint
subsets of causes. Hence, there exists a root v such that either v is on a
subtree H 6= ST induced by z (Fig. 7 (a)), or v is a root parent of z (b).
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Depending on whether z is dual or direct and whether v ∈ X or v ∈ Y ,
there are four mutually exclusive and exhaustive cases: (A) dual z, v ∈ X;
(B) dual z, v ∈ Y ; (C) direct z, v ∈ X; and (D) direct z, v ∈ Y .

Case (A) involves dual z and v ∈ X. We have either π(x, y) = u or
π(x, y) = r. Suppose π(x, y) = u. Then condition (1) of Def. 6 does not
hold. Since the only common descendent of v and y is z (dual), we have
v ∈ X, y ∈ Y , and π(v, y) = r. Hence, condition (2) does not hold either.

Next, suppose π(x, y) = r. Then condition (2) does not hold. Let w be
the leaf of subtree ST (Fig. 7 (a)). Since z is dual, w must be direct. From
π(x, y) = r, node w cannot be the common descendent of x and y at the
highest level. That is, there exists an ancestor p of w that is the common
descendent of x and y at the highest level, and p is dual. This implies that
x and y are contained in a subtree with leaf p (Fig. 7 (a)).

Since w has at least two parents, either there exists another non-trivial
subtree (not containing x, y, p) induced by w or there exists a root parent of
w. Let q be a root in that subtree (Fig. 7 (b)) or be the root parent (Fig. 7
(c)). Since w is the common descendent of x, y, q at the highest level and w
is direct, we have π(x, q) = u and π(q, y) = u. If q ∈ X, π(q, y) = u violates
condition (1). If q ∈ Y , π(x, q) = u violates condition (1). Hence, condition
(1) does not hold either.

Since cases (A) through (D) are symmetric, the above proof on (A) can
be adapted to (B) through (D). �

5. NAT Extraction by PCI Matrices

The task of direct extraction is to extracts a NAT from an input PCI
pattern π. Theorem 3 suggests that uniform causal bipartitions under π cor-
respond to subtree-consistent bipartitions relative to the unknown NAT, and
hence provide hints to its topology. Section 5.1 presents an algorithm suite
to explore this opportunity for direct extraction. Its behavior is illustrated
with example traces in Section 5.2. The completeness of the algorithm suite
is analyzed in Section 5.3. Section 5.4 presents a refinement of the algorithm
suite for improved efficiency.

5.1. Extraction Algorithm

Algo. 1 takes as input a set C of causes, a PCI matrix π over C, and a
proper subset X ⊂ C from which a bipartition {X, Y } (line 1) is defined.
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It checks if {X, Y } is a uniform causal bipartition. If so, it returns the
NIN-AND gate type that encodes the causal interaction, and nil otherwise.

Algorithm 1. IsUniCausalBipart(C, π,X)

1 Y = C \X;
2 if ∀x ∈ X, ∀y ∈ Y , π(x, y) = r holds, gatetype = dual;
3 else if ∀x ∈ X, ∀y ∈ Y , π(x, y) = u holds, gatetype = direct;
4 else gatetype = nil;
5 return gatetype;

Algo. SetNatByPciFV below takes as input a set C of causes and a full
valid (FV) PCI matrix π over C, and returns a NAT. It calls IsUniCausal-
Bipart to evaluate alternative bipartitions. InNat and InNat′ are sets of
causes added to the current NAT T (in terms of RLT). The Subsets collects
subsets X and Y for each uniform causal bipartition {X, Y }. Matrix reduc-
tion (lines 7 and 19) is exemplified in Fig. 8, where the matrix in (a) over
{a, b, c, d, h} is reduced to that in (b) over {a, b, c, d}.

Figure 8: PCI pattern in (a) is reduced to that in (b).

SetNatByPciFV is organized into 4 sections. Lines 1 to 6 initialize the
NAT T with the leaf z only, and search for root parents of z. Lines 7 to 14
search for alternative root bipartitions, where each subset in a bipartition
is the root set of a potential subtree whose leaf is a parent of z. Lines 15
to 22 construct the subtree from each valid root set, and remove invalid
candidate root sets. Lines 23 to 25 handle the case where the NAT has only
one leaf-induced subtree.

Algorithm 2. SetNatByPciFV (C, π)
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1 init NAT T with leaf z only; type(z) = nil; init set InNat = ∅;
2 for each x ∈ C, do
3 gatetype = IsUniCausalBipart(C, π, {x});
4 if gatetype 6= nil,
5 type(z) = gatetype; add x to T as parent of z; add x to InNat;
6 if InNat = C, return T ;

7 reduce (C, π) to (C ′, ψ), where C ′ = C \ InNat;
8 InNat′ = ∅; Subsets = ∅;
9 for i = 2 to |C ′|/2, do
10 for each X ⊂ C ′ where |X| = i, do
11 gatetype = IsUniCausalBipart(C ′, ψ,X);
12 if gatetype 6= nil,
13 if type(z) = nil, type(z) = gatetype;
14 if gatetype = type(z), Subsets = Subsets ∪ {X,C ′ \X};

15 if Subsets 6= ∅,
16 for each X ∈ Subsets,
17 if ∃ V ∈ Subsets such that X ⊇ V , remove X from Subsets;
18 for each X ∈ Subsets, do
19 reduce π to ψ over X; R = SetNatByPciFV (X,ψ);
20 add R to T as a subtree induced by z;
21 InNat′ = union of subsets in Subsets;
22 if InNat′ = C ′, return T ;

23 R = SetNatByPciFV(C ′, ψ);
24 add R to T as a subtree induced by z;
25 return T ;

5.2. Example Traces

The following examples illustrate operations of SetNatByPciFV. Example
6 illustrates the section in lines 1 to 6. Example 7 demonstrates the section
in lines 7 to 14 and the section in lines 15 to 22. Example 8 illustrates why
lines 16 and 17 are necessary. Example 9 demonstrates the section in lines
23 to 25.

Example 6. Consider input pattern π in Fig. 9 (b), whose NAT (unknown)
is in (a). The for loop at line 2 iterates for each of a, b, c, d, say, in that
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Figure 9: (a) A NAT whose leaf has root parents only. (b) Its PCI matrix.

order. For a, line 3 calls Algo. 1 to check π(a, y) where y ∈ {b, c, d}. These
PCI bits are in the matrix row indexed by a. Hence, Algo. 1 returns direct,
leaf z is set to direct, and node a is added as parent of z. Each subsequent
iteration adds another parent to z, and the correct NAT is returned in line 6.

Example 7. Consider input pattern π in Fig. 10 (b), whose NAT (unknown)
is in (a). They reproduce Fig. 5 (b) and (a). When the for loop at line 2

Figure 10: (a) A NAT whose leaf has both root parents and non-root parents. (b) Its PCI
matrix. (c) A reduced PCI matrix.

iterates over b and c, Algo. 1 returns dual, since matrix rows indexed by b
and c are uniform. Hence, b and c are added as root parents of leaf z. At
line 7, C is reduced to C ′ = {a, d, h, f} and π is reduced to ψ in Fig. 10 (c).

Nested for loops in lines 9 to 14 process alternative root bipartitions of
C ′. Each bipartition {X,C ′ \ X} is tested starting with |X| = 2 (line 9),
since the root set of each subtree has at least 2 causes. As X and C ′ \X are
symmetric, the upper bound of X size is |C ′|/2 (integer division).

Lines 11 and 12 check whether {X,C ′ \ X} is causally uniform. Bipar-
tition {{a, d}, {h, f}} does not pass the test, but {{a, h}, {d, f}} does. As
the result, root sets {a, h} and {d, f} are added to Subsets (line 14). Note
that {a, h} and {d, f} are added twice to Subsets in separate iterations of
the inner for loop (with one copy retained). This is refined in Section 5.4.

Through the for loop in lines 18 to 20, each of {a, h} and {d, f} is pro-
cessed by a recursive call of SetNatByPciFV. The relevant subtree in Fig. 10
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(a) is extracted and added to T . The initial activation of SetNatByPciFV
terminates in line 22, returning the NAT in Fig. 10 (a).

Example 8. Consider input π in Fig. 11 (b) with unknown NAT in (a).
The for loop in lines 9 to 14 adds root sets {a, c}, {b, d}, {h, f} as well
as sets such as {a, b, c, d}. Although {{a, b, c, d}, {h, f}} is a uniform causal
bipartition, {a, b, c, d} does not correspond to a leaf-induced subtree in Fig. 11
(a). Lines 16 and 17 remove root sets such as {a, b, c, d} from Subsets before
each root set is converted to a subtree.

Figure 11: (a) A NAT with 3 leaf-induced subtrees. (b) Its PCI matrix.

Example 9. Consider input π in Fig. 12 (b) with unknown NAT in (a).
The for loop in lines 2 to 5 adds h as a parent of z in T , and sets type of z
to dual. At line 7, C is reduced to C ′ = {a, b, c, d} and π is reduced to ψ in
Fig. 12 (c).

Figure 12: (a) A NAT with one leaf-induced subtree. (b) Its PCI matrix. (c) A reduced
PCI matrix.

In the for loop of lines 9 to 14, although {{a, b}, {c, d}} is recognized as
a uniform causal bipartition with a direct gatetype, the cause sets are not
added to Subsets, since the gatetype does not match that of z (line 14). As
the result, the for loop terminates with Subsets = ∅, and processing continues
at line 23. A subtree with root set {a, b, c, d} is extracted by the recursive call
in line 23, added to T , and the NAT in Fig. 12 (a) is returned.
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5.3. Analysis

Completeness of SetNatByPciFV is established in Theorem 4. That is,
whenever the input PCI pattern is full and valid, SetNatByPciFV will extract
the correct NAT and return it.

Theorem 4. Let Ψ be a NAT over a set C of causes and π be the PCI matrix
of Ψ. Then algorithm SetNatByPciFV (C, π) halts and returns T = Ψ.

Proof: Let ρ be the leaf of Ψ. Since |C| ≥ 2, ρ falls into the following
mutually exclusive and exhaustive cases: (1) ρ has 2 or more root parents
only. (2) ρ has 2 or more non-root parents and 0 or more root parent. (3) ρ
has 1 non-root parent and 1 or more root parent.

In case (1), for each x ∈ C, {{x}, C \ {x}} is a subtree-consistent bi-
partition. By Theorem 2, it is also causally uniform. Hence, each iter-
ation of the for loop in lines 2 to 5 identifies one root parent x of ρ.
SetNatByPciFV (C, π) halts on line 6 and returns T = Ψ.

In case (2), if ρ has any root parent x, it is added to T as above. After
line 7, C ′ contains root nodes in all non-trivial subtrees of Ψ induced by ρ.

By assumption, ρ has at least 2 such induced subtrees. For each subtree
and its root set X, either |X| ≤ |C ′|/2 or |X| > |C ′|/2. If |X| ≤ |C ′|/2,
X is evaluated by the inner for loop (lines 10 to 14) when i = |X|. If
|X| > |C ′|/2, then |C ′ \ X| < |C ′|/2, and X is evaluated by the inner for
loop when i = |C ′ \X|.

Since {X,C ′ \X} is a subtree-consistent bipartition, by Theorem 2, it is
also causally uniform. Hence, X and C ′ \ X are both added to Subsets in
line 14. Since root sets of distinct subtrees are disjoint, X cannot be removed
from Subsets in line 17, and the subtree over X is added to T in line 20. If
C ′ \X is the root set of another subtree, the subtree is also added to T .

If Ψ has q ≥ 3 non-trivial subtrees induced by ρ, for each subtree root
set X added to Subsets, C ′ \ X contains multiple subtree root sets and is
also added to Subsets. Since each root set contained in C ′ \X is also added
to Subsets, C ′ \ X is removed from Subsets in line 17. Hence, the for
loop in lines 18 to 20 adds exactly those subtrees of Ψ to T . As the result,
SetNatByPciFV (C, π) halts on line 22 and returns T = Ψ.

In case (3), Ψ has a single non-trivial subtree induced by ρ. All root
parents of ρ are identified by the for loop in lines 2 to 5. After line 7, C ′

is the root set of the subtree and ψ is over C ′. Hence, C ′ has no other root
set to pair, cannot be added to Subsets, and Subsets = ∅ after the for
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loop in lines 9 to 14. The subtree over C ′ is added to T in lines 23 and 24,
SetNatByPciFV (C, π) halts on line 25, and it returns T = Ψ. �

5.4. A Refinement of the Algorithm

Before closing the section, we present a refinement of SetNatByPciFV
for improved efficiency. The complexity analysis is presented in Section 7.

The for loop at line 9 searches for uniform causal bipartitions {X,C ′\X},
where |X| is bounded at |C ′|/2 (integer division). When |C ′| is odd, each
bipartition so processed is unique. However, when |C ′| is even, which we
consider below, it is no longer the case.

Suppose C ′ = {a, b, c, d}. The upper bound of |X| is 2, and there are
C(4, 2) = 6 distinct Xs, yielding 6 bipartitions. However, 3 of them are re-
dundant, e.g., the bipartition from X = {a, b} and that from X = {c, d} are
identical. This was demonstrated in Example 7. In general, when the for
loop at line 9 iterates for i = |C ′|/2, for each bipartition {X,C ′ \ X} pro-
cessed, an identical mirror bipartition {C ′ \X,X} is redundantly processed.

Since C(n, n/2) = maxk C(n, k), where 2 ≤ k ≤ n/2, the iteration of line
9 is most expensive when i = |C ′|/2. Hence, avoiding redundant compu-
tation over mirror bipartitions when i = |C ′|/2 is worthwhile. By avoiding
mirror bipartitions, exactly C(n, n/2)/2 bipartitions are produced, instead
of C(n, n/2) ones. For instance, when n = 20, C(n, n/2) = C(20, 10) =
184, 756. Reduction to 92,378 is a nontrivial saving. A noticeable speedup
of SetNatByPciFV was observed after we adopt the following modification.
We generate candidate bipartitions for i = |C ′|/2 as follows:

Denote n = |C ′|, where n is even and n ≥ 4. Remove one cause x from C ′

to produce set C− of size n− 1. From C−, generate the C(n− 1, (n/2)− 1)
distinct subsets of size (n/2)− 1, and add x to each subset.

For the for loop at line 9, let each X be one subset from the above
collection. The result is a collection of C(n− 1, (n/2)− 1) bipartitions of C ′

in the form of {X,C ′ \X}, where |X| = n/2. It is straightforward to show
the following:

1. Each bipartition in the collection is unique.

2. The collection has cardinality C(n, n/2)/2. That is, C(n, n/2)/2 =
C(n− 1, (n/2)− 1).
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6. Relation between PCI Cores and Invalid Patterns

By Theorem 4, whenever an input PCI pattern is full and valid, SetNat-
ByPciFV extracts the correct NAT. However, when a PCI pattern is obtained
from an arbitrary CPT for compression, e.g., those obtained in Example 5,
there is no guarantee that it is valid. We refer to NAT structure extraction
from invalid PCI patterns as being fault tolerant. Existing NAT extraction
[19, 20] does not explicitly consider the case when input PCI patterns are
invalid. Fault tolerant elicitation of NATs is considered in [24]. However, no
algorithm is provided to detect invalid PCI patterns and to generate NATs
accordingly. We provide the theoretical foundation of fault tolerant NAT
extraction below, and present the algorithm for doing so in Section 7.

Section 4.1 introduced PCI cores that are PCI patterns without uniform
causal bipartitions. We show below that PCI cores are fundamental in de-
tecting invalid PCI patterns and in extracting NATs from them.

Definition 9. Let π be a PCI pattern over C. A PCI pattern ψ over X ⊆ C
(|X| ≥ 2) is a sub-pattern of π if, for every x, y ∈ X, ψ(x, y) = π(x, y).

The PCI pattern in Fig. 8 (b) is a sub-pattern of that in (a). By Def. 9,
π is a trivial sub-pattern of itself. Such inclusion is useful in formulating the
theorem below. A sub-pattern differs from a compatible pattern in that it
is defined over a subset of causes, whereas compatible patterns are defined
over the same cause set.

The PCI pattern π in Fig. 8 (a) has a uniform causal bipartition {{h},
{a, b, c, d}}, and hence is not a PCI core. Its sub-pattern ψ in (b) does not
have any uniform causal partition, and hence is a PCI core. Theorem 5
below reveals a fundamental condition of invalid PCI patterns, characterized
by such PCI cores.

Theorem 5. A PCI pattern π over C (|C| ≥ 2) is invalid iff π contains a
sub-pattern ψ that is a PCI core.

Proof: [Sufficiency] Assume that π contains a sub-pattern ψ over S ⊆ C that
is a PCI core. Since the smallest PCI core has 4 causes, |S| ≥ 4. We prove
by contradiction that there exists no NAT with PCI pattern π.

Suppose that a NAT T over C has PCI pattern π. By Theorem 1, T
has a subtree-consistent bipartition {X, Y } of C. Either X and Y split S
(possible since |S| ≥ 4) or they don’t. We consider each case below:
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(Case 1) If X and Y split S, denote SX = X∩S 6= ∅ and SY = Y ∩S 6= ∅,
where SX∪SY = S. By Theorem 2, {X, Y } is a uniform casual bipartition of
C under π. Hence, {SX , SY } is also a uniform casual bipartition of S under
ψ: a contradiction to the assumption that ψ is a PCI core.

(Case 2) If X and Y do not split S, then S is contained in one of them,
say S ⊆ X. From |S| ≥ 4, we have |X| ≥ 4. Let z be the leaf of T . Since
{X, Y } is a subtree-consistent bipartition of C, Y is made of root sets of one
or more subtrees induced by z (Fig. 13 (a) or (c)). Remove each such subtree
from T , and denote the reduced T by T ′ (Fig. 13 (b)). If z is left with a
single parent z′ in T ′ (Fig. 13 (c)), remove z so that z′ becomes the leaf of T ′

(see (d)). The resultant T ′ is a well-defined NAT over X ⊂ C and |X| ≥ 4.

Figure 13: T ′ in (b) is obtained from (a). T ′ in (d) is obtained from (c).

Since C is finite, |S| ≥ 4, and the reduction produces a NAT over a
proper subset of causes, by processing a subtree-consistent bipartition in
T ′ recursively, Case 1 must be true eventually, as well as the associated
contradiction.

[Necessity] Suppose a PCI pattern π over C does not correspond to any
NAT. We prove by contraposition that π contains a sub-pattern ψ that is
a PCI core. Assume that π does not contain any PCI core. We show by
induction on |C| that a NAT can be constructed with PCI pattern π.

For |C| = 2, say, C = {x, y}, the only bipartition {{x}, {y}} is causally
uniform. Hence, a tree T with leaf z and roots x and y is a NAT over C.
Assume that for |C| = k ≥ 2, if PCI pattern π over C does not contain a
PCI core, then a NAT can be constructed with pattern π.

Consider |C| = k + 1, where pattern π over C does not contain a PCI
core. Since π is not a PCI core, there exists a uniform causal bipartition
{X, Y } of C, where |X| ≤ k and |Y | ≤ k. Since k + 1 ≥ 3, X and Y cannot
both be singletons. Either exactly one of them is a singleton (Case a) or
none of them is a singleton (Case b). We construct a NAT with pattern π
for each case:

(Case a) Suppose that X is a singleton {x}. Since π does not contain a
PCI core, neither sub-pattern ψ of π over Y does. Since |Y | = k, by inductive
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assumption, a NAT TY can be constructed with PCI pattern ψ. Denote the
leaf of TY by z.

If z is direct and the uniform causal interaction relative to bipartition
{{x}, Y } is u, add the root parent x to z in TY . The resultant tree T is a
NAT with PCI pattern π (Fig. 14 (a)). Processing is similar if z is dual and
interaction relative to {{x}, Y } is r.

Figure 14: (a) Merge x into TY as parent of leaf. (b) Merge x and TY with new leaf v.
(c) Merge TX and TY at leaf zX . (d) Merge TX and TY with zY being parent of zX .

If z is direct and the causal interaction relative to bipartition {{x}, Y } is
r, create a tree T with leaf v whose two parents are x and z. The resultant
tree T is a NAT with PCI pattern π (Fig. 14 (b)). Processing is similar if z
is dual and interaction relative to {{x}, Y } is u.

(Case b) Suppose that none of X and Y is singleton. Let πX (πY ) be the
sub-pattern of π over X (Y ). Since π does not contain a PCI core, neither
πX nor πY does. Since |X| ≤ k (|Y | ≤ k), by inductive assumption, a NAT
TX (TY ) can be constructed with PCI pattern πX (πY ). Denote the leaf of
TX (TY ) by zX (zY ).

If zX and zY are both direct and the uniform causal interaction relative
to bipartition {X, Y } is u, merge TX and TY by adding all parents of zY as
parents of zX and deleting zY . The resultant tree T is a NAT with pattern π
(Fig. 14 (c)). Processing is similar if zX and zY are both dual and interaction
relative to {X, Y } is r.

If zX is direct, zY is dual, and the uniform causal interaction relative to
bipartition {X, Y } is u, merge TX and TY by making zY a parent of zX . The
resultant tree T is a NAT with pattern π (Fig. 14 (d)). Processing is similar
for other cases where types of zX and zY differ. �

Theorem 5 establishes that the necessary and sufficient condition of an
invalid PCI pattern π is that either π is a PCI core or a sub-pattern of π is.
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7. NAT Extraction with Invalid PCI Pattern Detection

Based on Theorem 5, we extend SetNatByPciFV to detect invalid PCI
patterns. As input, the extended algorithm takes a set C of causes and a full
PCI matrix π over C that may be invalid. We denote it by SetNatByPciFI,
where FI refers to full invalid patterns.

The main difference of SetNatByPciFI from SetNatByPciFV is additional
lines 20, 24, and 26. If π is valid, SetNatByPciFI returns the respective
NAT, similarly as SetNatByPciFV. However, when π is invalid, it is detected
through lines 20, 24, and 26, where a PCI core is returned.

Algorithm 3. SetNatByPciFI(C, π)

1 init NAT T with leaf z only; type(z) = nil; init set InNat = ∅;
2 for each x ∈ C, do
3 gatetype = IsUniCausalBipart(C, π, {x});
4 if gatetype 6= nil,
5 type(z) = gatetype; add x to T as parent of z; add x to InNat;
6 if InNat = C, return T ;

7 reduce (C, π) to (C ′, ψ) relative to InNat;
8 InNat′ = ∅; Subsets = ∅;
9 for i = 2 to |C ′|/2, do
10 for each X ⊂ C ′ where |X| = i, do
11 gatetype = IsUniCausalBipart(C ′, ψ,X);
12 if gatetype 6= nil,
13 if type(z) = nil, type(z) = gatetype;
14 if gatetype = type(z), Subsets = Subsets ∪ {X,C ′ \X};

15 if Subsets 6= ∅,
16 for each X ∈ Subsets,
17 if ∃ V ∈ Subsets such that X ⊇ V , remove X from Subsets;
18 for each X ∈ Subsets, do
19 reduce π to ψ over X; R = SetNatByPciFI(X,ψ);
20 if R = X, return X;
21 add R to T as a subtree induced by z;
22 InNat′ = union of subsets in Subsets;
23 if InNat′ = C ′, return T ;
24 if InNat ∪ InNat′ = ∅, return C;
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25 R = SetNatByPciFI(C ′, ψ);
26 if R = C ′, return C ′;
27 add R to T as a subtree induced by z;
28 return T ;

We analyze important properties of the algorithm. SetNatByPciFI is
complete, if whenever π is the PCI pattern of a NAT Ψ over C, it returns
NAT T = Ψ. SetNatByPciFI is sound, if whenever π is invalid, it returns
the domain of a PCI core.

Theorem 6 below establishes completeness. From this theorem, it fol-
lows that SetNatByPciFI produces the same output as SetNatByPciFV for
examples in Section 5.2. After presenting Theorem 6, we illustrate, with
examples, the behavior of SetNatByPciFI when the input pattern is invalid,
before proving its soundness.

Theorem 6. Let Ψ be a NAT over a set C of causes and π be the PCI matrix
of Ψ. Then algorithm SetNatByPciFI(C, π) halts and returns T = Ψ.

Proof: SetNatByPciFI differs from SetNatByPciFV in recursive calls at lines
19 and 25, and in extra statements at lines 20, 24, and 26. We show that
SetNatByPciFI cannot exit from lines 20, 24, and 26. Hence, assuming that π
is a valid PCI pattern, the algorithm is equivalent to SetNatByPciFV (C, π),
and its completeness follows from Theorem 4.

Let ρ be the leaf of Ψ. Since |C| ≥ 2, ρ falls into three mutually exclusive
and exhaustive cases: (1) ρ has 2 or more root parents only. (2) ρ has 2
or more non-root parents and 0 or more root parent. (3) ρ has 1 non-root
parent and 1 or more root parent.

In case (1), SetNatByPciFI halts in line 6, as shown in the proof of
Theorem 4. Hence, lines 20, 24, and 26 are irrelevant.

In case (2), let TX be any subtree of Ψ with root set X, that corresponds
to a non-root parent of ρ. As shown in the proof of Theorem 4, after line 17,
Subsets contains each and every root set such as X. The for loop at line 18
iterates once for each root set, and the corresponding subtree is returned in
line 19. Hence, SetNatByPciFI cannot exit from line 20. It will exit from line
23, as shown in the proof of Theorem 4, rendering lines 24 and 26 irrelevant.

In case (3), since ρ has root parents, they are added to InNat in line
5. Hence, InNat 6= ∅ after line 6. As shown in the proof of Theorem 4,

27



Subsets = ∅ after line 14. Hence, SetNatByPciFI cannot exit from line 20.
Since InNat 6= ∅ at line 24, SetNatByPciFI cannot exit from line 24.

Let TX be the only subtree of Ψ with root set X, that corresponds to
the single non-root parent of ρ. TX will be returned in line 25, and hence
SetNatByPciFI cannot exit from line 26. Instead, it halts in line 28. �

Examples below illustrate behavior of SetNatByPciFI when its input pat-
tern is invalid.

Example 10. Consider input pattern π in Fig. 6 (a). Since π is a PCI core,
no uniform causal bipartition in the form {{x}, C \ {x}} exists. After line
7, InNat = ∅, C ′ = C, and ψ = π. For the same reason, after line 14,
InNat′ = ∅ and Subsets = ∅. As the result, C is returned in line 24.

Example 11. Consider input pattern π in Fig. 8 (a). Recall that π is not a
PCI core, but its sub-pattern over {a, b, c, d} is. Since {{h}, {a, b, c, d}} is a
uniform causal bipartition, the for loop at line 2 adds h to T as parent of z,
and InNat = {h}. After line 7, C ′ = {a, b, c, d}. Since the sub-pattern over
C ′ is a core, after line 14, Subsets = ∅. The processing continues at line 25
and C ′ is returned in line 26.

Theorem 7 below establishes soundness of SetNatByPciFI.

Theorem 7. Let π be an invalid PCI pattern over a set C of causes. Then
algorithm SetNatByPciFI(C, π) returns S ⊆ C which is the domain of a
PCI core under π.

Proof: Assume that π over C is invalid. Either π is a PCI core, or it is
not. Suppose π is a PCI core. No uniform causal bipartition in the form
{{x}, C \ {x}} exists. Hence, InNat = ∅ at line 24. No uniform causal
bipartition in the form {X,C \X} exists, where |X| > 1. Hence, InNat′ = ∅
at line 24. It follows that SetNatByPciFI returns C at line 24.

Next, suppose π is not a PCI core. By Theorem 5, π has a sub-pattern
ψ that is a PCI core, whose domain S ⊂ C is the largest among PCI cores
under π. Pattern ψ falls into the following mutually exclusive and exhaustive
cases: (a) C = S ∪ X, where S and X are disjoint, and X 6= ∅. For each
x ∈ X, {{x}, C \ {x}} is a uniform causal bipartition. (b) C = S ∪X ∪ Y ,
where S,X, Y are disjoint, and Y 6= ∅. For each x ∈ X, {{x}, C \ {x}} is a
uniform causal bipartition, and X (possibly empty) includes all such x. In
addition, there exists Q ⊆ Y such that {S,Q} is a uniform causal bipartition.
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In case (a), each x ∈ X is added to InNat in line 5. Hence, after line 7,
we have InNat = X and C ′ = S. Since ψ over S is a core, the for loop in
lines 9 to 14 ends up with Subsets = ∅. Subsequently, line 25 is run, which
renders S to be returned in line 26.

In case (b), after line 7, we have C ′ = S ∪ Y . After line 14, Subsets
contains S and Q. Since ψ over S is a core, S cannot be removed from
Subsets by line 17. S will be processed by the for loop at line 18, which
renders S to be returned in line 20. Note that the PCI core ψ over S that
qualifies for case (b) may not be unique. The first such S processed by the
for loop at line 18 will be returned. �

Next, we consider time complexity of SetNatByPciFI. When π is valid,
the complexity depends on the respective NAT T . Let z be leaf of T and
|C| = n. If every cause in C is a parent of z, only lines 1 to 6 are run, and
the complexity is O(n2). If no cause is a parent of z, lines 1 to 6 are followed
by lines 7 to 14. The number of alternative X (line 10) where 2 ≤ |X| ≤ n/2
is O(2n−1 − n − 1), and evaluation of each X takes O(n2/4) time. The
complexity is O(n2 2n−1). This is also the complexity when π is a PCI core.

If π is valid, some causes are the parents of z, the computation time is
between O(n2) and O(n2 2n−1). The same holds if π is invalid and contains
a PCI core over a proper subset of C. In summary, the time complexity of
SetNatByPciFI is a function of π and is between O(n2) and O(n2 2n−1).
Note that since a NAT model is over a single BN family, n is not un-
bounded. In comparison, the complexity of SetNatByPciFI significantly re-
duces O(2n(n−1)/2) by the database supported extraction.

8. NAT Extraction from Partial PCI Patterns

The input to SetNatByPciFI is a full PCI pattern. We extend SetNat-
ByPciFI to SetNat below to allow partial input patterns. In particular, input
of SetNat includes a set C of causes, a PCI pattern π over C, and a set B
(possibly empty) of missing PCI bits. Set B is so defined that if π(x, y) is a
missing bit, then the unordered pair 〈x, y〉 ∈ B. The output of SetNat is a
NAT over C.

SetNat consists of 3 sections. Lines 1 to 4 collect full PCI patterns com-
patible with π into the set Π. In particular, at line 4, the full PCI pattern ψ
is obtained from the partial pattern π by adding the missing bits according
to θ. Lines 5 to 7 try to extract a NAT from the full PCI patterns. If unsuc-
cessful, lines 8 to 14 switch some PCI bits in the PCI patterns and extract
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a NAT from them. Variable SBCount counts the number of PCI Bits to
be switched. When π is invalid, it controls the number of bits in π to be
switched.

Algorithm 4. SetNat(C, π,B)

1 Def = set of defined bits in π; Π = ∅; SBCount = 1;
2 if B = ∅, Π = {π};
3 else for each instantiation θ of missing bits in B,
4 complete π by θ into ψ; Π = Π ∪ {ψ};

5 for each ψ ∈ Π, do
6 R = SetNatByPciFI(C,ψ);
7 if R is a NAT, return R;

8 do
9 for each ψ ∈ Π, do
10 for each combination of SBCount bits in Def, do
11 get τ from ψ by switching these bits;
12 R = SetNatByPciFI(C, τ);
13 if R is a NAT, return R;
14 SBCount++;

We illustrate execution of SetNat with an example.

Example 12. Consider PCI pattern π over C = {a, b, c, d, h} in Fig. 15 (a).
It is partial since PCI bit π(c, h) is missing, as indicated by underline. It is
invalid since its sub-pattern over domain {a, b, c, d} is a PCI core.

Figure 15: (a) Input PCI pattern. (b) Missing bit is filled with u. (c) Missing bit is filled
with r. (d) π(a, b) in (b) is switched. (e) Extracted NAT.
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When SetNat(C, π,B = {〈c, h〉}) starts, Def consists of 9 defined bits.
After the for loop in lines 3 and 4, Π consists of ψ0 and ψ1, shown in Fig. 15
(b) and (c), respectively. When the for loop in lines 5 to 7 iterates for ψ0, at
line 6, R stores PCI core {a, b, c, d}. For iteration on ψ1, at line 6, R stores
PCI core {a, b, c, d, h}. Hence, computation continues to the do loop in line
8.

Suppose the for loop in line 9 starts with ψ0 in Fig. 15 (b), and the
for loop in line 10 starts with π(a, b). This results in τ in Fig. 15 (d).
Subsequently, line 12 obtains the NAT in Fig. 15 (e), it is returned in line
13, and SetNat halts.

Theorem 8 establishes the fault tolerant behavior of SetNat algorithm.

Theorem 8. Let π be a PCI pattern over C, and B be the set of missing
bits in π. Then SetNat(C, π,B) returns a NAT T with full PCI pattern ψ
that satisfies the following:

1. If π is full and valid, then ψ = π.

2. If π is partial and valid, then ψ is compatible with π.

3. If π is invalid (full or partial), then ψ is least incompatible with π
among all full valid PCI patterns over C.

Proof: We prove for each case above. In case 1, B = ∅ and line 2 is run. The
for loop in line 5 iterates exactly once on π. By Theorem 6, T is returned
in line 7 and ψ = π holds.

In case 2, B 6= ∅ and the for loop in lines 3 and 4 is run. After the loop
is complete, Π contains each full PCI pattern compatible with π. Since π is
valid, at least one of them is valid. The for loop in lines 5 to 7 iterates for
each of them. By Theorem 6, a NAT is returned in line 7 when the first valid
pattern in Π is processed, whose PCI pattern is compatible with π.

In case 3, when the for loop at line 5 starts, either |Π| = 1 (if π is full)
or |Π| > 1 (if π is partial). Since π is invalid, all patterns in Π are invalid.
By Theorem 7, the for loop in lines 5 to 7 cannot terminate in line 7, and
the do loop at line 8 is executed.

Since SBCount = 1 in the first iteration of the do loop, the for loop in
lines 9 to 13 processes all patterns in Π with exactly 1 switched bit. If one of
the resultant pattern is valid, by Theorem 6, its generating NAT T is return
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in line 13. It is incompatible with π by exactly 1 bit, which is the least. If
none of patterns with 1 switched bit is valid, the first iteration of do loop
ends with SBCount = 2.

Assume that the PCI pattern that is least incompatible with π differs
from π (on defined bits in Def) by k ≥ 1 bits. By Theorem 7, none of the
first k − 1 iterations of do loop halts successfully in line 13. By Theorem 6,
the kth iteration does, and returns a NAT T in line 13, whose PCI pattern
is least incompatible with π. �

It is straightforward to extend SetNat and compute all NATs whose PCI
patterns are least incompatible with π. We omit such extension, but analyze
time complexity of SetNat, as well as the version so extended.

If π is valid, we have |Π| = 2|B|. Hence, the number of executions of Set-
NatByPciFI (line 6) is O(2|B|). Combining the complexity result for SetNat-
ByPciFI (Section 7), the time complexity is O(n2 2|B|+n−1), where n = |C|.
Since O(2|B|) amounts to evaluating every ψ ∈ Π, this is also the complexity
if we extend SetNat to obtain all NATs whose PCI patterns are compatible
with π.

If π is invalid, let the PCI pattern that is least incompatible with π differ
from π by k ≥ 1 bits. Let β be the SBCount value in a do iteration (line
8). The loop has k iterations for β = 1, ..., k. The for loop at line 9 has 2|B|

iterations one for each ψ ∈ Π. Denote γ = |Def | = (n(n− 1)/2)− |B|. The
for loop at line 10 has C(γ, β) iterations one for each τ .

Since C(γ, β) grows with β (typically β is much less than γ), the do
iteration with β = k dominates the computation. During that iteration,
the number of executions of SetNatByPciFI is O(2|B|C(γ, k)). For example,
when n = 10, k = 3, |B| = 10, 2|B|C(γ, k) = 6, 702, 080. Hence, the com-
plexity when π is invalid is O(2|B|+n−1 n2 C(γ, k)). Since every τ that is
potentially valid and differs from π by k bits is counted, this is also the com-
plexity if we extend SetNat to obtain all NATs whose PCI patterns are least
incompatible with π. The above complexity significantly reduces O(2n(n−1)/2)
by the database supported extraction. For instance, with n = 10, we have
2n(n−1)/2 ≈ 3.5× 1013.

9. Experimental Evaluation

The algorithm SetNat is empirically evaluated using randomly generated
PCI patterns, ranging from valid to invalid and from full to partial, and
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covering all four types of combinations. We report our experimental study
on valid PCI patterns first, followed by that on invalid patterns.

9.1. NAT Extraction from Valid PCI patterns

We conducted two groups (Group 1 and 2) of experiments using valid
input PCI patterns, whose number of causes has alternative values n =
9, 15, 21. We chose the lower value n = 9 for two reasons: One is because
direction extraction for n < 9 takes less than 1 msec. Another is because
n = 9 is almost the practical limit of database supported extraction, where
building the NAT database and associated search tree took 40 hours. We
choose the upper value n = 21 as it exceeds n values of CPTs for most real
world BNs.

In Group 1, each input pattern is a randomly generated full PCI pattern.
For each input pattern of a given n value, a random NAT with n causes is first
generated, and its PCI pattern is derived. This guarantees that the pattern
is full and valid. The group consists of 3 batches, where input patterns in
each batch has the identical n value. Each batch consists of 50 PCI patterns,
and hence Group 1 has a total of 150 PCI patterns.

In Group 2, each input pattern is a partial PCI pattern. Its number of
missing PCI bits has alternative values m = 1, 3. For each input pattern of
a given (n,m) value pair, a random NAT with n causes is first generated,
its PCI pattern is derived, and then m PCI bits are randomly chosen and
deleted. This guarantees that the pattern is partial and valid. The group
consists of 6 batches, where input patterns in each batch has the identical
(n,m) value pair. Each batch consists of 50 PCI patterns, and hence Group
2 has a total of 300 PCI patterns.

SetNat is run for each of the 450 PCI patterns in a ThinkPad X230. For
each input pattern π, after SetNat extracts a NAT T , the PCI pattern ψ of T
is derived, and identity between ψ and π is tested. For all 450 PCI patterns,
identity tests are successful.

Table 2 (left) summarizes runtime (msec) of SetNat for Group 1, where
0 is shown if the runtime is less than 1 msec. Table 2 (right) summarizes
that for Group 2. The relative scales of runtime in different batches are also
shown in Fig. 16, where the runtime is in Log10.

Under database supported extraction, building the database and asso-
ciated search tree takes 40 hours for n = 9, as the number of NATs for
n = 9 is 25,637,824 [26]. The number of NATs for n = 10 is 564,275,648. It
would take at least 880 hours to generate the NAT database and search tree.
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Table 2: Summary of runtime for Group 1 (left) and Group 2 (right).

Batch n m µ̂ msec σ̂ msec
1 9 0 0 0
2 15 0 7.2 9.0
3 21 0 711.2 692.7

Batch n m µ̂ msec σ̂ msec
4 9 1 0 0
5 9 3 0 0
6 15 1 10.5 10.0
7 15 3 33.8 40.5
8 21 1 1260.0 1366.7
9 21 3 4995.6 5169.7

Runtime from Batch 1 shows that SetNat completes extraction for n = 9
instantly. For n = 15 and 21 (much beyond n = 10), it takes SetNat about
7 msec (Batch 2) and 711 msec (Batch 3), respectively. This demonstrates
significant practical superiority of direct extraction.

Comparing Batch 3 with Batches 8 and 9, runtime increases are close
to twice and eight times, as expected from complexity analysis. Finally,
standard deviation is comparable to mean on all batches, reflecting signifi-
cant fluctuation in runtime due to variation in NAT topology, which is also
anticipated by complexity analysis at the end of Section 7.

9.2. NAT Extraction from Invalid PCI patterns

We conducted another two groups (Group 3 and 4) of experiments using
invalid input PCI patterns, whose number of causes has alternative values
n = 9, 12, 15. In Group 3, each input pattern is full. We require that the
pattern to be invalid and to differ from any least incompatible valid pattern
by r bits. Alternative r values for a given pattern are r = 1, 2.

For each input pattern of a given (n, r) pair, we obtain it as follows: A
random NAT of n causes is first generated, its PCI pattern is derived, and r
PCI bits are randomly chosen and switched. A pattern so generated appears
to satisfy the requirement, but it is not always so. After changing r bits,
the switched pattern may turn into another valid one. The switched pattern
may also be invalid, but differs from any least incompatible valid pattern by
less than r bits. To ensure uniform input patterns, after a NAT is extracted
by SetNat from an input pattern of a given (n, r) pair, its PCI pattern is
derived and compared with the input. If they differ by less than r bits, the
input pattern is deemed to fail the requirement. In such a case, the input
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Figure 16: Summary of runtime (in Log10) for Group 1 (left) and Group 2 (right).

is replaced by another, on which SetNat is re-run. The process is repeated,
until outcome of SetNat passes the test.

The group consists of 6 batches, where input patterns in each batch has
the identical (n, r) pair. Each batch consists of 50 patterns, and hence Group
3 has 300 PCI patterns.

In Group 4, each input pattern is partial. Its number of missing PCI bits
has alternative values m = 1, 2. In addition, we require that the pattern to
be invalid and to differ from any least incompatible valid pattern by r = m
bits. For each input pattern of a given (n,m, r) pair, it is obtained as follows:
A random NAT of n causes is generated with its PCI pattern derived, m PCI
bits are randomly chosen and deleted, and finally r PCI bits are randomly
chosen and switched. To ensure satisfaction of the above requirement, the
post-extraction test and repetition used for the first group are also applied.

The group consists of 6 batches, where input patterns in each batch has
the identical (n,m, r) pair. Each batch consists of 50 patterns, and hence
Group 4 has 300 PCI patterns.

SetNat is run for each of the 600 PCI patterns. For each input pattern
π characterized by a (n, r) pair, after SetNat extracts a NAT T , the PCI
pattern ψ of T is derived, and compatibility between ψ and π is tested. For
all 300 such PCI patterns, ψ and π differ by exactly r bits.

For each input pattern π characterized by a (n,m, r) pair, after SetNat
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extracts a NAT T , the PCI pattern ψ of T is derived, and compatibility
between ψ and π is tested, with the m missing bits in π ignored. For all
300 such PCI patterns, ψ and π differ by exactly r bits. Hence, SetNat
successfully extract NATs in all possible types of scenarios.

Table 3 summarizes runtimes (msec) of SetNat for Group 3 (left) and
Group 4 (right). The relative scales of runtime in different batches are also
shown in Fig. 17.

Table 3: Summary of runtime for Group 3 (left) and Group 4 (right).

Bat. n r µ̂ msec σ̂ msec

10 9 1 1.9 5.1
11 9 2 25.8 17.8
12 12 1 23.0 22.1
13 12 2 1094.6 788.5
14 15 1 499.8 441.0
15 15 2 29182.6 20639.8

Bat. n m r µ̂ msec σ̂ msec

16 9 1 1 2.2 5.5
17 9 2 2 66.9 55.9
18 12 1 1 44.1 41.1
19 12 2 2 3215.9 2483.6
20 15 1 1 722.3 742.9
21 15 2 2 111150.3 101381.6

Figure 17: Summary of runtime (in Log10) for Group 3 (left) and Group 4 (right).

Comparing runtimes from Batches 16, 18, and 20, wherem = 1, with their
counterparts in Batches 10, 12, and 14, the increase of runtime is bounded
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by a factor of 2m = 2. Similarly, comparing Batches 17, 19, and 21, where
m = 2, with Batches 11, 13, and 15, the increase is bounded by a factor of
2m = 4.

On the other hand, comparing runtime where r = 1 with that where
r = 2, e.g., Batches 18 versus 19, and Batches 20 versus 21, we see super-
exponential growth of runtimes. This demonstrates that invalid patterns
incur a much more significant computation cost than patterns with missing
bits.

For (n = 15,m = 2, r = 2), the mean runtime is about 2 minutes. It is
practically tolerable, but further super-exponential growth would not. Hence,
this result provides a practical guidance to learning NAT-modelled Bayesian
networks, when tradeoff between global structure (the DAG) and local struc-
ture (the NAT) is involved.

10. Conclusion

The main contribution of this work is an algorithm suite for direct NAT
extraction from possibly partial and invalid PCI patterns. The algorithm
suite is founded on formal analysis of the properties of cause bipartitions.
They allow NAT structure extraction in all conceivable scenarios, and there-
fore enable NAT modeling to be applied more effectively in compressing BN
CPTs and in learning compact BN CPTs from data. Integrating these algo-
rithms with the existing CPT compression algorithms is an immediate future
work.

Our experiments showed that an incorrect PCI bit in the input pattern
is much more costly than a missing PCI bit in NAT extraction. Further
research will be devoted to improve efficiency of extraction from invalid PCI
patterns.
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