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Multiagent Expedition with Graphical Models
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We investigate a class of multiagent planning problems termed multiagent expedition,

where agents move around an open, unknown, partially observable, stochastic, and phys-

ical environment, in pursuit of multiple and alternative goals of different utility. Optimal
planning in multiagent expedition is highly intractable. We introduce the notion of con-

ditional optimality, decompose the task into a set of semi-independent optimization sub-
tasks, and apply a decision-theoretic multiagent graphical model to solve each subtask

optimally. A set of techniques are proposed to enhance modeling so that the resultant
graphical model can be practically evaluated. Effectiveness of the framework and its

scalability are demonstrated through experiments. Multiagent expedition can be charac-
terized as decentralized partially observable Markov decision processes (Dec-POMDPs).

Hence, this work contributes towards practical planning in Dec-POMDPs.

1. Introduction

We consider a class of multiagent planning problems which we term multiagent ex-
pedition. A typical instance consists of a large open area populated by objects as
well as mobile agents. Activities of agents include moving around the area, avoid-
ing dangerous objects, locating objects of interests, and manipulating objects. The
outcome of an action is generally uncertain. Agents have no prior knowledge of
the area. Instead, they try to identify nearby objects based on limited sensing of
the local area. Successful manipulation of an interesting object sometimes requires
proper actions of a single agent and sometimes requires cooperation of multiple
agents. The success of an agent team is evaluated based on the quantity of objects
successfully manipulated as well as the quality of each manipulation.

Practical examples of multiagent expedition are abundant. In planetary expedi-
tion, interesting objects include rocks of certain physical or chemical compositions.
Cooperation is needed to collect rocks when one robot is specialized in digging and
another is specialized in carrying. In disaster rescue [14], target objects include vic-
tims trapped in wreckage. In order to rescue them, some rescuers may lift and hold
heavy building components while others pull the victims into safety.

Multiagent expedition is a subclass of Dec-POMDPs which are highly in-
tractable. Oliehoek et al. commented in [20]: “Unfortunately, optimally solving
Dec-POMDPs is NEXP-complete, and the same holds for finding an ε-approximate
solution. As a result, research has focused on special cases to overcome this com-
plexity barrier.” One testimony is that many experimental studies are limited to
artificially constructed testbeds with two or three agents, e.g., [3,10,20,23].

We take the same approach in this work. The design of successful agent teams
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in multiagent expedition is a challenging task (see [7]) and requires more than a
few steps of advancements. To carry out an algorithmic and experimental study, we
abstract the essential characteristics of multiagent expedition into a specific type of
environment for the current investigation. We demonstrate that our solution allows
us to experiment with agent teams of sizes well beyond two or three. Lessons learned
from our computational solution to the special case promise to be the springboard
to solutions of more general cases.

Most research on Dec-POMDPs, including those that explore factorized repre-
sentations, focus on offline policy making, e.g., [20,23]. Few, e.g., [5] (non-graphical
model) and [10] (loosely coupled graphical models), have focused on online planning.
This work takes the approach of online planning. That is, agents will cooperate to
compute the best plan based on current observations for immediate execution.

The environment used in this study is represented as a grid of cells. The general
problem of planning for optimal performance in this environment is shown (Sec-
tions 2 and 3) to be highly intractable. We therefore handle multiagent expedition
over an extended time period through a sequence of (coherent) planning sessions
each of which is over a limited horizon. These planning sessions are interleaved with
executions of resultant plans. We propose a set of techniques to decompose the plan-
ning task to a set of semi-independent optimization subtasks, and to ensure that
such planning is conditionally optimal (elaborated below) and is under reasonable
runtime. We experimentally demonstrate the effectiveness of these techniques.

The core knowledge representation used by agents is based on a multiagent
graphical model, called collaborative design networks (CDNs) [30, 31]. CDNs were
originally proposed for decision-theoretic, multiagent, optimal industrial design. The
expressive power of the framework, however, goes beyond industrial design. We
propose techniques that allow each agent group to encode their planning knowledge
into such graphical structures.

In an earlier work [32], multiagent expedition was used as testbed. The objec-
tive of the study was to compare two fundamentally different decision paradigms,
rather than to solve multiagent expedition generally. The techniques considered for
solving multiagent expedition were limited, not scalable (e.g., group size is limited
to three), and were not analyzed. The current work presents a set of techniques with
formal analysis on their conditional optimality and efficiency impact, and provides
a scalable solution to multiagent expedition with extensive experimental results.
More related work is discussed in Section 13.

2. The Multiagent Expedition Testbed

To carry out algorithmic and experimental study, we abstract the essential charac-
teristics of multiagent expedition into the following specific type of environment for
the current investigation. A large open area is abstracted as a grid of cells. Time
is discretized and, at each instant, each agent must take an action. At any cell,
an agent has five possible actions: moving to an adjacent cell along one of four
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directions (referred to as north, south, east, west) or remaining in the current cell
(referred to as halt). The outcome of an action is, however, uncertain. That is, the
action north may cause the agent to land on each of the four unintended cells. The
only exception is the action halt, which is deterministic.

We assume that when an agent lands on a particular type of cell, a particular
type of activity is performed. Sampling a rare rock on Mars is a desirable activity
that can be performed when such a rock is encountered. Saving an earthquake victim
is a desirable activity that can be performed when the victim is reachable. A cell
may have nothing interesting. Simply passing by such a cell is a neutral activity. A
cell may contain an obstacle and hence passing by is harmful. The desirability of an
activity performed at a cell is evaluated by a numerical reward. For generality, we
abstract away the activity, associate the reward with each type of cells, and refer
to it as the reward of a cell. A neutral cell (neither desirable nor harmful) has the
reward of a base value β. The reward of a harmful cell has a value lower than β. The
reward of a desirable cell has a value higher than β and can be further increased
through agent cooperation (defined as two or more agents landing on the cell at
the same time). We assume that the value of reward is in the range [0, 1], where 1
corresponds to the most desirable and 0 the least.

One primary purpose of multiagent systems is to benefit from cooperation. How-
ever, agents do not need to cooperate at all time (sometimes, working as individuals
may be more productive). Nor does it always require involvement of the entire agent
team when cooperation is indeed beneficial. For instance, when a physical activity
is performed at a given location (e.g., digging, lifting, pushing, etc.), cooperation is
often most productive when a certain number of agents are involved. The per-agent
productivity is reduced when more or less agents are involved. Hence, an effec-
tive multiagent system should allow agents to operate individually or cooperate at
the right level as the situation demands. To enable investigation of this behaviour,
our experimental environment rewards agents accordingly. First, we differentiate
between productive and unproductive cooperation. An environment is associated
with a parameter λ ∈ {2, 3, ...}, called the most productive level of cooperation. The
reward received by an agent at a desirable cell suited for cooperation, when sev-
eral agents cooperate and meet at the cell, is defined as follows. Its properties are
summarized in Proposition 1, whose proof is straightforward.

Definition 1. Let c be a desirable cell suited for cooperation, r1 be the reward if
exactly one agent lands on c, and r2 be the reward if λ agents meet at c. Let x be
the total number of agents who meet at c. Then each agent receives the reward r:

r =





r1 > β : x = 1
r2 > r1 : x = λ

r1 + x−1
λ−1(r2 − r1) : 1 < x < λ

β + r2−β
x−λ+1 : x > λ

Proposition 1. The reward each agent received according to Def. 1 satisfies the
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following properties: (1) The function r(x) is continuous in [1,+∞). (2) When
x < λ, r increases as x increases. (3) When x > λ, r decreases as x increases, but
is lower-bounded by β. (4) When x = λ, r is maximal.

Statement (1) says that, as the number of meeting agents changes, the reward
received per agent changes smoothly. Statement (2) says that, as the number in-
creases towards the most productive level, the reward received per agent increases
as well. Statement (3) asserts that, once the number exceeds the most produc-
tive level, the reward received per agent decreases, but the cell remains desirable.
Statement (4) asserts the most productive level of cooperation. This environmental
property differentiates between productive and unproductive cooperation, promotes
the former, and discourages the latter.

Furthermore, we allow cells where cooperation is not favourable. Such a cell is
also characterized by parameters (β, r1, r2). However, r2 satisfies β < r2 < r1. As a
result, when a single agent moves to the cell, it receives reward r1. If more agents
meet at the cell, each receives less than r1.

After a desirable cell has been visited by any agent, its associated reward is
decreased to β. This property conveys the intuition that after useful rocks at a
location have been collected, visiting this same location becomes a neutral activity.
As a result, wandering around a neighbourhood is unproductive and agents are
motivated to migrate strategically. On the other hand, after a harmful cell is visited,
its associated reward is unchanged.

Agents have no prior knowledge about how different types of cells are distributed
in the environment. Instead, at any cell, an agent can perceive its absolute location
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Fig. 1. (a) A neighbourhood perceivable by an agent. (b) A group formation where the group

direction is indicated by the arrow. (c) Illustration of Proposition 3. (d) A and B plan to meet at
cell c in 2 steps. A halts first to avoid moving to c alone.

(e.g., through GPS on Earth or triangulation with two base stations on Mars). It
can also perceive the types of cells in a given radius ρ and assess reliably the reward
of each cell. For example, a neighbourhood of radius ρ = 2 steps is shown in Fig. 1
(a). An agent can perceive the location of another agent if the latter is within a
specified radius γ. It can only communicate with agents within this radius as well.

The objective of agents is to move around the environment, cooperate as appro-
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priate, and maximize the total team reward over a finite horizon k where 1 < k ≤ ρ.
They must do so based on local observations and limited inter-agent communica-
tion. Note that it is possible that team agents A1 and A2 are within the distance ρ
(or γ), so are A2 and A3, but the distance between A1 and A3 is beyond ρ (or γ).

Dimensions of a congregate of harmful cells have a significant impact on effective
planning. Congregates of large dimensions are rare in open areas and we do not
consider them in this work. That is, we assume that the sum of x-dimension and
y-dimension of the largest congregate is less than k.

Formally the environment described above is a tuple (Ag, S,∆, T r,R,Ob, st0, k).

• Ag = {A1, ..., An} is a team of n agents.
• Although the multiagent expedition environment is generally open, for plan-

ning with a finite horizon, the relevant region is finite. S denotes the fi-
nite set of states of this region. Each state st ∈ S is described by a pair
st = (ps, ct). The ps is the team configuration, ps = (psA1 , ..., psAn), where
psAi is the position of agent Ai. The ct is the cell type distribution that, for
each cell in the region, specifies its type.

• ∆ = ×i∆i is a set of joint actions and ∆i = {north, south, east, west, halt}
is the set of actions available to Ai. At each time step, agents take one joint
action δ = (mvA1 , ...,mvAn) ∈ ∆, where mv denotes movement.

• The transition probabilities P (st′|st, δ) are specified by the transition func-
tion Tr. Note that a state transition includes not only the position tran-
sition of agents, but also the cell type transition, because once a desirable
cell has been visited, its associated reward is reduced (a type transition).

• R = (R1(ct, ps′), ..., Rn(ct, ps′)) is the immediate reward function, where
Ri(ct, ps′) is the immediate reward of Ai given the previous state (ps, ct)
and the current state (ps′, ct′). Note that ct determines the type for cell
ps′Ai and hence the pair (r1, r2) of parameters in Def. 1. The ps′ determines
how many agents (x in Def. 1) meet at ps′Ai . From r1, r2 and x, Ri(ct, ps′)
is determined by Def. 1.

• Ob = ×iOb
i is the set of joint observations at time 0, where Obi is the

observation of Ai that includes only the positions of agents and types of
cells in its current neighbourhood (a small area within the region). Although
Ob is partial, we assume that it is reliable. That is, observed agent positions
and cell types by each Ai is correct.

• The initial state at time 0 is st0. It is unknown to agents (but partially
observable). The planning horizon is k.

Note that since we are interested in online planning, rather than offline policy
making, st0 and Ob are fixed rather than probabilistically specified.

The above multiagent expedition environment can be characterized as decen-
tralized partially observable Markov decision process (Dec-POMDP) [4]. The state
of the environment is described by the positions of agents and the cell type dis-
tribution. It is stochastic since the outcome of agent actions are uncertain. It is
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Markovian as the new state is independent of the history conditioned on the cur-
rent state and the joint action of agents. It is partially observable because each agent
can only perceive its neighbourhood, but not cells and other agents beyond.

3. The Multiagent Online Planning Problem

Denote action of Ai ∈ Ag at step j (1 ≤ j ≤ k) by mvAi ,j. A joint plan of horizon
k contains a movement for each agent in each of the k steps, and is denoted

(mvA1,1, ...,mvAn,1,︸ ︷︷ ︸
n terms

...,mvA1,k, ...,mvAn,k︸ ︷︷ ︸
n terms

) = (δ1, ..., δk).

Denote the position of Ai after the j’th action by psAi ,j. A team configuration after
the j’th joint action is psj = (psA1,j , ..., psAn,j) and a team configuration sequence
after the execution of a joint plan (k steps) is

(psA1,1, ..., psAn,1,︸ ︷︷ ︸
n terms

..., psA1,k, ..., psAn,k︸ ︷︷ ︸
n terms

) = (ps1, ..., psk).

Next, we specify the payoff from the outcome of a joint action. In the literature
on POMDPs, the reward is normally assumed (perhaps implicitly) objective (versus
subjective) and the goal of planning is to maximize the accumulative reward, pos-
sibly discounted [6]. Our approach is a departure from this common practice, and
is consistent with Bayesian decision theory and its adoption in CDNs. We define
the utility function for the team over team configuration sequences and denote by
ψT,1...k(ps1, ..., psk) ∈ [0, 1], where T stands for team. For most team configuration
sequences, the utility is defined based on the accumulative reward

ψT,1...k(ps1, ..., psk) =
1
nk

n∑

i=1

k∑

j=1

ψAi,j , (1)

where ψAi,j is the reward that Ai received at jth step at cell psAi,j . Situations
where the utility values differ from the above and their advantage will be presented
in Section 10. For simplicity, we have assumed equal weight for all agents without
discounting, although this does not have to be the case for our result to hold. The
team expected utility for a joint plan of horizon k is

EUT,1...k(δ1, ..., δk) =
∑

ps1

...
∑

psk

ψT,1...k(ps1, ..., psk)P (ps1, ..., psk|δ1, ..., δk), (2)

where P (.|.) denotes the probability of a team configuration sequence resultant from
the joint plan and the summation is over all such sequences. For simplicity, we will
write

∑
ps1,...,psk

in place of
∑

ps1
...
∑

psk
. Although P (ps1, ..., psk|δ1, ..., δk) is not

directly specified by Tr, it can be derived from Tr as we will show in Section 6.
Furthermore, evaluation of ψT,1...k(ps1, ..., psk) is conditioned on observation Ob.

The multiagent online planning problem is to find an optimal joint plan
(δ∗1 , ..., δ∗k) that satisfies the following given observation Ob:

EUT,1...k(δ∗1 , ..., δ
∗
k) = max

δ1,...,δk

EUT,1...k(δ1, ..., δk). (3)
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At each step, each agent has five possible actions. Hence, there are 5n joint ac-
tions and 5nk joint plans of horizon k. Since each action has five possible outcomes,
a joint action has 5n possible team configurations. This means that the summation
of Eqn. (2) is over 5nk terms, each of which corresponds to a possible team con-
figuration sequence of the same joint plan, whose probability and utility must be
evaluated. To solve Eqn. (3), Eqn. (2) must be computed once for each of the 5nk

joint plans, which amounts to evaluation of a total of 52nk possible team configu-
ration sequences: an intractable task. For example, if n = 6 and k = 2, a total of
524 ≈ 6 × 1016 team configuration sequences need to be evaluated.

To practically carry out the task, we take a decision-theoretic graphical model
approach and propose a set of techniques. Section 4 groups agents to decompose
team plan into group plans. After a brief background on CDNs in Section 5, we focus
on graphical modeling of the problem as CDNs in Section 6. Section 7 constraints
group plans through a group organization. Section 8 restricts agent directions to
better coordinate a group. Section 9 discards halt option in some action sequences
to improve efficiency. Sections 10 and 11 promote desirable team formations.

4. Grouping Agents Within A Team

The first measure we consider is to divide a team of n agents into smaller groups
in order to gain planning efficiency. Cooperation will only be attempted within a
group. To ensure that group members can cooperate at the most productive level
whenever opportunities arise, we enforce Assu. 1 on group size:

Assumption 1. Let g denote the size of any agent group. Then, g ≥ λ.

For simplicity of presentation, groups are assumed to have the same size g, although
this is not needed for our results to hold. In this work, we assume that λ is given
and is fixed. Hence, agent grouping is determined at compile time.

Next, we assume that team configurations satisfy certain formations. These for-
mations allow more efficient planning and will be actively enforced through plan-
ning. Assu. 2 below requires the distance between each pair of group members to
be less than γ, so that group members are able to communicate. This allows them
to perform distributed planning using techniques in Section 5.

Assumption 2. At any time, group members are within the distance γ to each other.

Another condition below requires that no agent outside a group is closer than 2k
distance with any group member. Note that since time and space are discretized in
steps and cells, respectively, an agent moves a maximum 2k distance in 2k time.

Assumption 3. At any time, two agents from distinct groups are at least 2k + 1
distance apart.

Assu. 3 implies that members of distinct groups cannot interact as far as their
rewards are concerned. This is because the only interaction that can directly affect
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their rewards is to meet at the same cell. Meeting becomes impossible when their
distance ≥ 2k + 1, even if they move towards each other for k steps.

How to enforce Assu. 2 and 3 are presented in Section 10. Given Assu. 1 through
3, Eqn. (2) can be written as

EUT,1...k(δ1, ..., δk) =
g

n

∑

G

EUG,1...k(δG
1 , ..., δ

G
k ) (4)

where the summation is over the n/g groups, denoted by group index G, and δG
j is

the jth step joint plan for the Gth group. Each term in the summation is the group
expected utility defined as

EUG,1...k(δG
1 , ..., δ

G
k ) =

∑

psG
1 ,...,psG

k

ψG,1...k(psG
1 , ..., ps

G
k )P (psG

1 , ..., ps
G
k |δG

1 , ..., δ
G
k ),

(5)
where psG

j is jth step configuration of Gth group, and group utility is defined as

ψG,1...k(psG
1 , ..., ps

G
k ) =

1
gk

g∑

i=1

k∑

j=1

ψAi,j, (6)

where Ai is the ith agent in the Gth group.
We refer to a group plan (δ∗G

1 , ..., δ∗G
k ) as conditionally optimal under Assu. 1

through 3, if the following holds under these assumptions:

EUG,1...k(δ∗G
1 , ..., δ∗G

k ) = max
δG
1 ,...,δG

k

EUG,1...k(δG
1 , ..., δ

G
k ) (7)

We refer to a team joint plan (δ∗1 , ..., δ
∗
k) as conditionally optimal under Assu. 1

through 3, if Eqn. (3) holds when Assu. 1 through 3 are satisfied.
The above analysis shows that under Assu. 1 through 3, conditional optimal

team planning can be replaced, by conditional optimal group planning conducted
asynchronously by individual groups. Suppose n = 6, g = 3 and k = 2. Each
agent now needs to evaluate 512 ≈ 2.4 × 108 possible outcomes. This reduction,
from 6 × 1016 above, is due to not having to evaluate inter-group interactions.
The conditional optimality and efficiency gain of grouping are summarized in the
following proposition, whose proof is straightforward given the above analysis.

Proposition 2. Let a team of n agents plan for horizon k, in an environment where
the most productive level of cooperation is λ and the maximum direct communication
distance is γ. Let the team be divided into groups of g agents such that Assu. 1
through 3 are satisfied. Then, the following hold: (1) Any set of conditionally optimal
group plans is a conditionally optimal joint plan. (2) Time complexity of planning
at each group is upper-bounded by O(52gk).

The O(52gk) complexity can be viewed either as a bound for a centralized plan-
ning agent one per group, or as a bound for each group member in distributed
planning. It will be reduced in Sections 6 and 7 with distributed planning based on
graphical models.
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An additional consequence of Assu. 3 is that a team works more effectively when
groups are dispersed over a broader region, rather than packed into a narrow area.
Finally, such grouping can scale up as n grows.

In summary, grouping effectively decomposes the optimization task into semi-
independent optimization subtasks, one per group. They are ‘independent’ as opti-
mization is now within each group. They are ‘semi’ because group planning must
maintain both inter and inner-group distance, which is elaborated in Section 10.

5. Background on CDNs

Core knowledge representation used in this work is the CDN, due to its expressive
power as a multiagent decision-theoretical graphical model and an associated set of
sound and effective inference algorithms. Below, we introduce background on CDNs.
For more details, see [28] on multiagent graphical models and [29–31] on CDNs.

A CDN is graphical model for cooperative decision by multiagent, proposed for
supply chain industrial design. Each agent Ai carries a subnet that is equivalent
to an influence diagram, whose nodes includes design parameters (denoted Di),
performance measures (M i), and utilities (U i). They are drawn as squares, ovals,
and diamonds, respectively. Generally, a utility node can only have performance
parents, and a performance node can only have design parents. Each utility variable
u with parents π(u) is associated with a domain {y, n} and a function u(π(u)) ∈
[0, 1] encoded as P (u = y|π(u)).

Agents are organized into a hypertree, which specifies direct communication
pathways. Each pair of adjacent agents share a set of public design parameters,
called an agent interface. A message between them is either a utility function or an
assignment over the interface.

Additive independence [12] among utility variables is assumed. Each utility is
assigned a weight in [0, 1] such that weights of all utility nodes in U i sum to one.
Each subnet is assigned a weight in [0, 1] such that weights of all subnets sum to one.
These weights express relative importance of each utility and relative importance
of each agent’s preference. The expected utility of a design d is

EU (d) =
∑

i

wi


∑

j

κi
j(
∑

m

ui
j(m) P (m|d))


 , (8)

where d is a configuration over ∪iD
i, i indexes subnets, j indexes utility nodes {ui

j}
in ith subnet, m is a configuration of parents of ui

j, κ
i
j is the weight assigned to ui

j,
and wi is the weight assigned to ith subnet. Through message passing among agents,
the globally optimal design d∗ that maximizes EU (d) can be obtained exactly.

Although CDNs were originally developed for design, their expressive power is
beyond design: Design parameters may be generic decision variables. Performance
measures may be generic variables describing properties of agent environment. This
generality renders CDNs applicable to modeling in the current work as shown below.
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6. Graphical Modeling

With grouping, conditional optimal team planning amounts to optimal group plan-
ning, which requires evaluating group plans according to Eqn. (5). Consider space
complexity for storing planning information in Eqn. (5). A group plan can be rep-
resented by a matrix of dimension g× k. From an initial group configuration, there
are 5gk group plans that has a space complexity of O(g k 5gk). A possible outcome
of a group plan is a group configuration sequence, which can also be represented
by a matrix of dimension g × k. Each group plan has 5gk such possible sequences.
The space complexity of all outcomes of all group plans is then O(g k 52gk). Asso-
ciated with each outcome matrix are its utility and its probability conditioned on
the group plan. They occupy an O(2 × 52gk) space.

For an example, suppose g = 3 and k = 2. Plan matrices need a space of
size 93,750 and outcome matrices need a space of size 1,464,843,750. Utilities and
probabilities need a space of size 488,281,250. Total space required has a size of
1,953,218,750. We show below that planning knowledge can be more effectively
encoded with a CDN.

The utility ψAi ,j in Eqn. (6) formally depends on the group configuration se-
quence (psG

1 , ..., ps
G
k ). Since utility at a given step is independent of future group

configurations, we have

ψAi ,j(psG
1 , ..., ps

G
k ) = ψAi,j(psG

1 , ..., ps
G
j ). (9)

Inclusion of psG
1 , ..., ps

G
j−1 is necessary because if psAi ,j has been landed on earlier in

psG
1 , ..., ps

G
j−1, its reward value may deviate from the value observed before planning.

Note that Eqn. (9) not only includes the narrow interpretation of utility based on
reward, but also allows more general extension presented in Section 10. The right-
hand side of Eqn. (5) is then

∑

psG
1 ,...,psG

k

1
g

g∑

i=1

1
k

k∑

j=1

ψAi,j(psG
1 , ..., ps

G
j ) × P (psG

1 , ..., ps
G
k |δG

1 , ..., δ
G
k ).

It can be rewritten as

1
g

g∑

i=1

1
k

k∑

j=1

∑

psG
1 ,...,psG

k

ψAi,j(psG
1 , ..., ps

G
j ) × P (psG

1 , ..., ps
G
k |δG

1 , ..., δ
G
k ).

The first summation over i has g terms and we focus on one of them (with a fixed
i). We expand the summation over j and consider the two terms for j = 1 and
j = 2. The first term (j = 1) is

∑

psG
1 ,...,psG

k

ψAi,1(psG
1 )P (psG

1 , ..., ps
G
k |δG

1 , ..., δ
G
k )

=
∑

psG
1

∑

psG
2 ,...,psG

k

ψAi ,1(psG
1 )P (psG

1 |psG
2 , ..., ps

G
k , δ

G
1 , ..., δ

G
k )×P (psG

2 , ..., ps
G
k |δG

1 , ..., δ
G
k ),
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where the summation is split into two and the probability is factorized by the
product rule. We explore the independence

P (psG
1 |psG

2 , ..., ps
G
k , δ

G
1 , ..., δ

G
k )

= P (psA1,1, ..., psAg,1|mvA1,1, ...,mvAg,1) =
g∏

x=1

P (psAx,1|mvAx,1). (10)

That is, given an agent’s first action and its initial position specified by st0 (not
included explicitly in Eqn. (10) for simplicity), its resultant position is independent
of its future actions and positions as well as other agents’ actions and positions.
Hence, the first term (j = 1) becomes

∑

psG
1

∑

psG
2 ,...,psG

k

ψAi,1(psG
1 )

(
g∏

x=1

P (psAx,1|mvAx,1)

)
× P (psG

2 , ..., ps
G
k |δG

1 , ..., δ
G
k )

(by reorder of summations)

=
∑

psG
1

ψAi,1(psG
1 )

(
g∏

x=1

P (psAx,1|mvAx,1)

)
×

∑

psG
2 ,...,psG

k

P (psG
2 , ..., ps

G
k |δG

1 , ..., δ
G
k )

(since the second summation sums to one)

=
∑

psA1,1,...,psAg,1

(
g∏

x=1

P (psAx,1|mvAx,1)

)
× ψAi,1(psA1,1, ..., psAg,1).

This is Ai’s expected utility due to the first joint action.
The second term (j = 2) is the following:

∑

psG
1 ,...,psG

k

ψAi,2(psG
1 , ps

G
2 )P (psG

1 , ..., ps
G
k |δG

1 , ..., δ
G
k )

=
∑

psG
1

∑

psG
2

∑

psG
3 ,...,psG

k

ψAi,2(psG
1 , ps

G
2 ) × P (psG

2 |psG
1 , ps

G
3 , ..., ps

G
k , δ

G
1 , ..., δ

G
k ) ×

P (psG
1 |psG

3 , ..., ps
G
k , δ

G
1 , ..., δ

G
k ) × P (psG

3 , ..., ps
G
k |δG

1 , ..., δ
G
k ).

We explore the independence

P (psG
2 |psG

1 , ps
G
3 , ..., ps

G
k , δ

G
1 , ..., δ

G
k ) =

g∏

y=1

P (psAy,2|psAy,1,mvAy,2). (11)

That is, given an agent’s second action and position after first action, its resul-
tant position is independent of its actions and positions at other times as well as
those of other agents. By Eqns. (10) and (11), the second term (j = 2) becomes

∑

psG
1

∑

psG
2

∑

psG
3 ,...,psG

k

ψAi,2(psG
1 , ps

G
2 ) ×

(
g∏

y=1

P (psAy,2|psAy,1,mvAy,2)

)
×

11
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(
g∏

x=1

P (psAx,1|mvAx,1)

)
P (psG

3 , ..., ps
G
k |δG

1 , ..., δ
G
k )

(by reorder of summation and summing to one)

=
∑

psG
1

∑

psG
2

ψAi,2(psG
1 , ps

G
2 )

(
g∏

y=1

P (psAy,2|psAy,1,mvAy,2)

)
×

(
g∏

x=1

P (psAx,1|mvAx,1)

)

(by reorder of summation)

=
∑

psG
1

(
g∏

x=1

P (psAx,1|mvAx,1)

)
×
∑

psG
2

(
g∏

y=1

P (psAy,2|psAy,1,mvAy,2)

)
ψAi,2(psG

1 , ps
G
2 ).

The second summation is Ai’s expected utility given the second joint action and
the group configuration psG

1 after the first joint action. It is weighted by the term
enclosed in the first (), which is the probability of psG

1 given the first joint action.
Hence, the above is Ai’s expected utility due to the first two joint actions.

Generalizing the above analysis, the group expected utility in Eqn. (5) becomes

EUG,1...k(δG
1 , ..., δ

G
k ) =

1
g

g∑

i=1

(

1
k

( ∑

psA1,1,...,psAg,1

(
g∏

x=1

P (psAx,1|mvAx,1)

)
× ψAi,1(psA1,1, ..., psAg,1)

)
+

1
k

( ∑

psA1,1,...,psAg,1

(
g∏

x=1

P (psAx,1|mvAx,1)

)
×

∑

psA1,2,...,psAg,2

(
g∏

y=1

P (psAy,2|psAy,1,mvAy,2)

)

×ψAi ,2(psA1,1, ..., psAg,1, psA1,2, ..., psAg,2)

)
+ ...+

1
k

( ∑

psA1,1,...,psAg,1

(
g∏

x=1

P (psAx,1|mvAx,1)

)
× ...×

∑

psA1,k−1,...,psAg,k−1

(
g∏

y=1

P (psAy,k−1|mvAy,k−1)

)
×

∑

psA1,k,...,psAg,k

(
g∏

z=1

P (psAz,k|psAz,k−1,mvAz,k)

)
ψAi,k(psA1,1, ..., psAg,k)

))
. (12)

Knowledge embedded in Eqn. (12) can be equivalently encoded into a CDN.
The CDN consists of g subnets one per agent. The subnet structure for Ai

is shown in Fig. 2 (a). As each subnet has the same set of public variables

12
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{mvA1,1, ...,mvAg,1, ...,mvA1,k, ...,mvAg,k}, the hypertree can have any tree topol-
ogy. The equivalence can be understood as follows:

A ,11 A ,1
gps ps

mvA ,11 mvA ,1
g

GA i

mv g
A ,2

mv 1 mv g
A ,3A ,3

gpsA ,3 psB
B,2

A,1mv mv mvC,1B,1

A,1
Bps

...

...
1 gps ps

rwA ,1i

...

...

A ,2 A ,2

...
A ,kps 1

A ,2irw

rwA ,3i

A ,21mv

...

(a)

G

A,2
B,2 C,2

B,1 C,1

C,2

rw

B

mv mv mv

Bps

Bps Bps

B psB
A,2

rwB

B,1

B,2 (b)

Fig. 2. (a) Subnet structure for agent Ai where k = 3. (b) Subnet structure for agent B.

• Each subnet encodes one term in the summation over i. The weight of the
subnet is wi = 1/g.

• Each subnet structure encodes the independence as exemplified by
Eqns. (10) and (11).

• In the ith subnet, ψAi,j(psA1,j, ..., psAg,j) is assigned to the jth utility
node rwAi,j. The node is associated with weight κi

j = 1/k. Probability
P (psAx,j|psAx,j−1,mvAx,j) is assigned to the position node psAx,j.

• For each given index i, Eqn. (12) computes a summation of k terms. Each
term represents the expected utility obtained by Ai at a given step. For
instance, the first term

1
k


 ∑

psA1,1,...,psAg,1

(
g∏

x=1

P (psAx,1|mvAx,1)

)
× ψAi,1(psA1,1, ..., psAg,1)

)

sums the expected utility obtained by Ai at the first step, under each pos-
sible group configuration, weighted by the probability of the configuration,
given the group plan. This is exactly what is encoded in Fig. 2 (a) by the
network segment at the upper left corner, including node rwAi,1 and all its
ancestors. The second term is

1
k

( ∑

psA1,1,...,psAg,1

(
g∏

x=1

P (psAx,1|mvAx,1)

)
×

∑

psA1,2,...,psAg,2(
g∏

y=1

P (psAy,2|psAy,1,mvAy,2)

)
ψAi,2(psA1,1, ..., psAg,1, psA1,2, ..., psAg,2)

)
.

The second summation is expected utility obtained by Ai at second step,
under each possible group configuration, weighted by the probability of the
configuration, given group plan and group configuration after the first step.

13
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The first summation sums the above result over each possible group config-
uration after the first step, weighted by the probability of the configuration,
given the group plan. This is exactly what is encoded in Fig. 2 (a) by the
network segment that includes node rwAi,2 and all its ancestors.
In general, the jth term is encoded in Fig. 2 (a) by the network segment
that includes node rwAi,j and all its ancestors.

The above analysis shows that the CDN illustrated in Fig. 2 (a) equivalently
encodes the information in Eqn. (12). Instead of directly computing the condition-
ally optimal plan by Eqns. (7) and (12), the optimization algorithm for CDNs [31]
does so by message passing within and between agents. From the optimality of the
algorithm for CDNs [31], we have the following theorem.

Theorem 1. Let the planning knowledge for a group of g agents and for
horizon k be encoded as a CDN whose subnets are structured as Fig. 2 (a).
Let φ∗ = (δ∗G

1 , ..., δ∗G
k ) be the optimal group plan obtained through planning

with the CDN. If Assu. 1 through 3 hold, then φ∗ satisfies EUG,1...k(φ∗) =
maxδG

1 ,...,δG
k
EUG,1...k(δG

1 , ..., δ
G
k ), where EUG,1...k(.) is as defined in Eqn. (12).

Note that Theorem 1 holds under Assu. 1 through 3, which trade generality for
efficiency. As an example, we illustrate the CDN for g = 3 and k = 2, and denote
agents in a group by A, B and C. The subnet dependence structure for B is shown
in Fig. 2 (b), and subnets for A and C are similar.

In the figure, mvA,j ,mvB,j ,mvC,j (j = 1, 2) are public variables, and the
rest are private variables of agent B. The probability distribution P (psB

A,1|mvA,1)
can be specified from the uncertain movement model of the environment.
P (psB

A,2|psB
A,1,mvA,2) can be similarly specified with conditioning on the position

of A after its first movement. Assuming ρ = 2 (perceivable neighbourhood radius),
the potential P (rwB

B,1 = y|psB
A,1, ps

B
B,1, ps

B
C,1) is specified from the reward distri-

bution assessed based on observation of the neighbourhood of B. On the other
hand, the potential associated with node rwB

B,2 is derived from the observed reward
distribution as well as the influence of agent positions after the first movement.

Next, we consider the space requirement of CDN. Each position variable psAi ,j

may represent the absolute coordinates of the agent. However, for the correspond-
ing subnet component to be reusable to planning in any initial group configuration,
the domain of psAi ,j would have to be the entire set of cells in the environment:
increasing the space and time complexity significantly. Instead, we let psAi,j repre-
sent the relative coordinates of the agent, relative to the initial group configuration
for the current planning session. After the first action, an agent can be in one of
5 possible cells (including the starting cell). Hence, psAi,1 has a domain of size 5.
After the second action, the agent can be in one of 13 possible cells, relative to the
starting cell. Hence, psAi,2 has a domain of size 13. Similarly, psAi,3 has a domain
of size 25. In general, psAi,k has a domain of size 1 + 2k(1 + k).

Consider space complexity of the subnet (g = 3 and k = 2). The mv variables

14
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need a space of size 6 × 5 = 30. The ps variables need a space of size 3 × 5 +
3 × 13 = 54. The rw variables need a space of size 2 × 2 = 4. Numerically, the
probability distributions associated with position variables occupy a space of size
1050. The utility potentials take a space of size 549500. Hence, the total space
required (omitting space needed to encode the graph structure) has a size of 550634:
a very significant reduction from 1,953,218,750 (see opening of this section).

Regarding time complexity, notice that ps variables in Fig. 2 (a) are decomposed
into k families (each made of a rw node and its ps parents). This decomposition of
group configuration sequences coupled with CDN inference algorithm reduces the
time complexity to below O(52gk) (Proposition 2).

7. Cooperation Frame

When a team of agents are grouped under Assu. 1 through 3, the most productive
cooperation is enabled in each group as long as g = λ. Does a larger group (g > λ)
offer any computational advantage? Below, we develop an (intra) group organization
for groups with g > λ and analyze its benefits and costs.

Definition 2. Let the most productive level of cooperation of the environment
be λ ≥ 2 and the size of an agent group be g > λ. A cooperation frame (CF)
of the group is a cluster chain. Each cluster is a unique subset of λ agents. The
intersection of every two adjacent clusters has λ− 1 agents and the intersection of
any two clusters is contained in each cluster between them.

Fig. 3 (a) illustrates a CF for λ = 2 and g = 4. Fig. 3 (c) shows a CF for λ = 3
and g = 7. Each cluster in a CF contains λ agents who are close to each other and

A,B

B,C

C,D A

(b)

B C
D A,B,C E,F,G

B,C,D D,E,F

C,D,E

(c) B

G

F

E

D

C
A

(d)(a)

Fig. 3. (a) A group CF for λ = 2 and g = 4. (b): Group configuration consistent with the CF in
(a). (c): A group CF for λ = 3 and g = 7. (d): Group formation consistent with the CF in (c).

are capable of cooperation at the most productive level within the planning horizon
k. This is stated in the following assumption.

Assumption 4. At any time, two agents in a same cluster of CF are no farther than
2k distance apart.

On the other hand, agents not contained in the same cluster of CF maintain
distance from each other and are not intended to interact, as stated in Assu. 5.

Assumption 5. The group configuration at any time is consistent with its CF such
that, for every two agents not simultaneously contained in any cluster of CF, no
cooperation between them is possible.
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We analyze the impact of the above assumptions here and present their en-
forcement in Section 10. In Fig. 3 (c) and (d), agents A, B and C are intended
to cooperate, so are B, C and D. However, A and D will not interact. Because of
that, there is no need to consider such interaction in planning. As a result, agents
contained in the same cluster in CF only need to model each other’s actions and
effects. For instance, agent A in Fig. 3 (c) needs to model only actions and effects
of B and C. It does not need to model those of D.

In general, Assu. 5 makes it unnecessary for an agent to consider actions and
effects of some of its group members. The impact on Eqn. (12) can be analyzed by
considering the following term inside the first inner parenthesis relative to Ai:

∑

psA1,1,...,psAg,1

ψAi ,1(psA1,1, ..., psAg,1)
g∏

x=1

P (psAx,1|mvAx,1)

If Ag is not contained in any CF cluster with Ai, then psAg,1 can be dropped from
arguments of ψAi,1() to produce

∑

psA1,1,...,psAg,1

ψAi,1(psA1,1, ..., psAg−1,1)
g∏

x=1

P (psAx,1|mvAx,1)

=
∑

psA1,1,...,psAg−1,1

∑

psAg,1

ψAi,1(psA1,1, ..., psAg−1,1) ×

(
g−1∏

x=1

P (psAx,1|mvAx,1)) P (psAg,1|mvAg,1)

=
∑

psA1,1,...,psAg−1,1

ψAi,1(psA1,1, ..., psAg−1,1) ×

(
g−1∏

x=1

P (psAx,1|mvAx,1))
∑

psAg,1

P (psAg,1|mvAg,1)

=
∑

psA1,1,...,psAg−1,1

ψAi,1(psA1,1, ..., psAg−1,1)
g−1∏

x=1

P (psAx,1|mvAx,1).

Performing the same operation on other agents not contained in any CF cluster
with Ai, the above term eventually includes only ps and mv variables for agents
sharing a CF cluster with Ai. The similar applies to other terms of Eqn. (12).

This transformation is equivalent to a modification of the CDN. For agent Ai,
if Aj does not share any CF cluster with Ai, then action and position variables for
Aj are removed from the subnet of Ai. We refer to the modified subnet as improved
subnet. For g = 3, k = 2 and λ = 2, the improved subnets for agents A and B are
shown in Fig. 4 (compare with Fig. 2 (b)). The improved subnet for C is similar to
that of A. In (a), variables related to agent C have disappeared (less variables to
be processed and less variables to depend on for remaining variables). Utilities for
each step can now be decomposed as shown in (b) (reducing each utility function
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A,1mv A,1mvmvB,1 mvC,1mvB,1

A,2mv B,2mv C,2mvA,2mv B,2mv psB,1
B

(a) (b)

G G

ps

rw rw

ps

ps

rw

rw

ps

A B

A
A,1

B,1
Aps

A A
B,2

A

rw

B
A,1

psB
C,1

Brw
A,2
Bps

B
C,2

BB

B
A,B,1

A,B,2

B,A,1
B,C,1

B,A,2 B,C,2

A,2
Aps

B
B,2ps

Fig. 4. (a) Improved subnet for agent A. (b) improved subnet for agent B.

exponentially). Both render the resultant CDN sparser, which leads to reduced
computational complexity [29]. To differentiate the decomposed utilities, we extend
the notation. For instance, the subscript in rwB

B,A,2 denotes that it is the reward
received by B at step 2, taking into account the interaction with A. The superscript
denotes that it is a private variable in agent B.

The hypertree of the original CDN can be arbitrarily structured (as a star, or a
chain, or a general tree) because all subnets have the same set of public variables.
However, improved subnets limit valid topologies of the hypertree as public variables
between different pairs of subnets are different. Fig. 5 shows hypertrees of improved

B CA{mv  ,mv  ,mv   ,...}A

B CA{mv  ,mv  ,mv   }

C {mv  ,mv  ,mv  ,mv   ,mv   ,...}A B C D E

B CA{mv  ,mv  ,mv   ,mv   }D

{mv  ,mv  ,mv  ,mv   ,mv   ,...}E
C D E F G

{mv  ,mv  ,mv  ,mv   ,mv   ,...}B C D E F
D

{mv  ,mv  ,mv   ,mv   }B C D E {mv  ,mv  ,mv  ,mv   }C D E F

{mv  ,mv  ,mv  ,mv   }D E F G {mv  ,mv  ,mv   }E F G

BA{mv  ,mv   }

{mv  ,mv  ,mv   ,...}C
B C DBA

A {mv  ,mv  ,...}

{mv  ,mv   }C D

D
DC {mv  ,mv   ,...}

{mv  ,mv   }CB

B CA{mv  ,mv  ,mv   ,...}B

B CA{mv  ,mv  ,mv   ,mv  ,...}D
B {mv  ,mv  ,mv  ,mv   ,...}D E F G

F {mv  ,mv  ,mv   ,...}E F G
G

(a)

(b)

Fig. 5. (a) Hypertree of improved CDN from CF in Fig. 3(a). (b) Hypertree from CF in Fig. 3(c).

CDNs corresponding to CFs in Fig. 3. Agent interfaces and public variables con-
tained in each subnet are indicated. For simplicity, public variables mvA,1,mvA,2, ...

are indicated by mvA only. The above analysis is summarized below:

Theorem 2. Let planning knowledge for a group of g agents and for k steps be en-
coded in an improved CDN. Let φ∗ = (mv∗A1,1, ...,mv

∗
Ag,1, ...,mv

∗
A1,k, ...,mv

∗
Ag,k) be

the optimal group plan computed through planning with the CDN. If Assu. 1 through
5 hold, then φ∗ satisfies the following, where EUG,1...k(.) is defined in Eqn. (12):

EUG,1...k(φ∗) = max
mvA1,1,...,mvAg,k

EUG,1...k(mvA1,1, ...,mvAg,1, ...,mvA1,k, ...,mvAg,k).

We now analyze costs and benefits of planning with groups of g > λ and CFs.
Suppose that a team consists of 21 agents and the environment has λ = 3. We
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compare two alternative team organizations. The first divides agents into 7 groups
with g = λ. The second divides agents into 3 groups with g = 7 > λ and each group
follows the CF in Fig. 3 (c). In the first organization, each agent can cooperate with
only two other agents. While for each group in the second organization, B and F

each can cooperate with three other agents, and C, D and E each can cooperate
with four other agents. Although each agent still cooperates most productively with
two other agents at a time, more cooperative opportunities exist. Numerically, the
average number of agents that a given agent can cooperate in the second organiza-
tion is 3.14, and this number is 2 in the first organization. Hence, groups of g > λ

that follow CFs enjoy a higher degree of cooperation. The cost is the increased so-
phistication of agent modeling in order to support the extra communication during
planning among a larger number of group members. We experimentally evaluate
these costs and benefits in Section 12.

8. Group Direction

To further improve group performance and planning efficiency, we propose to guide
group movement by a group direction. At any time, a unique group direction is
known to all group members, and constrains their movement actions. For instance,
suppose that λ = 2, g = 3, CF clusters are {A,B} and {B,C}, and the current
group direction is north. Then A and C are not allowed to attempt south.

Without a group direction, group members, limited by the short perception
range ρ, will tend to move randomly within a small area. With a group direction,
the group moves more strategically, because member movements, e.g., those of A
and C, are better coordinated. As a result, the whole group will perform more
effectively. Furthermore, restriction of movement to some group members reduces
domains of their mv variables (by one alternative action), which in turn improves
efficiency of planning.

Note that there is no restriction to movement of B, which allows B to cooperate
freely with either A or C. Note also that even though A and C are not allowed to
attempt south in the above scenario, they may still land on south due to uncertainty
in movement outcome. As another example, consider the group in Fig. 3 (c) and
(d), and assume the north group direction. Reduction of domains of mv variables
for A, B, D, F , and G will improve both performance and efficiency.

Effective usage of group direction requires agreement among members on what
is the current direction. We achieve the agreement through two measures: The first
is Assu. 2 whose enforcement is elaborated in Section 10. Its direct consequence is
that group members can perceive each other’s position.

Second, all members compute the group direction based on positions of two
pre-assigned agents. Each agent is selected from a terminal cluster in the group CF
(which is a cluster chain and has exactly two terminal clusters), such that they are
not contained in any common cluster. For the group in Fig. 3 (a) and (b), they are
A and D. For the group in (c) and (d), they are A and G. We refer to the locations
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of the two agents by X and Y . According to Assu. 5, X 6= Y and a vector
−→
XY

pointing from X to Y is well defined. The group direction is obtained by rotating
−→
XY 90◦ counter-clockwise and then aligned to the nearest direction among four
alternatives.

This technique renders the following properties: First, it steers the group to move

perpendicularly to
−→
XY . Since X and Y are terminal agents in the group formation,

the group has the widest expedition front. Second, the group direction will not
change dramatically from move to move, promoting strategic group migration and
avoiding wandering around a confined region. Third, the group direction does not
dictate individual agent movement rigidly. Each agent still has enough flexibility
to choose its action. For instance, suppose that the shaded cell in Fig. 1 (b) has a
high cooperative reward value. Then, A can plan to go south twice and B can plan
to halt first and then go east. Finally, adopting the group direction does not affect
the conditional optimality of planning. This is because group plans ignored from
consideration are those that move the group to where it was, due to the smooth
transition of the group direction. Since the reward of a desirable cell is reduced to
β after the first visit, going back will be unproductive.

9. Equivalent Action Sequence

Still another measure to improve efficiency is to disallow halt to be an alternative
for some actions. For instance, when k = 2, halting in both actions is unproductive.
Hence, such action sequence needs not be considered. On the other hand, being able
to halt in one of the actions is necessary to achieve cooperation, as shown in Fig. 1
(b). In general, for a plan of k steps, will removal of option halt from the domains of
some action variables impact the planning optimality? First, we consider the impact
of removal on destination reachability:

Definition 3. Let mvA,1...j denote a sequence of action variables (mvA,1, ...,mvA,j)
of agent A, where each variable has the normal domain of cardinality 5. Let mv′A,1...j

denote an alternative variable sequence where at least one variable has halt removed
from its domain and each such variable is denoted by mv′A,x. Then, mv′A,1...j is
destination-equivalent tomvA,1...j if every position reachable by a configuration
of mvA,1...j is reachable by some configuration of mv′A,1...j.

Whenever mv′A,1...j is destination-equivalent to mvA,1...j, planning using
mv′A,1...j will not miss any potential destination. The following proposition ana-
lyzes reachability of an arbitrary cell (x, y) by alternative action sequences, where
x-axis is horizontal to the right.

Proposition 3. Let agent A start at (0, 0), (a, b) be any other cell, and z = |a|+|b|.

(1) If z is even, cell (a, b) is not reachable by odd steps without using halt. If z is
odd, (a, b) is not reachable by even steps without using halt.
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(2) Cell (a, b) is reachable by z + v non-halt steps, where v is even.
(3) Cell (a, b) is reachable by z + v + 1 steps, where v is even, z + v steps are

non-halt, and one step is halt.

We illustrate the proposition with Fig. 1 (c). The figure shows the agent
in cell (0, 0). All cells marked with dark squares have even z values. For in-
stance, those bordering unmarked cells have z = 4. Proposition 3 (1) says
that they cannot be reached in 5, 7, 9, ..., steps without using at least one
halt step. Proposition 3 (2) says that they can be reached in 4, 6, 8, ..., steps
without using halt steps. For instance, cell (0, 4) can be reached in 6 steps
(north, north, north, south, north, north). Proposition 3 (3) says that they can also
be reached in 5, 7, 9, ..., steps with a single halt step. For instance, cell (0, 4) can be
reached in 7 steps (halt, north, north, north, south, north, north). All cells marked
with circles have odd z values. For instance, those nonadjacent to the agent have
z = 3. They cannot be reached in 4, 6, 8, ..., steps without using halt. They can be
reached in 3, 5, 7, ..., steps without using halt and can also be reached in 4, 6, 8,
..., steps with a single halt step.

Theorem 3. The action sequence mv′A,1...j = (mvA,1,mv
′
A,2, ...,mv

′
A,j) (j ≥ 2) is

destination-equivalent to mvA,1...j.

Theorem 3 shows that plan reachability is not affected when the action sequence
mvA,1...j is replaced by (mvA,1,mv

′
A,2, ...,mv

′
A,j). By doing so, domains of j − 1

action variables for agent A can be reduced. Its impact on computational efficiency
is that the total number of group plans to be evaluated is also reduced.

Given j, is j − 1 the maximum number of reducible action variables? The fol-
lowing Corollary asserts this positively.

Corollary 1. The action sequence mv′A,1...j = (mv′A,1, ...,mv
′
A,j−1,mv

′
A,j) (j ≥ 2)

is not destination-equivalent to mvA,1...j in general.

Not only mv′A,1...j is destination-equivalent to mvA,1...j, our experiment and
analysis also suggest (surprisingly) that it is also chance-equivalent to mvA,1...j, in
the sense that the probability to reach a destination given a plan under mv′A,1...j is
the same as that under mvA,1...j. Unfortunately, mv′A,1...j is not utility-equivalent
to mvA,1...j in general, in the sense that the expected utility to reach a destination
given a plan under mv′A,1...j is not always the same as that under mvA,1...j. Because
of that, we will not attempt to formally establish chance-equivalence. Instead, we
make the following assumption.

Assumption 6. Each agent A plans with action sequence mv′A,1...j in place of
mvA,1...j.

The effect of destination-equivalent actions on computational efficiency can be
illustrated with the CDN in Fig. 4. Using the improved subnets, domains of mvA,1,
mvB,1, mvC,1, mvA,2, mvB,2 and mvC,2 all have size 5. The number of alternative
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plans to be evaluated by A (using subnet in Fig. 4 (a)) and C is 625 (product
of domain sizes of mvA,1, mvC,1, mvA,2, mvC,2), and the number of plans to be
evaluated by B (using subnet in Fig. 4 (b)) is 15625. By applying group direction,
domains of mvA,1, mvC,1, mvA,2 and mvC,2 are reduced to size 4. The number of
plans to be evaluated by A and C is 400, and the number of plans to be evaluated
by B is 6400. By adopting equivalent action sequences, domains of mvA,2, mvB,2

and mvC,2 are further reduced to sizes 3, 4, 3, respectively. As a result, the number
of plans to be evaluated by A and C becomes 240, and the number of plans to be
evaluated by B becomes 2880.

10. Promoting Desirable Team Formation

So far, we have presented optimal planning conditional on Assu. 2 through 6. We
consider below enforcement of these assumptions. In particular, we focus on Assu. 2
through 5, whose enforcement is less obvious. Assu. 2 requires that group members
remain within the distance γ to each other. Assu. 3 requires that members of distinct
groups maintain at least a distance of 2k+ 1. Assu. 4 requires that group members
intended to cooperate maintain a distance no more than 2k. Assu. 5 requires that
group members not intended to cooperate, according to the group CF, will not
meet. These four assumptions define desirable and undesirable team formations.
Proposition 4 identifies an environmental condition to avoid undesirable meetings.

Proposition 4. Let γ be the maximum distance where another agent can be per-
ceived and k be the planning horizon. If γ ≥ 2k, no agents from distinct groups,
who plan according to Assu. 3, can meet due to intended movements.

Next, we consider how agents can plan to maintain desirable formations accord-
ing to Assu. 1 through 5. Consider the utility function ψAi,j(psA1,j , ...) in Eqn. (12).
Commitment to the assumptions means that any group configuration violating the
assumptions is deemed undesirable. One way to express this commitment is to set
ψAi,j(psA1,j , ...) = 0 if configuration (psA1,j, ...) is undesirable. Note that doing so
is a departure from the common planning practice based on accumulative rewards.
This departure is enabled by the earlier choice that ψAi,j(psA1,j , ...) is subjective
utility, rather than objective reward. As a result of setting ψAi,j(psA1,j, ...) = 0,
actions that lead to configuration (psA1,j , ...) will be unfavourable, preventing them
from becoming part of the optimal group plan.

In particular, recall that each utility node rw in each subnet, e.g., rwB
B,A,2 in

Fig. 4 (b), is a binary variable and its parent set π(rw) consists of position variables
that refer to group configurations. The distribution P (rw = y|π(rw)) is the utility
function ψ(π(rw)). Before each CDN planning session, we set P (rw = y|π(rw)) =
ψ(π(rw)) to 0 for each undesirable configuration of π(rw). Below, we consider how
to express each assumption in this fashion.

Assu. 4 admits straightforward expression because position variables for the two
agents in question are parents of the same utility node.
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For Assu. 3, the agent from the distinct group is not explicitly modeled in the
subnet of the agent in question (denote by A). Expression must be relative to any
outsider (denote by B) currently perceived by A. From Proposition 4, as long as
γ ≥ 2k, A and B can perceive each other whenever their distance becomes ≤ 2k.
Each configuration that renders distance between A and B to ≤ 2k will cause its
utility to be reset. Furthermore, A explicitly models group members in the same CF
cluster. Denote such a member by C. Each configuration that reduces the distance
between C and B to ≤ 2k will cause its utility to be set to zero as well.

Assu. 2 and 5 both concern distance between a pair of group members. When
they are in the same CF cluster, processing is similar to that for Assu. 4. However,
when they are not contained in the same CF cluster, no utility node has their
positions as parents in the improved subnets. We propose a technique below to
handle this situation.

First, a group coordinate system is defined. Recall that the group direction is
defined based on locations of two distinct agents X and Y and is perpendicular to
−→
XY . Define the coordinate system with the middle point of X and Y as the origin,

the group direction as the y-axis, and
−→
XY as the x-axis. Second, based on the group

CF and the coordinate system, a circular sphere is defined for each member of the
group. For each configuration where an agent is outside its sphere, the utility of the
configuration will be set to zero.

Fig. 6 illustrates the group coordinate system, where the distinct agents are A
and D. The x-axis is shown as a solid arrow and y-axis as a dashed arrow. The

C
y

x

d
sp

d 

(a) (b)

A B D
B CA D

x

y

sp’

c c’
c c’ c"

t o

Fig. 6. Alternative agent spheres corresponding to CF in Fig. 3 (a).

sphere of each agent is shown as a circle. In general, spheres of different agents may
differ in diameters. To allow equal movement freedom for all agents, we make the
following assumption.

Assumption 7. Spheres of all agents in a group have the same diameter.

In the following, let Sph and Sph′ be the spheres of two relevant agents, c and
c′ be their centers, respectively, and d be their diameter. Agents in a CF cluster
are intended to cooperate. Hence, their spheres should overlap. By Assu. 4, any two
points, one on the border of Sph and the other on the border of Sph′ should be no
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farther than 2k apart, that is,

|
−→
c c′ | + d ≤ 2k, (13)

where |
−→
c c′ | is the distance between c and c′. Two agents in different CF clusters

are not intended to cooperate. From Assu. 5, their spheres must not overlap, i.e.,

|
−→
c c′ | ≥ d+ 1. (14)

Eqns. (13) and (14) allow many possible specifications of agent spheres. We
consider two extreme cases, assuming λ = 2. The first case minimizes sphere over-
lapping as shown in Fig. 6 (a). From Eqn. (13), we derive d ≤ k. By maximizing
sphere coverage, namely d, we obtain d = k.

The second case maximizes sphere overlapping as shown in Fig. 6 (b). We mea-
sure sphere overlapping by o as shown in the figure. It follows o = d − t, where
t is defined as in Fig. 6 (b). From Eqn. (14) and distance between c and c′′, we
have 2t ≥ d+ 1 and t ≥ (d+ 1)/2. From Eqn. (13), we have t + d ≤ 2k and hence
d ≤ (4k − 1)/3. Hence, spheres should satisfy the following inequalities:

{
d ≤ (4k − 1)/3,
t ≥ (d+ 1)/2.

(15)

Maximizing sphere coverage, we get d = (4k−1)/3. Maximizing sphere overlapping
(minimizing t given d) yields t = (2k + 1)/3.

The two specifications can be compared based on the group span perpendicular
to group direction (show as distance sp in Fig. 6 (a)). For (a), sp = g k, where g
is group size. For (b), sp′ = (2(g + 1)k + g − 2)/3. Difference in span between (a)
and (b) is sp− sp′ = (g− 2)(k− 1)/3, and (a) has a longer span than (b) for g > 2
and k > 1. This shows the tradeoff between the two cases. The first case has better
group span, while the second case has better group cooperation. Because the gain
in group span in the first case is not significant, we focus on the second case below,
which maximizes sphere overlapping and hence opportunities for cooperation.

B,C,D,E,F

A,B,C,D,E

C,D,E,F,G

D,E,F,G,H
(a)

E F HA C D GB

(b) (c)

x

A

B

C

D

E

F

G

tc c’

c"

y

o

t+d d

Fig. 7. (a) CF for a group of 8 agents. (b) A sphere spec. (c) A sphere spec. for CF in Fig. 3 (c).

The sphere specification in Fig. 6 (b) for λ = 2 can be generalized to any value
of λ, as illustrated in Fig. 7 (a) and (b) for λ = 5. Note that spheres for agents in
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the same CF cluster, e.g., A through E, are overlapping. Spheres for agents from
different CF clusters, e.g., A and F , are non-overlapping.

Alternative sphere specifications are also possible. Fig. 7 (c) shows one for λ = 3.
The CF clusters have the size equal to λ. Centers of spheres for agents in the same
CF cluster form an equilateral triangle with the side length t. We measure sphere
overlapping by o = d−t as shown in Fig. 7 (c). From Eqn. (14) and distance between
c and c′′, we have 2t cos(30◦) ≥ d + 1, i.e., t ≥ (d + 1)/

√
3. From Eqn. (13) and

distance between c and c′, we derive t+d ≤ 2k and hence d ≤ (
√

3−1)(
√

3k−0.5).
Hence, spheres should satisfy the following inequalities:

{
d ≤ (

√
3 − 1)(

√
3k − 0.5),

t ≥ (d+ 1)/
√

3.
(16)

In summary, Assu. 5 can be expressed through an agreed agent sphere specifica-
tion. Each group member can perceive locations of agents X and Y and compute its
own sphere, as well as spheres of agents in the same CF cluster. Assu. 5 is enforced
by setting utility to zero for configurations that violate agent spheres.

Furthermore, if X and Y are chosen as the most distant agents in the agent
sphere specification, Assu. 2 can be enforced by setting utility to zero for configu-
rations where the distance between X and Y will increase beyond γ.

Note that the techniques presented above enforce team formations that satisfy
Assu. 2 through 5 with a ‘self-stabilizing’ ability. When an undesirable formation
occurs due to uncertainty in actions, any undesirable formation that extends this
error will be treated as most undesirable (by utility reset) and will be avoided
by subsequent planning. Any formation that corrects the error and returns the
team configuration back to the desirable will be valued and the best of them will be
attempted next. Therefore, a prolonged error, a sequence of undesirable formations,
is highly improbable.

11. Agent Spheres in Grid

To apply agent spheres to the grid in our testbed, two constraints must be observed:
d and t must be integers and express Manhattan distance. Fig. 8 (a), (b), (c) show
spheres of diameters 2, 3, 4 (in solid lines), respectively.

(a) (b) (c) (d)

(e)

Fig. 8. Spheres of diameter d = 2 (a), d = 3 (b), and d = 4 (c). (d) Spheres with d = 2 and t = 2.
(e) Spheres with d = 3 and t = 3. Each sphere either has a solid outline, or has a dashed outline,

or is shaded.
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Applying integer constraint to Eqn. (15) and maximizing sphere coverage and
overlapping, for k = 2, we get d = 2 and t = 2. Spheres for three agents are shown
in Fig. 8 (d). They correspond to generic spheres in Fig. 6 (b). Applying the similar
to Eqn. (16) for k = 3, we get d = 3 and t = 3. Spheres for four agents are shown
in Fig. 8 (e). They correspond to generic spheres in Fig. 7 (c).

The above grid spheres are completely contained in the their generic counter-
parts. We therefore refer to them as lower bounding (grid) spheres. Lower bounding
spheres appear to restrict agent movement too rigidly than their generic counter-
parts. Consider the alternative sphere for k = 2 as shown in Fig. 8 (a) in dashed
lines. It consists of 9 cells instead of 5 cells for the lower bounding sphere. For each
of the 4 extra cells, only a tiny area is outside of the corresponding generic sphere.
We shall refer to the 9-cell sphere as an upper bounding sphere, and we compare the
effectiveness of both types of spheres in experiment.

12. Experimental Results

To empirically verify the effectiveness of our method, an Environment Simula-
tor is implemented as well as the agents (Fig. 9 (Left)). Simulator simulates
the grid environment, reward distribution (according to Def. 1 and the associ-
ated extension), and stochastic outcome of agent actions. It feeds agents with
observations and updates the environmental state according to agent actions.

CDN Planner

Modeling Unit

CDN Planner

Modeling Unit

CDN Planner

Modeling Unit

Environment Simulator

...

Group 2

... ......

...

actionsubnet ...

A A A1 2 g
Group 1

obs action

...

Fig. 9. Left: Experimental setup. Right: Means and standard deviations of reward parameters.

r1 r2
µ σ µ σ

E1 .07 .01 .80 .10
E2 .40 .10 .80 .10

Internally, each agent consists of two modules: the modeling unit encodes the
current local environment into a subnet, and the CDN planner plans the actions. An
agent team may be divided into groups. Each agent communicates with group mem-
bers according to the CDN hypertree organization. It communicates with Simulator
on observations and action decisions.

Each execution of an agent team in a given simulated environment may con-
sist of multiple planning sessions interleaved with executing resultant plans. Each
session has a planning horizon k. The performance of the team is measured by
the accumulative rewards over the execution period:

∑
G

∑
i

∑
s

∑k
x=1 r(G, i, s, x),

where G indexes the groups, i indexes agents in group G, s indexes the sessions, x
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indexes the step in session s, and r(G, i, s, x) is the reward collected by ith agent
in group G at step x in session s.

Below, we report our experimental study along the following perspectives: the
impact of cooperation on performance, the impact of conditional optimality, the
impact of environmental uncertainty, and the impact of grouping. For each per-
spective, a batch of experimental executions is designed and run.

12.1. Impact of Cooperative Opportunities

The objective of this batch of experiments is to evaluate the effectiveness of cooper-
ation through CDN planning in relation to cooperative opportunities in the agent
environment. Two environments, E1 and E2, are simulated with parameters shown
in Fig. 9 (Right), where r1 and r2 are per Def. 1. In E1, average cooperative reward
per agent at a cell (represented by the mean µ of r2) is about ten times as high
as non-cooperative reward (represented by the mean of r1), while in E2, it is only
about twice as high. Hence, cooperation in E1 is highly rewarding while it is not
as so in E2. The environments are set with λ = 2 and with the probability 0.9 to
achieve an intended movement.

Two agent teams are run in each environment. Each team consists of five agents
A, B, C, D and E, and no grouping is used. A CDN agent team uses the cooper-
ation frame in Fig. 10 (a) and agent spheres in (b). A greedy agent team (GRD)

C,D

(a)
D,EB,C

A,B

(c)(b)

Fig. 10. Cooperation frame (a) of CDN team and agent spheres: lower (b) and upper (c) bounding

is implemented for comparison. Each GRD agent only maximizes its own reward
(versus the team reward). Hence, only the r1 value (but not r2) of a cell is used by
a GRD agent in planning. Each GRD agent plans independently and there is no
communication among GRD agents.

Five random team starting locations are used on each environment. In each exe-
cution, the corresponding agents plan for 3 sessions with horizon k = 2, interleaved
with executing resultant plans. Thirty executions are run for each team in each
environment at each team starting location. The rewards collected by the agent
teams are summarized in Table 1 (Left), and their numbers of cooperations during
executions are summarized in Table 1 (Right).

For E1, average number of cooperations achieved by CDN team is 1.8 times of
that of the GRD team. As cooperation is highly rewarding in E1, average CDN
team reward is 1.4 times of that of the GRD team.

In E2, cooperation is not very rewarding, while individual activities are more
productive than E1 (mean value of r1 is about 5 times larger). Hence, both teams
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Table 1. Means and standard deviations of team rewards (Left) and numbers of cooperations
(Right)

Avg. team CDN GRD

reward µ σ µ σ

E1 9.75 1.72 6.94 2.01
E2 11.32 1.64 11.98 1.29

No. of CDN GRD

coops µ σ µ σ

E1 15.66 3.01 8.7 3.26
E2 8.70 2.39 6.38 3.43

achieved higher rewards than in E1. Average number of cooperations achieved by
CDN team is 1.36 times of that of the GRD team. However, the average CDN team
reward is slightly less than that of the GRD team. This is due to the interplay
between the cost and benefit of cooperation, as we analyze below:

Cooperation frequently incurs a cost due to need of assembly. It is reflected in
our experiment in two ways. The first is illustrated in Fig. 1 (d). To collect the high
cooperative reward at a cell, agents must enter the cell at the same time. Otherwise,
the first agent entering the cell collects non-cooperative reward and the cell’s reward
level reduces to β (Section 2). To enter the cell at the same step, it often requires
some agents to halt so that multiple agents can assemble at the target cell, as shown
in Fig. 1 (d). The halting agents collect rewards at β level for the halting steps,
paying a cost for cooperation.

Secondly, desirable agent group formation is coordinated through agent spheres
(Section 10), that must move with the group for each planning session. To ensure
effectiveness of spheres, they are moved only if every agent is at most one cell away
from its respective sphere after sphere movement. When this condition is violated
due to uncertain consequence of agent actions, spheres will not move for a session.
This will make the group remain in the same region as the previous session: another
assembly cost.

To summarize, cooperative agents are more productive only when cooperative
benefit outweighs assembly cost. This is the case in E1, where CDN team outper-
forms GRD team. In E2, where cooperative benefit is marginal, CDN team is instead
hindered by assembly cost. Note that assembly cost is a generic phenomenon for
multiagent systems (e.g., in many industrial or military operations), as well as the
tradeoff between cooperative benefit and assembly cost.

12.2. Impact of Conditional Optimality

The online plan computed by our method is optimal conditioned on Assu. 1 through
6. As multiagent expedition and, more generally, Dec-POMDPs are highly in-
tractable, our solution can be viewed as a (disciplined) approximation to the (uncon-
ditional) optimal plan. It is therefore worthwhile to evaluate the difference from the
unconditional optimal. This batch of experiments evaluates impact of conditional
optimality on performance (analyzed in Theorem 2) and on efficiency.

CDN-based agent team (conditionally optimal planning) is compared against an
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agent team (EXH) whose actions are planed exhaustively by a centralized planner
(unconditionally optimal planning and hence the golden standard). EXH planner
plans based on Eqn. (3), whose computation is intractable and is only practical
for small teams of up to 5 agents. A third agent team (RND) is implemented to
provide a practical lower-bound on team performance. Each RND agent randomly
selects its action. Each of the three teams consists of five agents and no grouping is
used. Two CDN teams are tested both using the cooperation frame in Fig. 10 (a).
The CDNLB team uses lower bounding spheres in (b), and the CDNUB team uses
upper bounding spheres in (c).

Table 2. Team performance in conditional optimality experiments

µ CDNUB vs CDNLB vs RND vs RND vs
Inst. EXH CDNUB CDNLB RND EXH EXH EXH CDNLB

1 2.78 2.85 2.58 1.46 103 92.8 52.5 56.6
2 2.50 2.46 2.48 .842 98.4 99.2 33.7 34.0
3 2.70 2.82 2.58 1.24 104 95.6 45.9 48.1
4 2.61 2.03 1.93 1.33 77.8 73.9 51.0 68.9
5 2.80 2.74 2.62 1.45 97.9 93.6 51.8 55.3
6 2.63 2.47 2.46 .900 93.9 93.5 34.2 36.6
7 2.72 2.71 2.71 1.24 99.6 99.6 45.6 45.8
8 4.05 2.02 1.93 1.18 49.9 47.7 29.1 61.1
9 4.44 4.43 3.11 1.14 99.8 70.0 25.7 36.7

10 2.92 3.03 2.85 .743 104 97.6 25.4 26.1
11 2.94 3.33 2.94 .938 113 100 31.9 31.9
12 3.35 2.52 2.19 .865 75.2 65.4 25.8 39.5
13 5.11 5.31 3.27 1.51 104 64.0 29.5 46.2
14 3.11 2.96 3.17 .780 95.2 102 25.1 24.6
15 3.95 3.76 3.13 1.22 95.2 79.2 30.9 39.0
16 3.84 3.18 2.63 1.10 82.8 68.5 28.6 41.8
17 3.51 3.17 3.01 1.65 90.3 85.8 47.0 54.8
18 3.49 3.32 3.44 1.05 95.1 98.6 30.1 30.5
19 3.66 3.12 3.17 1.41 85.2 86.6 38.5 44.5
20 2.81 2.32 2.23 1.30 82.6 79.4 46.3 58.3
21 7.20 6.94 6.09 3.63 96.4 84.6 50.4 59.6
22 6.71 7.09 5.91 3.58 106 88.1 53.4 60.6
23 7.26 7.25 5.91 3.00 99.9 81.4 41.3 50.8

Avg 93.4 84.6 38.0 45.7

Environment is set with λ = 2 and probability of a successful intended action
being 0.9. Planning horizon is k = 2. Eight environments are simulated. For each of
the first five environments, four starting team locations are randomly determined,
yielding test instances 1 to 20. For each of the last three environments, a single
starting team location is selected, yielding test instances 21 to 23. For each test
instance, 30 executions are run for each team. Each execution has a single planning
session.

The experimental results are shown in Table 2. Each row summarizes results
from one of the 23 test instances. Each column shows the mean team reward
(columns 2-5) or the performance ratio (in percentage) between two specific teams
(columns 6-9). The last row averages performance ratios over 23 test instances.

On average, CDNLB team obtained 84.6% of the mean reward in comparison
with EXH team, while RND team only 38.0%. CDNUB team obtained 93.4% in
comparison with EXH team, as larger spheres (relative to CDNLB) allow agents
to reach more unvisited cells while remaining in sphere. This result suggests that
upper bounding spheres are generally superior over lower bounding spheres.

The slight loss of the CDN team in performance allows it to gain significantly
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in efficiency. Table 3 shows the runtime for CDN and EXH teams of different sizes.
The cooperation frame used by each CDN team of a given size is shown, where that
of size 5 corresponds to Fig. 10 (a), as well as the number of plans evaluated by each
EXH planner. The EXH planner is run on a 2GHz processor, and each CDN agent
is run on one processor. Where execution is not practical, the time is estimated
(shown by ∼) based on the number of plans. Due to the cooperation frame and

Table 3. Runtime for CDN and EXH teams of various sizes.

Team CDN EXH
Size Cooperation Frame Time #plans Time

3 AB-BC 167 sec 15625 10 sec

4 AB-BC-CD 167 sec 390625 58 sec
5 AB-BC-CD-DE 167 sec 9765625 24 min

6 AB-BC-CD-DE-EF 167 sec 244140625 ∼11 hr
7 AB-BC-CD-DE-EF-FG 167 sec 6103515625 ∼11.5 day

distributed planning, the runtime of the CDN team is almost identical as the team
size scales up. On the other hand, the runtime for the EXH team grows rapidly,
becoming impractical.

12.3. Impact of Grouping

C,DA,B A,B

B,C D,E

A,B

C,D

E, F

B,C

E, F

(b)

E, F

(a) D,E

(e) (f)(d)

(c)

Fig. 11. Cooperation frames (a), (b), (c) and group agent spheres (c), (d), (e) for agent teams
1G6A, 2G3A, 3G2A, respectively

As long as a group has λ agents, they are able to cooperate at the most pro-
ductive level. This batch of experiments is intended to examine the impact of using
larger groups. That is, how do groups with size g > λ compare with groups with
g = λ. Three six-agent teams are implemented each with a different group size. One
team has a single group with the cooperation frame and agent spheres shown in
Fig. 11 (a) and (d). We refer to this team as 1G6A with g > λ = 2. The second
team (2G3A with g > λ) is divided into two groups of three agents each, with the
cooperation frame and agent spheres for one group shown in (b) and (e). The third
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team (3G2A with g = λ) is divided into three groups of two agents each, with the
cooperation frame and agent spheres for one group shown in (c) and (f).

The experiments used 30 environments, 10 for each team. These environments
are identical otherwise, whose reward parameter distributions are summarized in
Table 4 (Left), except the initial team locations are distinct. For each environment

Table 4. Left: Summary of reward parameter distributions of the environment. Right: Results from

experiments on grouping.

r1 r2

µ σ µ σ

0.1946 0.106 0.634 0.279

Team Reward No. Cooperations

Team µ σ µ σ

1G6A 15.02 2.10 21.6 4.5

2G3A 12.21 1.98 15.0 4.5

3G2A 14.24 1.95 21.7 4.1

and each team, 30 executions are run and each consists of 3 planning sessions of
horizon k = 2, interleaved with executing resultant plans. Table 4 (Right) summa-
rizes the performance of each team in terms of team reward as well as the number
of cooperations.

Both 1G6A and 3G2A teams collected higher rewards than team 2G3A, which
can be attributed to better agent cooperation than 2G3A (21+ vs 15). Since 3G2A
has a smaller group size than 2G3A, this difference cannot be explained by the
analysis at the end of Section 7. We interpret as follows: In both 1G6A and 3G2A
teams, agents can form cooperative subgroups of size λ, i.e., {A,B}, {C,D}, and
{E,F}. This is not possible in each 2G3A group, and there is always one agent
without cooperative partner, which decreases the team’s cooperative ability. This
observation suggests that group size should be multiples of λ: an insight we gained
through the experiment.

Given that both 1G6A and 3G2A teams have group sizes that are multiples of
λ, agents in 1G6A are more productive. This is due to the improved flexibility in
cooperation as analyzed at the end of Section 7. To verify this, we refer to subgroups
{A,B}, {C,D}, and {E,F} as regular partnerships, and {B,C} and {D,E} as
alternative partnerships. The 3G2A team only allows regular partnerships. On the
other hand, the 1G6A allows both regular and alternative partnerships. A close
examination of the above 300 runs of 1G6A team reveals that 11.4% of cooperations
are alternative partnerships (with standard deviation 9.1%). For some environment,
alternative partnerships occupy as little as 1% of the total number of cooperations
and for some other environment, they count as much as 30% of the total number of
cooperations. This observation confirms the benefit of larger groups as they allow
agents to switch from regular partnerships to alternative partnerships in order to
best adopt to their environment.

The trade-off to a larger group is the increased computation, which can be
illustrated using Fig. 11 (a). Agent B in 1G6A models both agent A and C. On the
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other hand, agent B in 3G2A only models agent A. As a consequence, the largest
agent subnet in 1G6A has 15625 plans to evaluate and it takes approximately 167
seconds on a 2GHz processor. An agent subnet in 3G2A has 256 plans to evaluate
and it takes roughly 2 seconds on the same type of processor.

13. Related Work

Mazes abstracted from office delivery applications have been widely used in empir-
ical studies of centralized POMDP algorithms, e.g. [15]. A typical maze consists of
walls, hallways, rooms and a single agent. It must travel to a goal location through
a sequence of movements. It knows the topology of the maze but may not know its
initial location. Its sensors can perceive nearby walls but are noisy.

Our environment is abstracted from open area applications, where harmful ob-
jects (such as a pit) are isolated. Multiple alternative goals (of different rewards)
exist for an agent and some goals require cooperations among agents. The essence
of planning is to choose among these goals wisely and cooperate when beneficial.
Agents have no prior knowledge of the environment.

Abstracting from warehouse applications, Pollack and Ringuette [21] proposed
Tileworld multiagent testbed, where agents’ goals are to push tiles into holes. As
multiagent expedition, a Tileworld agent can pursue one of multiple alternative
goals at any time. Cooperations in Tileworld, however, require more complex coor-
dination. The environment is fully observable (agents can perceive tiles, holes and
other agents) and deterministic (actions have intended outcomes). In contrast, our
environment is weakly partially observable (agents cannot perceive beyond imme-
diate neighbourhood) and stochastic.

Tiles and holes in Tileworld dynamically appear and disappear. Hence, agents
may do well by remaining in the same area. In multiagent expedition, after being
visited by any agent, a cell’s reward is reduced to base value. As a consequence,
wandering in the same area is unproductive.

Multiagent decision making has been modeled using multiagent influence dia-
grams (MAIDs) [16, 17]. In MAIDs, each agent maintains an independent repre-
sentation of other agents. It infers about other agents in much the same way as in
single-agent reasoning. While in a CDN-based multiagent system, agents exchange
expected utility information on shared variables in a much more cooperative way.

Noh and Gmytrasiewicz [19] applied recursive modeling method (RMM) to
agents cooperating in anti-missile defence. In their environment, incoming missiles
are fully observable. Uncertainty originates from unknown states of other agents as
well as outcomes of intercept actions. MAIDs and RMM belong to the “loosely cou-
pled” multiagent decision paradigm, while CDN belongs to the “tightly coupled”
paradigm. An in-depth comparison between the paradigms is presented in [32].

Russell and Norvig [24] discussed alternative approaches to solving single-agent
POMDPs, e.g., by finding optimal policies using belief state space or by lookahead
search of optimal decisions using dynamic decision networks (DDNs). Our work is
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closely related to the DDN based approach, but deals with multiagent environments.
Work on independent DEC-MDPs [3] shares some features with multiagent ex-

pedition. It assumes that actions of one agent cannot affect others’ observations
and states, and an agent cannot observe other agents’ states and communicate
with them. In multiagent expedition, agents can observe states of others if they are
close, they must plan to meet and to maximize reward, and CDN utilizes limited
inter-agent communication to achieve the optimal group plan.

RMM [19,27], DEC-MDPs [3], and CDNs are all instances of decision-theoretic
cooperative multiagent frameworks. Although the decision-theoretic nature gives
them the due advantages, it is also associated with a high computational cost.
Hence, scaling up is a key issue. Table 5 lists several experimental work on Dec-
POMDPs. All of them have very small agent teams, and most are offline planning.
Our framework based on CDN includes a number of techniques aimed at scaling
up. Our experimental results demonstrated online planning and execution through
multiple planning sessions of small horizons with agent team size up to 7 (which
can be readily further scaled up to larger group sizes though cooperation frames
and to larger team sizes through grouping).

Table 5. Experimental work on Dec-POMDPs

Testbed Problem Team Size On/Offline Horizon Ref.

MAT 2 Offline 2, 3 [18]

BP 2 Offline 20, 50, 100 [25]

FF 3 Offline 2, 3, 4 [20]

MBC, MAT 2 ,2 Online 2, ...,10 [5]

MBC, MAT, RAN 2, 2, 3 Offline 3, 4, 5 [2]

BP, MAT, MG, ROV 2 Offline Indefinite [1]

BP Box pushing MG Meeting in grid
FF Factored firefighting RAN Randomly generated Dec-POMDP

MAT Multiagent tiger ROV Rover problem
MBC Multiagent broadcast channel

Multiagent expedition differs from exploration. As commonly referred, e.g., [8,
26], the task of exploration is to produce a map in an unknown environment by
moving around and sensing. The map produced can then be used for navigation.
Multiagent expedition, as we presented, does not require a map.

A number of socially motivated algorithms have been developed for cooperative
problem solving, such as particle swarm optimization (PSO) [13], ant colony opti-
mization (ACO) [9], genetic algorithms (GA) [11], and cultural algorithms (CA) [22].
In PSO, each particle represents a potential solution, corresponds to a single point
in the solution space, and is a configuration of all variables to be optimized. PSO is
an instance of parallel problem solving, in the sense that the entire solution space
is explored by all particles in parallel. In CDNs, each agent configures only a subset
of design parameters. Hence, CDN is an instance of distributed problem solving,
in the sense that the set of variables to be optimized are distributed among agents
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and each agent explores a space over a subset of variables only.
In ACO, each ant travels in the orthogonal state space by moving along one axis

a certain length at each step. After an ant has traveled along all axes, its path (a
configuration of all variables) is evaluated and a certain amount of pheromone is
deposited along the path to influence search of other ants. A path must be complete
before any part of it receives pheromone. Therefore, ACO is also an instance of
parallel problem solving.

In GA, a new individual is generated by mutation and crossover operators per-
formed on individuals of the current population and is subject to selection in order
to be included in the next generation. Each individual represents a configuration of
all variables. Hence, GA is a parallel problem solver.

CA adds on top of GA a belief space. The belief space receives an accepted
subset of individuals from each generation, from which knowledge across multiple
generations are extracted. The extracted knowledge is then used to influence the
evolution of GA. In GA, a future generation is conditionally independent of the
past generations given the current generation. CA breaks such independence and
introduces inheritance across multiple generations. However, since the evolution in
CA is still based on GA, CA is also an instance of parallel problem solving.

In summary, socially motivated algorithms follow the paradigm of parallel prob-
lem solving, where an individual problem solver (a particle in PSO, an ant in ACO,
an individual in GA and CA) essentially has the access of all relevant information
for solving the problem (all variables to be optimized and the objective function in
its entirety). On the other hand, each agent in a CDN can access only part of the
information needed (a subset of variables and a partial evaluation function based
on these variables only). This property of CDN makes it suitable for a spectrum of
optimization problems where full access of relevant information to every problem
solver in a team is either impossible or undesirable. For these problems, PSO, ACO,
GA and CA based approaches are unsuitable. Each planning session in multiagent
expedition is an optimization problem. The neighbourhood of an agent is not di-
rectly observable to other agents. This problem constraint makes it well suited for
CDN based planning, but not so for socially motivated algorithms.

In posing the challenge of Mars rover operations [7], the need to take resource
constraints and concurrent actions into account in planning is emphasized. CDNs
encode constraints explicitly through design parameters and address concurrent ac-
tions through multiagent planning. Hence, CDN based planning provides a promis-
ing research direction towards meeting the challenge.

14. Conclusion

Multiagent expedition forms a challenging class of Dec-POMDPs. It captures some
of the key computational issues in a number of practical applications, where agents
move around an open, unknown, partially observable, stochastic, and physical envi-
ronment, in pursuit of multiple and alternative goals. At the same time, it simplified
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away application-specific details to facilitate algorithmic and experimental investi-
gation. Hence, computational study of multiagent expedition contributes to meeting
the challenge of planning in general Dec-POMDPs.

Most research on Dec-POMDPs has focused on offline policy making. The high
computational intractability of Dec-POMDPs has often limited experimental stud-
ies to agent teams of sizes 2 or 3. The current study takes an alternative approach,
with the focus on online planning and through a sequence of plans of short hori-
zons each with conditional optimality. As a result, our framework is able to support
planning for much larger agent teams.

Our main contribution is the development of a set of techniques to allow agent
teams to plan, cooperate, and act effectively in multiagent expedition. These tech-
niques include grouping, distributed graphical modeling, cooperation frames, group
direction, equivalent action sequences, and agent spheres. Our technique to replace
accumulative rewards by generic utility and use such utility to enforce desirable
formation is also novel and generally applicable. Our framework is not a simple se-
quence of independent plans. Although our agent team plans in a sequence of short
horizons, some techniques, such as group direction and moving agent spheres, pro-
mote coherence among subsequent plans. They allow agents to plan and act over a
long time period without suffering from the exponentially growing cost of planning
over a long horizon.

Our extensive experiments demonstrate the following:

• The framework can effectively explore cooperative opportunities.
• Through conditional optimality in planning, the framework can scale up well

with increasing sizes of agent teams, with only minor loss in team reward in
comparison with (intractable) unconditional optimal planning. Our experimen-
tal results reported in Section 12 include outcomes from agent teams up to size
7 and online planning-execution up to 20 steps with agent teams of size 6. We
are not aware of planning results with agent teams of that size in Dec-POMDPs.

• Grouping is more effective with group sizes being multiples of λ.

The challenging nature of multiagent expedition implies that the design of suc-
cessful agent teams requires more than a few steps of scientific advancements. A
number of directions for future exploration can be identified, including approximate
techniques to extend horizons of individual plans, combination of rough planning
over long-range and detailed planning over short-range, richer action spaces in mul-
tiagent expedition, and adaptation to changing λ levels.
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Appendix: Proofs

Proof of Proposition 3
Without losing generality, we assume a ≥ 0, b ≥ 0 and a + b > 0.

(1) Let an arbitrary path from (0, 0) to (a, b) consist of i+ steps east, i− steps west,
j+ steps north, and j− steps south. From i+−i− = a and j+−j− = b, it follows
that i+ + i− − a = (a + i−) + i− − a = 2i− and similarly j+ + j− − b = 2j−.
Therefore, (i+ + i− − a) + (j+ + j− − b) = (i+ + i− + j+ + j−)− (a+ b) is even.
If z is even, i+ + i− + j+ + j− is also even. If z is odd, i+ + i− + j+ + j− is also
odd. Hence, the statement holds.

(2) We prove by construction. Let a shortest path from (0, 0) to (a, b) consists of a
steps east and then b steps north. If a > 0, we insert v/2 pairs of (east, west) at
the start of the path. If a = 0, it must be the case b > 0. We insert v/2 pairs of
(north, south) at the start of the path. The result is a path from (0, 0) to (a, b)
of length z + v.

(3) The statement follows immediately from the last statement. �

Proof of Proposition 3
Let (a, b) be a cell reachable from (0, 0) by mvA,1...j and pa be the path taken.

If all steps in pa are non-halt, then pa can be realized by mv′A,1...j. Suppose some
steps in pa are halt, which implies j > z = |a|+ |b|. Consider the following cases:

• Both z and j are even or both are odd. This means that v = j − z ≥ 2 and v is
even. According to Proposition 3 (2), (a, b) is reachable by j = z + v non-halt
steps and such a path can be realized by mv′A,1...j.

• One of z and j is even and the other is odd. Then j − 1 and z must both be
even or both be odd. It follows that v = j − 1− z ≥ 0 and v is even. According
to Proposition 3 (3), (a, b) is reachable by j − 1 = z + v non-halt steps plus a
halt step. Such a path can be realized by mv′A,1...j. �

Proof of Corollary 1
Consider reachability of (a, b) from (0, 0). Let z = |a|+ |b| be even and j be odd.

From Proposition 3 (1), it follows that (a, b) is reachable by mvA,1...j but not by
mv′A,1...j. The case where z is odd and j is even is similar. �

Proof of Proposition 4
Consider the case γ ≤ 2k − 1. Two agents from distinct groups can then be

2k steps away without perceiving each other. As a result, they may plan to move
towards each other by k steps and meet unintentionally by intended movements.

On the other hand, if γ ≥ 2k, whenever two agents from distinct groups are 2k
away or closer, they can perceive each other. According to Assu. 3, they will not
choose a plan that results in an intentional meet. �
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