
Distributed Constraint Satisfaction with
Multiply Sectioned Constraint Networks

Yang Xiang, Younis Mohamed and Wanling Zhang
Univ. of Guelph, Canada

Abstract We propose a new algorithmic framework, multiply sectioned constraint networks
(MSCNs), for solving distributed constraint satisfaction problems (DisCSPs) with complex local
problems. An MSCN is converted into a linked junction forest (LJF) and is solved by a complete
algorithm. Its time complexity is linear on the number and size of local problems (each in charge
by an agent) and is exponential on cluster size of LJF. We show that the MSCN-LJF algorithm
is more efficient than junction tree-based DisCSP algorithms. When a DisCSP is not naturally
an MSCN, we show how to convert it into an MSCN, so that any DisCSP can be solved as
above.

1 Introduction

A broad range of complex decision problems can be solved as DisCSPs, including sensor network
coordination [Bejar et al(2005)], transportation vehicle scheduling [Calisti and Neagu(2004)],
and meeting scheduling [Wallace and Freuder(2005)]. Algorithms solving DisCSPs can be classi-
fied broadly as being based on distributed backtracking (e.g., ABT [Maestre and Bessiere(2004),
Silaghi and Faltings(2005),Bessiere et al(2005)], AFC [Meisels and Zivan(2007)], ADOPT
[Modi et al(2005)]), on distributed iterative improvement (e.g., DBA [Hirayama and Yokoo(2005)],
DSA [Zhang et al(2005)]), and on dynamic programming (e.g., DPOP [Petcu and Faltings(2005)]).
Since every DisCSP can be solved as a distributed constraint optimization problem (DisCOP)
[Modi et al(2005)], instances of DisCOP algorithms (e.g., ADOPT and DPOP) are also in-
cluded above. Some algorithms (e.g., DSA) do not depend on specific agent organization.
Others assume a total order among them (e.g., ABT and AFC). Still others use a pseudo-
tree (e.g., ADOPT and DPOP) or junction tree (JT) organization (e.g., [Vinyals et al(2010),
Brito and Meseguer(2010)]). Many algorithms assume a single variable per agent in their typi-
cal formulations (e.g., DSA, ADOPT, DPOP). Complex local problems are being addressed in
recent years (e.g., [Maestre and Bessiere(2004),Ezzahir et al(2007),Burke(2008)]).

JTs have long been applied to solving centralized CSPs as in [Dechter and Pearl(1988)]
and [Dechter and Pearl(1989)], as well as to centralized probabilistic reasoning with Bayesian

2 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

networks (see, e.g., [Jensen and Nielsen(2007)]). Subsequently, LJFs are developed as runtime
agent organization for multiagent probabilistic reasoning with multiply sectioned Bayesian
networks (MSBNs) [Xiang et al(1993),Xiang(2002),Xiang and Hanshar(2010)]. Although JT-
based DisCSP algorithms have been proposed in recent years (e.g., in [Vinyals et al(2010)] and
[Brito and Meseguer(2010)]), LJFs have never been explored for solving DisCSPs.

In this work, we show that LJF-based message passing can be applied to solving DisCSPs
with complex local problems. A LJF has a JT organization of agents, just as in JT-based
DisCSP algorithms. However, local variables in each agent are organized into a single cluster in
JT-based DisCSP algorithms. With LJF, they are organized into a local JT, which allows much
refined decomposition of local problem and more efficient local problem solving. Furthermore,
interface between adjacent agents in JT-based DisCSP algorithms is a single cluster separator.
With LJF, the interface is also organized into a JT, which allows interface decomposition and
more efficient inter-agent message passing.

Remainder of the paper is organized as follows: Section 2 defines DisCSPs and Section 3
defines MSCNs, a sub-class of DisCSPs, which are directly solvable by LJF-based message
passing. In Section 4, we present an alternative formulation of JT-based message passing for
solving CSPs to facilitate development of our MSCN algorithm. LJF representation of MSCN
is presented in Section 5 and its properties are analyzed. Our algorithm to solve MSCNs based
on LJFs is presented in Sections 6 and 7, as well as its completeness and complexity. Section 8
addresses construction of agent organization for MSCNs. Section 9 shows how to convert any
DisCSP into an MSCN. Proofs are available at first author’s website.

2 Problem Definitions

2.1 CSP

A constraint network (CN) is a pair R = (V, Λ). V 6= ∅ is a set of discrete variables, which we
refer to as the env (environment). Each variable v ∈ V has a finite domain Dv 6= ∅, the set of
possible values of v. For any subset X ⊆ V , its space DX is the Cartesian product of domains
of variables in X. Each x ∈ DX is a config (configuration) of X. Λ 6= ∅ is a set of constraints.
Each constraint is a relation RX ⊆ DX , where X ⊂ V is the scope of the constraint. When a
constraint involves a universal relation UX = DX , we refer to it as a dumb constraint (imposing
no restriction). The union of scopes of all constraints covers env, i.e., ∪RX∈ΛX = V .

i
e

h

dg

(a) 0 1 1 2
2 0 0 2
1 0 2 1

Q0

Q1

Q2

(c) h

g

e

i
G’ d

(d) (e)(b) h

g

e

i
G d T d g d gd,g,h

d,e,h
g,h,i

Fig. 1 (a) A map coloring CN; (b) primal graph; (c) triangulated graph; (d) resultant JT; (e) constraint d 6= g.

Example 1 A map coloring CN is shown in Fig. 1 (a), where each region may be colored by
red, green or blue, such that adjacent regions differ in color.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 3

Its env is V = {d, e, g, h, i}, where each variable represents the color of a region and has
domain {red, green, blue}, which we simply write as {0, 1, 2}. The constraint set is Λ = {d 6=
g, d 6= e, e 6= h, g 6= h, g 6= i, h 6= i}. Constraint d 6= g of scope {d, g} is the relation R{d,g}:

{(d = 1, g = 0), (d = 2, g = 0), (d = 0, g = 1), (d = 2, g = 1), (d = 0, g = 2), (d = 1, g = 2)}.

It can also be expressed as the table in Fig. 1 (e), or as

R{d,g} over (d, g) = {(1, 0), (2, 0), ...}.

Denote projection of config x to Y ⊆ X by πY (x). For instance, x = (d = 0, e = 2, g = 1) is a
config of X = {d, e, g}. Its projection to Y = {e, g} is the config y = (e = 2, g = 1). Denote the
projection of relation RX to Y ⊆ X by πY (RX), which consists of the projection of each config
in RX to Y . A config x ∈ DX satisfies constraint RY if either X ∩ Y = ∅ (RY is irrelevant) or
πX∩Y (x) ∈ πX∩Y (RY) (the projection of x to X ∩ Y matches the projection of one config in
RY). A config x is legal if it satisfies every constraint in Λ. A solution to CN R is a legal config
over V . A CSP involves finding a solution for a CN.

2.2 Constraint Graphs

Constraints of R = (V, Λ) can be depicted by a primal graph G = (V, E), where each node is
labeled by a variable v ∈ V and an undirected link 〈u, v〉 ∈ E if there exists RX ∈ Λ such that
u ∈ X and v ∈ X. Note that primal graphs thus defined depict both binary and higher-order
constraints. The primal graph for the above CN is shown in Fig. 1 (b).

A CN R can be solved using a structure converted from its primal graph G. A cluster C
is a subset of V . A cluster tree connects a set of clusters into a tree, where each link, called a
separator, connects two clusters with a non-empty intersection S 6= ∅ and is labeled by S. A
cluster tree T is a JT if the intersection of every two clusters is contained in every separator on
the path between them (the running intersection property). T is a JT of a given graph G if, for
each cluster C of T , elements of C are pairwise connected in G, and no superset C′ ⊃ C has this
property (C is maximal). Conversion of an arbitrary graph into a JT consists of triangulation,
cluster identification, and JT construction outlined below:

A graph is triangulated if every cycle of length greater than 3 has two nonadjacent nodes
connected by a link. G in Fig. 1 (b) is not triangulated. A graph G can be triangulated by
node elimination. A node in G is eliminated if its adjacent nodes are pairwise connected (by
adding links, called fill-ins, if necessary), and the node is deleted as well as links incident to it.
After all nodes are eliminated, add all fill-ins produced in the process to the original G. The
resultant graph is triangulated. Fig. 1 (b) is triangulated into (c) by eliminating nodes in the
order (i, e, d, g, h) and adding the dashed link as a fill-in.

A given graph G has a JT iff G is triangulated. After G in (b) is triangulated into (c), each
cluster of nodes in (c) that is maximally pairwise connected is identified. There are three of
them as shown in (d). They are connected into JT T in (d). See [Xiang(2002),Dechter(2003)]
for more details on JT construction. We write C ∈ T if C is a cluster in T . We refer to G and
T as constraint graphs associated with R.

4 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

2.3 DisCSP

A distributed constraint network (DisCN) is a tuple R = (A, V, Ω, Λ, Θ). A = {A0, ..., Aη−1} is
a set of η > 1 agents. The set V of env variables are decomposed into a collection of subenvs,
Ω = {V0, ..., Vη−1}, such that ∪η−1

i=0 Vi = V . The set Λ of constraints are decomposed into
Θ = {Λ0, ..., Λη−1}, where for each constraint RX in Λi, X ⊂ Vi holds. A solution to the DisCN
is a legal config over V . A DisCSP involves finding a solution for a DisCN.

Each agent Ai is associated with a local CN Ri = (Vi, Λi). If x ∈ V has a constraint with
y ∈ Vi and another constraint with z ∈ Vj , then x ∈ Vi ∩ Vj. We refer to x as a shared variable
of Ai and Aj . We refer to the set of shared variables, Iij = Vi∩Vj, as the border between Ai and
Aj . Iij is known to both agents. Each variable y ∈ Vj \ Iij is a private variable of Aj (relative
to Ai). Ai is assumed to have no knowledge about the identity of y, its domain, and constraints
y involves, which we refer to as the agent privacy.

The above formulation differs from one-variable-per-agent assumption in a number of DisCSP
algorithms, and is intended to express DisCSPs where local problems are complex and some
variables are private. The remaining operations are intended to preserve agent privacy, i.e., not
to disclose the identity, the domain, and participating constraints of every private variable.

A local CN Ri can be depicted by a local primal graph Gi = (Vi, Ei). Consider local primal
graphs Gi and Gj. We assume that if link < x, y >∈ Ei and x, y ∈ Vj, then < x, y >∈ Ej . That
is, constraints between shared variables are identical among agents involved. We refer to the
primal graph depicting (V, Λ) the global primal graph G = (V, E). Each shared variable appears
in G as a single node. Given the above assumption, the subgraph of G spanned by Vi is exactly
the local primal graph Gi.

Example 2 Fig. 2 illustrates a DisCN with four agents. Agent A0 has subenv V0 = {c, f, n, p}

G3

G1

0G

G2 G2

G3 G1

G0

e

i

h e f f puv r s t

g
d d a b c c n

a b c

j k m
(a)

(b)
{d,e}

{c,f}
{a,b,c}

A

A

AA

2

0

13

Fig. 2 (a) Local primal graphs of a DisCN that is an MSCN, where each link depicts a 6= constraint. (b) The
hypertree of MSCN.

and local primal graph G0, as shown in (a). The domain of each variable is {0, 1, 2}. Each
constraint is binary (with the scope over two variables). Variable c is shared between agents A0,
A1 and A2. For A0, p is a private variable.

A common misunderstanding regards the above DisCSP formulation as departing from
the so-called private variables, shared constraints (PVSC) convention, and therefore being too
restrictive. We show below that there is no such thing as private variables in shared constraints,
and therefore, our formulation is general.

Suppose Ai and Aj in a PVSC DisCSP share a constraint RX over X = {xi, xj}, where
xi ∈ Dxi and xj ∈ Dxj . By view of PVSC, xj is private from Ai. This is a misconception.
Indeed, if RX covers all values in Dxj , then Ai knows Dxj by sharing RX . If RX covers only a

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 5

subset D−
xj

⊂ Dxj , then any value in Dxj \ D−
xj

cannot be part of the solution. Dxj can then
be equivalently replaced by D−

xj
, which Ai knows by sharing RX . To keep name of xj private

from Ai, xj can always be obfuscated by a codename. Hence, in what name xj is known to Ai

does not matter.
In our formulation, both xi and xj are shared as well RX . No more and no less restriction

is assumed by each agent, in comparison with PVSC DisCSPs. Therefore, any DisCSP can be
expressed in terms of the above formulation.

3 Multiply Sectioned Constraint Network

We consider DisCSPs for a sub-class of DisCNs with complex local problems and can be solved
effectively by LJF-based message passing. They are termed MSCNs, as their structures are
similar to MSBNs [Xiang(2002)]: graphical models for multiagent probabilistic reasoning.

Definition 1 (MSCN) A DisCN R = (A, V, Ω, Λ, Θ) is a MSCN if the following holds:

1. A JT exists with Ω as the set of clusters.
2. Each local primal graph is connected.

The JT condition requires an MSCN to satisfy the relevance property: When the JT exists,
subenvs in Ω can be reordered as V ′

0 , ..., V ′
η−1 such that for each i > 1 there exists j < i such

that Iij 6= ∅. Hence, each subenv Vi is relevant to solving the DisCSP. If a DisCN does not
satisfy relevance, it can be split into two or more MSCNs, each satisfying relevance.

The JT condition also requires an MSCN to satisfy running intersection (Section 2.2).
When subenvs V1, V2, V3 form a path < V1, V2, V3 > in a cluster tree, it means that constraints
between A1 and A3 are mediated through A2. The running intersection simply requires that, if
A1 and A3 share variable x, then x should also be shared by A2. This condition is important to
efficiently solving MSCNs with complex local problems while preserving agent privacy, as will
be seen. In Section 9, we consider how to convert DisCNs violating the running intersection
into MSCNs.

Assuming the JT condition holds, we consider how to construct the JT in Section 8.2. Once
constructed, we refer to the JT as a hypertree and each subenv Vi as a hypernode. We associate
the hypernode with local CN Ri, local primal graph Gi, and agent Ai. Ai and Aj are adjacent if
Vi and Vj are adjacent in the hypertree, and we refer to their border Iij as their agent interface.

The second condition in Def. 1 is for simplicity. It naturally holds for most DisCSPs with
complex local problems. Otherwise, it can be forced by adding dumb constraints.

The DisCN in Fig. 2 is an MSCN. Its hypertree is shown in (b) with agent interfaces labeled.
Below, we consider how to solve the DisCSP given an MSCN.

4 Solving CSP With JT Representation

Solving CSPs by JT-based message passing is presented in literature [Dechter and Pearl(1988)],
[Dechter and Pearl(1989),Dechter(2003)]. We extend the CSP method to the MSCN-based
DisCSPs. This section formulates the CSP method alternatively for several reasons: (1) We
present as a set of procedures that can be individually called by the MSCN algorithm. (2) Com-
pleteness of our formulation is formally justified in a self-contained manner (rather than through

6 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

other tree-solving algorithms as in the above references). (3) Necessity of JTs (rather than just
any cluster trees) is not explicit in the original formulation, e.g., [Dechter and Pearl(1989)]. In
fact, the issue cannot be clarified easily through other tree-solving algorithms. This necessity is
highlighted here. (4) The self-contained analysis forms a base to establish completeness of the
MSCN-based algorithm presented in later sections.

Given a CN R, the set of all solutions is its solution set. Prop. 1 establishes an equivalent
specification of the solution set, where ./ is the relational operator natural join.

Proposition 1 () Let R = (V, Λ) be a CN.

1. The solution set of R is the relation Sol = ./R∈Λ R.
2. R has solution iff Sol 6= ∅.

The CSP method converts the primal graph of R into a JT T (Section 2.2). For every
constraint RX ∈ Λ, there exists a cluster Q in T where X ⊆ Q. Proc. 1 assigns constraints in
R to clusters of T , so that T retains the equivalent constraint information. Its complexity is
O(|Λ| kq), where k binds domain sizes for variables in V and q binds sizes of clusters in T .

Procedure 1 (AssignConsToJT)
Input: A CN R = (V, Λ) and a JT T constructed from its primal graph.

1 for each constraint RX in Λ, assign RX to a cluster Q in T such that X ⊆ Q;
2 for each cluster Q in T ,
3 denote the set of constraints assigned to Q by ΛQ;
4 replace ΛQ by a single constraint RQ = UQ ./ (./R∈ΛQ R);
5 associate Q with a relation variable vQ whose domain is RQ;
6 for each pair of adjacent clusters Q and C in T with separator S,
7 denote an element of RQ by q and that of RC by c;
8 assign project-equal constraint πS(q) = πS(c) over vQ and vC ;

We refer to T as the JT representation of R. Each cluster Q in T is associated with a
relation RQ and a relation variable vQ with domain RQ. Each separator in T is associated
with a project-equal constraint over two corresponding relation variables. The set of relation
variables Q = {vQ|Q ∈ T} and the set Λ′ of project-equal constraints specified over pairs of
elements in Q define a derived binary CN (Q, Λ′).

Prop. 2 states that the solution set of (Q, Λ′) is identical to that of R.

Proposition 2 (Solution Equivalence) Let T be a JT representation of CN R and (Q, Λ′)
be the binary CN derived from T . Let Sol be the solution set of R and Sol′ be the solution set
of (Q, Λ′). Then, Sol′ = Sol = ./Q∈T RQ, where Q is any cluster in T .

The CSP method then solves (Q, Λ′) based on directional arc-consistency in T . Given two
clusters Q and C of T with S = Q∩C, configs q of Q and c of C are consistent if πS(q) = πS(c)
(agreeing on their common variables). Q is consistent relative to C where Q ∩ C 6= ∅ if, for
each config in RQ, there exists a consistent config in RC. This can be written as πQ∩C(RQ) ⊆
πQ∩C(RC).

Let Q∗ be any cluster in T and direct T with Q∗ as the root. Then each two adjacent
clusters form a parent-child pair. T is locally directional arc-consistent relative to root Q∗ if for

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 7

every pair of clusters Q and C, where Q is the parent of C, Q is consistent relative to C. T
is regionally directional arc-consistent relative to root Q∗ if for every pair of clusters Q and C,
where Q is an ancestor of C, Q is consistent relative to C.

If T is an arbitrary cluster tree, it can be locally directional arc-consistent while not being
regionally directional arc-consistent. As a result, different clusters could choose partial solu-
tions that extend into solutions of adjacent clusters, but these extended partial solutions are
inconsistent to each other. Prop. 3 shows that if T is a JT, locally directional arc-consistency
ensures regionally directional arc-consistency.

Proposition 3 (Regional directional AC) Let T be a JT representation of a CN and be
locally directional arc-consistent relative to cluster Q∗. Then T is regionally directional arc-
consistent relative to Q∗.

The CSP method achieves directional arc-consistency by Proc. 2, activated recursively at
each cluster in T by a caller. In the first activation, caller is T . In subsequent activations, caller
is an adjacent cluster. After Proc. 2 (called in Q∗ by T) terminates, T is locally directional
arc-consistent relative to Q∗.

Procedure 2 (CollectSepCons) When caller calls in cluster Q, it acts as follows:

Q calls CollectSepCons in each adjacent cluster C except caller;
for each cluster C (whose separator with Q is S),

Q receives from C a constraint RS;
if RS = ∅, Q sends ∅ to caller and halts;
Q assigns RQ = RQ ./ RS ;
if RQ = ∅, Q sends ∅ to caller and halts;

if RQ = ∅, Q sends ∅ to caller and halts;
if caller is a cluster (whose separator with Q is S′), Q sends πS′(RQ) to caller;
else Q returns a special set ∇ to signify successful completion;

Complexity of CollectSepCons is O(t kq), where t is the number of clusters in T and O(kq)
is complexity of the join operation. It can be slightly improved [Dechter(2003)]. Prop. 4 shows
that CollectSepCons acts correctly according to the solution set of (Q, Λ′).

Proposition 4 (No Solution) Let T be a JT representation of CN R, (Q, Λ′) be the binary
CN derived from T , and Sol be their solution set. Let CollectSepCons be called in a cluster Q∗

in T . Then, Q∗ returns ∅, iff Sol = ∅.

After CollectSepCons, T is locally directional arc-consistent, as shown below:

Proposition 5 (Local directional AC) Let R be a CN and its solution set be Sol 6= ∅. Let
T be a JT representation of R and CollectSepCons be called in a cluster Q∗ in T . Then, T is
locally directional arc-consistent relative to Q∗.

After CollectSepCons is called in Q∗, if ∅ is returned, R has no solution and the CSP method
halts. Otherwise, R can be solved by T calling Proc. 3 in Q∗ with a flag singleton = true. It
will then be called recursively at each cluster.

Procedure 3 (DistribSepCons) When caller calls in cluster Q with a singleton flag, it
does the following:

8 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

if caller is a cluster (whose separator with Q is S),
Q receives from caller a constraint RS ;
Q assigns RQ = RQ ./ RS ;

if singleton = true, Q removes all configs in RQ except one;
for each adjacent cluster C (whose separator with Q is S′) except caller,

Q calls DistribSepCons in C with πS′(RQ) and singleton flag;

After DistribSepCons is called in Q∗, the solution to R can be obtained by retrieving RQ

from each cluster Q and joining them. The CSP method halts. Its complexity is dominated by
that of CollectSepCons and is O(t kq).

CollectSepCons above only achieves directional arc-consistency. A parent cluster Q is con-
sistent relative to a child cluster C, but C may not be consistent relative to Q. This is possible
because the constraint RS sent from C to Q during CollectSepCons may contain a config s
such that no config q in RQ satisfies πS(q) = s. Adjacent clusters Q and C are consistent if Q is
consistent relative to C and vice versa. T is locally fully arc-consistent if every pair of adjacent
clusters is consistent. T is regionally fully arc-consistent if every pair of clusters of a nonempty
intersection is consistent. From Prop. 3, we have Corollary 1.

Corollary 1 (Regional full AC) Let T be a JT representation of a CN and be locally fully
arc-consistent. Then T is regionally fully arc-consistent.

Full arc-consistency is not needed to solve CNs. However, it is needed for solving MSCNs as
will be seen. DistribSepCons with the flag singleton = false can be performed after CollectSep-
Cons to make T locally fully arc-consistent. Proc. 4 combines CollectSepCons and DistribSep-
Cons. It renders a JT regionally fully arc-consistent as summarized by Prop. 6. Its complexity
is O(t kq).

Procedure 4 (UnifyCons)
choose a cluster Q∗ arbitrarily;
call CollectSepCons in Q∗;
if Q∗ returns ∅, return false;
call DistribSepCons in Q∗ with singleton = false;
return true;

Proposition 6 (Property of UNifyCons) Let T be the JT representation of a CN R.

1. R has no solution iff UnifyCons returns false.
2. Otherwise, UnifyCons returns true and T is regionally fully arc-consistent.

The above procedures and their formal properties are used below to develop the MSCN
algorithm and prove its completeness.

5 Linked Junction Forest Representation of MSCN

5.1 LJF and Its Construction

We extend LJF runtime representation in multiagent probabilistic reasoning [Xiang et al(1993),
Xiang(2002)] to solving MSCNs. The idea is to apply JT-based message passing at different

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 9

abstract levels. At the lower level, we apply JT-based message passing in each subenv. At the
higher level, we apply JT-based message passing to the hypertree. Key to efficiency and privacy
preserving lies in seamless integration of the two levels of message passing. LJF provides the
structure for such integration.

An MSCN is first converted into a LJF. The conversion involves triangulation, local JT
construction, and linkage tree (LT) construction. During conversion, the hypertree acts as the
agent organization. That is, Ai communicates directly to Aj, iff they are adjacent on the
hypertree. We illustrate LJF construction with the MSCN in Fig. 2.

Example 3 To enable the lower level JT-based message passing, each local CN is converted into
a JT representation. First, the global primal graph is triangulated by distributed triangulation,
during which agents communicates along hypertree. The communication ensures that fill-ins
between shared variables are added consistently at adjacent agents. Each Gi in Fig. 2 is thus
converted to triangulated graph G′

i in Fig. 3. Then, for each G′
i, each cluster of nodes maximally

e

i

h e f f pus t

g
d d a c n

a

j k m
b c

cb
r

vG’3

G’2

G’1

0G’

Fig. 3 Local primal graphs of MSCN are triangulated. Dashed links between nodes are fill-ins.

pairwise connected is identified, and these clusters are connected into a local JT Ti (bounded by
box in Fig. 4).

2

0,1

1,2

L

T1

T0
T3

2T

L

f = u, t = u}

* *

*

*

A

 e = g, e = h,
 g = h}

{b = m, c = m}

0A3

L1,3

A1 A

{c = n}

{f = p, n = p}

{b = s, r = s}{e = v, r = v}

{a = r} {b = t}{d = r}

{a = j, a = k, b = j, b = k, j = k}

{d = g, d = h,

{g = i, h = i} c,f,nc,f,t,ue,r,v
{c = t, c = u, f = t,

g,h,i c,f

f,n,p

a,b,j,k b,c,m

b,c,ta,b,rd,e,rd,e,g,h

a,b b,c

d,e

b,r,s

Fig. 4 LJF constructed from Fig. 2. Linkage hosts are indicated by thick lines. Constraints assigned to each
cluster are in {}.

To enable seamlessly integration of lower level JT-based message passing with the higher
level, each agent interface is converted into a JT representation: the LT. Agent interface between
A0 and A1 is converted into LT L0,1 with a single cluster. This is a degenerated case due to
small size of the example. In such cases, agent interface is handled the same way as JT-based
DisCSP algorithms, e.g., [Vinyals et al(2010),Brito and Meseguer(2010)].

10 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

More generally, interface between A1 and A2 is converted into LT L1,2 with two clus-
ters. Each cluster in L1,2 is referred to as a linkage, e.g., {b, c}. Each linkage has two host
clusters one in each JT it links. For instance, linkage {b, c} has host cluster {b, c, t} in T1

and {b, c, m} in T2. The pathway from a host to a linkage, and to the other host bridges two
levels of JT-based message passing as will be seen. Although L1,2 contains only two clusters due
to small size of the example, for larger subenvs, a LT with many more clusters are possible.
Decomposition of agent interface into LT for bridging two levels of message passing allows LJF
representation to gain better efficiency than JT-based DisCSP algorithms as we will show.

Graph structures resultant from the conversion, local JTs and LTs, together with the hy-
pertree, will be used to organize JT-based message passing at both levels. Their properties are
summarized below:

1. Primal graph of each local CN is converted into a local JT. Hence, JT-based message passing
(Section 4) is applicable locally.

2. For each constraint RX in each local CN, there exists a cluster Q in the local JT such that
X ⊆ Q. Hence, constraints in each local CN can be transferred to clusters in the local JT.

3. Let X be a subset of shared variables in local primal graphs Gi and Gj, and Ti and Tj be
the local JTs, respectively. Then whenever X is contained in a cluster in Ti, there exists a
cluster Q in Tj such that X ⊆ Q. Hence, constraints over X can be easily propagated across
agents.

4. Each agent interface is converted into a LT that is a JT. Hence, local arc-consistency ensures
regional arc-consistency in LTs (see Corollary 1).

5. Only triangulation involves communication and remaining operations are local. All opera-
tions preserve agent privacy.

After structural conversion, constraints in each local CN are transferred to the local JT.
Each agent Ai assigns constraints in Λi to clusters in Ti by AssignConsToJT (Section 4).

Example 4 Consider AssignConsToJT by A1. Constraints assigned to cluster {c, f, t, u} are
shown in Fig. 4. The resultant relation R{c,f,t,u} is the following:

c f t u
0 0 1 2
0 0 2 1
1 1 0 2

c f t u
1 1 2 0
2 2 0 1
2 2 1 0

The relation variable v{c,f,t,u} has domain R{c,f,t,u}. Similarly, cluster {b, c, t} is associated
with relation variable v{b,c,t} with domain R{b,c,t}. Because {c, f, t, u} and {b, c, t} are adjacent
clusters, a project-equal constraint is assigned between v{c,f,t,u} and v{b,c,t}. It requires that
config that v{c,f,t,u} takes from R{c,f,t,u} and config that v{b,c,t} takes from R{b,c,t} are identical
on c and t.

Table 1 shows relations of all local JT clusters, where relations of the ‘same’ set of configs
are listed only once. For instance, relation over cluster {g, h, i} in T3 and relation over cluster
{b, c, m} in T2 are shown in the middle, and are referred to as R2 over {g, h, i} and R2 over
{b, c, m}, respectively.

For LTs, each agent uses Proc. 5 to assign constraints to linkages.

Procedure 5 (AssignConsToLT)
Input: Local JT Ti of Ai and LTs {Li,j}.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 11

Table 1 Relations associated with local JT clusters. A single line separates scopes of relations with an identical
set of configs, enclosed within a pair of double lines.

R1

d e g h

a b j k
c f t u

0 0 1 2
0 0 2 1
1 1 0 2
1 1 2 0
2 2 0 1
2 2 1 0

R2

g h i
b c m
e r v
b r s
f n p

0 0 1
0 0 2
0 1 2
0 2 1

1 0 2
1 1 0
1 1 2
1 2 0
2 0 1
2 1 0
2 2 0
2 2 1

R3

d e r
a b r
b c t
c f n

0 0 1
0 0 2
0 1 1
0 1 2
0 2 1

0 2 2
1 0 0
1 0 2
1 1 0
1 1 2
1 2 0
1 2 2
2 0 0
2 0 1
2 1 0

2 1 1
2 2 0
2 2 1

for each LT Li,j with adjacent agent Aj ,
for each linkage S with host cluster Q in Ti and host cluster C in Tj ,

denote an element of RQ by q and that of RC by c;
assign constraint πS(q) = πS(c) over relation variables {vQ, vC};

For instance, cluster {b, c, t} in T1 and cluster {b, c, m} in T2 are the hosts of linkage {b, c}, and
a project-equal constraint is assigned between v{b,c,t} and v{b,c,m} It requires that configs they
take are identical on b and c.

Conversion of MSCN R = (A, V, Ω, Λ, Θ) results in

F = (A, V, Ω, H, T, ∆, L, Φ),

where H is the MSCN hypertree that forms the agent organization, T = {T0, ..., Tη−1} is a set
of local JTs, one per subenv in Ω, as the local problem solving structure, and L = {Li,j} is
a set of LTs, one per agent interface on H, as the inter-agent message passing structure. ∆ =
{∆0, ..., ∆η−1} is a collection of constraint sets, one per Ti, expressing intra-agent constraints.
Each ∆i is a set of constraints, one per cluster and one per separator (project-equal) of Ti.
Φ = {Φi,j} is a collection of constraint sets one per linkage tree Li,j, expressing inter-agent
constraints. Each Φi,j is a set of project-equal constraints, one per linkage of Li,j. We refer to
F as the LJF representation or simply LJF of the MSCN, that will be used for solving the
MSCN.

5.2 Properties of LJF

We compare the solution set of an MSCN and that of its LJF. Prop. 7 specifies that the solution
set of an MSCN is the natural join of constraints in all local CNs.

Proposition 7 (MSCN solution) Let R be an MSCN with a set of local CNs {Ri = (Vi, Λi)}.
The solution set of R is the relation Sol = ./i (./R∈Λi R).

12 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

Next, we consider the solution set of a LJF. Denote the set of relation variables associated
with clusters in Ti as Qi = {vQ|Q ∈ Ti} and the union of such sets as Q = ∪iQi. Denote the
set of project-equal constraints associated with Ti as Λ′

i, the set of project-equal constraints
associated with Li,j as Λ′

i,j, and the union of these sets as Λ′ = (∪iΛ
′
i)∪(∪i,jΛ

′
i,j). Then (Q, Λ′)

defines a binary CN derived from LJF F . Theorem 1 states that the solution set of (Q, Λ′) is
identical to that of R.

Theorem 1 Let R be an MSCN, F be its LJF, and (Q, Λ′) be the binary CN derived from F .
Let Sol be the solution set of R and Sol′ be the solution set of (Q, Λ′). Then, Sol′ = Sol.

Construction of LJF is dominated by triangulation and AssignConsToJT. Complexity of
triangulation is O(η g2 d2) [Xiang(2002)], where g binds |Vi| and d binds the number of variables
in a single constraint in Λ. Complexity of AssignConsToJT performed by all agents is O(η λ kq),
where λ binds |Λi|, k binds domain sizes for variables in V , and q binds sizes for clusters in
local JTs. Hence, the overall complexity of LJF construction is O(η g2 d2 + η λ kq). The
computation is efficient when q is small, which occurs if the global primal graph of the MSCN
is sparse. Note that the value q is known after distributed triangulation (Section 5) and before
AssignConsToJT is performed.

6 Achieving Directional Interface-Consistency in LJF

To solve an MSCN using its LJF, we extend directional arc-consistency to LJF. An agent Ai is
interface-consistent relative to adjacent agent Aj if, for each config vi of Vi (vi ∈ ./R∈Λi R),
there exists a consistent config of Vj. Direct the hypertree with any agent A∗ as the root. The
LJF is locally directional interface-consistent relative to A∗ if, for every two agents Ai and
Aj where Ai is the parent of Aj , Ai is interface-consistent relative to Aj . The LJF is globally
directional interface-consistent relative to A∗ if, for every two agents Ai and Aj where Ai is the
ancestor of Aj , Ai is interface-consistent relative to Aj.

Example 5 Suppose the LJF in Fig. 4 is directed with A0 being the root. The LJF is locally
directional interface-consistent relative to A0, if A0 is interface-consistent relative to A1, A1 is
to A2, and A1 is to A3. The LJF is globally directional interface-consistent relative to A0 if, in
addition, A0 is interface-consistent relative to both A2 and A3.

When agent organization is an arbitrary tree, the system may be locally directional interface-
consistent but not globally directional interface-consistent. As a result, different agents may
choose partial solutions for their subenvs that extend into partial solutions of subenvs in ad-
jacent agents, but these partial solutions are inconsistent with each other. In other words, two
agents may assign the same shared variable with different values even though the LJF is locally
directional interface-consistent. Because the hypertree of LJF is a JT, Prop. 8 shows that lo-
cally directional interface-consistency ensures globally directional interface-consistency. It can
be proven by generalizing proof for Prop. 3.

Proposition 8 (Global directional IC) Let F be a LJF of an MSCN and be locally di-
rectional interface-consistent relative to agent A∗. Then F is globally directional interface-
consistent relative to A∗.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 13

Procs. 6 and 7 achieve locally directional interface-consistency in F . Proc. 6 is used by Ai

to update linkage host constraints based on message from adjacent Aj .

Procedure 6 (AbsorbIntCons) When Ai performs AbsorbIntCons relative to Aj with a set
Γ = {RX}, where each RX is a constraint over a linkage X with Aj , Ai does the following:

for each linkage C with Aj with linkage host Q at Ai,
assign RQ = RQ ./ RC , where RC ∈ Γ ;
if RQ = ∅, return false;

return true;

Proc. 7 recursively propagates messages inwards along hypertree. Agent executing Proc. 7 is
referred to as A0 with local JT T0. Execution is activated by a caller, who is either an adjacent
agent, denoted by Ac, or a unique coordinator agent. Additional adjacent agents of A0 are
denoted by A1, . . . , Am, if any.

Procedure 7 (CollectIntCons) When caller calls A0 to CollectIntCons, it acts as follows:

1 for each agent Ai (i = 1, . . . , m),
2 call CollectIntCons on Ai;
3 if Ai returns ∅, return ∅;
4 receive Γi = {RC} where RC is a constraint over a linkage C with Ai;
5 perform AbsorbIntCons relative to Ai with Γi;
6 if false is returned, return ∅;
7 perform UnifyCons in local JT T0;
8 if false is returned, return ∅;
9 if Ac is an adjacent agent,
10 initialize Γc = ∅;
11 for each linkage S with Ac of linkage host Q at A0,
12 compute RS = πS(RQ);
13 add RS to Γc;
14 send Γc to Ac;
15 else return a special set ∇ to coordinator signifying successful completion;

Example 6 We illustrate CollectIntCons using LJF in Fig. 4. Suppose coordinator calls Col-
lectIntCons in agent A0. In turn, A0 calls CollectIntCons in A1, which calls CollectIntCons in
A2 and A3.

A3 performs UnifyCons by calling CollectSepCons in cluster, say, {g, h, i}, which in turn
calls CollectSepCons in cluster {d, e, g, h}. In response, {d, e, g, h} sends relation R4 (Table 2)
over {g, h} to {g, h, i}, which causes modification of the relation at {g, h, i} to R5 (Table 2).

Next, A3 calls DistribSepCons in {g, h, i}, which in turn calls DistribSepCons in {d, e, g, h}
with R4 (Table 2). This results in no change in the relation at {d, e, g, h}. UnifyCons at A3

returns with true. T3 has cluster relations: R1 (Table 1) for {d, e, g, h} and R5 (Table 2) for
{g, h, i}. Before completing CollectIntCons, A3 sends A1 a message containing relation R6

(Table 2) over linkage {d, e}.
Concurrently with A3, A2 also performs UnifyCons by calling CollectSepCons in cluster,

say, {a, b, j, k}, followed by calling DistribSepCons in {a, b, j, k}. During CollectSepCons, the
message from {b, c, m} to {a, b, j, k} is a universal relation over {b}, which causes no change
in {a, b, j, k}. During DistribSepCons, the message from {a, b, j, k} to {b, c, m} is the same

14 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

Table 2 Relations as messages between clusters or newly assigned to clusters.

R4

b r
c t
e r
f n

g h

0 1
0 2
1 0
1 2
2 0
2 1

R5

b r s
e r v
f n p
g h i

0 1 2
0 2 1
1 0 2
1 2 0
2 0 1
2 1 0

R6

a b
c f

d e

0 0
1 1
2 2

R7

b c t

0 0 1
0 0 2
0 1 2
0 2 1
1 0 2
1 1 0
1 1 2
1 2 0
2 0 1
2 1 0
2 2 0
2 2 1

R8

a b r
c f n
d e r

0 0 1
0 0 2
1 1 0
1 1 2
2 2 0
2 2 1

universal relation that causes no change in {b, c, m}. UnifyCons at A2 returns with true. Before
completing CollectIntCons, A2 sends A1 a message containing two relations with one over each
linkage. The relation over {a, b} is R6 (Table 2) and that over {b, c} is universal.

After A1 receives the message from A3, it calls AbsorbIntCons, which causes relation at
linkage host {d, e, r} to be modified into relation R8 (Table 2). Similarly, after receiving the
message from A2, A1 calls AbsorbIntCons. It modifies relation at linkage host {a, b, r} into
relation R8 (Table 2) but relation at linkage host {b, c, t} remains the same as R3 (Table 1).

Subsequently, A1 performs UnifyCons by calling CollectSepCons in cluster, say, {a, b, r}, fol-
lowed by calling DistribSepCons. During CollectSepCons, message sent from {e, r, v} to {d, e, r}
is a universal relation over {e, r} and hence causes no change to constraint at {d, e, r}. Message
sent from {d, e, r} to {a, b, r} is a universal relation over {r}. Message from {b, r, s} to {a, b, r}
is a universal relation over {b, r}. Message from {c, f, t, u} to {b, c, t} is R4 (Table 2) over {c, t}
and changes relation at {b, c, t} to R7 (Table 2). Message from {b, c, t} to {a, b, r} is universal
over {b}.

During DistribSepCons, message from {a, b, r} to {d, e, r} is a universal relation over {r}.
Message from {d, e, r} to {e, r, v} is R4 (Table 2) over {e, r} and it modifies relation at {e, r, v}
to R5 (Table 2). Message from {a, b, r} to {b, r, s} is R4 (Table 2) over {b, r} and modifies
relation at {b, r, s} to R5 (Table 2). Message from {a, b, r} to {b, c, t} is a universal relation
over {b}. Message from {b, c, t} to {c, f, t, u} is R4 (Table 2) over {c, t} and causes no change to
relation at {c, f, t, u}. UnifyCons at A1 returns with true. T1 has the following cluster relations:
R1 (Table 1) for {c, f, t, u}, R7 (Table 2) for {b, c, t}, R8 (Table 2) for {d, e, r} and {a, b, r}, R5

(Table 2) for {e, r, v} and {b, r, s}. Before completing CollectIntCons, A1 sends A0 a message
containing relation R6 (Table 2) over linkage {c, f}.

After A0 receives the message, it calls AbsorbIntCons which replaces constraint at linkage
host {c, f, n} by R8 (Table 2). Afterwards, A0 performs UnifyCons by calling CollectSepCons
in cluster, say, {f, n, p}, followed by calling DistribSepCons. During CollectSepCons, message
from {c, f, n} to {f, n, p} is R4 (Table 2) over {f, n}. It modifies relation at {f, n, p} into R5

(Table 2). During DistribSepCons, message from {f, n, p} to {c, f, n} is R4 (Table 2) over
{f, n} and has no effect at {c, f, n}. UnifyCons at A0 returns with true. T0 is regionally fully

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 15

arc-consistent with the following cluster relations: R8 (Table 2) for {c, f, n} and R5 (Table 2)
for {f, n, p}. As the result, A0 terminates CollectIntCons and returns ∇.

Theorem 2 shows that after execution of CollectIntCons, the LJF reaches consistency at
the local JT level, at the agent interface level, as well as at the agent organization level. These
levels of consistency ensure that the MSCN solution can be obtained by efficient propagation
of partial solutions among agents, detailed in the next section.

Theorem 2 (LJF Consistency) Let F = (A, V, Ω, H, T, ∆, L, Φ) be a LJF of an MSCN and
CollectIntCons be called on agent A0 ∈ A.

F has no solution iff A0 returns ∅. Otherwise, A0 returns ∇ and the following holds:

1. F is globally directional interface-consistent relative to A0.
2. Each Ti is regionally fully arc-consistent.
3. Each linkage tree Li,j is regionally fully arc-consistent.

7 Solving MSCN through LJF

As shown in Theorem 2, if A0 returns ∇ at the end of CollectIntCons, the MSCN has solution.
In this section, we show that, in that case, a solution will be obtained through another round
of message passing along the hypertree. The denotation of a calling agent Ac, the executing
agent A0, and its other adjacent agents A1, ..., Am, introduced in Section 6 will be used.

In response to message Γ from Ac, representing a partial solution over the interface, A0

executes Proc. 8 (from line 3) to generate a partial solution consistent with Γ for its subenv.

Procedure 8 (GetLocalSol) When agent A0 performs GetLocalSol with Γ = {RX}, where
each RX is a singleton constraint (consisting of one config) over a linkage X with Ac, it does
the following:
1 if Γ = ∅,
2 call DistribSepCons with singleton = true in any cluster in T0;
3 else
4 for each linkage S with Ac (whose host cluster is Q),
5 assign RQ = RQ ./ RS , where RS ∈ Γ ;
6 call DistribSepCons with singleton = true in the host of any linkage with Ac;

Note that after DistribSepCons (lines 2 and 6), RQ will be a singleton. Proc. 9 below is
executed recursively by agents along the hypertree. It uses Proc. 8 to propagate partial solutions
over agent interfaces.

Procedure 9 (DistribSol) When caller calls A0 to DistribSol, it does the following:
1 if caller is an adjacent agent,
2 receive Γ = {RX} where each RX is a singleton constraint over linkage X with caller;
3 perform GetLocalSol with Γ ;
4 else perform GetLocalSol with ∅;
5 for each agent Ai (i = 1, . . . , m),
6 initialize Γ ′ = ∅;
7 for each linkage S with Ai (whose host cluster is Q), add πS(RQ) to Γ ′;
8 call DistribSol on Ai with Γ ′;

16 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

Algorithm 1 combines procedures introduced above to solve the DisCSP. It is executed by
the coordinator.

Algorithm 1 (SolveDisCSP)
choose an agent A∗ arbitrarily;
call CollectIntCons in A∗;
if A∗ returns ∅, return failure;
else, call DistribSol in A∗;

Example 7 To illustrate SolveDisCSP, suppose coordinator executes by choosing A∗ = A0.
Example 6 illustrated CollectIntCons. We continue with call of DistribSol in A0. A0 runs Get-
LocalSol by first calling DistributeSepSolution at, say, {f, n, p}. This produces partial solution
R11 for {f, n, p} first and then R10 (Table 3) for {c, f, n} at T0.

Table 3 Relations generated during DistribSol.

R9

c f t u

2 2 0 1
2 2 1 0

R10

a b r
b c m
b c t
c f n
d e r

2 2 1

R11

b r s
e r v
f n p

2 1 0

R12

a b
b c
c f
d e

2 2

R13

a b j k
c f t u
d e g h

2 2 1 0

R14

g h i

1 0 2

Next, A0 calls A1 to DistribSol with message containing relation R12 (Table 3) over {c, f}.
In response, A1 modifies its relation in linkage host {c, f, t, u} to R9. It then calls DistribSep-
Cons in host {c, f, t, u}. The resultant partial solution at each cluster of T1 are as follows: R13

over {c, f, t, u}, R10 over {b, c, t}, {a, b, r}, R11 over {b, r, s}, R10 over {d, e, r}, and R11 over
{e, r, v}.

After that, A1 calls A2 to DistribSol with message containing relations R12 over {a, b} and
{b, c}. In response, A2 generates partial solutions R13 (Table 3) over {a, b, j, k} and R10 over
{b, c, m} at T2.

Similarly, A1 calls A3 to DistribSol with message containing relation R12 over {d, e}. In
response, A3 generates partial solutions R13 over {d, e, g, h} and R14 over {g, h, i} at T3.
SolveDisCSP now terminates successfully and natural join of the above partial solutions from
all agents is a solution:

(a = 2, b = 2, c = 2, d = 2, e = 2, f = 2, g = 1, h = 0, i = 2, j = 1,

k = 0, m = 1, n = 1, p = 0, r = 1, s = 0, t = 1, u = 0, v = 0).

Note that for agent privacy, this join operation is not physically performed.

Theorem 3 below establishes completeness of SolveDisCSP.

Theorem 3 Let F = (A, V, Ω, H, T, ∆, L, Φ) be a LJF of an MSCN and SolveDisCSP be ex-
ecuted. Then failure is returned iff F has no solution. Otherwise, R′ = ./i (./Q∈Ti RQ) is a
singleton such that R′ ⊆ Sol, where Sol is the solution set of the MSCN.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 17

Let η be the number of agents, t be the maximum number of clusters in a local JT, q be the
maximum size of clusters, and k bind domain sizes for variables in V . After CollectIntCons com-
pletes, SolveDisCSP is backtrack-free. Hence, computation is dominated by UnifyCons during
CollectIntCons. UnifyCons has no more than twice the amount of computation of CollectSep-
Cons, whose complexity is O(t k2q) (Section 4). Therefore, the complexity of SolveDisCSP
is O(η t k2q). For experimental implementation and empirical evaluation of SolveDisCSP, see
[Mohamed(2011)].

8 Hypertree Agent Organization

8.1 Identifying Hypertree Existence

The hypertree of an MSCN plays the organizational role for the system. Since not every DisCN
satisfies condition (1) of Def. 1, we consider identification of hypertree existence. We assume
the existence of a coordinator agent Co who knows the border between each pair of agents in
A. Co knows nothing about private variables of any agent. Under this condition, we propose
Algorithm 2 for Co to determine the existence of a hypertree. The idea is for Co to create a
dependency graph among shared variables, and to determine hypertree existence based on the
relation between triangulated graphs and JTs (Section 2.2). For each agent Ai, we denote set
Wi = ∪j 6=i Iij as its boundary. That is, Wi contains shared variables of Ai relative to all other
agents. We refer to W = {Wi|i = 0, ..., η− 1} as the boundary collection of the DisCN.

Algorithm 2 (HasHypertree)
for each agent Ai, Wi = boundary of Ai;
create graph Gb with nodes labeled by elements of ∪iWi;
for each Ai, connect each pair of nodes in Wi;
if Gb is not triangulated, return no-hypertree;
identify each cluster of nodes maximally pairwise connected;
if a cluster C exists such that C 6= Wi for each i, return no-hypertree;
return has-hypertree;

We refer to Gb as the boundary graph of the DisCN.

Example 8 For DisCN in Fig. 2, Co knows non-empty borders between agents:

I01 = {c, f}, I02 = {c}, I12 = {a, b, c}, I13 = {d, e}.

Co derives W0 = {c, f}, W1 = {a, b, c, d, e, f}, W2 = {a, b, c}, and W3 = {d, e}. Gb is shown in
Fig. 5 (a) and has a single cluster. HasHypertree returns has-hypertree.

Example 9 A DisCN over 5 agents has non-empty borders between agents as follows:

I01 = {u, y}, I02 = {y}, I12 = {h, y, z}, I13 = {w}, I14 = {h}, I24 = {h}, I34 = {v}.

Co derives W0 = {u, y}, W1 = {h, w, u, y, z}, W2 = {h, y, z}, W3 = {v, w}, and W4 = {h, v}.
Gb is shown in Fig. 5 (b). It is triangulated and has two clusters. One of them, {h, v, w}, does
not corresponds to any Wi. Hence, HasHypertree returns no-hypertree.

Prop. 9 establishes soundness of HasHypertree.

18 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

(c)

g

a

b e

d
c

f
h

u,y

h,y,z h,v,w

h,w,u,y,z

h,v

W’ W’

W’ W’W’

0 1

342

b

a

c y

z
w

u

f v
(b)

h
(a)

d

e (d)

g

a

b e

d
c

f
h

(e)

Fig. 5 Graph Gb for Examples 8 (a), 9 (b), and 11 (c). Triangulated graph (d) and JT (e) for Example 11.

Proposition 9 A hypertree exists for a DisCN iff HasHypertree returns has-hypertree.

One limitation of HasHypertree is that Co has the knowledge of all shared variables. We
expect to relax this requirement in future research.

8.2 Construction of Hypertree Agent Organization

Next, we consider construction of hypertree for a given DisCN, assuming that one exists. We
assume an integrator agent Itr, known to each agent in A. Recall that each agent Ai knows each
other agent Aj if they have a non-empty border Iij 6= ∅. We refer to such Aj as an associate of
Ai. We assume that each agent can communicate with its associates. Recall also that adjacent
agents refer to those who are adjacent on the hypertree.

To construct hypertree distributively, Algorithm 3 specifies actions by Itr and each agent.
It is based on the well-known maximum spanning tree algorithm for JT construction (see, e.g.,
[Xiang(2002)]), but extends the method into distributed.

Algorithm 3 (SetHypertree)

each agent registers with Itr;
Itr sets counter cnt to number of registered agents;
Itr randomly selects Ai, notifies Ai as winner, and sets cnt = cnt − 1;
Ai announces winner status to each associate;
while cnt > 0,

Itr asks each winner to bid for right to select new winner;
for each winner Ai,

for each non-winner associate Aj , Ai computes wij = |Iij|;
Ai makes bid wi = maxj wij and

denotes corresponding associate as winner candidate;
Ai sends bid wi to Itr;

after receipt of all bids, Itr selects Ak such that wk = maxiwi;
Itr notifies Ak to select new winner;
Ak notifies its winner candidate, and they denote each other as adjacent;
the new winner announces its status to each associate and Itr;
Itr sets cnt = cnt − 1;

Itr announces halt and halts;
upon receipt, each agent halts;

Example 10 Consider the DisCN in Example 8 and Fig. 2. After agent registration, suppose
Itr selects A0 to be the first winner. A0 will announce to associates A1 and A2.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 19

When Itr asks A0 to bid, it bids with w0 = max(w01, w02) = max(2, 1) = 2, and denotes A1

as winner candidate. Subsequently, Itr notifies A0 to select, A0 notifies A1 to be new winner,
and A1 announces to associates A0, A2, A3, and Itr. A0 and A1 now regard each other as
adjacent on hypertree.

Next Itr asks A0 and A1 to bid. A0 bids with w0 = 1 and A1 bids with w1 = 3. Both
denote A2 as candidate. Itr notifies A1, A1 notifies A2 as the new winner, and A2 announces
to associates A0, A1, and Itr. A1 and A2 now regard each other as adjacent on hypertree.

Afterwards, Itr asks A0, A1, and A2 to bid. Bids for A0, A1 and A2 are w0 = 0, w1 = 2,
and w2 = 0, and their candidates are null, A3, and null, respectively. Itr notifies A1, and A1

notifies A3 as the new winner. A1 and A3 now regard each other as adjacent on hypertree.
SetHypertree then terminates with the hypertree in Fig. 2 (b) constructed.

Prop. 10 shows that after SetHypertree, a hypertree emerges for the DisCN.

Proposition 10 Let SetHypertree be run in a DisCN where hypertree exists. After it halts, a
hypertree is formulated such that each agent knows its adjacent agents in the hypertree.

From Itr’s own notifications and winner announcements, Itr can infer the hypertree topol-
ogy in terms of agent adjacency, as well as the cardinality of each agent interface. Itr does not,
however, have the knowledge of agent subenvs, nor content of agent interfaces.

9 Converting DisCN into MSCN

Next, we consider DisCNs where HasHypertree returns no-hypertree. These DisCNs violate
Def. 1 and are not MSCNs. SolveDisCSP is not applicable to them. We study how to convert
them into MSCNs so that SolveDisCSP can be applied.

HasHypertree returns no-hypertree when boundary graph Gb is not triangulated, or Gb is
triangulated but has a cluster (or more) that is not contained in any agent boundary (Exam-
ple 9). To convert such a DisCN into MSCN, we propose to triangulate Gb (if it is not so) and
then enlarge some agent boundaries, such that if HasHypertree is applied to the new set of
boundaries, has-hypertree will be returned.

Enlargement of some boundaries means inserting shared variables that they do not originally
contain. This has the potential to disclose those variables, their domains, and constraints they
participate to agents who do not originally have such knowledge. To minimize the impact, we
assume that newly inserted variables and their domain values will be obfuscated by codenames,
as practiced by other DisCSP algorithms, e.g., DPOP [Leaute et al(2010)]. In the following, we
focus on triangulation and boundary enlargement.

Our criterion in conversion is to minimize the number of newly inserted shared variables.
Suppose Co executes HasHypertree and finds that Gb is not triangulated. It can triangulate Gb

into G′
b by node elimination. Note that no matter how Gb is triangulated, every boundary Wi

is contained in at least one cluster in G′
b. From clusters of G′

b, a new boundary set

W′ = {W ′
i |i = 0, ..., η− 1}

is defined. W′ specifies a new set of subenvs (each obtained by the union of W ′
i and the set of

private variables of Ai), which can be organized into a hypertree. The smaller the number of fill-
ins produced during triangulation, the less number of shared variables will be inserted into W ′

i s.

20 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

Hence, a triangulation with the minimal number of fill-ins is consistent with minimization of
newly inserted shared variables. Since optimal triangulation is NP-hard [Yannakakis(1981)], we
compromise with a greedy heuristics. To choose the next node to eliminate during triangulation,
we apply the min-fill-in heuristic (select the node with the minimum number of fill-ins).

After boundary graph Gb is triangulated into G′
b, it is necessary to redefine the boundary

for each agent. Example 11 illustrates the technical issue in doing so.

Example 11 (Boundary) Consider a DisCN with the following boundary set:

W = {W0 = {a, b, c}, W1 = {c, d, e}, W2 = {e, f, g}, W3 = {b, g, h}}.

Its boundary graph Gb is shown in Fig. 5 (c). Gb is not triangulated and can be triangulated into
G′

b in (d) by adding fill-in < b, e >. However, G′
b contains two clusters {b, c, e} and {b, e, g},

that do not equal to any Wi.
The similar happens in Example 9, where cluster {h, w, v} in Gb does not equal to any Wi.

However, {h, w, v} is a superset of W4, and can be assigned to A4 as its enlarged boundary.
Here, neither {b, c, e} nor {b, e, g} is a superset of any Wi.

We propose Algorithm 4, to be executed by coordinator agent Co, to redefine (enlarged)
agent boundaries. After triangulating Gb (if it is non-triangulated) into G′

b, clusters of G′
b are

organized into a JT T ′. If a cluster C in T ′ does not equal to a Wi nor is a superset of any,
C is merged into an adjacent cluster C′. This is done recursively until the new cluster C′ is a
superset of a Wi, and it is assigned to Ai as its enlarged boundary.

Algorithm 4 (EnlargeBoundary) Let W be the boundary set and Gb be the boundary graph,
such that HasHypertree returns no-hypertree.
if Gb is not triangulated, triangulate it into G′

b;
else G′

b = Gb;
organize clusters of G′

b into a JT T ′;
initialize W′ to W;
for each cluster C in T ′ that is not a superset of any set in W′,

while C is not a superset of any set in W′,
merge an adjacent cluster C′ into C in T ′;

for each cluster C in T ′ that is not equal to any set in W′,
remove W ′

i from W′ such that |W ′
i | = maxWk⊂C |Wk|;

add cluster C to W′ and denote it by W ′
i ;

return W′;

Example 12 Consider the DisCN in Example 9. Its Gb is Fig. 5 (b) and is triangulated. Apply
Algorithm 4 and G′

b = Gb. The JT T ′ has two clusters {h, u, w, y, z} and {h, v, w}. Initially,

W′ = {W ′
0 = {u, y}, W ′

1 = {h, w, u, y, z}, W ′
2 = {h, y, z}, W ′

3 = {v, w}, W ′
4 = {h, v}}.

The first for loop finds no cluster in T ′ that satisfies the condition. Cluster C = {h, v, w} is
processed by the second for loop. By breaking ties between W ′

3 and W ′
4 arbitrarily, C replaces

W ′
3 in W′. The new boundary collection W′ is

{W ′
0 = {u, y}, W ′

1 = {h, w, u, y, z}, W ′
2 = {h, y, z}, W ′

3 = {h, v, w}, W ′
4 = {h, v}}.

Note that a shared variable h is inserted to boundary W ′
3. A hypertree for the DisCN that is

isomorphic to the JT in Fig. 5 (e) can then be constructed.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 21

Example 13 (More on EnlargeBoundary) Consider Algorithm 4 applied to the DisCN in
Example 11. G′

b is shown in Fig. 5 (d), the initial JT T ′ is shown in Fig. 6 (a), and initially,

c,d,e

C2
C1

C1

C2

a,b,c

b,g,h

a,b,c,e

(a) (b)b,g,h e,f,g

c,d,eb,c,e

b,e,g b,e,f,g

Fig. 6 (a) Initial JT T ′ for Example 12. (b)Updated JT T ′.

W′ = {W ′
0 = {a, b, c}, W ′

1 = {c, d, e}, W ′
2 = {e, f, g}, W ′

3 = {b, g, h}}.

The first for loop must process clusters C1 = {b, c, e} and C2 = {b, e, g}. Suppose cluster
{a, b, c} is merged into C1, and {e, f, g} is merged into C2. The updated JT T ′ is shown in Fig. 6
(b). The second for loop will replace W ′

0 by C1 and W ′
2 by C2. The new boundary collection is

W′ = {W ′
0 = {a, b, c, e}, W ′

1 = {c, d, e}, W ′
2 = {b, e, f, g}, W ′

3 = {b, g, h}}.

A hypertree for the DisCN that is isomorphic to the JT in Fig. 6 (b) can then be constructed.
Note that from W′, new borders between agents are easily defined:

I01 = {c, e}, I02 = {b, e}, I03 = {b}, I12 = {e}, I23 = {b, g}.

Prop. 11 establishes the key properties of Algorithm 4. Its practical implication is the
following: Suppose a DisCN is not an MSCN. If Co executes HasHypertree, followed by En-
largeBoundary, then the DisCN, modified based on the new boundary collection, is an MSCN.

Proposition 11 (Make MSCN) Let W be the boundary collection of a DisCN and Gb be
the boundary graph, such that HasHypertree returns no-hypertree. Let W′ be the new boundary
collection returned by applying Algorithm 4 to Gb. Then the following hold:

1. |W′| = |W|.
2. For each agent Ai, W ′

i ⊇ Wi, where W ′
i ∈ W′ and Wi ∈ W.

3. A JT exists with W′ as the set of clusters.

In the while loop of EnlargeBoundary, an adjacent cluster C′ needs to be selected to merge
into C. Note that the merging is equivalent to adding fill-ins to G′

b. Hence, the equivalent to
min-fill-in heuristic is to prefer C′ that can terminate while loop immediately and |C′ \ C| is
minimal.

Similar to HasHypertree, one limitation of EnlargeBoundary is that Co has the knowledge
of all shared variables. We leave its relaxation to future research.

10 Comparison with JT-based Framework

We discuss relation between our MSCN-LJF framework and JT-based framework for solving
DisCSPs, e.g., [Vinyals et al(2010),Brito and Meseguer(2010)].

Both frameworks organize subenvs into JTs. In [Brito and Meseguer(2010)], the JT is built
as in [Paskin et al(2005)]. Since method in [Paskin et al(2005)] distributes variables among

22 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

agents globally, it will disclose private variables. In [Vinyals et al(2010)], the JT is built from
a pseudo-tree in a centralized fashion. Since each node in the pseudo-tree corresponds to a
variable, it will also disclose private variables. For MSCN-LJF framework, the JT subenv orga-
nization is stated in Def. 1 (1). Our methods to build the hypertree (Sections 8 and 9) do not
disclose private variables and are able to preserve agent privacy. Our methods require Co and
Itr agents, where Co knows all shared variables. These are expected to be relaxed in future
research.

Once the JT subenv organization is established, variables in a subenv is treated as a single
cluster by the JT-based framework. Each inter-agent message is over a separator of such clusters.
For the DisCN in Fig. 2, runtime representation is isomorphic to (b) with each Gi replaced by
cluster Vi. On the other hand, in the MSCN-LJF framework, variables in each subenv are
decomposed into a local JT. Each agent interface is also decomposed into a LT. Not only local
inference can be performed at the level of clusters of local JTs, each inter-agent message is
over a linkage. The decomposition at both subenv and agent interface levels allows MSCN-LJF
framework to be more efficient.

Formally, let η be the number of agents, g be the maximum number of variables in a
subenv, and k bind domain sizes for variables. Generalizing complexity result of Section 4, time
complexity of solving DisCSP in JT-based framework is O(η kg). Under MSCN-LJF framework,
let q be the maximum size of clusters in local JTs. Since g binds number of clusters in local
JTs, time complexity of SolveDisCSP is O(η g k2q). As a result, computation time in JT-based
framework grows exponentially with the size of subenv. With MSCN-LJF framework, it only
grows linearly, when q value remains the same.

11 Conclusion

The contribution of this work is the proposal of a new algorithmic framework, MSCNs, for
solving DisCSPs with complex local problems. A MSCN is converted into a LJF based decom-
position, and is solved by a complete algorithm. Complexity of the algorithm is linear on the
number and size of local problems, and is exponential on cluster size in local JT decomposition.
Although not every DisCN is naturally an MSCN, the issue of converting such DisCNs into
MSCNs is resolved algorithmically.

Our method differs from existing methods for complex local problems. A number of tech-
niques are proposed in [Burke(2008)] that are intended to be used with any centralized local
solver. We present an algorithmic framework where local computation and inter-agent mes-
sage passing are seamlessly combined and the former directly contributes to efficiency of the
latter. Some of the ideas in [Burke(2008)] are implicitly embedded in our framework, e.g.,
interchangeability. Work in [Maestre and Bessiere(2004),Ezzahir et al(2007)] extends ABT to
address complex local problems, while we propose a new algorithmic framework based on LJFs.
In comparison with JT-based framework, the MSCN-LJF framework is more efficient and pre-
serves agent privacy.

To identify whether a DisCN is naturally a MSCN and to convert a DisCN into an MSCN,
our algorithms require a coordinator agent with access of all shared variables. This requirement
is expected to be relaxed through future research. Another direction of future research is to
extend the MSCN-LJF framework to DisCOPs.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 23

References

[Bejar et al(2005)] Bejar R, Domshlak C, Fernandez C, Gomes C, Krishnamachari B, Selman B, Valls M (2005)
Sensor networks and distributed CSP: communication, computation and complexity. Artificial Intelligence
161(1-2):117–147

[Bessiere et al(2005)] Bessiere C, Maestre A, Brito I, Meseguer P (2005) Asynchronous backtracking without
adding links: a new member in the ABT family. Artificial Intelligence 161(1-2):7–24

[Brito and Meseguer(2010)] Brito I, Meseguer P (2010) Cluster tree elimination for distributed constraint op-
timization with quality guarantees. Fundamenta Informaticae 102:263–286

[Burke(2008)] Burke D (2008) Exploiting problem structure in distributedconstraint optimization with complex
local problems. PhD thesis, U. College Cork, Ireland

[Calisti and Neagu(2004)] Calisti M, Neagu N (2004) Constraint satisfaction techniques and software agents.
In: Proc. Agents and Constraints Workshop, pp 1–12

[Dechter(2003)] Dechter R (2003) Constraint Processing. Morgan Kaufmann
[Dechter and Pearl(1988)] Dechter R, Pearl J (1988) Network-based heuristics for constraint-satisfaction prob-

lems. Artificial Intelligence 34:1–38
[Dechter and Pearl(1989)] Dechter R, Pearl J (1989) Tree clustering for constraint networks. Artificial Intelli-

gence 38(3):353–366
[Ezzahir et al(2007)] Ezzahir R, Belaissaoui M, Bessiere C, Bouyakhf E (2007) Compilation formulation for

asynchronous backtracking with complex local problems. In: Proc. Inter. Symp. Computational Intelligence
and Intelligent Informatics, pp 205–211

[Hirayama and Yokoo(2005)] Hirayama K, Yokoo M (2005) The distributed breakout algorithms. Artificial In-
telligence 161(1-2):89–116

[Jensen and Nielsen(2007)] Jensen F, Nielsen T (2007) Bayesian Networks and Decision Graphs (2nd Ed.).
Springer

[Leaute et al(2010)] Leaute T, Ottens B, Faltings B (2010) Ensuring privacy through distributed computation
in multiple-depotvehicle routing problems. In: Proc. ECAI Workshop on Artificial Intelligenceand Logistics,
pp 25–30

[Maestre and Bessiere(2004)] Maestre A, Bessiere C (2004) Improving asynchronous backtracking for dealing
with complex local problems. In: Proc. 16th European Conf. on Artificial Intelligence, pp 206–210

[Meisels and Zivan(2007)] Meisels A, Zivan R (2007) Asynchronous forward-checking for DisCSPs. Constraints
12(1):131–150

[Modi et al(2005)] Modi P, Shen W, Tambe M, Yokoo M (2005) Adopt: asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligences 161(1-2):149–180

[Mohamed(2011)] Mohamed Y (2011) An empirical study of distributed constraint satisfaction algorithms.
Master’s thesis, University of Guelph

[Paskin et al(2005)] Paskin M, Guestrin C, McFadden J (2005) A robust architecture for distributed inference
in sensor networks. In: Proc. Information Processing in Sensor Networks, pp 55–62

[Petcu and Faltings(2005)] Petcu A, Faltings B (2005) A scalable method for multiagent constraint optimiza-
tion. In: Proc. 19th Inter. Joint Conf. on Artificial Intelligence, pp 266–271

[Silaghi and Faltings(2005)] Silaghi M, Faltings B (2005) Asynchronous aggregation and consistency in dis-
tributed constraint satisfaction. Artificial Intelligence 161(1-2):25–54

[Vinyals et al(2010)] Vinyals M, Rodriguez-Aguilar J, Cerquides J (2010) Constructing a unifying theory of
dynamic programming DCOP algorithms via the generalized distributive law. J Autonomous Agents and
Multi-Agent Systems 22(3):439–464

[Wallace and Freuder(2005)] Wallace R, Freuder E (2005) Constraint-based reasoning and privacy-efficiency
tradeoffs in multi-agent problem solving. Artificial Intelligence 161(1-2):209–227

[Xiang(2002)] Xiang Y (2002) Probabilistic Reasoning in Multiagent Systems: A Graphical Models Approach.
Cambridge University Press, Cambridge, UK

[Xiang and Hanshar(2010)] Xiang Y, Hanshar F (2010) Comparison of tightly and loosely coupled decision
paradigms in multiagent expedition. International J Approximate Reasoning 51:600–613

[Xiang et al(1993)] Xiang Y, Poole D, Beddoes MP (1993) Multiply sectioned Bayesian networks and junction
forests for large knowledge based systems. Computational Intelligence 9(2):171–220

[Yannakakis(1981)] Yannakakis M (1981) Computing the minimum fill-in is NP-complete. SIAM J of Algebraic
and Discrete Methods 2(1)

[Zhang et al(2005)] Zhang W, Wang G, Xing Z, Wittenburg L (2005) Distributed stochastic search and dis-
tributed breakout: properties, comparison and applications to constraint optimization problems in sensor
networks. Artificial Intelligence 161(1-2):55–87

