
Distributed Constraint Satisfaction with

Multiply Sectioned Constraint Networks

Yang Xiang, Younis Mohamed and Wanling Zhang
Univ. of Guelph, Canada

Abstract We propose a new algorithmic framework, multiply sectioned constraint networks
(MSCNs), for solving distributed constraint satisfaction problems (DisCSPs) with complex local
problems. An MSCN is converted into a linked junction forest (LJF) and is solved by a complete
algorithm. Its time complexity is linear on the number and size of local problems (each in charge
by an agent) and is exponential on cluster size of LJF. We show that the MSCN-LJF algorithm
is more efficient than junction tree-based DisCSP algorithms. When a DisCSP is not naturally
an MSCN, we show how to convert it into an MSCN, so that any DisCSP can be solved as
above.

1 Introduction

A broad range of complex decision problems can be solved as DisCSPs, including sensor network
coordination [Bejar et al(2005)], transportation vehicle scheduling [Calisti and Neagu(2004)],
meeting scheduling [Wallace and Freuder(2005)], and university timetabling (Section 8). Algo-
rithms solving DisCSPs can be classified broadly as being based on distributed backtracking
(e.g., ABT [Maestre and Bessiere(2004),Silaghi and Faltings(2005),Bessiere et al(2005)], AFC
[Meisels and Zivan(2007)], ADOPT [Modi et al(2005)]), on distributed iterative improvement
(e.g., DBA [Hirayama and Yokoo(2005)], DSA [Zhang et al(2005)]), and on dynamic program-
ming (e.g., DPOP [Petcu and Faltings(2005)]). Since every DisCSP can be solved as a dis-
tributed constraint optimization problem (DisCOP) [Modi et al(2005)], instances of DisCOP
algorithms (e.g., ADOPT and DPOP) are also included above. Some algorithms (e.g., DSA)
do not depend on specific agent organization. Others assume a total order among them (e.g.,
ABT and AFC). Still others use a pseudo-tree (e.g., ADOPT and DPOP) or junction tree
(JT) organization (e.g., [Vinyals et al(2010),Brito and Meseguer(2010)]). Many algorithms as-
sume a single variable per agent in their typical formulations (e.g., DSA, ADOPT, DPOP).
Complex local problems are being addressed in recent years (e.g., [Maestre and Bessiere(2004),
Ezzahir et al(2007),Burke(2008)]).

JTs have long been applied to solving centralized CSPs as in [Dechter and Pearl(1988)]
and [Dechter and Pearl(1989)], as well as to centralized probabilistic reasoning with Bayesian

2 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

networks (see, e.g., [Jensen and Nielsen(2007)]). Subsequently, LJFs are developed as runtime
agent organization for multiagent probabilistic reasoning with multiply sectioned Bayesian
networks (MSBNs) [Xiang et al(1993),Xiang(2002),Xiang and Hanshar(2010)]. Although JT-
based DisCSP algorithms have been proposed in recent years (e.g., in [Vinyals et al(2010)] and
[Brito and Meseguer(2010)]), LJFs have never been explored for solving DisCSPs.

In this work, we show that LJF-based message passing can be applied to solving DisCSPs
with complex local problems. A LJF has a JT organization of agents, just as in JT-based
DisCSP algorithms. However, local variables in each agent are organized into a single cluster in
JT-based DisCSP algorithms. With LJF, they are organized into a local JT, which allows much
refined decomposition of local problem and more efficient local problem solving. Furthermore,
interface between adjacent agents in JT-based DisCSP algorithms is a single cluster separator.
With LJF, the interface is also organized into a JT, which allows interface decomposition and
more efficient inter-agent message passing.

Remainder of the paper is organized as follows: Section 2 defines DisCSPs and Section 3
defines MSCNs, a sub-class of DisCSPs, which are directly solvable by LJF-based message
passing. In Section 4, we present an alternative formulation of JT-based message passing for
solving CSPs to facilitate development of our MSCN algorithm. LJF representation of MSCN is
presented in Section 5 and its properties are analyzed. Our algorithm to solve MSCNs based on
LJFs is presented in Sections 6 and 7, as well as its completeness and complexity. Section 8 is
a case study on solving distributed university timetabling problems to illustrate the techniques
presented so far. Section 9 addresses construction of agent organization for MSCNs. Section 10
shows how to convert any DisCSP into an MSCN. Proofs are collected in Appendix 1. Formal
notations are listed in Appendix 2 for readers’ convenience.

2 Problem Definitions

2.1 CSP

A constraint network (CN) is a pair R = (V, Λ). V 6= ∅ is a set of discrete variables, which we
refer to as the env (environment). Each variable v ∈ V has a finite domain Dv 6= ∅, the set of
possible values of v. For any subset X ⊆ V , its space DX is the Cartesian product of domains
of variables in X. Each x ∈ DX is a config (configuration) of X. Λ 6= ∅ is a set of constraints.
Each constraint is a relation RX ⊆ DX , where X ⊂ V is the scope of the constraint. When a
constraint involves a universal relation UX = DX , we refer to it as a dumb constraint (imposing
no restriction). The union of scopes of all constraints covers env, i.e., ∪RX∈ΛX = V .

i
e

h

dg

(a) 0 1 1 2
2 0 0 2
1 0 2 1

Q0

Q1

Q2

(c) h

g

e

i
G’ d

(d) (e)(b) h

g

e

i
G d T d g d gd,g,h

d,e,h
g,h,i

Fig. 1 (a) A map coloring CN; (b) primal graph; (c) triangulated graph; (d) resultant JT; (e) constraint d 6= g.

Example 1 A map coloring CN is shown in Fig. 1 (a), where each region may be colored by
red, green or blue, such that adjacent regions differ in color.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 3

Its env is V = {d, e, g, h, i}, where each variable represents the color of a region and has
domain {red, green, blue}, which we simply write as {0, 1, 2}. The constraint set is Λ = {d 6=
g, d 6= e, e 6= h, g 6= h, g 6= i, h 6= i}. Constraint d 6= g of scope {d, g} is the relation R{d,g}:

{(d = 1, g = 0), (d = 2, g = 0), (d = 0, g = 1), (d = 2, g = 1), (d = 0, g = 2), (d = 1, g = 2)}.

It can also be expressed as the table in Fig. 1 (e), or as

R{d,g} over (d, g) = {(1, 0), (2, 0), ...}.

Denote projection of config x to Y ⊆ X by πY (x). For instance, x = (d = 0, e = 2, g = 1) is a
config of X = {d, e, g}. Its projection to Y = {e, g} is the config y = (e = 2, g = 1). Denote the
projection of relation RX to Y ⊆ X by πY (RX), which consists of the projection of each config
in RX to Y . A config x ∈ DX satisfies constraint RY if either X ∩ Y = ∅ (RY is irrelevant) or
πX∩Y (x) ∈ πX∩Y (RY) (the projection of x to X ∩ Y matches the projection of one config in
RY). A config x is legal if it satisfies every constraint in Λ. A solution to CN R is a legal config
over V . A CSP involves finding a solution for a CN.

2.2 Constraint Graphs

Constraints of R = (V, Λ) can be depicted by a primal graph G = (V, E), where each node is
labeled by a variable v ∈ V and an undirected link 〈u, v〉 ∈ E if there exists RX ∈ Λ such that
u ∈ X and v ∈ X. Note that primal graphs thus defined depict both binary and higher-order
constraints. The primal graph for the above CN is shown in Fig. 1 (b).

A CN R can be solved using a structure converted from its primal graph G. A cluster C
is a subset of V . A cluster tree connects a set of clusters into a tree, where each link, called a
separator, connects two clusters with a non-empty intersection S 6= ∅ and is labeled by S. A
cluster tree T is a JT if the intersection of every two clusters is contained in every separator on
the path between them (the running intersection property). T is a JT of a given graph G if, for
each cluster C of T , elements of C are pairwise connected in G, and no superset C′ ⊃ C has this
property (C is maximal). Conversion of an arbitrary graph into a JT consists of triangulation,
cluster identification, and JT construction outlined below:

A graph is triangulated if every cycle of length greater than 3 has two nonadjacent nodes
connected by a link. G in Fig. 1 (b) is not triangulated. A graph G can be triangulated by
node elimination. A node in G is eliminated if its adjacent nodes are pairwise connected (by
adding links, called fill-ins, if necessary), and the node is deleted as well as links incident to it.
After all nodes are eliminated, add all fill-ins produced in the process to the original G. The
resultant graph is triangulated. Fig. 1 (b) is triangulated into (c) by eliminating nodes in the
order (i, e, d, g, h) and adding the dashed link as a fill-in.

A given graph G has a JT iff G is triangulated. After G in (b) is triangulated into (c), each
cluster of nodes in (c) that is maximally pairwise connected is identified. There are three of
them as shown in (d). They are connected into JT T in (d). See [Xiang(2002),Dechter(2003)]
for more details on JT construction. We write C ∈ T if C is a cluster in T . We refer to G and
T as constraint graphs associated with R.

4 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

2.3 DisCSP

A distributed constraint network (DisCN) is a tuple R = (A, V, Ω, Λ, Θ). A = {A0, ..., Aη−1} is
a set of η > 1 agents. The set V of env variables are decomposed into a collection of subenvs,
Ω = {V0, ..., Vη−1}, such that ∪η−1

i=0 Vi = V . The set Λ of constraints are decomposed into
Θ = {Λ0, ..., Λη−1}, where for each constraint RX in Λi, X ⊂ Vi holds. A solution to the DisCN
is a legal config over V . A DisCSP involves finding a solution for a DisCN.

Each agent Ai is associated with a local CN Ri = (Vi, Λi). If x ∈ V has a constraint with
y ∈ Vi and another constraint with z ∈ Vj , then x ∈ Vi ∩ Vj. We refer to x as a shared variable
of Ai and Aj . We refer to the set of shared variables, Iij = Vi∩Vj, as the border between Ai and
Aj . Iij is known to both agents. Each variable y ∈ Vj \ Iij is a private variable of Aj (relative
to Ai). Ai is assumed to have no knowledge about the identity of y, its domain, and constraints
y involves, which we refer to as the agent privacy.

The above formulation differs from one-variable-per-agent assumption in a number of DisCSP
algorithms, and is intended to express DisCSPs where local problems are complex and some
variables are private. The remaining operations are intended to preserve agent privacy, i.e., not
to disclose the identity, the domain, and participating constraints of every private variable.

A local CN Ri can be depicted by a local primal graph Gi = (Vi, Ei). Consider local primal
graphs Gi and Gj. We assume that if link < x, y >∈ Ei and x, y ∈ Vj, then < x, y >∈ Ej . That
is, constraints between shared variables are identical among agents involved. We refer to the
primal graph depicting (V, Λ) the global primal graph G = (V, E). Each shared variable appears
in G as a single node. Given the above assumption, the subgraph of G spanned by Vi is exactly
the local primal graph Gi.

Example 2 Fig. 2 illustrates a DisCN with four agents. Agent A0 has subenv V0 = {c, f, n, p}

G3

G1

0G

G2 G2

G3 G1

G0

e

i

h e f f puv r s t

g
d d a b c c n

a b c

j k m
(a)

(b)
{d,e}

{c,f}
{a,b,c}

A

A

AA

2

0

13

Fig. 2 (a) Local primal graphs of a DisCN that is an MSCN, where each link depicts a 6= constraint. (b) The
hypertree of MSCN.

and local primal graph G0, as shown in (a). The domain of each variable is {0, 1, 2}. Each
constraint is binary (with the scope over two variables). Variable c is shared between agents A0,
A1 and A2. For A0, p is a private variable.

A common misunderstanding regards the above DisCSP formulation as departing from
the so-called private variables, shared constraints (PVSC) convention, and therefore being too
restrictive. We show below that there is no such thing as private variables in shared constraints,
and therefore, our formulation is general.

Suppose Ai and Aj in a PVSC DisCSP share a constraint RX over X = {xi, xj}, where
xi ∈ Dxi and xj ∈ Dxj . By view of PVSC, xj is private from Ai. This is a misconception.
Indeed, if RX covers all values in Dxj , then Ai knows Dxj by sharing RX . If RX covers only a

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 5

subset D−
xj

⊂ Dxj , then any value in Dxj \ D−
xj

cannot be part of the solution. Dxj can then
be equivalently replaced by D−

xj
, which Ai knows by sharing RX . To keep name of xj private

from Ai, xj can always be obfuscated by a codename. Hence, in what name xj is known to Ai

does not matter.
In our formulation, both xi and xj are shared as well RX . No more and no less restriction

is assumed by each agent, in comparison with PVSC DisCSPs. Therefore, any DisCSP can be
expressed in terms of the above formulation.

3 Multiply Sectioned Constraint Network

We consider DisCSPs for a sub-class of DisCNs with complex local problems and can be solved
effectively by LJF-based message passing. They are termed MSCNs, as their structures are
similar to MSBNs [Xiang(2002)]: graphical models for multiagent probabilistic reasoning.

Definition 1 (MSCN) A DisCN R = (A, V, Ω, Λ, Θ) is a MSCN if the following holds:

1. A JT exists with Ω as the set of clusters.
2. Each local primal graph is connected.

The JT condition requires an MSCN to satisfy the relevance property: When the JT exists,
subenvs in Ω can be reordered as V ′

0 , ..., V ′
η−1 such that for each i > 1 there exists j < i such

that Iij 6= ∅. Hence, each subenv Vi is relevant to solving the DisCSP. If a DisCN does not
satisfy relevance, it can be split into two or more MSCNs, each satisfying relevance.

The JT condition also requires an MSCN to satisfy running intersection (Section 2.2).
When subenvs V1, V2, V3 form a path < V1, V2, V3 > in a cluster tree, it means that constraints
between A1 and A3 are mediated through A2. The running intersection simply requires that, if
A1 and A3 share variable x, then x should also be shared by A2. This condition is important to
efficiently solving MSCNs with complex local problems while preserving agent privacy, as will
be seen. In Section 10, we consider how to convert DisCNs violating the running intersection
into MSCNs.

Assuming the JT condition holds, we consider how to construct the JT in Section 9.2. Once
constructed, we refer to the JT as a hypertree and each subenv Vi as a hypernode. We associate
the hypernode with local CN Ri, local primal graph Gi, and agent Ai. Ai and Aj are adjacent if
Vi and Vj are adjacent in the hypertree, and we refer to their border Iij as their agent interface.

The second condition in Def. 1 is for simplicity. It naturally holds for most DisCSPs with
complex local problems. Otherwise, it can be forced by adding dumb constraints.

The DisCN in Fig. 2 is an MSCN. Its hypertree is shown in (b) with agent interfaces labeled.
Below, we consider how to solve the DisCSP given an MSCN.

4 Solving CSP With JT Representation

Solving CSPs by JT-based message passing is presented in literature [Dechter and Pearl(1988)],
[Dechter and Pearl(1989),Dechter(2003)]. We extend the CSP method to the MSCN-based
DisCSPs. This section formulates the CSP method alternatively for several reasons: (1) We
present as a set of procedures that can be individually called by the MSCN algorithm. (2) Com-
pleteness of our formulation is formally justified in a self-contained manner (rather than through

6 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

other tree-solving algorithms as in the above references). (3) Necessity of JTs (rather than just
any cluster trees) is not explicit in the original formulation, e.g., [Dechter and Pearl(1989)]. In
fact, the issue cannot be clarified easily through other tree-solving algorithms. This necessity is
highlighted here. (4) The self-contained analysis forms a base to establish completeness of the
MSCN-based algorithm presented in later sections.

Given a CN R, the set of all solutions is its solution set. Prop. 1 establishes an equivalent
specification of the solution set, where ./ is the relational operator natural join.

Proposition 1 () Let R = (V, Λ) be a CN.

1. The solution set of R is the relation Sol = ./R∈Λ R.
2. R has solution iff Sol 6= ∅.

The CSP method converts the primal graph of R into a JT T (Section 2.2). For every
constraint RX ∈ Λ, there exists a cluster Q in T where X ⊆ Q. Proc. 1 assigns constraints in
R to clusters of T , so that T retains the equivalent constraint information. Its complexity is
O(|Λ| kq), where k binds domain sizes for variables in V and q binds sizes of clusters in T .

Procedure 1 (AssignConsToJT)
Input: A CN R = (V, Λ) and a JT T constructed from its primal graph.

1 for each constraint RX in Λ, assign RX to a cluster Q in T such that X ⊆ Q;
2 for each cluster Q in T ,
3 denote the set of constraints assigned to Q by ΛQ;
4 replace ΛQ by a single constraint RQ = UQ ./ (./R∈ΛQ R);
5 associate Q with a relation variable vQ whose domain is RQ;
6 for each pair of adjacent clusters Q and C in T with separator S,
7 denote an element of RQ by q and that of RC by c;
8 assign project-equal constraint πS(q) = πS(c) over vQ and vC ;

We refer to T as the JT representation of R. Each cluster Q in T is associated with a
relation RQ and a relation variable vQ with domain RQ. Each separator in T is associated
with a project-equal constraint over two corresponding relation variables. The set of relation
variables Q = {vQ|Q ∈ T} and the set Λ′ of project-equal constraints specified over pairs of
elements in Q define a derived binary CN (Q, Λ′).

Example 3 Consider the CN in Fig. 1. Its primal graph G in (b) is converted into JT T in
(d). Applying Proc. 1 to the CN and T , its 6 binary constraints are assigned to clusters in T
as follows:

Q0 : {g 6= h, g 6= i, h 6= i}; Q1 : {d 6= g}; Q2 : {d 6= e, e 6= h}.

The domain of relation variable vQ2 is the relation RQ2 :

RQ2 over (d, e, h) = {(0, 1, 0), (0, 1,2), (0, 2, 0), (0, 2, 1), (1, 0, 1), (1,0, 2),
(1, 2, 0), (1, 2,1), (2,0,1), (2, 0,2), (2, 1,0), (2, 1, 2)}.

The project-equal constraint between vQ1 and vQ2 requires that the config over Q1 and that over
Q2 agree on values of d and h, e.g., q1 over (d, g, h) = (0, 1, 1) and q2 over (d, e, h) = (0, 2, 1).

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 7

Prop. 2 states that the solution set of (Q, Λ′) is identical to that of R. Its proof uses
idempotency of natural join: Joining a relation multiple times has the effect of doing once.

Proposition 2 (Solution Equivalence) Let T be a JT representation of CN R and (Q, Λ′)
be the binary CN derived from T . Let Sol be the solution set of R and Sol′ be the solution set
of (Q, Λ′). Then, Sol′ = Sol = ./Q∈T RQ, where Q is any cluster in T .

The CSP method then solves (Q, Λ′) based on directional arc-consistency in T . Given two
clusters Q and C of T with S = Q∩C, configs q of Q and c of C are consistent if πS(q) = πS(c)
(agreeing on their common variables). Q is consistent relative to C where Q ∩ C 6= ∅ if, for
each config in RQ, there exists a consistent config in RC. This can be written as πQ∩C(RQ) ⊆
πQ∩C(RC).

Let Q∗ be any cluster in T and direct T with Q∗ as the root. Then each two adjacent
clusters form a parent-child pair. T is locally directional arc-consistent relative to root Q∗ if for
every pair of clusters Q and C, where Q is the parent of C, Q is consistent relative to C. T
is regionally directional arc-consistent relative to root Q∗ if for every pair of clusters Q and C,
where Q is an ancestor of C, Q is consistent relative to C.

Example 4 Suppose T in Fig. 1 (d) is directed with Q0 as the root. Then the parent of Q1

is Q0 and the parent of Q2 is Q1. T is locally directional arc-consistent relative to Q0 if, for
each config in RQ1 there is a consistent config in RQ1, and for each config in RQ1 there is a
consistent config in RQ2 . T is regionally directional arc-consistent relative to Q0 if, in addition,
for each config in RQ0 there is a consistent config in RQ2 .

If T is an arbitrary cluster tree, it can be locally directional arc-consistent while not being
regionally directional arc-consistent. As a result, different clusters could choose partial solu-
tions that extend into solutions of adjacent clusters, but these extended partial solutions are
inconsistent to each other. Prop. 3 shows that if T is a JT, locally directional arc-consistency
ensures regionally directional arc-consistency.

Proposition 3 (Regional directional AC) Let T be a JT representation of a CN and be
locally directional arc-consistent relative to cluster Q∗. Then T is regionally directional arc-
consistent relative to Q∗.

The CSP method achieves directional arc-consistency by Proc. 2, activated recursively at
each cluster in T by a caller. In the first activation, caller is T . In subsequent activations, caller
is an adjacent cluster. After Proc. 2 (called in Q∗ by T) terminates, T is locally directional
arc-consistent relative to Q∗.

Procedure 2 (CollectSepCons) When caller calls in cluster Q, it acts as follows:
Q calls CollectSepCons in each adjacent cluster C except caller;
for each cluster C (whose separator with Q is S),

Q receives from C a constraint RS;
if RS = ∅, Q sends ∅ to caller and halts;
Q assigns RQ = RQ ./ RS ;
if RQ = ∅, Q sends ∅ to caller and halts;

if RQ = ∅, Q sends ∅ to caller and halts;
if caller is a cluster (whose separator with Q is S′), Q sends πS′(RQ) to caller;
else Q returns a special set ∇ to signify successful completion;

8 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

Complexity of CollectSepCons is O(t kq), where t is the number of clusters in T and O(kq)
is complexity of the join operation. It can be slightly improved [Dechter(2003)]. Prop. 4 shows
that CollectSepCons acts correctly according to the solution set of (Q, Λ′).

Proposition 4 (No Solution) Let T be a JT representation of CN R, (Q, Λ′) be the binary
CN derived from T , and Sol be their solution set. Let CollectSepCons be called in a cluster Q∗

in T . Then, Q∗ returns ∅, iff Sol = ∅.
After CollectSepCons, T is locally directional arc-consistent, as shown below:

Proposition 5 (Local directional AC) Let R be a CN and its solution set be Sol 6= ∅. Let
T be a JT representation of R and CollectSepCons be called in a cluster Q∗ in T . Then, T is
locally directional arc-consistent relative to Q∗.

After CollectSepCons is called in Q∗, if ∅ is returned, R has no solution and the CSP method
halts. Otherwise, R can be solved by T calling Proc. 3 in Q∗ with a flag singleton = true. It
will then be called recursively at each cluster.

Procedure 3 (DistribSepCons) When caller calls in cluster Q with a singleton flag, it
does the following:
if caller is a cluster (whose separator with Q is S),

Q receives from caller a constraint RS ;
Q assigns RQ = RQ ./ RS ;

if singleton = true, Q removes all configs in RQ except one;
for each adjacent cluster C (whose separator with Q is S′) except caller,

Q calls DistribSepCons in C with πS′(RQ) and singleton flag;

After DistribSepCons is called in Q∗, the solution to R can be obtained by retrieving RQ

from each cluster Q and joining them. The CSP method halts. Its complexity is dominated by
that of CollectSepCons and is O(t kq).

Example 5 Suppose Proc. 1 has been applied to the CN and its JT T in Fig. 1. Suppose Proc. 2
is then called in Q0. Q0 will call Proc. 2 on Q1, which will in turn call Proc. 2 on Q2.

In response, Q2 sends π{d,h}(RQ2) to Q1. Upon receiving, Q1 modifies RQ1 into RQ1 ./
π{d,h}(RQ2). It then sends π{g,h}(RQ1) to Q0. Upon receiving, Q0 modifies RQ0 into RQ0 ./
π{g,h}(RQ1). For this CN, Q0 eventually returns ∇, and T is then locally directional arc-
consistent. Since it is a JT, it is also regionally directional arc-consistent.

Suppose Proc. 3 is called next in Q0. Q0 removes all configs in RQ0 except one. It projects
the config onto {g, h} and calls Proc. 3 in Q1 with the projection. In response, Q1 joins the
projection with RQ1 , and removes all configs in RQ1 except one. It projects the config onto {d, h}
and calls Proc. 3 in Q2 with the projection. When Q2 receives the call, it operates similarly.
Now the solution to the CN can be obtained by retrieving the single config in each cluster and
joining them.

CollectSepCons above only achieves directional arc-consistency. A parent cluster Q is con-
sistent relative to a child cluster C, but C may not be consistent relative to Q. This is possible
because the constraint RS sent from C to Q during CollectSepCons may contain a config s
such that no config q in RQ satisfies πS(q) = s. Adjacent clusters Q and C are consistent if Q is
consistent relative to C and vice versa. T is locally fully arc-consistent if every pair of adjacent
clusters is consistent. T is regionally fully arc-consistent if every pair of clusters of a nonempty
intersection is consistent. From Prop. 3, we have Corollary 1.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 9

Corollary 1 (Regional full AC) Let T be a JT representation of a CN and be locally fully
arc-consistent. Then T is regionally fully arc-consistent.

Full arc-consistency is not needed to solve CNs. However, it is needed for solving MSCNs as
will be seen. DistribSepCons with the flag singleton = false can be performed after CollectSep-
Cons to make T locally fully arc-consistent. Proc. 4 combines CollectSepCons and DistribSep-
Cons. It renders a JT regionally fully arc-consistent as summarized by Prop. 6. Its complexity
is O(t kq).

Procedure 4 (UnifyCons)
choose a cluster Q∗ arbitrarily;
call CollectSepCons in Q∗;
if Q∗ returns ∅, return false;
call DistribSepCons in Q∗ with singleton = false;
return true;

Proposition 6 (Property of UNifyCons) Let T be the JT representation of a CN R.

1. R has no solution iff UnifyCons returns false.
2. Otherwise, UnifyCons returns true and T is regionally fully arc-consistent.

The above procedures and their formal properties are used below to develop the MSCN
algorithm and prove its completeness.

5 Linked Junction Forest Representation of MSCN

5.1 LJF and Its Construction

We extend LJF runtime representation in multiagent probabilistic reasoning [Xiang et al(1993),
Xiang(2002)] to solving MSCNs. The idea is to apply JT-based message passing at different
abstract levels. At the lower level, we apply JT-based message passing in each subenv. At the
higher level, we apply JT-based message passing to the hypertree. Key to efficiency and privacy
preserving lies in seamless integration of the two levels of message passing. LJF provides the
structure for such integration.

An MSCN is first converted into a LJF. The conversion involves triangulation, local JT
construction, and linkage tree (LT) construction. During conversion, the hypertree acts as the
agent organization. That is, Ai communicates directly to Aj, iff they are adjacent on the
hypertree. We illustrate LJF construction with the MSCN in Fig. 2.

Example 6 To enable the lower level JT-based message passing, each local CN is converted into
a JT representation. First, the global primal graph is triangulated by distributed triangulation,
during which agents communicates along hypertree. The communication ensures that fill-ins
between shared variables are added consistently at adjacent agents. Each Gi in Fig. 2 is thus
converted to triangulated graph G′

i in Fig. 3. Then, for each G′
i, each cluster of nodes maximally

pairwise connected is identified, and these clusters are connected into a local JT Ti (bounded by
box in Fig. 4).

To enable seamlessly integration of lower level JT-based message passing with the higher
level, each agent interface is converted into a JT representation: the LT. Agent interface between

10 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

e

i

h e f f pus t

g
d d a c n

a

j k m
b c

cb
r

vG’3

G’2

G’1

0G’

Fig. 3 Local primal graphs of MSCN are triangulated. Dashed links between nodes are fill-ins.

2

0,1

1,2

L

T1

T0
T3

2T

L

f = u, t = u}

* *

*

*

A

 e = g, e = h,
 g = h}

{b = m, c = m}

0A3

L1,3

A1 A

{c = n}

{f = p, n = p}

{b = s, r = s}{e = v, r = v}

{a = r} {b = t}{d = r}

{a = j, a = k, b = j, b = k, j = k}

{d = g, d = h,

{g = i, h = i} c,f,nc,f,t,ue,r,v
{c = t, c = u, f = t,

g,h,i c,f

f,n,p

a,b,j,k b,c,m

b,c,ta,b,rd,e,rd,e,g,h

a,b b,c

d,e

b,r,s

Fig. 4 LJF constructed from Fig. 2. Linkage hosts are indicated by thick lines. Constraints assigned to each
cluster are in {}.

A0 and A1 is converted into LT L0,1 with a single cluster. This is a degenerated case due to
small size of the example. In such cases, agent interface is handled the same way as JT-based
DisCSP algorithms, e.g., [Vinyals et al(2010),Brito and Meseguer(2010)].

More generally, interface between A1 and A2 is converted into LT L1,2 with two clus-
ters. Each cluster in L1,2 is referred to as a linkage, e.g., {b, c}. Each linkage has two host
clusters one in each JT it links. For instance, linkage {b, c} has host cluster {b, c, t} in T1

and {b, c, m} in T2. The pathway from a host to a linkage, and to the other host bridges two
levels of JT-based message passing as will be seen. Although L1,2 contains only two clusters due
to small size of the example, for larger subenvs, a LT with many more clusters are possible.
Decomposition of agent interface into LT for bridging two levels of message passing allows LJF
representation to gain better efficiency than JT-based DisCSP algorithms as we will show.

Graph structures resultant from the conversion, local JTs and LTs, together with the hy-
pertree, will be used to organize JT-based message passing at both levels. Their properties are
summarized below:

1. Primal graph of each local CN is converted into a local JT. Hence, JT-based message passing
(Section 4) is applicable locally.

2. For each constraint RX in each local CN, there exists a cluster Q in the local JT such that
X ⊆ Q. Hence, constraints in each local CN can be transferred to clusters in the local JT.

3. Let X be a subset of shared variables in local primal graphs Gi and Gj, and Ti and Tj be
the local JTs, respectively. Then whenever X is contained in a cluster in Ti, there exists a
cluster Q in Tj such that X ⊆ Q. Hence, constraints over X can be easily propagated across
agents.

4. Each agent interface is converted into a LT that is a JT. Hence, local arc-consistency ensures
regional arc-consistency in LTs (see Corollary 1).

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 11

5. Only triangulation involves communication and remaining operations are local. All opera-
tions preserve agent privacy.

After the structural conversion, constraints in each local CN are transferred to the local JT
that is used for problem solving. Each agent Ai assigns constraints in Λi to clusters in Ti by
AssignConsToJT (Section 4).

Example 7 Consider AssignConsToJT by A1. Constraints assigned to cluster {c, f, t, u} are
shown in Fig. 4. The resultant relation R{c,f,t,u} is the following:

c f t u
0 0 1 2
0 0 2 1
1 1 0 2

c f t u
1 1 2 0
2 2 0 1
2 2 1 0

The relation variable v{c,f,t,u} has domain R{c,f,t,u}. Similarly, cluster {b, c, t} is associated
with relation variable v{b,c,t} with domain R{b,c,t}. Because {c, f, t, u} and {b, c, t} are adjacent
clusters, a project-equal constraint is assigned between v{c,f,t,u} and v{b,c,t}. It requires that
config that v{c,f,t,u} takes from R{c,f,t,u} and config that v{b,c,t} takes from R{b,c,t} are identical
on c and t.

Table 1 Relations associated with local JT clusters. A single line separates scopes of relations with an identical
set of configs, enclosed within a pair of double lines.

R1

d e g h
a b j k

c f t u

0 0 1 2
0 0 2 1
1 1 0 2
1 1 2 0
2 2 0 1
2 2 1 0

R2

g h i
b c m
e r v
b r s
f n p

0 0 1
0 0 2
0 1 2
0 2 1

1 0 2
1 1 0
1 1 2
1 2 0
2 0 1
2 1 0
2 2 0
2 2 1

R3

d e r
a b r
b c t
c f n

0 0 1
0 0 2
0 1 1
0 1 2
0 2 1

0 2 2
1 0 0
1 0 2
1 1 0
1 1 2
1 2 0
1 2 2
2 0 0
2 0 1
2 1 0

2 1 1
2 2 0
2 2 1

Table 1 shows relations of all local JT clusters, where relations of the ‘same’ set of configs
are listed only once. For instance, relation over cluster {g, h, i} in T3 and relation over cluster
{b, c, m} in T2 are shown in the middle, and are referred to as R2 over {g, h, i} and R2 over
{b, c, m}, respectively.

For LTs, each agent uses Proc. 5 to assign constraints to linkages.

Procedure 5 (AssignConsToLT)
Input: Local JT Ti of Ai and LTs {Li,j}.
for each LT Li,j with adjacent agent Aj ,

for each linkage S with host cluster Q in Ti and host cluster C in Tj ,
denote an element of RQ by q and that of RC by c;
assign constraint πS(q) = πS(c) over relation variables {vQ, vC};

12 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

For instance, cluster {b, c, t} in T1 and cluster {b, c, m} in T2 are the hosts of linkage {b, c}, and
a project-equal constraint is assigned between v{b,c,t} and v{b,c,m} It requires that configs they
take are identical on b and c.

Note that since Tj as well as cluster C are private to Aj , AssignConsToLT is a logical view
of the underlying physical operation. Tj , C, RC, c and vC are virtual objects to Ai, not physical
data, used to control message passing between Ai and Aj shown below.

Conversion of MSCN R = (A, V, Ω, Λ, Θ) results in

F = (A, V, Ω, H, T, ∆, L, Φ),

where H is the MSCN hypertree that forms the agent organization, T = {T0, ..., Tη−1} is a set
of local JTs, one per subenv in Ω, as the local problem solving structure, and L = {Li,j} is
a set of LTs, one per agent interface on H, as the inter-agent message passing structure. ∆ =
{∆0, ..., ∆η−1} is a collection of constraint sets, one per Ti, expressing intra-agent constraints.
Each ∆i is a set of constraints, one per cluster and one per separator (project-equal) of Ti.
Φ = {Φi,j} is a collection of constraint sets one per linkage tree Li,j, expressing inter-agent
constraints. Each Φi,j is a set of project-equal constraints, one per linkage of Li,j. We refer to
F as the LJF representation or simply LJF of the MSCN, that will be used for solving the
MSCN.

5.2 Properties of LJF

We compare the solution set of an MSCN and that of its LJF. Prop. 7 specifies that the solution
set of an MSCN is the natural join of constraints in all local CNs.

Proposition 7 (MSCN solution) Let R be an MSCN with a set of local CNs {Ri = (Vi, Λi)}.
The solution set of R is the relation Sol = ./i (./R∈Λi R).

Next, we consider the solution set of a LJF. Denote the set of relation variables associated
with clusters in Ti as Qi = {vQ|Q ∈ Ti} and the union of such sets as Q = ∪iQi. Denote the
set of project-equal constraints associated with Ti as Λ′

i, the set of project-equal constraints
associated with Li,j as Λ′

i,j, and the union of these sets as Λ′ = (∪iΛ
′
i)∪(∪i,jΛ

′
i,j). Then (Q, Λ′)

defines a binary CN derived from LJF F . Theorem 1 states that the solution set of (Q, Λ′) is
identical to that of R.

Theorem 1 Let R be an MSCN, F be its LJF, and (Q, Λ′) be the binary CN derived from F .
Let Sol be the solution set of R and Sol′ be the solution set of (Q, Λ′). Then, Sol′ = Sol.

Construction of LJF is dominated by triangulation and AssignConsToJT. Complexity of
triangulation is O(η g2 d2) [Xiang(2002)], where g binds |Vi| and d binds the number of variables
in a single constraint in Λ. Complexity of AssignConsToJT performed by all agents is O(η λ kq),
where λ binds |Λi|, k binds domain sizes for variables in V , and q binds sizes for clusters in
local JTs. Hence, the overall complexity of LJF construction is O(η g2 d2 + η λ kq). The
computation is efficient when q is small, which occurs if the global primal graph of the MSCN
is sparse. Note that the value q is known after distributed triangulation (Section 5) and before
AssignConsToJT is performed.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 13

6 Achieving Directional Interface-Consistency in LJF

To solve an MSCN using its LJF, we extend directional arc-consistency to LJF. An agent Ai is
interface-consistent relative to adjacent agent Aj if, for each config vi of Vi (vi ∈ ./R∈Λi R),
there exists a consistent config of Vj. Direct the hypertree with any agent A∗ as the root. The
LJF is locally directional interface-consistent relative to A∗ if, for every two agents Ai and
Aj where Ai is the parent of Aj , Ai is interface-consistent relative to Aj . The LJF is globally
directional interface-consistent relative to A∗ if, for every two agents Ai and Aj where Ai is the
ancestor of Aj , Ai is interface-consistent relative to Aj.

Example 8 Suppose the LJF in Fig. 4 is directed with A0 being the root. The LJF is locally
directional interface-consistent relative to A0, if A0 is interface-consistent relative to A1, A1 is
to A2, and A1 is to A3. The LJF is globally directional interface-consistent relative to A0 if, in
addition, A0 is interface-consistent relative to both A2 and A3.

When agent organization is an arbitrary tree, the system may be locally directional interface-
consistent but not globally directional interface-consistent. As a result, different agents may
choose partial solutions for their subenvs that extend into partial solutions of subenvs in ad-
jacent agents, but these partial solutions are inconsistent with each other. In other words, two
agents may assign the same shared variable with different values even though the LJF is locally
directional interface-consistent. Because the hypertree of LJF is a JT, Prop. 8 shows that lo-
cally directional interface-consistency ensures globally directional interface-consistency. It can
be proven by generalizing proof for Prop. 3.

Proposition 8 (Global directional IC) Let F be a LJF of an MSCN and be locally di-
rectional interface-consistent relative to agent A∗. Then F is globally directional interface-
consistent relative to A∗.

Procs. 6 and 7 achieve locally directional interface-consistency in F . Proc. 6 is used by Ai

to update linkage host constraints based on message from adjacent Aj .

Procedure 6 (AbsorbIntCons) When Ai performs AbsorbIntCons relative to Aj with a set
Γ = {RX}, where each RX is a constraint over a linkage X with Aj , Ai does the following:

for each linkage C with Aj with linkage host Q at Ai,
assign RQ = RQ ./ RC , where RC ∈ Γ ;
if RQ = ∅, return false;

return true;

Proc. 7 recursively propagates messages inwards along hypertree. Agent executing Proc. 7 is
referred to as A0 with local JT T0. Execution is activated by a caller, who is either an adjacent
agent, denoted by Ac, or a unique coordinator agent. Additional adjacent agents of A0 are
denoted by A1, . . . , Am, if any.

Procedure 7 (CollectIntCons) When caller calls A0 to CollectIntCons, it acts as follows:

1 for each agent Ai (i = 1, . . . , m),
2 call CollectIntCons on Ai;
3 if Ai returns ∅, return ∅;
4 receive Γi = {RC} where RC is a constraint over a linkage C with Ai;

14 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

5 perform AbsorbIntCons relative to Ai with Γi;
6 if false is returned, return ∅;
7 perform UnifyCons in local JT T0;
8 if false is returned, return ∅;
9 if Ac is an adjacent agent,
10 initialize Γc = ∅;
11 for each linkage S with Ac of linkage host Q at A0,
12 compute RS = πS(RQ);
13 add RS to Γc;
14 send Γc to Ac;
15 else return a special set ∇ to coordinator signifying successful completion;

Example 9 We illustrate CollectIntCons using LJF in Fig. 4. Suppose coordinator calls Col-
lectIntCons in agent A0. In turn, A0 calls CollectIntCons in A1, which calls CollectIntCons in
A2 and A3.

A3 performs UnifyCons by calling CollectSepCons in cluster, say, {g, h, i}, which in turn
calls CollectSepCons in cluster {d, e, g, h}. In response, {d, e, g, h} sends relation R4 (Table 2)
over {g, h} to {g, h, i}, which causes modification of the relation at {g, h, i} to R5 (Table 2).

Table 2 Relations as messages between clusters or newly assigned to clusters.

R4

b r
c t
e r
f n
g h

0 1
0 2
1 0
1 2
2 0
2 1

R5

b r s
e r v
f n p

g h i

0 1 2
0 2 1
1 0 2
1 2 0
2 0 1
2 1 0

R6

a b
c f
d e

0 0
1 1
2 2

R7

b c t

0 0 1
0 0 2
0 1 2
0 2 1
1 0 2
1 1 0
1 1 2
1 2 0
2 0 1
2 1 0
2 2 0
2 2 1

R8

a b r
c f n
d e r

0 0 1
0 0 2
1 1 0
1 1 2
2 2 0
2 2 1

Next, A3 calls DistribSepCons in {g, h, i}, which in turn calls DistribSepCons in {d, e, g, h}
with R4 (Table 2). This results in no change in the relation at {d, e, g, h}. UnifyCons at A3

returns with true. T3 has cluster relations: R1 (Table 1) for {d, e, g, h} and R5 (Table 2) for
{g, h, i}. Before completing CollectIntCons, A3 sends A1 a message containing relation R6

(Table 2) over linkage {d, e}.
Concurrently with A3, A2 also performs UnifyCons by calling CollectSepCons in cluster,

say, {a, b, j, k}, followed by calling DistribSepCons in {a, b, j, k}. During CollectSepCons, the
message from {b, c, m} to {a, b, j, k} is a universal relation over {b}, which causes no change
in {a, b, j, k}. During DistribSepCons, the message from {a, b, j, k} to {b, c, m} is the same
universal relation that causes no change in {b, c, m}. UnifyCons at A2 returns with true. Before
completing CollectIntCons, A2 sends A1 a message containing two relations with one over each
linkage. The relation over {a, b} is R6 (Table 2) and that over {b, c} is universal.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 15

After A1 receives the message from A3, it calls AbsorbIntCons, which causes relation at
linkage host {d, e, r} to be modified into relation R8 (Table 2). Similarly, after receiving the
message from A2, A1 calls AbsorbIntCons. It modifies relation at linkage host {a, b, r} into
relation R8 (Table 2) but relation at linkage host {b, c, t} remains the same as R3 (Table 1).

Subsequently, A1 performs UnifyCons by calling CollectSepCons in cluster, say, {a, b, r}, fol-
lowed by calling DistribSepCons. During CollectSepCons, message sent from {e, r, v} to {d, e, r}
is a universal relation over {e, r} and hence causes no change to constraint at {d, e, r}. Message
sent from {d, e, r} to {a, b, r} is a universal relation over {r}. Message from {b, r, s} to {a, b, r}
is a universal relation over {b, r}. Message from {c, f, t, u} to {b, c, t} is R4 (Table 2) over {c, t}
and changes relation at {b, c, t} to R7 (Table 2). Message from {b, c, t} to {a, b, r} is universal
over {b}.

During DistribSepCons, message from {a, b, r} to {d, e, r} is a universal relation over {r}.
Message from {d, e, r} to {e, r, v} is R4 (Table 2) over {e, r} and it modifies relation at {e, r, v}
to R5 (Table 2). Message from {a, b, r} to {b, r, s} is R4 (Table 2) over {b, r} and modifies
relation at {b, r, s} to R5 (Table 2). Message from {a, b, r} to {b, c, t} is a universal relation
over {b}. Message from {b, c, t} to {c, f, t, u} is R4 (Table 2) over {c, t} and causes no change to
relation at {c, f, t, u}. UnifyCons at A1 returns with true. T1 has the following cluster relations:
R1 (Table 1) for {c, f, t, u}, R7 (Table 2) for {b, c, t}, R8 (Table 2) for {d, e, r} and {a, b, r}, R5

(Table 2) for {e, r, v} and {b, r, s}. Before completing CollectIntCons, A1 sends A0 a message
containing relation R6 (Table 2) over linkage {c, f}.

After A0 receives the message, it calls AbsorbIntCons which replaces constraint at linkage
host {c, f, n} by R8 (Table 2). Afterwards, A0 performs UnifyCons by calling CollectSepCons
in cluster, say, {f, n, p}, followed by calling DistribSepCons. During CollectSepCons, message
from {c, f, n} to {f, n, p} is R4 (Table 2) over {f, n}. It modifies relation at {f, n, p} into R5

(Table 2). During DistribSepCons, message from {f, n, p} to {c, f, n} is R4 (Table 2) over
{f, n} and has no effect at {c, f, n}. UnifyCons at A0 returns with true. T0 is regionally fully
arc-consistent with the following cluster relations: R8 (Table 2) for {c, f, n} and R5 (Table 2)
for {f, n, p}. As the result, A0 terminates CollectIntCons and returns ∇.

Note that our emphasis is to present and illustrate the general algorithm, rather than
covering all possible improvements for specific problem instances. For example, LT between A1

and A3 has a single linkage, a degenerated case. As a result, UnifyCons performed by A3 can
be simplified than illustrated above. Elaboration of such improvements is beyond scope of this
paper.

Two important properties of CollectIntCons are established below: Lemma 1 says that
relations at consistent clusters are equivalent when projected to their intersection. It is used in
the proof of Lemma 2.

Lemma 1 (Projection) Let Q and C be consistent clusters in a JT representation of a CN
and S = Q ∩ C 6= ∅. Then πS(RQ) = πS(RC).

Lemma 2 establishes properties of message Γc that A0 sends to Ac during CollectIntCons.
Property 1 says that Γc represents local CN constraints projected to the agent interface. Prop-
erty 2 asserts consistency among elements of Γc.

Lemma 2 (Message) Let T0 be regionally fully arc-consistent. Then execution of lines 10
through 13 of CollectIntCons results in Γc such that

16 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

1. ./R∈Γc R = πIc(./R′∈Λ0 R′) where Ic = V0 ∩ Vc, and
2. the linkage tree L0,c associated with Γc is regionally fully arc-consistent.

Theorem 2 shows that after execution of CollectIntCons, the LJF reaches consistency at
the local JT level, at the agent interface level, as well as at the agent organization level. These
levels of consistency ensure that the MSCN solution can be obtained by efficient propagation
of partial solutions among agents, detailed in the next section.

Theorem 2 (LJF Consistency) Let F = (A, V, Ω, H, T, ∆, L, Φ) be a LJF of an MSCN and
CollectIntCons be called on agent A0 ∈ A.

F has no solution iff A0 returns ∅. Otherwise, A0 returns ∇ and the following holds:

1. F is globally directional interface-consistent relative to A0.
2. Each Ti is regionally fully arc-consistent.
3. Each linkage tree Li,j is regionally fully arc-consistent.

7 Solving MSCN through LJF

As shown in Theorem 2, if A0 returns ∇ at the end of CollectIntCons, the MSCN has solution.
In this section, we show that, in that case, a solution will be obtained through another round
of message passing along the hypertree. The denotation of a calling agent Ac, the executing
agent A0, and its other adjacent agents A1, ..., Am, introduced in Section 6 will be used.

In response to message Γ from Ac, representing a partial solution over the interface, A0

executes Proc. 8 (from line 3) to generate a partial solution consistent with Γ for its subenv.

Procedure 8 (GetLocalSol) When agent A0 performs GetLocalSol with Γ = {RX}, where
each RX is a singleton constraint (consisting of one config) over a linkage X with Ac, it does
the following:
1 if Γ = ∅,
2 call DistribSepCons with singleton = true in any cluster in T0;
3 else
4 for each linkage S with Ac (whose host cluster is Q),
5 assign RQ = RQ ./ RS , where RS ∈ Γ ;
6 call DistribSepCons with singleton = true in the host of any linkage with Ac;

Note that after DistribSepCons (lines 2 and 6), RQ will be a singleton. Proc. 9 below is
executed recursively by agents along the hypertree. It uses Proc. 8 to propagate partial solutions
over agent interfaces.

Procedure 9 (DistribSol) When caller calls A0 to DistribSol, it does the following:
1 if caller is an adjacent agent,
2 receive Γ = {RX} where each RX is a singleton constraint over linkage X with caller;
3 perform GetLocalSol with Γ ;
4 else perform GetLocalSol with ∅;
5 for each agent Ai (i = 1, . . . , m),
6 initialize Γ ′ = ∅;
7 for each linkage S with Ai (whose host cluster is Q), add πS(RQ) to Γ ′;
8 call DistribSol on Ai with Γ ′;

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 17

Algorithm 1 combines procedures introduced above to solve the DisCSP. It is executed by
the coordinator.

Algorithm 1 (SolveDisCSP)
choose an agent A∗ arbitrarily;
call CollectIntCons in A∗;
if A∗ returns ∅, return failure;
else, call DistribSol in A∗;

Example 10 To illustrate SolveDisCSP, suppose coordinator executes by choosing A∗ = A0.
Example 9 illustrated CollectIntCons. We continue with call of DistribSol in A0. A0 runs Get-
LocalSol by first calling DistributeSepSolution at, say, {f, n, p}. This produces partial solution
R11 for {f, n, p} first and then R10 (Table 3) for {c, f, n} at T0.

Table 3 Relations generated during DistribSol.

R9

c f t u

2 2 0 1
2 2 1 0

R10

a b r
b c m
b c t

c f n
d e r

2 2 1

R11

b r s
e r v

f n p

2 1 0

R12

a b
b c
c f
d e

2 2

R13

a b j k
c f t u

d e g h

2 2 1 0

R14

g h i

1 0 2

Next, A0 calls A1 to DistribSol with message containing relation R12 (Table 3) over {c, f}.
In response, A1 modifies its relation in linkage host {c, f, t, u} to R9. It then calls DistribSep-
Cons in host {c, f, t, u}. The resultant partial solution at each cluster of T1 are as follows: R13

over {c, f, t, u}, R10 over {b, c, t}, {a, b, r}, R11 over {b, r, s}, R10 over {d, e, r}, and R11 over
{e, r, v}.

After that, A1 calls A2 to DistribSol with message containing relations R12 over {a, b} and
{b, c}. In response, A2 generates partial solutions R13 (Table 3) over {a, b, j, k} and R10 over
{b, c, m} at T2.

Similarly, A1 calls A3 to DistribSol with message containing relation R12 over {d, e}. In
response, A3 generates partial solutions R13 over {d, e, g, h} and R14 over {g, h, i} at T3.
SolveDisCSP now terminates successfully and natural join of the above partial solutions from
all agents is a solution:

(a = 2, b = 2, c = 2, d = 2, e = 2, f = 2, g = 1, h = 0, i = 2, j = 1,

k = 0, m = 1, n = 1, p = 0, r = 1, s = 0, t = 1, u = 0, v = 0).
Note that for agent privacy, this join operation is not physically performed.

Theorem 3 below establishes completeness of SolveDisCSP. Lemma 3 is used in its proof.
Lemma 3 shows that arc-consistency in JT representations is preserved under natural join.

Lemma 3 Let RQ, R′
Q, RC and R′

C be relations such that Q′ ⊆ Q, C′ ⊆ C, Q∩C = Q′∩C′ =
S 6= ∅, πS(RQ) ⊆ πS(RC), and πS(RQ′) ⊆ πS(RC′). Then, we have

πS(RQ ./ RQ′) ⊆ πS(RC ./ RC′).

18 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

In Lemma 3, Q′ and C′ can be viewed as a pair of adjacent clusters in a JT representation
T with separator S. πS(RQ′) ⊆ πS(RC′) signifies that Q′ is consistent relative to C′. Similarly,
Q and C are a pair of adjacent linkages in a LT with separator S, and Q is consistent relative
to C. Lemma 3 asserts that relative consistency between Q′ and C′ is preserved after natural
join. This is used in the proof of Theorem 3.

Theorem 3 Let F = (A, V, Ω, H, T, ∆, L, Φ) be a LJF of an MSCN and SolveDisCSP be ex-
ecuted. Then failure is returned iff F has no solution. Otherwise, R′ = ./i (./Q∈Ti RQ) is a
singleton such that R′ ⊆ Sol, where Sol is the solution set of the MSCN.

Let η be the number of agents, t be the maximum number of clusters in a local JT, q be the
maximum size of clusters, and k bind domain sizes for variables in V . After CollectIntCons com-
pletes, SolveDisCSP is backtrack-free. Hence, computation is dominated by UnifyCons during
CollectIntCons. UnifyCons has no more than twice the amount of computation of CollectSep-
Cons, whose complexity is O(t k2q) (Section 4). Therefore, the complexity of SolveDisCSP is
O(η t k2q). This is summarized below.

Proposition 9 (Complexity of SolveDisCSP) Let F be a LJF of an MSCN, η be the num-
ber of agents, t be the maximum number of clusters in a local JT, q be the maximum size of clus-
ters, and k bind domain sizes for variables. The time complexity of SolveDisCSP is O(η t k2q).

Note that SolveDisCSP preserves agent privacy. For experimental implementation and em-
pirical evaluation of SolveDisCSP, see [Mohamed(2011)].

8 Example: Distributed University Timetabling

Many applications of DisCSP exist, including sensor network coordination [Bejar et al(2005)],
transportation vehicle scheduling [Calisti and Neagu(2004)], and meeting scheduling for partic-
ipants [Wallace and Freuder(2005)]. In this section, we demonstrate the application of MSCN
for solving a distributed university timetabling problem (DisUTTP), as specified below.

A university has a number of departments, and each offers a number of courses in a given
semester. The semester is divided into several weeks. Courses are scheduled for one week and
the timetable is repeated for each week. Each week is divided into a set of prefixed time slots
of equal length. Each course consists of one or more lectures per week. Each lecture lasts for
one time slot and occupies a lecture room for the slot. Scheduling is subject to four types of
constraints.

1. (Room-slot) No two lectures can be offered in the same room at the same slot.
2. (Instructor) Lectures by the same instructor cannot be scheduled into the same slot.
3. (Course) Lectures of the same course cannot be offered at the same slot.
4. (Course group) If two courses are to be taken by students in the same semester according

to program requirement, then their lectures cannot be scheduled into the same slots.

Traditionally, timetabling is solved centrally, where constraints are collected from depart-
ments and rooms are centrally managed. Collecting departmental constraints centrally is subject
to cost of communication, time delay, and inflexibility.

To solve the problem as a DisUTTP, each department is allocated with a set of rooms,
and timetables lectures of its courses. Due to constraints among courses managed by different

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 19

departments, timetables of departments involved must be coordinated. For instance, students
in department Dept1 are required to take courses Crs1 and Crs2 in a semester, while students
in Dept2 are required to take Crs2 and Crs3 in the same semester. Hence, Crs2 must be
scheduled identically at both departments, its lectures cannot be scheduled into the same slots
with lectures of Crs1 at Dept1, and nor be scheduled into the same slots with lectures of Crs3

at Dept2. That is, the two departments must coordinate timetabling of Crs1, Crs2 and Crs3.
Solving timetabling as DisUTTPs can avoid communicating local constraints centrally,

shortens scheduling process, and improves flexibility. To do so, we first encode the DisUTTP
into an MSCN. As the weekly timetable is repeated, scheduling can focus on lectures in a week
over prefixed slots. Each lecture during the week is represented by a variable x. The collection
of such variables form the set V of env variables.

Each x is associated with a tuple (Cx, Ix, tx, rx, COx). Course ID Cx specifies the course
that the lecture x belongs to. Instructor ID Ix specifies the instructor to teach the course.
Element tx is itself a variable, representing the slot that x will occur, and is associated with the
domain Dtx . Let ST denote the set of slots in a week. Dtx is a heuristically determined, small
subset of ST . Element rx is also a variable, representing the room where x will be offered, and is
associated with the domain Drx . Let RM denote the set of rooms allocated to the department
that is in charge of scheduling x. Drx is a heuristically determined, small subset of RM . COx is
a set of IDs for courses to be co-taken with Cx. From the associated tuple (Cx, Ix, tx, rx, COx),
the domain Dx of x is obtained as the Cartesian product Dx = Dtx × Drx , representing all
possible ways in which the lecture may be timetabled.

Once variables in each subenv (one department) are determined, constraints between them
are specified to form the local CN. This amounts to connecting each pair of constrained lecture
variables x and y, elaborated below in relation to constraint types:

1. (Room-slot) If x and y satisfy Dx ∩ Dy 6= ∅, their constraint is (rx 6= ry) ∨ (tx 6= ty).
2. (Instructor) If x and y satisfy Ix = Iy , their constraint is tx 6= ty.
3. (Course) If x and y satisfy Cx = Cy, their constraint is tx 6= ty.
4. (Course group) If x and y satisfy Cx ∈ COy, their constraint is tx 6= ty.

To provide readers with a more concrete idea, we describe the MSCN for a simulated Dis-
UTTP that involves 8 departments. Each department offers between 8 and 13 courses for the
semester, taught by between 5 and 9 instructors. Each department has between 1 and 3 courses
to be taken by its own students. Each department also has between 1 and 3 courses to be taken
by students in other departments. Each course has 2 or 3 lectures per week. This amounts to
a total of 193 lectures, taught by a total of 53 instructors. As for the resources, 9 weekly time
slots and 35 lecture rooms are available for lectures. Each department manages 3 to 5 rooms.

The MSCN for the DisUTTP consists of 8 agents each responsible for one department and
associated with a local CN. Each local CN contains between 20 to 31 variables. Each variable
represents a lecture, either offered by the department, or offered by another department but
to be scheduled in coordination. The domain size for each lecture is |Dx| = 6. The local CN
with the most constraints has 29 variables and 95 constraints. The local CN with the least
constraints has 21 variables and 52 constraints. Fig. 5 shows the hypertree of the MSCN.

Each local JT of the LJF contains between 7 and 10 clusters. The largest cluster size in local
JTs is 8, whose cluster space is 1.68 × 106. The MSCN is solved using a Dell Precision T7400
Workstation with 8 cores at 3.20 GHz. Each agent is run in one core. The total computation
time to solve the MSCN is 615 seconds.

20 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

G3

G7

G1 G5

G0

G2 G6

G4

Fig. 5 The hypertree of MSCN for the example DisUTTP

9 Hypertree Agent Organization

9.1 Identifying Hypertree Existence

The hypertree of an MSCN plays the organizational role for the system. Since not every DisCN
satisfies condition (1) of Def. 1, we consider identification of hypertree existence. We assume
the existence of a coordinator agent Co who knows the border between each pair of agents in
A. Co knows nothing about private variables of any agent. Under this condition, we propose
Algorithm 2 for Co to determine the existence of a hypertree. The idea is for Co to create a
dependency graph among shared variables, and to determine hypertree existence based on the
relation between triangulated graphs and JTs (Section 2.2). For each agent Ai, we denote set
Wi = ∪j 6=i Iij as its boundary. That is, Wi contains shared variables of Ai relative to all other
agents. We refer to W = {Wi|i = 0, ..., η− 1} as the boundary collection of the DisCN.

Algorithm 2 (HasHypertree)
for each agent Ai, Wi = boundary of Ai;
create graph Gb with nodes labeled by elements of ∪iWi;
for each Ai, connect each pair of nodes in Wi;
if Gb is not triangulated, return no-hypertree;
identify each cluster of nodes maximally pairwise connected;
if a cluster C exists such that C 6= Wi for each i, return no-hypertree;
return has-hypertree;

We refer to Gb as the boundary graph of the DisCN.

Example 11 For DisCN in Fig. 2, Co knows non-empty borders between agents:

I01 = {c, f}, I02 = {c}, I12 = {a, b, c}, I13 = {d, e}.

Co derives W0 = {c, f}, W1 = {a, b, c, d, e, f}, W2 = {a, b, c}, and W3 = {d, e}. Gb is shown in
Fig. 6 (a) and has a single cluster. HasHypertree returns has-hypertree.

(c)

g

a

b e

d
c

f
h

u,y

h,y,z h,v,w

h,w,u,y,z

h,v

W’ W’

W’ W’W’

0 1

342

b

a

c y

z
w

u

f v
(b)

h
(a)

d

e (d)

g

a

b e

d
c

f
h

(e)

Fig. 6 Graph Gb for Examples 11 (a), 12 (b), and 14 (c). Triangulated graph (d) and JT (e) for Example 14.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 21

Example 12 A DisCN over 5 agents has non-empty borders between agents as follows:

I01 = {u, y}, I02 = {y}, I12 = {h, y, z}, I13 = {w}, I14 = {h}, I24 = {h}, I34 = {v}.

Co derives W0 = {u, y}, W1 = {h, w, u, y, z}, W2 = {h, y, z}, W3 = {v, w}, and W4 = {h, v}.
Gb is shown in Fig. 6 (b). It is triangulated and has two clusters. One of them, {h, v, w}, does
not corresponds to any Wi. Hence, HasHypertree returns no-hypertree.

Prop. 10 establishes soundness of HasHypertree.

Proposition 10 A hypertree exists for a DisCN iff HasHypertree returns has-hypertree.

One limitation of HasHypertree is that Co has the knowledge of all shared variables. We
expect to relax this requirement in future research.

9.2 Construction of Hypertree Agent Organization

Next, we consider construction of hypertree for a given DisCN, assuming that one exists. We
assume an integrator agent Itr, known to each agent in A. Recall that each agent Ai knows each
other agent Aj if they have a non-empty border Iij 6= ∅. We refer to such Aj as an associate of
Ai. We assume that each agent can communicate with its associates. Recall also that adjacent
agents refer to those who are adjacent on the hypertree.

To construct hypertree distributively, Algorithm 3 specifies actions by Itr and each agent.
It is based on the well-known maximum spanning tree algorithm for JT construction (see, e.g.,
[Xiang(2002)]), but extends the method into distributed.

Algorithm 3 (SetHypertree)

each agent registers with Itr;
Itr sets counter cnt to number of registered agents;
Itr randomly selects Ai, notifies Ai as winner, and sets cnt = cnt − 1;
Ai announces winner status to each associate;
while cnt > 0,

Itr asks each winner to bid for right to select new winner;
for each winner Ai,

for each non-winner associate Aj , Ai computes wij = |Iij|;
Ai makes bid wi = maxj wij and

denotes corresponding associate as winner candidate;
Ai sends bid wi to Itr;

after receipt of all bids, Itr selects Ak such that wk = maxiwi;
Itr notifies Ak to select new winner;
Ak notifies its winner candidate, and they denote each other as adjacent;
the new winner announces its status to each associate and Itr;
Itr sets cnt = cnt − 1;

Itr announces halt and halts;
upon receipt, each agent halts;

22 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

Example 13 Consider the DisCN in Example 11 and Fig. 2. After agent registration, suppose
Itr selects A0 to be the first winner. A0 will announce to associates A1 and A2.

When Itr asks A0 to bid, it bids with w0 = max(w01, w02) = max(2, 1) = 2, and denotes A1

as winner candidate. Subsequently, Itr notifies A0 to select, A0 notifies A1 to be new winner,
and A1 announces to associates A0, A2, A3, and Itr. A0 and A1 now regard each other as
adjacent on hypertree.

Next Itr asks A0 and A1 to bid. A0 bids with w0 = 1 and A1 bids with w1 = 3. Both
denote A2 as candidate. Itr notifies A1, A1 notifies A2 as the new winner, and A2 announces
to associates A0, A1, and Itr. A1 and A2 now regard each other as adjacent on hypertree.

Afterwards, Itr asks A0, A1, and A2 to bid. Bids for A0, A1 and A2 are w0 = 0, w1 = 2,
and w2 = 0, and their candidates are null, A3, and null, respectively. Itr notifies A1, and A1

notifies A3 as the new winner. A1 and A3 now regard each other as adjacent on hypertree.
SetHypertree then terminates with the hypertree in Fig. 2 (b) constructed.

Prop. 11 shows that after SetHypertree, a hypertree emerges for the DisCN.

Proposition 11 Let SetHypertree be run in a DisCN where hypertree exists. After it halts, a
hypertree is formulated such that each agent knows its adjacent agents in the hypertree.

Prop. 11 can be proven by noting the (distributed) correspondence of SetHypertree with the
well-known maximum spanning tree algorithm for JT construction. When an agent becomes a
winner, it is equivalent to adding its subenv to the current partial hypertree.

From Itr’s own notifications and winner announcements, Itr can infer the hypertree topol-
ogy in terms of agent adjacency, as well as the cardinality of each agent interface. Itr does not,
however, have the knowledge of agent subenvs, nor content of agent interfaces.

10 Converting DisCN into MSCN

Next, we consider DisCNs where HasHypertree returns no-hypertree. These DisCNs violate
Def. 1 and are not MSCNs. SolveDisCSP is not applicable to them. We study how to convert
them into MSCNs so that SolveDisCSP can be applied.

HasHypertree returns no-hypertree when boundary graph Gb is not triangulated, or Gb is
triangulated but has a cluster (or more) that is not contained in any agent boundary (Exam-
ple 12). To convert such a DisCN into MSCN, we propose to triangulate Gb (if it is not so)
and then enlarge some agent boundaries, such that if HasHypertree is applied to the new set
of boundaries, has-hypertree will be returned.

Enlargement of some boundaries means inserting shared variables that they do not originally
contain. This has the potential to disclose those variables, their domains, and constraints they
participate to agents who do not originally have such knowledge. To minimize the impact, we
assume that newly inserted variables and their domain values will be obfuscated by codenames,
as practiced by other DisCSP algorithms, e.g., DPOP [Leaute et al(2010)]. In the following, we
focus on triangulation and boundary enlargement.

Our criterion in conversion is to minimize the number of newly inserted shared variables.
Suppose Co executes HasHypertree and finds that Gb is not triangulated. It can triangulate Gb

into G′
b by node elimination. Note that no matter how Gb is triangulated, every boundary Wi

is contained in at least one cluster in G′
b. From clusters of G′

b, a new boundary set

W′ = {W ′
i |i = 0, ..., η− 1}

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 23

is defined. W′ specifies a new set of subenvs (each obtained by the union of W ′
i and the set of

private variables of Ai), which can be organized into a hypertree. The smaller the number of fill-
ins produced during triangulation, the less number of shared variables will be inserted into W ′

i s.
Hence, a triangulation with the minimal number of fill-ins is consistent with minimization of
newly inserted shared variables. Since optimal triangulation is NP-hard [Yannakakis(1981)], we
compromise with a greedy heuristics. To choose the next node to eliminate during triangulation,
we apply the min-fill-in heuristic (select the node with the minimum number of fill-ins).

After boundary graph Gb is triangulated into G′
b, it is necessary to redefine the boundary

for each agent. Example 14 illustrates the technical issue in doing so.

Example 14 (Boundary) Consider a DisCN with the following boundary set:

W = {W0 = {a, b, c}, W1 = {c, d, e}, W2 = {e, f, g}, W3 = {b, g, h}}.

Its boundary graph Gb is shown in Fig. 6 (c). Gb is not triangulated and can be triangulated into
G′

b in (d) by adding fill-in < b, e >. However, G′
b contains two clusters {b, c, e} and {b, e, g},

that do not equal to any Wi.
The similar happens in Example 12, where cluster {h, w, v} in Gb does not equal to any Wi.

However, {h, w, v} is a superset of W4, and can be assigned to A4 as its enlarged boundary.
Here, neither {b, c, e} nor {b, e, g} is a superset of any Wi.

We propose Algorithm 4, to be executed by coordinator agent Co, to redefine (enlarged)
agent boundaries. After triangulating Gb (if it is non-triangulated) into G′

b, clusters of G′
b are

organized into a JT T ′. If a cluster C in T ′ does not equal to a Wi nor is a superset of any,
C is merged into an adjacent cluster C′. This is done recursively until the new cluster C′ is a
superset of a Wi, and it is assigned to Ai as its enlarged boundary.

Algorithm 4 (EnlargeBoundary) Let W be the boundary set and Gb be the boundary graph,
such that HasHypertree returns no-hypertree.

if Gb is not triangulated, triangulate it into G′
b;

else G′
b = Gb;

organize clusters of G′
b into a JT T ′;

initialize W′ to W;
for each cluster C in T ′ that is not a superset of any set in W′,

while C is not a superset of any set in W′,
merge an adjacent cluster C′ into C in T ′;

for each cluster C in T ′ that is not equal to any set in W′,
remove W ′

i from W′ such that |W ′
i | = maxWk⊂C |Wk|;

add cluster C to W′ and denote it by W ′
i ;

return W′;

Example 15 Consider the DisCN in Example 12. Its Gb is Fig. 6 (b) and is triangulated.
Apply Algorithm 4 and G′

b = Gb. The JT T ′ has two clusters {h, u, w, y, z} and {h, v, w}.
Initially,

W′ = {W ′
0 = {u, y}, W ′

1 = {h, w, u, y, z}, W ′
2 = {h, y, z}, W ′

3 = {v, w}, W ′
4 = {h, v}}.

24 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

The first for loop finds no cluster in T ′ that satisfies the condition. Cluster C = {h, v, w} is
processed by the second for loop. By breaking ties between W ′

3 and W ′
4 arbitrarily, C replaces

W ′
3 in W′. The new boundary collection W′ is

{W ′
0 = {u, y}, W ′

1 = {h, w, u, y, z}, W ′
2 = {h, y, z}, W ′

3 = {h, v, w}, W ′
4 = {h, v}}.

Note that a shared variable h is inserted to boundary W ′
3. A hypertree for the DisCN that is

isomorphic to the JT in Fig. 6 (e) can then be constructed.

Example 16 (More on EnlargeBoundary) Consider Algorithm 4 applied to the DisCN in
Example 14. G′

b is shown in Fig. 6 (d), the initial JT T ′ is shown in Fig. 7 (a), and initially,

c,d,e

C2
C1

C1

C2

a,b,c

b,g,h

a,b,c,e

(a) (b)b,g,h e,f,g

c,d,eb,c,e

b,e,g b,e,f,g

Fig. 7 (a) Initial JT T ′ for Example 15. (b)Updated JT T ′.

W′ = {W ′
0 = {a, b, c}, W ′

1 = {c, d, e}, W ′
2 = {e, f, g}, W ′

3 = {b, g, h}}.

The first for loop must process clusters C1 = {b, c, e} and C2 = {b, e, g}. Suppose cluster
{a, b, c} is merged into C1, and {e, f, g} is merged into C2. The updated JT T ′ is shown in Fig. 7
(b). The second for loop will replace W ′

0 by C1 and W ′
2 by C2. The new boundary collection is

W′ = {W ′
0 = {a, b, c, e}, W ′

1 = {c, d, e}, W ′
2 = {b, e, f, g}, W ′

3 = {b, g, h}}.

A hypertree for the DisCN that is isomorphic to the JT in Fig. 7 (b) can then be constructed.
Note that from W′, new borders between agents are easily defined:

I01 = {c, e}, I02 = {b, e}, I03 = {b}, I12 = {e}, I23 = {b, g}.

Prop. 12 establishes the key properties of Algorithm 4. Its practical implication is the
following: Suppose a DisCN is not an MSCN. If Co executes HasHypertree, followed by En-
largeBoundary, then the DisCN, modified based on the new boundary collection, is an MSCN.

Proposition 12 (Make MSCN) Let W be the boundary collection of a DisCN and Gb be
the boundary graph, such that HasHypertree returns no-hypertree. Let W′ be the new boundary
collection returned by applying Algorithm 4 to Gb. Then the following hold:

1. |W′| = |W|.
2. For each agent Ai, W ′

i ⊇ Wi, where W ′
i ∈ W′ and Wi ∈ W.

3. A JT exists with W′ as the set of clusters.

In the while loop of EnlargeBoundary, an adjacent cluster C′ needs to be selected to merge
into C. Note that the merging is equivalent to adding fill-ins to G′

b. Hence, the equivalent to
min-fill-in heuristic is to prefer C′ that can terminate while loop immediately and |C′ \ C| is
minimal.

Similar to HasHypertree, one limitation of EnlargeBoundary is that Co has the knowledge
of all shared variables. We leave its relaxation to future research.

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 25

11 Comparison with JT-based Framework

We discuss relation between our MSCN-LJF framework and JT-based framework for solving
DisCSPs, e.g., [Vinyals et al(2010),Brito and Meseguer(2010)].

Both frameworks organize subenvs into JTs. In [Brito and Meseguer(2010)], the JT is built
as in [Paskin et al(2005)]. Since method in [Paskin et al(2005)] distributes variables among
agents globally, it will disclose private variables. In [Vinyals et al(2010)], the JT is built from
a pseudo-tree in a centralized fashion. Since each node in the pseudo-tree corresponds to a
variable, it will also disclose private variables. For MSCN-LJF framework, the JT subenv orga-
nization is stated in Def. 1 (1). Our methods to build the hypertree (Sections 9 and 10) do not
disclose private variables and are able to preserve agent privacy. Our methods require Co and
Itr agents, where Co knows all shared variables. These are expected to be relaxed in future
research.

Once the JT subenv organization is established, variables in a subenv is treated as a single
cluster by the JT-based framework. Each inter-agent message is over a separator of such clusters.
For the DisCN in Fig. 2, runtime representation is isomorphic to (b) with each Gi replaced by
cluster Vi. On the other hand, in the MSCN-LJF framework, variables in each subenv are
decomposed into a local JT. Each agent interface is also decomposed into a LT. Not only local
inference can be performed at the level of clusters of local JTs, each inter-agent message is
over a linkage. The decomposition at both subenv and agent interface levels allows MSCN-LJF
framework to be more efficient.

Formally, let η be the number of agents, g be the maximum number of variables in a
subenv, and k bind domain sizes for variables. Generalizing complexity result of Section 4, time
complexity of solving DisCSP in JT-based framework is O(η kg). Under MSCN-LJF framework,
let q be the maximum size of clusters in local JTs. Since g binds number of clusters in local JTs,
extending Prop. 9, time complexity of SolveDisCSP is O(η g k2q). As a result, computation
time in JT-based framework grows exponentially with the size of subenv. With MSCN-LJF
framework, it only grows linearly, when q value remains the same.

12 Conclusion

The contribution of this work is the proposal of a new algorithmic framework, MSCNs, for
solving DisCSPs with complex local problems. A MSCN is converted into a LJF based decom-
position, and is solved by a complete algorithm. Complexity of the algorithm is linear on the
number and size of local problems, and is exponential on cluster size in local JT decomposition.
Although not every DisCN is naturally an MSCN, the issue of converting such DisCNs into
MSCNs is resolved algorithmically.

Our method differs from existing methods for complex local problems. A number of tech-
niques are proposed in [Burke(2008)] that are intended to be used with any centralized local
solver. We present an algorithmic framework where local computation and inter-agent mes-
sage passing are seamlessly combined and the former directly contributes to efficiency of the
latter. Some of the ideas in [Burke(2008)] are implicitly embedded in our framework, e.g.,
interchangeability. Work in [Maestre and Bessiere(2004),Ezzahir et al(2007)] extends ABT to
address complex local problems, while we propose a new algorithmic framework based on LJFs.

26 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

In comparison with JT-based framework, the MSCN-LJF framework is more efficient and pre-
serves agent privacy.

To identify whether a DisCN is naturally a MSCN and to convert a DisCN into an MSCN,
our algorithms require a coordinator agent with access of all shared variables. This requirement
is expected to be relaxed through future research. Another direction of future research is to
extend the MSCN-LJF framework to DisCOPs.

References

[Bejar et al(2005)] Bejar R, Domshlak C, Fernandez C, Gomes C, Krishnamachari B, Selman B, Valls M (2005)
Sensor networks and distributed CSP: communication, computation and complexity. Artificial Intelligence
161(1-2):117–147

[Bessiere et al(2005)] Bessiere C, Maestre A, Brito I, Meseguer P (2005) Asynchronous backtracking without
adding links: a new member in the ABT family. Artificial Intelligence 161(1-2):7–24

[Brito and Meseguer(2010)] Brito I, Meseguer P (2010) Cluster tree elimination for distributed constraint op-
timization with quality guarantees. Fundamenta Informaticae 102:263–286

[Burke(2008)] Burke D (2008) Exploiting problem structure in distributedconstraint optimization with complex
local problems. PhD thesis, U. College Cork, Ireland

[Calisti and Neagu(2004)] Calisti M, Neagu N (2004) Constraint satisfaction techniques and software agents.
In: Proc. Agents and Constraints Workshop, pp 1–12

[Dechter(2003)] Dechter R (2003) Constraint Processing. Morgan Kaufmann
[Dechter and Pearl(1988)] Dechter R, Pearl J (1988) Network-based heuristics for constraint-satisfaction prob-

lems. Artificial Intelligence 34:1–38
[Dechter and Pearl(1989)] Dechter R, Pearl J (1989) Tree clustering for constraint networks. Artificial Intelli-

gence 38(3):353–366
[Ezzahir et al(2007)] Ezzahir R, Belaissaoui M, Bessiere C, Bouyakhf E (2007) Compilation formulation for

asynchronous backtracking with complex local problems. In: Proc. Inter. Symp. Computational Intelligence
and Intelligent Informatics, pp 205–211

[Hirayama and Yokoo(2005)] Hirayama K, Yokoo M (2005) The distributed breakout algorithms. Artificial In-
telligence 161(1-2):89–116

[Jensen and Nielsen(2007)] Jensen F, Nielsen T (2007) Bayesian Networks and Decision Graphs (2nd Ed.).
Springer

[Leaute et al(2010)] Leaute T, Ottens B, Faltings B (2010) Ensuring privacy through distributed computation
in multiple-depotvehicle routing problems. In: Proc. ECAI Workshop on Artificial Intelligenceand Logistics,
pp 25–30

[Maestre and Bessiere(2004)] Maestre A, Bessiere C (2004) Improving asynchronous backtracking for dealing
with complex local problems. In: Proc. 16th European Conf. on Artificial Intelligence, pp 206–210

[Meisels and Zivan(2007)] Meisels A, Zivan R (2007) Asynchronous forward-checking for DisCSPs. Constraints
12(1):131–150

[Modi et al(2005)] Modi P, Shen W, Tambe M, Yokoo M (2005) Adopt: asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligences 161(1-2):149–180

[Mohamed(2011)] Mohamed Y (2011) An empirical study of distributed constraint satisfaction algorithms.
Master’s thesis, University of Guelph

[Paskin et al(2005)] Paskin M, Guestrin C, McFadden J (2005) A robust architecture for distributed inference
in sensor networks. In: Proc. Information Processing in Sensor Networks, pp 55–62

[Petcu and Faltings(2005)] Petcu A, Faltings B (2005) A scalable method for multiagent constraint optimiza-
tion. In: Proc. 19th Inter. Joint Conf. on Artificial Intelligence, pp 266–271

[Silaghi and Faltings(2005)] Silaghi M, Faltings B (2005) Asynchronous aggregation and consistency in dis-
tributed constraint satisfaction. Artificial Intelligence 161(1-2):25–54

[Vinyals et al(2010)] Vinyals M, Rodriguez-Aguilar J, Cerquides J (2010) Constructing a unifying theory of
dynamic programming DCOP algorithms via the generalized distributive law. J Autonomous Agents and
Multi-Agent Systems 22(3):439–464

[Wallace and Freuder(2005)] Wallace R, Freuder E (2005) Constraint-based reasoning and privacy-efficiency
tradeoffs in multi-agent problem solving. Artificial Intelligence 161(1-2):209–227

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 27

[Xiang(2002)] Xiang Y (2002) Probabilistic Reasoning in Multiagent Systems: A Graphical Models Approach.
Cambridge University Press, Cambridge, UK

[Xiang and Hanshar(2010)] Xiang Y, Hanshar F (2010) Comparison of tightly and loosely coupled decision
paradigms in multiagent expedition. International J Approximate Reasoning 51:600–613

[Xiang et al(1993)] Xiang Y, Poole D, Beddoes MP (1993) Multiply sectioned Bayesian networks and junction
forests for large knowledge based systems. Computational Intelligence 9(2):171–220

[Yannakakis(1981)] Yannakakis M (1981) Computing the minimum fill-in is NP-complete. SIAM J of Algebraic
and Discrete Methods 2(1)

[Zhang et al(2005)] Zhang W, Wang G, Xing Z, Wittenburg L (2005) Distributed stochastic search and dis-
tributed breakout: properties, comparison and applications to constraint optimization problems in sensor
networks. Artificial Intelligence 161(1-2):55–87

Appendix 1: Proofs

Proof of Proposition 1
1. First, we show that each element of Sol is a solution. Let v be a config in Sol. Then, for

each constraint RX ∈ Λ, we have πX (v) ∈ RX . Hence, v satisfies every constraint.
Next, we show that every solution is in Sol. Suppose that there exists a solution v′ 6∈ Sol.

Since for each constraint RX ∈ Λ, πX (v′) ∈ RX holds, we have v′ = ./RX∈Λ πX(v′). This
implies v′ ∈ Sol: a contradiction.

2. The second statement follows directly from the first. �

Proof of Proposition 2
Consider adjacent clusters Q and C in T with separator S. Their relation variables in

(Q, Λ′) are vQ and vC with domains RQ and RC, respectively. Each partial solution x of
(Q, Λ′) over {vQ, vC} satisfies πQ(x) ∈ RQ, πC(x) ∈ RC , and πS(πQ(x)) = πS(πC(x)). Since
each x′ ∈ RQ ./ RC satisfies πQ(x′) ∈ RQ, πC(x′) ∈ RC , and πS(πQ(x′)) = πS(πC(x′)),
the project-equal constraint πS(q) = πS(c) is equivalent to RQ ./ RC . By substituting each
project-equal constraint πS(q) = πS(c) in Λ′ with RQ ./ RC, applying Prop. 1 to (Q, Λ′), and
discounting multiple occurrences of the same relation RQ due to idempotency of natural join,
we obtain the solution set of (Q, Λ′) as ./Q∈T RQ.

Since RQ is obtained by joining constraints assigned to Q and each constraint in Λ is assigned
to one cluster in T , we have Sol′ = ./Q∈T RQ = ./R∈Λ R = Sol.

�

Proof of Proposition 3
Let Q and C be clusters in T , where Q is an ancestor of C. We prove that Q is consistent

relative to C by induction on the length l of path from Q to C. When l = 1, Q is the parent of
C and Q is consistent relative to C by locally directional arc-consistency.

Assume that Q is consistent relative to C when l ≤ k and consider l = k + 1. Let the child
cluster of Q on the path from Q to C be Q′. By locally directional arc-consistency, for each
config q of Q, there exists a config q′ of Q′ such that πQ∩Q′ (q) = πQ∩Q′ (q′).

By inductive assumption, Q′ is consistent relative to C. That is, for the above config q′,
there exists a config c of C such that πQ′∩C(q′) = πQ′∩C(c). Since T is a JT (with running
intersection property), we have Q∩C ⊆ Q′. Hence, πQ∩C(q) = πQ∩C(q′) = πQ∩C(c). �

28 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

Proof of Proposition 4
[Sufficiency] Suppose Sol = ∅. This implies ./Q∈T RQ = ∅. We prove by induction on the

number of clusters in T . If T has a single cluster, then the above means RQ∗ = ∅. CollectSepCons
called on Q∗ will skip the for loop and return ∅ due to the if statement following the loop.

Assume that sufficiency holds when T has k clusters or less. Consider the case where T has
k+1 clusters and Q∗ has adjacent clusters C1, ..., Cj. CollectSepCons called on Q∗ is equivalent
to performing RQ∗ ./ RC+

1
.// RC+

j
, where RC+

i
is the relation resultant from joining cluster

relations of all clusters located at the subtree rooted at Ci. Without losing generality, assume
that the above joins are performed from left to right. Since ./Q∈T RQ = ∅, one of the following
must be true:

1. None of RC+
1
, ..., RC+

i
is empty, RQ∗ ./ RC+

1
.// RC+

i
is empty, and i ≥ 1 is the lowest

such index.
2. None of RC+

1
, ..., RC+

i
is empty, RQ∗ ./ RC+

1
.// RC+

i
is nonempty, RC+

i+1
is empty, and

i + 1 ≥ 1 is the lowest such index.

In the first case, the second if test in CollectSepCons succeeds. In the second case, the first if
test succeeds by inductive assumption. As the result, Q∗ returns ∅.

[Necessity] Suppose Q∗ returns ∅. We use induction again. If T has a single cluster, necessity
is trivially true. Assume that it holds when T has k clusters or less. We consider the case where
T has k + 1 clusters and Q∗ has adjacent clusters C1, ..., Cj. CollectSepCons called on Q∗ is
equivalent to performing RQ∗ ./ RC+

1
.// RC+

j
, where RC+

i
is defined as above. If Q∗

returns ∅, it is due to a positive test either in the first if statement in CollectSepCons or in
the second if statement. Each corresponds to one case enumerated in the proof of sufficiency,
from which it follows RQ∗ ./ RC+

1
.// RC+

j
= ∅. That is, Sol = ./Q∈T RQ = ∅. �

Proof of Proposition 5
It follows directly from how cluster Q updates its relation in CollectSepCons, namely, RQ =

RQ ./ RS . �

Proof of Proposition 6
The first statement follows from Prop. 1 and Prop. 4.
The second statement follows from Prop. 5, how cluster C updates its relation in Distrib-

SepCons, namely, RC = RC ./ RS , and Corollary 1. �

Proof of Proposition 7
By merging primal graphs of local CNs, a CN R′ is well defined. Denote its solution set by

Sol′. Each config in Sol′ satisfies all constraints in all Ri, and Sol′ contains all such configs.
From Prop. 1, difference between Sol′ and Sol is that constraints over shared variables are joined
multiple times in Sol, which is inconsequential by idempotency of natural join. �

Proof of Theorem 1
From R = (A, V, Ω, Λ, Θ), V =

⋃
i Vi, Λ =

⋃
i Λi, and Prop. 7, we have

Sol = ./i (./R∈Λi R). (1)

The solution set of (Q, Λ′) is

Sol′ = ./R∈Λ′ R = (./i (./R∈Λ′
i
R)) ./ (./i,j (./R′∈Λ′

i,j
R′)), (2)

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 29

where each iteration of ./i,j is over a Li,j.
We rewrite Eqn. (2) similarly to the proof of Prop. 2. Each constraint R ∈ Λ′

i corresponds
to a pair of adjacent clusters Q and C in local JT Ti, associated with relation variables vQ

and vC , whose domains are RQ and RC, respectively. As argued in the proof of Prop. 2, the
project-equal constraint R over vQ and vC is equivalent to constraint RQ ./ RC over Q∪C. By
substitution of each R ∈ Λ′

i with a corresponding constraint RQ ./ RC, from the specification
of AssignConsToJT and idempotency of natural join, it follows that (./R∈Λ′

i
R) in Eqn. (2) is

equivalent to (./R∈Λi R) in Eqn. (1) for each i. This implies that (./i (./R∈Λ′
i

R)) in Eqn. (2)
is equivalent to Sol.

Next, we consider (./R′∈Λ′
i,j

R′) in Eqn. (2). Let S be a linkage in a LT, and X and Y be
corresponding host clusters. The project-equal constraint R′ between vX ∈ RX and vY ∈ RY

is equivalent to constraint RX ./ RY over X ∪ Y . Since both RX and RY have occurred in
(./i (./R∈Λ′

i
R)) and natural join is idempotent, project-equal constraint over vX and vY has

no impact. Hence, Sol′ = (./i (./R∈Λ′
i
R)) = Sol. �

Proof of Lemma 1
Since Q is consistent relative to C, for each config in RQ, there exists a consistent config

in RC . Hence, πS(RQ) ⊆ πS(RC). Since C is consistent relative to Q, we also have πS(RC) ⊆
πS(RQ). �

Proof of Lemma 2
Since T0 is regionally full arc-consistent, RS from line 12 is nonempty. As the result, the for

loop (lines 11 through 13) produces a nonempty Γc with an element for each linkage in Lc. From
Prop.s 1 and 2, we have ./R′∈Λ0 R′ = ./Q∈T0 RQ and hence πIc(./R′∈Λ0 R′) = πIc(./Q∈T0 RQ).
To prove property 1, we only need to show πIc(./Q∈T0 RQ) = ./R∈Γc R. Denote V0 \ Ic by
{v1, ..., vm} and define m − 1 supersets of Ic as

X1 = Ic ∪ {v1}, X2 = Ic ∪ {v1, v2}, ..., Xm−1 = Ic ∪ {v1, ..., vm−1}.
We have

πIc(./Q∈T0 RQ) = πIc(πX1(πX2 (...πXm−1(./Q∈T0 RQ)...))),
where the inner most projection removes vm from the scope of the resultant relation, the second
inner most projection removes vm−1, and so on, until all variables in V0 \ Ic are removed. We
parallel removal of vi from the scope with its removal from T0: If vi is contained in a single
cluster C in T0, it is removed from C. If the removal renders C a subset of an adjacent cluster
Q, merge C into Q, in which case πC(RQ) = RC due to Lemma 1 and disappearance of RC

has no impact to the result.
Due to LT construction [Xiang(2002)] and the above cluster merger, each vi is guaranteed to

be contained in a single cluster at the time it is removed. Hence, after the outer most projection
is complete, clusters left in T0 are precisely linkages in Lc and remaining relations are precisely
those in Γc. Property 1 now follows.

Property 2 holds because T0 is regionally fully arc-consistent, each separator of Lc is a
separator of T0, and each element of Γc is a projection of relation in the corresponding linkage
host in T0. �

Proof of Theorem 2
We prove by induction on the maximum path length l in hypertree from root agent A0

to a leaf agent. If l = 0, A0 is the only agent. When CollectIntCons is called on A0, it goes

30 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

directly to UnifyCons. According to Prop. 6, A0 returns ∅ iff F has no solution. Otherwise, ∇
is returned. Property 2 (regional full arc-consistency of T0) follows from Prop. 6. Properties 1
and 3 are trivially true.

Next, assume that the theorem is true for l ≤ k and consider l = k + 1. There are three
exhaustive and exclusive cases where F has no solution.

1. The sub-hypertree rooted at an adjacent agent Ai of A0 has no solution.
2. Each sub-tree has a partial solution, but the partial solution for sub-hypertree rooted at Ai

cannot be extended to a linkage host in A0.
3. Each sub-tree has a partial solution that can be extended to each linkage host in A0, but

A0 has no partial solution over V0 or the solution cannot be extended relative to ∪iΓi.

For each adjacent agent Ai (i = 1, ..., m) of A0, sub-hypertree rooted at Ai satisfies l ≤ k.
By assumption, A0 returns ∅ through line 3 iff case 1 is true. A0 returns ∅ through line 6 iff
case 2 is true. By Prop. 6, A0 returns ∅ through line 8 iff case 3 is true.

Therefore, A0 returns ∇ iff F has solution. In that case, by Lemma 2, we have

Ri = ./R∈Γi R = πIi(./R′∈Λi R′),

where Ii = V0 ∩Vi and Λi is the set of constraints associated with clusters in Ti. From Prop.s 1
and 2, it follows that Ri is the partial solution set of Ti over Ii.

On the other hand, T0 is a JT representation. From Prop.s 1 and 2, it has the solution set
Sol0 = ./R∈Λ0 R before CollectIntCons. After CollectIntCons, Sol0 is restricted to Sol′0 =
Sol0 ./ Ri. From the property of natural join, we have

πIi(Sol0 ./ Ri) ⊆ Ri,

which implies that A0 is interface-consistent relative to Ai. From the inductive assumption, F
is locally directional interface-consistent. From Prop. 8, property 1 follows.

Property 2 follows from line 7 and Prop. 6. Property 2 follows from Lemma 2.
�

Proof of Lemma 3
We have πS(RQ ./ RQ′) = πS(RQ) ./ πS(RQ′) and πS(RC ./ RC′) = πS(RC) ./ πS(RC′).

From πS(RQ) ⊆ πS(RC) and πS(RQ′) ⊆ πS(RC′), the result follows. �

Proof of Theorem 3
From Theorem 2, it follows that failure is returned iff F has no solution. Otherwise, Distrib-

Sol is run and we prove remainder of the theorem by induction on number η of agents. When
η = 1, there is one agent A∗. Only line 4 is executed. From Theorem 1, the theorem is trivially
true.

Next, we assume that the theorem is true for η ≤ k and consider η = k + 1. Let k +
1’th agent Ak+1 be a leaf agent in hypertree (directed from root A∗) and its adjacent agent
be Ak. Denote part of LJF without Ak+1 by Fk and its solution set by Solk . By inductive
assumption, before Ak calls DistribSol in Ak+1 (line 8), we have Rk = ./k

i=1 (./Q∈Ti RQ) ⊆
Solk . Furthermore, because linkage tree Lk,k+1 between Ak and Ak+1 is a JT, from Prop.s 1
and 2, Γ ′ (see DistribSol) represents a partial solution over Ik+1 = Vk ∩ Vk+1. In other words,
Γ ′ represents a partial solution πIk+1(Rk).

Distributed Constraint Satisfaction with Multiply Sectioned Constraint Networks 31

By Theorem 2 (1), Ak is interface-consistent with Ak+1. Hence, a partial solution in Ak+1

exists that extends πIk+1(Rk) to Vk+1. By Theorem 2 (3), Lk,k+1 (associated with Γ ′) is
regionally fully arc-consistent. By Theorem 2 (2), Tk+1 is regionally fully arc-consistent. Denote
by Q∗ the linkage host on which DistribSepCons is called in the last line of GetLocalSol.
Direct Tk+1 with Q∗ as root. By application of Lemma 3 to each pair of linkage hosts in
Tk+1 downstream from Q∗, we conclude that when Ak+1 executes line 3 of DistribSol and
performs GetLocalSol, but before it calls DistribSepCons (the last line of GetLocalSol), Tk+1

is regionally directional arc-consistent relative to Q∗. Hence, DistribSepCons will produce the
partial solution that extends πIk+1 (Rk) to Vk+1. This effectively extends Rk into a solution to
F . By Theorem 1, it is a solution to the MSCN. �

Proof of Proposition 10
[Sufficiency] Suppose has-hypertree is returned. Then Gb is triangulated and hence there

exists a JT T made of clusters from Gb. For each Wi, if it is not a cluster in T , then it must
be a subset of a cluster C in T . Add cluster Wi to T and make it adjacent to C. Now each
cluster of T corresponds to a unique Wi. Add to Wi private variables of Ai. The resultant is a
JT which is a hypertree of the DisCN.

[Necessity] Suppose no-hypertree is returned. Then either Gb is not triangulated, in which
case there exists no JT made of clusters from Gb, or it is triangulated but a cluster C does not
corresponds to any Wi, e.g., Example 12. In the latter case, a JT exists made of clusters from
Gb, but these clusters do not correspond to agents’ subenv. �

Proof of Proposition 12

1. W′ is initialized to W and is only modified in the second for loop. Each W ′
i removed from

W′ is replaced by a cluster C. Hence, the condition holds.
2. Each W ′

i is either the original Wi, or is created in the first for loop, which ensures W ′
i ⊃ Wi.

3. After the second for loop, each cluster in T ′ is an element of W′. For each W ′
i ∈ W′, if W ′

i

is not a cluster of T ′, it must be a proper subset of a cluster C in T ′. By adding W ′
i as an

adjacent cluster of C in T ′, T ′ remains a JT. A JT can thus be created where each cluster
corresponds to a W ′

i ∈ W′. �

32 Yang Xiang, Younis Mohamed and Wanling Zhang Univ. of Guelph, Canada

Appendix 2: Notation and Abbreviation (roughly in order of appearance)

CSP : Constraint satisfaction problem
DisCSP : Distributed constraint satisfaction problem
DisCOP : Distributed constraint optimization problem
V, env : Set of environment variables
Λ : Set of constraints
CN : Constraint network
DisCN : Distributed constraint network
MSCN : Multiply sectioned constraint network
R : CN, DisCN, or MSCN
Dv : Domain of variable v
DX : Space of variable set X ⊆ V
RX : Constraint with scope X ⊂ V
UX : Dumb constraint over X (a universal relation)
πY (RX) : Projection of RX to Y ⊆ X
JT : Junction tree

Ai : An agent
A : Set of agents in a DisCN
η : Number of agents in A
Vi : A subenv (sub-environment)
Ω : Collection of subenvs
Λi : Set of constraints in a subenv
Θ : Collection of constraint sets one per subenv
Ri : Local CN of Ai

Gi : Local primal graph of Ai

Iij : Border between Ai and Aj

PV SC : Private variables, shared constraints

./ : Relational operator natural join
∇ : Special set signifying successful operation
Sol : Solution set of CN or MSCN
Ti : Local junction tree of Ai

F , LJF : Linked junction forest
LT : Linkage tree
Wi : Boundary (shared variables) of Ai relative to other agents
Gb, G

′
b : Boundary graph

Co : Coordinator agent
Itr : Integrator agent

