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Abstract

Learning belief networks from data is NP-hard in general. A com-
mon method used in heuristic learning is the single-link lookahead
search. When the problem domain is pseudo-independent (PI), the
method cannot discover the underlying probabilistic model. In learning
these models, to explicitly trade model accuracy and model complexity,
parameterization of PI models is necessary. In this work, we adopt a
hypercube perspective to analyze PI models and derive an improved
result for computing the maximum number of parameters needed to
specify a full PT model. We also present results on parameterization of
a subclass of partial PI models.

1 Introduction

Learning belief networks from data, as an alternative or enhancement to elic-
itation from experts, has been an active research area in uncertain reasoning,
e.g., [7, 3, 4] 1. As the task is NP-hard [2], a common search method used
in heuristic learning is the single-link lookahead, where successive graph-
ical structures adopted differ by a single link. It has been shown that a
class of probabilistic models called pseudo-independent (PI) models, where
variables collectively dependent display marginal independence, cannot be
learned by single-link search [16]. There are infinitely many PI models over
a given set of variables. PI models found in real world data are reported
in [15]. Intuitively, these methods (that fail to learn PI models correctly)
update the current graph structure based on some tests for local dependence
(see Section 2 for more details). The marginal independence of a PI model
misleads these algorithms into ignoring the collective dependence. When
an incorrectly learned model is used for making decisions, it fails to take
into account of the (missed) collective dependence and results in incorrect
actions. To relax this limitation, a more sophisticated method (multi-link
lookahead) is proposed in [17] and is improved in [6].

1We apologize that references are trimmed to a minimum due to space limit.



The method can be further improved by incorporating the model com-
plexity (the number of parameters) explicitly in the scoring metrics of the
learning algorithm [7, 15], so that the accuracy of the model can be better
traded with the complexity. This leads to the issue of estimation of the
number of parameters needed to specify a PI model.

More generally, a practical data sample is finite and subject to sampling
noise. Any attempt to model the data is an abstraction of the reality. De-
pending on the levels of abstraction and the bias introduced, a given data
sample can potentially be abstracted into distinct models. Under this per-
spective, whether to abstract the data as a PI model becomes another dimen-
sion of learning in order to best balance the model complexity and accuracy
of inference performed using the learned model. Accurate assessment of the
complexity of PI models becomes more valuable under this perspective.

This work is an integral part of the overall research outlined above. A
PI model can be full or partial as defined precisely in the next section. In
a previous work [13], a formula for estimating the number of parameters
in a full PI model was presented. However, the result was very complex
in form, obscuring the dependency between parameters of the PI model
and parameters of individual variables. This in turn makes its extension to
partial PI models difficult. In this paper, we employ the perspective of a
hypercube to derive a much simpler and direct formula for estimating the
number of parameters of a full PI model. The new formula provides good
insight on the structural relation between the complexity of a full PI model
and the spaces of its domain variables. We also extend the result to estimate
the number of parameters of a subclass of partial PI models.

2 Background

Let V be a set of n discrete variables X1,..., X, (in what follows we will
focus on finite, discrete variables). Each variable X; has a finite space S; =
{zi1,zi2,...,2ip;} of cardinality D;. The space of a set V of variables is
defined by the Cartesian product of the spaces of all variables in V', that
is, Sy = 81 X ... x S, (or [1; S;). Thus, Sy contains the tuples made of all
possible combinations of values of the variables in V. Each tuple is called a
configuration of V, denoted by (x1,...,Zy).

Let P(X;) denote the probability function over X; and P(z;) denote
the probability value P(X; = z;). A probabilistic domain model (PDM)
M over V defines the probability values of every configuration for every
subset A C V. Let P(V) or P(X1,...,X,) denote the joint probability
distribution (JPD) function over X1,...,X,, and P(z1,...,z,) denote the

probability value of a configuration (z1,...,z,). We refer to the function
P(A) over A C V as the marginal distribution over A and P(X;) as the
marginal distribution of X;. We refer to P(z1,...,x,) as a joint parameter

and P(z;) as a marginal parameter of the corresponding PDM over V.
For any three disjoint subsets of variables W, U and Z in V, subsets



W and U are called conditionally independent given Z, if P(W|U,Z) =
P(W|Z) for all possible values in W, U and Z such that P(U,Z) > 0.
Conditional independence signifies the dependence mediated by Z. This
allows the dependence among W UU U Z to be modeled over subsets W U U
and UUZ separately. Conditional independence is the key property explored
through belief networks [9, 8, 14].

Subsets W and U are said to be marginally independent (sometimes re-
ferred to as unconditionally independent) if P(W|U) = P(W) for all possible
values W and U such that P(U) > 0. When two subsets of variables are
marginally independent, there is no dependence between them. Hence, each
subset can be modeled independently without losing information.

If each variable X; in a subset A is marginally independent of A\ {X;},
the variables in A are said to be marginally independent. The following
proposition reveals a useful property when this is the case.

Proposition 1 If each variable X; in a subset A is marginally independent
of A\ {X;}, then P(A) = [Ix,ca P(X;)-

Proof: By the product rule of probability, we have

P(A) = P(X1|Xg,...,Xn)P(X2|X3,..., Xpn)... P(Xpn_1]|Xn).
By the decomposition property [9] of conditional independence, namely, that
P(A|Z,U,W) = P(A|Z) implies P(A|Z,U) = P(A|Z) and P(A|Z,W) = P(A|Z),

and the assumption that X; is marginally independent of A \ {X;}, the tail
in each P(X;|X;t1,...,X,) can be omitted.
O

Variables in a subset A are called generally dependent if P(B|A\ B) #
P(B) for every proper subset B C A. If a subset of variables is generally
dependent, its proper subsets cannot be modeled independently without
losing information. A generally dependent subset of variables, however, may
display conditional independence within the subset. For example, consider
A= {Xl,XQ,X?,}. If P(Xl,X2|X3) = P(Xl,XQ), i.e., {Xl,XQ} and X3 are
marginally independent, then A is not generally dependent. On the other
hand, if

P(X1,X3|X3) # P(X1,Xs), P(Xo, X3|X1) # P(X2,X3), P(X3,X1|X2) # P(X3,X1),

then A is generally dependent.

Variables in A are collectively dependent if, for each proper subset B C A,
there exists no proper subset C C A\ B that satisfies P(B|A\ B) =
P(B|C). Collective dependence prevents conditional independence and mod-
eling through proper subsets of variables. Table 1 shows the JPD over
a set of variables V. = (X, X5, X3,X4). The four variables are collec-
tively dependent, e.g., P(z1,1|%2,0,3,1,%4,0) = 0.257 and P(z1,1|z2,0,23,1) =
P(z1,1|z2,0,240) = P(z1,1|23,0,%4,0) = 0.3.

A pseudo-independent (PI) model is a PDM where proper subsets of a
set of collectively dependent variables display marginal independence [17].



1% P(V) 1% P(V) 1% P(V) 1% P(V)
(0,0,0,0) 0.0586 (0,1,0,0) 0.0517 (1,0,0,0) 0.0359 (1,1,0,0) 0.0113
(0,0,0,1) 0.0884 (0,1,0,1) 0.0463 (1,0,0,1) 0.0271 (1,1,0,1) 0.0307
(0,0,1,0) 0.1304 (0,1,1,0) 0.0743 (1,0,1,0) 0.0451 (1,1,1,0) 0.0427
(0,0,1,1) 0.1426 (0,1,1,1) 0.1077 (1,0,1,1) 0.0719 (1,1,1,1) 0.0353

Table 1: A full PI model where V = (X7, X5, X3, X4).

Definition 2 (Full PI model) A PDM over a set V (|V| > 3) of vari-
ables is a full PI model if the following properties (called azioms of full
PI models) hold:

(S1) Variables in any proper subset of V are marginally independent.

(S11) Variables in V are collectively dependent.

Table 1 shows the JPD of a binary full PI model, where V' = (X1, X5, X3, X4)

and the marginal parameters are
P(z19) =0.7, P(z20) = 0.6, P(z30) = 0.35, P(z40) = 0.45.
Any subset of three variables are marginally independent, e.g.,
P(z1,1,%20,23,1) = P(z1,1) P(z20) P(z3,1) = 0.117.

The four variables are collectively dependent as explained above.

The condition (S7) of marginal independence is relaxed in partial PI
models, which is defined through marginally independent partition [15] in-
troduced below:

Definition 3 (Marginally independent partition) Let V (|V| > 3) be
a set of variables, and B = {B1,...,Bn} (m > 2) be a partition of V. B is
e marginally independent partition if for every subset A = {X;, |X;, €
By, k = 1,...,m}, variables in A are marginally independent. FEach block
B; in B is called a marginally independent block.

Intuitively, a marginally independent partition of a set V of variables
groups variables in V into m blocks. If one forms a subset A of V' by taking
one element from each block, then variables in A are always marginally
independent.

In a partial PI model, it is not necessary that every proper subset is
marginally independent.

Definition 4 (Partial PI model) A PDM over a setV (|V| > 3) of vari-
ables is a partial PI model if the following properties (called axioms of
partial PI models) hold:



S%) V can be partitioned into two or more marginally independent blocks.
I

(Srr) Variables in V are collectively dependent.

v P(V) \4 P(V) \4 P(V) \4 P(V) v P(V) \4 P(V)

(0,0,0) 0.06 (0,1,1) 0.11 (1,0,0) 0.06 (1,1,1) 0.08 (2,0,0) 0.10 (2,1,1) 0.i1
(0,0,1) 0.04 (0,2,0) 0.06 (1,0,1) 0.01  (1,2,0) 0.03 (2,0,1) 0.05 (2,2,0) 0.01
(0,1,0) ©0.01 (0,2,1) 0.03 (1,1,0) 0 (1,2,1) 0.03 (2,1,0) 0.09 (2,2,1) 0.14

Table 2: A partial PI model where V' = (X1, X2, X3).

Table 2 shows the JPD of a partial PI model over two ternary variables
and one binary variable, where V' = (X7, X5, X3) and the marginal parame-
ters are

P(z10) = 0.3, P(z11) = 0.2, P(z12) = 0.5,
P(z20) = 0.3, P(z9,1) = 0.4, P(z22) = 0.3, P(z30) = 0.4, P(z31) = 0.6.

The marginally independent partition is {{X;}, {X2, X3}}. Variable X; is
marginally independent of each variable in the other subset, e.g.,

P(z1,1,22,0) = P(z1,1) P(z2,0) = 0.06.
However, the variables in the subset { X2, X3} are dependent, e.g.,
P(z20,231) = 0.1 # P(z20) P(z3,1) = 0.18.
The three variables are collectively dependent, e.g.,
P(z11|z20,231) =0.1 and P(z1,1|z20) = P(z1,1]23,1) = 0.2.
Similarly,
P(z9,1|z1,0, x3,1) = 0.61, P(z2,1|z1,0) = 0.4, P(z2.1|23,1) = 0.5.

Variables that form either a full or a partial PI model may also be a subset
of V, where the remaining variables in V' display conventional dependence.
In such case, the subset is called an embedded PI submodel. A PDM can
contain one or more embedded PI submodels. PDMs with embedded PI
submodels are the most general type of PI models. In this work, we focus
on only full or partial PI models.

Learning belief networks from data is NP-hard [2]. A common heuristic
method used is a greedy search. Learning starts with some initial graphi-
cal structure. Successive graphical structures representing different sets of
conditional independence assumptions are adopted. Each adopted structure
differs from its predecessor by a single link and improves a score metric
optimally.

PI models pose a challenge to such algorithms. It is shown [16] that when
the underlying PDM of the given data is PI, the graph structure returned



by such algorithms misrepresents the actual dependence of the PDM. Intu-
itively, these algorithms update the current graph structure based on some
tests for local dependence (see below for justification). The marginal inde-
pendence of a PI model misleads these algorithms into ignoring the collective
dependence. The primary goal of our ongoing research (to which this work
is an integral part) is to develop a newer generation of algorithms that over-
come this limitation.

All known algorithms use a scoring metric and a search procedure. The
scoring metric evaluates the goodness-of-fit of a structure to the data, and
the search procedure generates alternative structures and selects the best
based on the evaluation. Although not all scoring metrics explicitly test
for local dependence, they are implicitlyly doing so or approximately doing
so: Bayesian metrics (based on posterior probability of the model given the
data with variations on possible prior probability of the model), description
length metrics, and entropy metrics have been used by many [5, 3, 7, 4, 12].
A Bayesian metric can often be constructed in a way that is equivalent to a
description length metric, or at least approximately equal. See [1, 11] for de-
tailed discussion. Based on the minimum description length principle, Lam
and Bacchus [7] showed that the data encoding length is a monotonically
increasing function of the Kullback-Leibler cross entropy between the distri-
bution defined by a Bayesian network (BN) model and the true distribution.
It has also been shown [17] that the cross entropy of a decomposable Markov
network (DMN) can be expressed as the difference between the entropy of
the distribution defined by the DMN and the entropy of the true distribution
which is a constant given a static domain. Entropy has also been used as
a means to test conditional independence in learning BNs [10]. Therefore,
the maximization of the posterior probability of a network model given a
database [3, 4], the minimization of description length [7], the minimization
of cross entropy between a network model and the true model [7], the mini-
mization of entropy of a network model [5, 12], and conditional independence
tests are all closely related.

Before closing this section, we define the maximum marginally indepen-
dent partition to be used later for parameterization of partial PI models:

Definition 5 (Maximum partition) Let B = {Bi,...,Bpy} be a marginally
independent partition of a partial PI model over V. B is a maximum
marginally independent partition if there exists no marginally independent
partition B' over V' such that |B| < |B'|.

Given a marginally independent partition, one can always obtain an-
other marginally independent partition by merging. For instance, given a
partition B’ = {Bjy, By, B3, ..., By}, another partition can be defined as
B = {By U By, Bs,...,B,}, where |B| < |B'|. Therefore, a maximum
marginally independent partition is the ‘finest’ partition that retains the
property of marginal independence.



3 Why Parameterizing PI models?

In learning graphical models of PDMs, one needs to balance the accuracy
of the learned model and efficiency of future inference performed based on
the learned model (the model complexity). A common technique is to score
each alternative model by a combination of a score of its goodness of fit to
data and a score of its model complexity. The model complexity is usually
measured by the number of parameters needed to fully specify the model.

Variables in a full or partial PI model are collectively dependent. They
are special cases of PI models. The most general type of PI models are
embedded PI models, where the domain includes several clusters of variables
each of which forms a full PI submodel or a partial PI submodel. The
remaining domain variables are ‘normal’ variables. The normal variables
are dependent on each other and on variables in the PI submodels as in
a Bayesian network [9] or a decomposable Markov network [17]. In order
to parameterize such a model, one needs to parameterize the embedded PI
submodels and combine the result with the parameterization of the normal
variables.

In the previous work [17, 6], the collective dependence of a PI submodel
has led to an over-parameterization. For instance, if a PI submodel contains
m variables each of k possible values, its complexity was measured as k™ — 1.
As we will show in this paper, the actual maximum number of parameters
needed to specify the PI submodel can be significantly smaller than k™ — 1.
This over-parameterization of PI submodels leads a learning algorithm to
over-penalize a potential PI model and to produce incorrectly biased learning
outcome. The contribution of this work is the new results leading to a
theoretical foundation for correct parameterization of PI submodels.

In a previous work [13], the following result for computing the number
of parameters in a full PI model was given:

Theorem 6 [13] The total number of parameters of a full PI model is W =
W1+ Wa. The number Wi is the count of marginal parameters (marginals),
Wy =Y 1(D; — 1), where n is the total number of variables and D; > 2 is
the number of values that the ith variable can take. The number Wy is the
count of joint probability parameters (joints),

n C(n7z) 7

Wo=1+> > (Dj, —2),

=1 j=1 k:l,XjkEYj

where j ranges from 1 to the total number of combinations taking i vari-
ables out of n each time, Y; = {Xj,,...,X;;} denotes one combination of i
variables, and D, is the size of space for Xj,

This result is very complex (in particular, W5). The dependency between
the complexity of the PI model and the space cardinality of each individual
variable is thus obscured. In the following, we derive a much simpler and



direct formula through a new perspective. The new formula also provides
good insight on the structural relation between the complexity of a full PI
model and the marginal parameters of its variables. In addition, we present
results on parameterization of a subclass of partial PI models.

4 Parameterization of Full PI Models

Consider a general PDM M over a set of n variables V = {X1,..., X, }. The
JPD of M consists of a total of [, D; parameters. To facilitate visual-
ization and analysis, we use a graphical representation of these parameters,
called a JPD hypercube or simply a hypercube.

Given M, its hypercube is constructed in a n-dimensional space with the
axes Xi,...,Xp. The length of the hypercube along X; is D;. The segment
of axis X; from 7 — 1 to j, where j = 1,2,...,D;, is labeled by z; ;, the
J’th value of X;. We refer to this segment as X; = z; ;. The hypercube
has exactly [[;-; D; cells, one for each joint parameter. The cell located at
X1 =215, X2 = Top,...,Xpn = Zn,m is labeled by the parameter P(X; =
z1j, X2 = Topy...,Xn = Tnm), or for simplicity, P(jk,...m)- Figure 1 shows
the hypercube for a PDM with three variables, where X; and X5 are ternary
and X3 is binary. The cell labeled by p(;39) represents the probability
P(X) =z11,X0 =123, X3 = 732).

Figure 1: A 3-dimensional (3 x 3 x 2) JPD hypercube.

By the rule of negation of probability, the marginal distribution of X;
can be specified by D; — 1 parameters. Hence specification of marginal
distributions for all n variables in M requires w,, parameters:

n

Wm = Z(Dz - 1)' (1)

i=1



By the rule of negation, the JPD of M can be specified by w, parameters:

Wg = (H D;) - 1. (2)

Hence, in the JPD hypercube of a general PDM, w, cells correspond to
independent parameters (which can be freely specified) and the remaining
one cell can be derived from others by the rule of negation.

By definition, a full PI model imposes constraints on the parameters
of the PDM. Hence, a full PI model can be specified with fewer than w,
parameters. In other words, more than one cell in the hypercube of a full
PI model can be derived from others. From axiom S; for full PI models,
we derive the following relation between the joint parameters and marginal
parameters. It says that any marginalization of the JPD is equal to the
product of variable marginals.

Lemma 7 (Full PI marginal) Let a PDM M be a full PI model over V =
{X1,...,Xn}. Then, the following holds:

D;
Y P(X1,...,Tigs---, Xn) = P(X1) ... P(X;_1)P(Xiy1) ... P(Xyp).
k=1

Proof: By marginalization, we have in general
D;
S P(X1,. oy Tigy - Xn) = P(X1,. .o, Xi1, Xig1,- .-, Xp).
k=1

By axiom Sy, X1,...,X;—1, Xit1,--.,Xp are marginally independent. There-
fore,

P(Xy,..., Xi—1, Xi1, ..., Xn) = P(X1) ... P(Xi—1) P(Xiy1) ... P(Xp).

O
From Lemma, 7, the following corollary follows directly. It says that every
joint parameter can be derived from marginals of n — 1 variables plus D; —1
joint parameters. Note that the summation index k runs from 1 to D; except
that it skips k = 7.

Corollary 8 (Full PI joint) Let a PDM M be a full PI model over V =
{X1,...,Xn}. Then,

D‘l
P(X1,. iy oo Xn) = P(X1) -+ P(Xic1)P(Xig1) - P(Xa)— Y P(X1,.0 @ik, -, Xa).
k=1,k#r



In order to determine the maximum number of independent parameters
of a full PI model, we adopt the following approach: First, we specify the
wm parameters as the marginal probability values of the n variables. Surely,
these parameters are independent of each other in a general full PI model.
We then search for each cell in the hypercube of the PDM that is derivable
from these parameters and other cells. As soon as a cell is determined to be
derivable, it is eliminated from further consideration. That is, it cannot be
used to derive other cells. Once we have eliminated all derivable cells, the
remaining cells and the w,, marginal parameters constitute a maximum set
of independent parameters of the full PI model. We illustrate this idea with
an example before applying the idea to formalize the general result.

Consider the hypercube in Figure 1. For this PDM, w,, =2+2+1 = 5.
We assume that the 5 marginal parameters have been specified. Hence, the
other 3 marginal probability values can be derived by rule of negation.

We refer to the set of cells with the identical value X; = z;; as the
hyperplane at X; = x; ;. For example, the 6 cells at the front of Figure 1

P3,1,1) P(3,2,1)y P(3,3,1)y P(3,1,2)s P(3,2,2)s P(3,3,2)

form a hyperplane at X; = z; 3. By Corollary 8, we have

P3,1,1) = P(w2,1)P(731) — (P(1,1,1) + P2,1,1))-

That is, the cell at the front-lower-left corner can be derived by the two cells
behind it and the marginal parameters. All other cells on the hyperplane at
X1 = 71,3 can be similarly derived. Hence, we eliminate these 6 cells from

X3 / P(132)
X11 : :
X12 / / X32
igﬁ::?i,/: :/Jj:,,,iﬁ: ,Jj _ X31
I A I /r‘ I X 2

Figure 2: The 3-dimensional (3 x 3 x 2) JPD hypercube with 6 cells at
X1 = 713 eliminated.

further consideration. The remaining 12 cells are shown in Figure 2.

Using the same idea, four of the remaining cells at the hyperplane at
Xy = x93 can be derived. We therefore eliminate these 4 cells from further
consideration. Now only the 8 cells in the left-hand-side of this hyperplane
are to be considered, as shown in Figure 3 (a). The remaining 4 cells at the

10



hyperplane at X3 = 232 can be derived. After eliminating them, only the 4
cells in Figure 3 (b) are left:

Pa11),P21,1):P(1,2,1): P(2,2,1)

Since no more cells can be eliminated, the maximum number of parameters

X3
Xlzx11 = X32 X3
X11 ‘
et | Xag Xip A X31
X1 4 Xo1 Xa2 @) X1 4 Xa1 Xa2 (b)

Figure 3: (a) The 3-dimensional (3 x 3 x 2) JPD hypercube with cells at
Xy = zo3 eliminated. (b) The cells at the hyperplane at X3 = z39 are
eliminated.

needed to specify such a full PI model is 9, with 5 marginal parameters and
4 joint parameters. Note that it would take 17 parameters to specify the
JPD of a general PDM over three variables of the same space cardinalities.

Next, we present the general result on the number of parameters needed
to specify a full PI model:

Theorem 9 (Full PI parameters) Let a PDM M be a full PI model over
V = {Xy,...,X,}. Then the mazimum number of parameters needed to
specify M is

n n

wr = [[(Di — 1)+ > (D; —1).

i=1 =1

Before proving the theorem, it can be seen that this result is significantly
simpler than Theorem 6. It shows that the maximum number of parameters
needed to specify a full PI model consists of two terms. One term is the car-
dinality of the joint space of a general PDM over the same set of variables,
except the space of each variable is reduced by one element. The other term
is the number of marginal parameters.

Proof: The second term Y ;(D; — 1) corresponds to the total number
of marginal parameters required to specify the marginal distributions of the
n variables. We only need to show that all joint probability values can be
derived given these marginal parameters plus []}" ;(D; — 1) joint probability
values.

11



To do so, we construct a JPD hypercube for M. Applying Corollary 8
and using the similar argument for the example in Figure 1, we can eliminate
hyperplanes at X1 = z1 p,, X2 = 22 p,, -.., X5, = Zp,p, in that order such
that for each variable X;, all cells on the hyperplane at X; = x; p, can be
derived from cells outside the hyperplane and the marginal parameters. The
remaining cells form a hypercube whose length along the X; axis is D; — 1
(1=1,2,...,n). The total number of cells in this hypercube is [[;-; (D; —1).

O

As an example, we apply Theorem 9 to a full PI model of 10 binary
variables. The number of marginal parameters is given by 1%, (2—1) = 10.
The number of joint parameters is obtained from [[;2;(2 — 1) = 1. Thus,
the maximum number of parameters is 10 + 1 = 11. This can be compared
with a general PDM over 10 binary variables. The number of parameters
required is ([];2; 2) — 1 = 1023.

As another example, consider a full PI model over 10 variables. Three of
them are binary, four of them are ternary, and the remaining three each has 4
possible values. The number of marginal parameters is 3-(2—1)+4-(3—1)+3-
(4—1) = 20. The number of joint parameters is (2—1)3-(3—1)*-(4—1)3 = 432,
Thus, the total number of parameters is 20 4+ 432 = 452. The number of
parameters required for a general PDM over the same set of variables is
23.3% .43 — 1 = 41471.

Clearly, a full PI model is significantly more compact than a general
PDM. This compactness can be explored both for more accurate model
learning and for reduced model complexity. As mentioned in Section 2,
a full PI model may be present in a PDM as a submodel. The benefit from
exploration of this compactness is the same.

5 Parameterization of Partial PI Models

A full PI model is a partial PI model, but the reverse is not necessarily true.
Lemma 7 does not hold for a partial PI model that is not a full PI model.
From axiom (S}) of partial PI models, we make explicit the following relation
between the joint and marginal parameters:

Lemma 10 (Partial PI marginal) Let a PDM M be a partial PI model

over V.= {Xy,..., X} with a marginally independent partition B = {B1,...,Bp}.
Let W = {X;,|X;, € By} be a subset of V with one variable from each block

of B and U =V \ W. Then, the following holds:

Y P(Xi,...,X,) = P(X;,)..P(X;,).
X;eU

Proof: In the left hand side of the above equation, each variable in U is
marginalized out from the JPD. This gives

S P(Xi,. o, Xa) = P(Xiy, o X)),
X;eU

12



The lemma follows as a direct result of the definition of marginally indepen-
dent partition. |

Figure 4: The joint parameters of a partial PI model.

Consider a partial PI model over five variables Xy, Xs, X3, X4 and Xs,
where X1, X4 and X5 are binary and X5 and X3 are ternary. Assume that
the marginally independent partition is B = {{X1, Xo, X3}, {X4},{X5}}-
Since a 5-dimensional space cannot be illustrated with a 3-D drawing, we
illustrate the corresponding hypercube using four hypercubes as shown in
Figure 4 (a). All cells in each hypercube have the identical values for X4
and X5 as labeled beside the cube but their values on X7, X9 and X3 are
different. For instance, the hyperplane at the back of the first (left-most)
hypercube consists of 9 cells. The cell at the bottom-left corner is the joint
parameter

P(Xi=xz1,1,Xo=291,X3 =231, X4 = 24,1,X5 = 75,1)
and that at the top-left corner is

P(X1 =x1,1,X0 = 2,1, X3 = 233, X4 = 74,1, X5 = T5,1).
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Applying Lemma 10 with U = { X3, X3}, i.e., performing

> P(Xy,...,X5) = P(X1)P(X4)P(X5),
X2,X3

we obtain Eqns (3) through (10) below, where each joint parameter is rep-
resented by a numerical string. For example,

P(X1 =x1,1,X0 =293, X3 =392, X4 = 241, X5 = T52)

is written as (13212). The location of a digit in the string signifies the
corresponding variable and the value of the digit signifies the value of the
variable.

(11111) + (11211) + (11311) + (12111) + (12211) + (12311) + (13111) + (13211) + (13311
P((E1,1)P($4,1)P($5,1) (3
(11112) + (11212) + (11312) + (12112) + (12212) + (12312) + (13112) + (13212) + (13312
P(z1,1)P(z4,1)P(xs5,2) (
(11121) + (11221) + (11321) + (12121) + (12221) + (12321) + (13121) + (13221) + (13321
P(21,1)P(24,2)P(ws,1) (
(11122) + (11222) + (11322) + (12122) + (12222) + (12322) + (13122) + (13222) + (13322
P(xl,l)P(x4,2)P(x5,2) (6
(21111) + (21211) + (21311) + (22111) + (22211) + (22311) + (23111) + (23211) + (23311
P((E1,2)P($4,1)P($5,1) (7
(21112) + (21212) + (21312) + (22112) + (22212) + (22312) + (23112) + (23212) + (23312
P((El,z)P(CIM,l)P(xE},z) (8
(21121) + (21221) + (21321) + (22121) + (22221) + (22321) + (23121) + (23221) + (23321
P(z1,2)P(24,2) P(25,1) €
(21122) + (21222) + (21322) + (22122) + (22222) + (22322) + (23122) + (23222) + (23322
P($1,2)P($4,2)P($5,2). (]_(]

N

(53
R W N N N O I N 2 b N

Assuming that we have specified all the marginal parameters, the fol-
lowing set of joint parameters (the last joint in the left-hand-side of each
equation) can be derived from other joints and do not need to be specified:

Sy = {(13311), (13312), (13321), (13322), (23311), (23312), (23321), (23322)}.

The corresponding cells are shaded in Figure 4 (a). For instance, from
Eqn (3), we conclude that the shaded cell (13311) in the top-right corner of
the hyperplane at the back of the first hypercube can be derived once we
know the other cells in the same hyperplane (and the relevant marginals).

Next we apply Lemma 10 with U = {X, X3}, i.e., perform

> P(Xy,...,X5) = P(X3)P(X4)P(X5),
X1,X3
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and obtain Eqns (11) through (22) below,

(11111) 4 (11211) + (11311) + (21111) + (21211) 4 (21311) P(z2,1)P(z4,1)P(z5,1) (11)
(11112) + (11212) + (11312) + (21112) + (21212) + (21312) =  P(x2,1)P(x4,1)P(25,2) (12)
(11121) 4 (11221) + (11321) + (21121) 4 (21221) + (21321) =  P(z2,1)P(za,2)P(z5,1) (13)
(11122) + (11222) + (11322) + (21122) + (21222) + (21322) = P(zg,1)P(z4,2)P(z5,2) (14)
(12111) 4 (12211) + (12311) 4 (22111) 4 (22211) + (22311) = P(z2,2)P(z4,1)P(z5,1) (15)
(12112) + (12212) + (12312) + (22112) + (22212) + (22312) = P(zg,2)P(z4,1)P(25,2) (16)
(12121) 4 (12221) + (12321) 4 (22121) 4 (22221) + (22321) = P(z2,2)P(z4,2)P(z5,1) (17)
(12122) + (12222) + (12322) + (22122) + (22222) + (22322) = P(zs,2)P(z4,2)P(z5,2) (18)
(13111) 4 (13211) + (13311) 4 (23111) 4 (23211) + (23311) = P(z2,3)P(za,1)P(z5,1) (19)
(13112) + (13212) + (13312) + (23112) + (23212) + (23312) = P(w2,3)P(wa,1)P(z5,2) (20)
(13121) 4 (13221) + (13321) + (23121) + (23221) + (23321) = P(z2,3)P(za,2)P(z5,1) (21)
(13122) + (13222) + (13322) + (23122) + (23222) + (23322) = P(x2,3)P(x4,2)P(25,2)- (22)

From Eqns (11) through (18), the following set of joint parameters can be
derived from others:

Sy = {(21311), (21312), (21321), (21322), (22311), (22312), (22321), (22322)}.

They correspond to the additional shaded cells in Figure 4 (b).
Eqgns (19) through (22) contain the joint parameters

(23311), (23312), (23321), (23322)

in the set S;. Each of them needs to be derived from others. These cells
have already been shaded. Hence, no additional parameters can be derived
using these equations.

Finally, we apply Lemma 10 with U = {X1, X2}, i.e., perform

> P(Xy,...

X1,X2

, X5) = P(X3)P(X4)P(X5),

and obtain Eqns (23) through (34)

(11111) 4 (12111) + (13111) 4 (21111) 4 (22111) + (23111) =  P(z3,1)P(z4,1)P(z5,1) (23)
(11112) + (12112) + (13112) + (21112) + (22112) + (23112) =  P(z3,1)P(z4,1)P(z5,2) (24)
(11121) 4 (12121) + (13121) 4 (21121) 4 (22121) + (23121) =  P(z3,1)P(z4,2)P(z5,1) (25)
(11122) + (12122) + (13122) + (21122) + (22122) + (23122) = P(w3,1)P(za4,2)P(z5,2) (26)
(11211) 4 (12211) + (13211) 4 (21211) 4 (22211) + (23211) = P(z3,2)P(za,1)P(z5,1) (27)
(11212) + (12212) + (13212) + (21212) + (22212) + (23212) = P(x3,2)P(x4,1)P(25,2) (28)
(11221) 4 (12221) + (13221) + (21221) + (22221) + (23221) = P(z3,2)P(za4,2)P(z5,1) (29)
(11222) + (12222) + (13222) + (21222) + (22222) + (23222) = P(z3,2)P(z4,2)P(25,2) (30)
(11311) 4 (12311) + (13311) 4 (21311) 4 (22311) + (23311) = P(z3,3)P(z4,1)P(z5,1) (31)
(11312) + (12312) + (13312) + (21312) + (22312) + (23312) = P(z3,3)P(z4,1)P(z5,2) (32)
(11321) 4 (12321) + (13321) 4 (21321) 4 (22321) + (23321) = P(z3,3)P(z4,2)P(z5,1) (33)
(11322) + (12322) + (13322) + (21322) + (22322) + (23322) = P(z3,3)P(z4,2)P(z5,2)- (34)

From Eqns (23) through (30), the following set of joint parameters can be
derived from others:

S5 = {(23111), (23112), (23121), (23122), (23211), (23212), (23221), (23222)}.
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They correspond to the additional shaded cells in Figure 4 (c). Eqns (31)
through (34) contain the joint parameters

(23311), (23312), (23321), (23322)

that have already been shaded. No additional parameters can be derived
using these equations.

From the figure, there are 48 joint parameters unshaded. With the addi-
tional 7 marginal parameters, the maximum number of parameters needed to
specify this partial PI model is 55. The number of joint parameters needed
can be calculated as

(Dl*DQ*D3—1—(Dl—l)—(DQ—l) —(D3—1))*D4*D5
=(243%3-1-2-2—-1)%x2%2=148.
Below we prove the general case for such partial PI models.

Theorem 11 (Partial PI parameter) Let a PDM M be a partial PI model
with a mazimum marginally independent partition B = {B1, ..., By}, where
B1 contains m > 2 variables X1, Xo, ..., X, and each other block is a sin-
gleton. Then the mazimum number of parameters needed to specify M is

h+m—1 m m h+m—1
wp=[ > Di=DI+[(JID)-1-Q (D= II Dil
=1 i=1 i=1 i=m+1

Before proving the theorem, we give a brief explanation about the result.
There are a total of h+m — 1 variables in M, indexed as 1,2,...,h+m — 1.
The first m of them form the block B;. The value w, is the sum of two
terms: The first term Z?;lefl(Di — 1) is the number of parameters needed
to specify marginal distributions for all variables. The second term is the
number of joint parameters and is obtained as the product of two factors:

The first factor is determined by variables in B;. It can be grouped as
the difference of two terms:

([T 20 - 11~ (30, - 1)

The first term [([]}%; D;) — 1] is the number of joint parameters needed to
specify the JPD over the block B if itself is a general PDM. The second
term [y ;%1 (D; — 1)] is the number of parameters needed to specify marginal
distributions for variables in Bj.

The second factor Hf:"}zl_:ll D; is determined by variables in By through
Bp,. It is the cardinality of the joint space of these variables. We give the
proof of the theorem below. To make the proof comprehensible, we use the

above example to illustrate the general ideas from time to time.
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Proof: The partial PI model is over h 4+ m — 1 variables. Without los-
ing generality, we assume that D; = k > 2 for¢ =1,...,h+m — 1. The
PI model has a total of k"*™~! joint parameters. We represent the joint
parameters using a (h +m — 1)-dimensional hypercube, which can be alter-
natively represented as k"~ hypercubes each of m-dimension. For example,
Figure 4 (a) has 22 = 4 hypercubes each being 3-dimensional. We choose
each hypercube such that all cells in the hypercube have identical values for
Xm+1,---,Xp+m—1- Hence each hypercube is essentially a hypercube in the
hyperspace of X1,...,X,,, namely, variables in B;.

The remaining proof proceeds with a number of steps. In each step, a
subset of m — 1 variables is selected from B arbitrarily. There are C(m,m —
1) = m ways to select such a subset. Hence, m steps are needed.

In the first step, suppose that the subset {Xs,..., X} is chosen. Ap-
plying Lemma 10 with U = {Xa,..., X, }, we obtain

Y P(X1,Xo,., Xnpm—1) = P(X1)P(Xm1) - P(Xpim—1)-
X2,..,.Xm

This equation can be expanded into k" equations since the right-hand-side
has h terms and each can take k possible values. In each expanded equation,
the left-hand-side has k™! terms since the summation is performed over
m — 1 variables and each can take k possible values. A total of k"™~ joint
parameters appear in the left-hand-side of all the k" equations. Note that
all joint parameters of the PDM appear, with each appearing exactly once.
For the above example, when U = {X3, X3}, Eqns (3) through (10) (a
total of 23 = 8 equations) are obtained. The left-hand-side of each equation
has 32 = 9 terms. Each of the 72 joint parameters appears in one equation.
From the k" equations, k" joint parameters can be derived (one from each
equation) from the other joint parameters plus the marginal parameters. If
we mark these cells in hypercubes, then k cells will be marked from each
m-~dimensional hypercube. For the above example, when U = {X3, X3},
8 cells are marked with 2 (the value of D) cells from each 3-dimensional
hypercube (see Figure 4 (a)). Suppose that we choose to mark cells with

Xo=Zop, X3 =T34, Xon = Tpy -
This is valid because each of the k" equations contains exactly one item of
the form F = P(XI,XQ =2k, -- ,Xm == xm,k,Xm+1, e aXh,—}—mfl)-

In the second step, suppose that the subset {Xi,..., X1} is selected.
Applying Lemma 10 with U = {X},..., X,,—1}, we obtain

Y. P(Xioo, Xnpmo1) = P(Xi) P(Xims1) - P(Xnpm—1)-
Xl)“‘7Xm71

Using a similar argument above, we can derive (mark) cells of the form

F, = P(X1 =T1,ky--- aXm—l = .'Em,l,k,Xm, e aXh—|—m71)-
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Since cells of the form F" = P(X1 = %1k, ..., Xm = T, Xmt1s- - » Xhpm—1)
are consistent with both F' and F’, these cells have already been marked in
the previous group. Note that there is exactly one such cell in each of the
m~dimensional hypercubes. Hence, only k — 1 additional cells are marked in
each hypercube.

For the above example, when U = {X}, X3}, Eqns (11) through (22) (a
total of 3 % 2% 2 = 12 equations) are obtained. In each of Eqns (19) through
(22), one cell is contained in the set S;. Hence, only Dy —1 =3 -1 = 2
additional cells are marked in each hypercube in Figure 4 (b), where Dy
substitutes the value of k.

Continuing with the process, we claim that each additional step marks
k —1 cells. We show this from a graphical perspective. At each step, each of
the k" equations is associated with a unique hyperplane in a m-dimensional
hypercube. Each such hyperplane is orthogonal to the same axis of the
the corresponding hypercube. For example, Eqn (3) corresponds to the
hyperplane at the back of the first hypercube of Figure 4 (a). It is orthogonal
to the X; axis, and so are the hyperplanes corresponding to Eqns (4) through
(10). Before the first step, no cell has been marked. Hence, one cell can be
marked for each hyperplane as in Figure 4 (a). These cells can be chosen
such that they differ only in their position along the orthogonal axis.

In the second step, a different set of equations is involved, that corre-
sponds to a different set of hyperplanes. All these hyperplanes are orthog-
onal to another axis. For instance, hyperplanes corresponding to Eqns (11)
through (22) are orthogonal to the Xy axis. With the above convention for
cell marking, exactly one such hyperplane per hypercube has cells marked
in the first step. The remaining k — 1 hyperplanes contain no marked cells.
Hence, one cell per hyperplane can be marked, yielding a total of £ — 1
additional marked cells, as we analyzed above. These cells can be chosen
such that they and cells marked in the first step are contained in the same
hyperplane spanned by two orthogonal axes. In Figure 4 (b), we see that
two additional cells (k = 3) are marked per hypercube. In each hypercube,
all cells marked so far are contained in the same hyperplane spanned by axes
X1 and X2.

For each remaining step, a different orthogonal axis is used. By selecting
cells to mark from the same hyperplane spanned by orthogonal axes used so
far, there always exist £ — 1 hyperplanes that are orthogonal to the current
selected axis and contain no marked cells. Hence, k — 1 cells can be marked
for each remaining step.

At the end of the m’th step, m - (k — 1) 4+ 1 joint parameters are marked
in each m-dimensional hypercube. The number of cells unmarked in each
hypercube is then £™ — m(k — 1) — 1. The total number of cells unmarked is
[k™ —m(k — 1) —1]- k"L, This is the maximum number of joint parameters
needed to specify the partial PI model, given also the marginal parameters.
In the general case where D; # D; for some ¢ and j, the maximum number
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of joint parameters needed becomes

m m h+m—1
[(II D) - Qi) -1 I Dil-
i=1 i=1 i=m+1

O

As another example, consider a partial PI model over 10 variables. Three
of them are binary, four of them are ternary, and the remaining three each
has 4 possible values. Suppose that the maximum marginally independent
partition consists of 8 blocks with the three binary variables in one block.
The number of marginal parameters is 20. The number of joint parameters
is [22 —1—(2—1)-3]-3%-4% = 20736. Thus, the total number of parameters
is 20756. The number of parameters required for a general PDM over the
same set of variables is 41471.

By comparing the results in the previous section, it can be seen that
a partial PI model is also more compact than a general PDM but is less
compact than a full PI model. As full PI models, this compactness can be
explored both for more accurate model learning (due to fewer number of
parameters to estimate) and for reduced model complexity.

6 Conclusion

In this work, we present an improved parameterization of full PI models,
that is simple and more insightful than the previous result. We present a
parameterization of partial PT models whose maximum marginal indepen-
dent partition contains only one multi-variable block. We employ the hy-
percube perspective for analyzing the parameterization of PI models, which
provides a visually appealing tool that facilitates the task. The hypercube
representation is equivalent to the tabular or numerical representations in
that it conveys the same structural information about a joint probability
distribution. Nevertheless, it allows the same structure to be examined from
an alternative perspective. In fact, our presentation has been switching be-
tween these alternative perspectives (visual, tabular, and numerical). The
visual perspective has been crucial in helping us to perform the analysis
presented in the paper.

This work is an integral part of a longer term project which explores
learning of graphical models in PI and related problem domains. The hy-
percube perspective and the parameterization of the subclass of partial PI
models provide a new base for research into the parameterization of general
partial PI models and ultimately PDMs with embedded PI submodels. The
parameterization of general PI models will provide a foundation to a new
generation of algorithms for learning probabilistic graphical models with
embedded PI submodels. In practice, a given data set can potentially be
abstracted into a number of distinct models depending on the levels of ab-
straction and the learning bias. The new algorithms will provide a new
dimension for trading model complexity and model accuracy in learning.
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