
September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

MULTIAGENT DECISION MAKING
IN COLLABORATIVE DECISION NETWORKS

BY UTILITY CLUSTER BASED PARTIAL EVALUATION

YANG XIANG

School of Computer Science, University of Guelph, 50 Stone Road East

Guelph, Ontario, N1G 2W1, Canada

yxiang@uoguelph.ca

FRANK HANSHAR

Medicalis, 508 Riverbend Drive

Kitchener, Ontario, N2K 3S2, Canada

frank.hanshar@gridltd.ca

We consider optimal multiagent cooperative decision making in stochastic environments.
The focus is on simultaneous decision making, during which agents cooperate by limited

communication. We model the multiagent system as a collaborative decision network
(CDN). Several techniques are developed to improve efficiency for decision making with

CDNs. We present an equivalent transformation of CDN subnets to facilitate model ma-
nipulation. We propose partial evaluation to allow action profiles evaluated with reduced

computation. We decompose a CDN subnet, based on clustering of utility variables. A
general simultaneous decision making algorithm suite is developed that embeds these

techniques. We show that the new algorithm suite improves efficiency by a combination
of a linear factor and an exponential factor.

Keywords: Multiagent reasoning, simultaneous decision making, graphical models, col-
laborative decision networks

1. Introduction

A number of frameworks for cooperative multiagent decision making exist.1–7 We
consider multiagent, cooperative, simultaneous decision making in partially observ-
able and stochastic environments. Here, simultaneous signifies that each agent de-
cides on actions over multiple decision variables at once. One example problem is
collaborative design in supply chains,8 where multiple manufacturers cooperate to
design a product, each manufacturer is responsible for designing one component,
local designs are subject to local and inter-component constraints, and are to be
globally optimized. Design must take into account uncertainty on materials, man-
ufacturing processes, product deployment conditions, etc., and optimization must
consider preferences of all manufacturers, as well as those of consumers.

In general, complexity of simultaneous decision making is exponential on the
total number of decision variables. A general approach for tractability is to ex-

1

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

2 Yang Xiang and Frank Hanshar

plore conditional independence and factorization through graphical models.9 Mul-
tiply sectioned Bayesian networks (MSBNs)10,11 are among the earliest multiagent
graphical models for probabilistic reasoning. A key idea pioneered in MSBNs is
to organize agents into a hypertree with running intersection, according to condi-
tional independence. The hypertree decomposition is used subsequently in other
probabilistic graphical models, e.g., OOBNs,12 and some Dec-MDP frameworks.13

CDNs8a are extensions of MSBNs, from probabilistic to decision theoretic, and also
explore the hypertree. In addition to hypertree, MSBNs also pioneered inter-agent
message decomposition, through linkage trees,14 for a second level of factorization,
resulting in further improvement of efficiency. Neither OOBNs, nor Dec-MDP frame-
works,13 nor existing CDN frameworks,15 explore such message decomposition. One
contribution of this work is to enable exploration of inter-agent message decompo-
sition in CDNs, through utility clusters (Section 5).

We model simultaneous decision problems through CDNs, whose main assump-
tions are the following. The multiagent system (whose state is described by a col-
lection of variables) is decomposed into overlapping subsystems, that are organized
into a hypertree with running intersection, according to certain conditional inde-
pendence (elaborated later). Each subsystem is hosted by an agent Ai, where i

indexes agent, and consists of decision variables (action choices of Ai), chance vari-
ables (environmental conditions or consequences of actions), and utility variables
(preference of Ai). Dependency among variables in each subsystem is modeled as a
decision subnet.

In simultaneous decision making, each agent decides an action, for each local
decision variable. The collection of local actions specifies a local action profile of the
agent. The collection of actions over all decision variables of all agents specifies a
joint action profile, which is equivalent to joining local action profiles of all agents.
The objective of simultaneous decision making in CDN is to find a joint action
profile, that maximizes the total expected utility for the agent team. Applying to
collaborative design, a joint action profile represents a product design, consisting of
a design for each component. A local action profile is the corresponding design of
one component, to be supplied by one manufacturer.

A method for optimal decision making in CDNs was proposed earlier.15 Its
computational complexity is linear on the number of agents, but exponential on
the number of decisions per subsystem. In this work, we propose novel techniques,
that improve the decision making efficiency, while maintaining optimality. Our con-
tributions include the following. First, existing CDN specification requires agent
interfaces (variables shared between subsystems) to be made of decision variables
only. It is motivated by efficiency consideration,15 but it limits the expressiveness.
We extend CDN agent interfaces to include additional chance variables. The exten-
sion widens applicability of CDNs, while maintaining the computational advantage

aCDN was proposedwith the name collaborative design network. Due to its generality, it is renamed

later, keeping the abbreviation.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 3

of existing agent interfaces. Secondly, we propose a compact, equivalent transfor-
mation of CDNs, where each directed path starts from a decision variable, followed
by a chance variable, and ends with a utility variable. The compact transformation
facilitates development and execution of novel techniques described below. Third,
we propose a technique, called partial evaluation, that replaces the normal evalua-
tion of a local action profile by a more efficient computation for non-optimal action
profiles, whenever possible. It improves decision making efficiency by a linear fac-
tor. Finally, we present a mechanism for inter-agent message decomposition, called
utility clusters, which further improves decision making efficiency exponentially.

The remainder of the paper is organized as follows: Section 2 introduces and
extends the CDN graphical models. The compact, equivalent transformation of
CDNs is developed in Section 3. Section 4 introduces partial evaluation for local
decision making by individual agents. The utility cluster based partial evaluation
is developed in Section 5, where local decision making is integrated into multiagent
decision making. Experimental evaluation of the new algorithm suite is reported
in Section 6. Section 7 relates the current work to the literature. To ease reader’s
burden on formal notations, they are summarized in Appendix.

2. Collaborative Decision Networks

This section introduces CDNs, while extending the earlier representation.8,15 Prob-
lem definition is given in Section 2.1. Decomposition of a cooperative multiagent
system is considered in Section 2.2. Graphical modeling of subsystems is presented
in Section 2.3. Existing decision method for (unextended) CDNs is overviewed in
Section 2.4.

2.1. Problem definition

A cooperative multiagent system consists of an environment, populated by a set A
of n agents. The environment state is described by a collection E of chance variables.
Each ei ∈ E has a finite domain Efi = {ei1, ei2, ...}. Denote the maximum domain
cardinality by κ = maxi |Efi|. A proper subset of E may be observed by agents.

Let D be a collection of decision variables. Each di ∈ D has a finite domain
of options or actions Opi = {di1, di2, ...}. Denote the maximum domain cardinality
by σ = maxi |Opi|. If a decision is made by a single agent, it is a private decision.
Otherwise, it is a shared decision, made cooperatively by two or more agents. Each
configuration of D describes a joint action profile of agents.

Let U be a collection of utility variables, such that each is associated with
a single agent. Each ui ∈ U is dependent on a set πi ⊂ E of chance variables,
through a utility function ui(πi) ∈ [0, 1]. Denote the maximum cardinality of πi

by m = maxi |πi|. Utilities in U are assumed additively independent. Each ui is
assigned a weight wi ∈ (0, 1), and weights of utility variables for the same agent
sum to one. The weighted sum

∑
i wi ui(πi) over all utility variables of the same

agent encodes preference of the agent over environment states. Each Aj ∈ A is

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

4 Yang Xiang and Frank Hanshar

associated with an agent weight awj ∈ (0, 1), such that
∑

j awj = 1, which encodes
relative significance of preference among agents. U , together with agent weights and
utility weights, describe preference state of the system.

The multiagent system state is described by the collection V = D ∪ E ∪ U of
variables. The system V is decomposed into overlapping subsystems V1, ..., Vn,
where each Vi is hosted by agent Ai ∈ A. Just as a decision variable may be shared
or private, a chance variable may be shared or private. When a private variable is
observed (chance) or instantiated (decision), the observation or instantiation is also
private. On the other hand, every utility variable is private to a particular agent.

For any agent Ai with subsystem Vi = Di ∪ Ei ∪ Ui, a local action profile is a
configuration over any subset SD ⊆ Di of decision variables. We refer to an action
profile that is neither local nor joint as a partial action profile.

Let jd be a joint action profile, and di be the projection of jd over Di, denoted
di = proj(jd, Di). In other words, di is the local action profile over Di that is
consistent with jd. The expected utility of jd is

eu(jd|obs) =
∑

i

awi (
∑

j

wij P (πij|di, obs) uij(πij)),

where i indexes subsystem, j indexes utility variable in ith subsystem, πij denotes
the parent set of utility uij, and obs denotes the set of observed chance variable
values by all agents. The objective of CDN decision making is to determine an
optimal joint action profile

jd
∗

= arg max
jd

eu(jd|obs),

which we refer to as simultaneous decision making.

Example 1. (Collaborative design on supply chain) The set E consists of environ-
ment variables, that describe properties of raw materials, manufacturing processes,
and product deployment conditions, as well as those that describe objective perfor-
mance measures (e.g., cost of a material, max speed of a car) of the product under
design. The set D consists of design parameters (e.g., material of casing, max mem-
ory capacity of a laptop) of the product. The set U consists of utility variables that
quantify subjective preference of stakeholders over product performance measures.

Although the joint action profile obtained by simultaneous decision making is
often executed at the same time, as in Example 1, it does not have to be the case.

Example 2. (Multiagent expedition - MAE16) A team of mobile agents explore a
unknown open area (a grid), with objects of various types. Each agent can sense
a small radius, but not agents and objects beyond. It can move to a cell, and ma-
nipulate the object there. Successful manipulation may involve cooperation, which
requires agents to meet at the cell. Effects of actions (movement and manipulation)
are uncertain. An agent receives a reward at a cell, whose value depends on the

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 5

object at the cell (encoded by cell type), the action performed, and degree of suc-
cess in manipulation. To maximize team reward, agents need to choose behavior
wisely, among weak avoidance of unproductive cells, strong avoidance of harmful
cells, independent operation, or cooperation.

E consists of agent positions (ps), position cell types (ct), and effects of manipu-
lation (ef). D consists of movement decisions (mv) of each agent, and private object
manipulation decisions (pd). U consists of rewards (rw). Each mv action moves an
agent from the current cell to an adjacent cell. More than one movement may be
needed for nearby agents to meet and cooperate. Hence, a joint action profile needs
to specify a short sequence of movements for each agents. To this end, variables
may be temporally indexed. We index agents by subscripts, and temporal steps
t = 0, ..., T by superscripts, where T is the number of steps (a small integer, e.g.,
T = 2). For instance, after observing current positions ps0

i (i = 1, ..., n), decision
on mv1

i will be made, which leads to new positions ps1
i .

We consider alternative executions of joint action profile from simultaneous de-
cision making in MAE: (1) interleaving decision making for T = 1 with executing
the resultant joint action; (2) interleaving decision making for T = 2 with execution;
(3) interleaving decision making for T = 2 with executing the resultant joint action
for t = 1 only.

The joint action in case (1) is optimal for T = 1, but may not be optimal from
the perspective of T = 2. The joint action for t = 1 in case (2) is optimal for T = 2,
but the joint action for t = 2 may not be optimal. This is because the joint action
for t = 2 is conditioned on observation at t = 0, but not on observation available at
t = 1. Hence, case (3) is superior than both (1) and (2). It executes the joint action
for t = 1, which is optimal from the perspective of T = 2.

We assume that when simultaneous decision making with CDN is applied to
problems that involve multiple temporal steps, it is used as case (3), and T is a
small integer.

2.2. System decomposition

We assume that system decomposition satisfies a hypertree condition, defined below.
In the definition, a junction tree is a cluster tree, where the intersection of any two
clusters is contained in every cluster, on the path between the two.

Definition 1. (Hypertree) Decomposition of V into V1, ..., Vn forms a hypertree,
if the following holds.

(1) Intersection (if non-empty) between any Vj and Vk (i 6= k) consists of only
(shared) decision variables and chance variables.

(2) A junction tree exists with V1, ..., Vn as its clusters.

We refer to any separator in the hypertree H as an agent interface. For disjoint
sets X, Y , Z of variables, denote conditional independence (CI) of X and Y given Z

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

6 Yang Xiang and Frank Hanshar

by I(X, Z, Y).9 System decomposition into hypertree is assumed to observe decision
and observation induced CI (DOICI), defined below and illustrated in Fig. 1.

Y WX

Z

Z1

2

Z

Fig. 1. Illustration of DOICI

Definition 2. (Decision and observation induced CI) Let Z = X ∪ Y ∪ W be an
agent interface, that separates hypertree H into subtrees H1 and H2, where X ⊂ D
is a set of decision variables, Y is a set of observed chance variables, and W is a
set of additional chance variables (Y, W ⊂ E and Y ∩ W = ∅). Let Z1 and Z2 be
collections of decision and chance variables, excluding Z, located in H1 and H2,
respectively. Then interface Z has DOICI property, if the following holds.

(1) Y is observed before decision making;
(2) I(Z1, Z, Z2); (3) I(Z1, X ∪ Y, W); and (4) I(Z2, X ∪ Y, W).

In earlier works in CDNs,8,15 agent interfaces are assumed as being made of
decisions only, namely, X above. It was shown that, although interfaces made of
chance variables allow distributed optimal decision making, they cannot reduce
computational complexity, relative to centralized decision making. On the other
hand, interfaces made of decisions not only support distributed optimal decision
making, but also allows significant efficiency improvement, over centralized decision
making. Defs. 1 and 2 extend the interface composition to include chance variables,
Y ∩ W , subject to DOICI, as specified in Def. 2. The extension allows chance
variables in the interface, if either they are observed, i.e., Y , or they are independent
given shared decisions X and observed chances Y , i.e., W . The extension enhances
expressiveness of CDNs, making them more widely applicable, while preserving the
advantage analyzed earlier.15 Additional illustration of Defs. 1 and 2 can be found
in Examples 2 and 3, after introducing subsystem modeling.

2.3. Subsystem graphical models

For each subsystem V = D ∪ E ∪ U , where D ⊂ D, E ⊂ E , and U ⊂ U , variables
in an agent interface are shared, and the rest are private. Denote ρ = |D| and
η = |U | (these notations are summarized in Appendix). The subsystem is modeled
as a decision subnet S = (D, E, U, G, P, T). G is a connected acyclic directed graph
(DAG), whose nodes are labeled by elements of V . It encodes dependence and
conditional independence in V , through four types of legal arcs: decision to decision

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 7

(for decision constraints), decision to chance (for effects of decisions), chance to
chance, and chance to utility.

Because a utility is intended to evaluate desirability of actions, every parent (a
chance) of every utility must have a decision ancestor. Because an action must be
judged on its expected utility, each decision must have a utility descendant. Because
a chance is intended to model the uncertain consequence of actions, each chance
must be on an undirected path to a decision. These topological requirements are
summarized below:

Definition 3. (Subnet topology) A subnet structure G satisfies the following:

(1) For every u ∈ U , each parent of u must have an ancestor d ∈ D.
(2) Every d ∈ D must have a descendant u ∈ U .
(3) For every e ∈ E, there must be an undirected path from e to a d ∈ D.

Each chance node ei is associated with a conditional probability table (CPT)
P (ei|δi), conditioned on its parent set δi. Denote the maximum size of such parent
set by m = maxi |δi|. Each non-root decision node is associated with a CPT (made
of extreme probabilities only), expressing a decision constraint (forbidding some
action profiles). P is the set of CPTs, one for each node in D ∪ E. T is the set of
utility functions, one for each node in U .

A CDN is a tuple (A,V,H,S), where S is the set of decision subnets, one for
each subsystem. Example 3 below illustrates a CDN. Before the example, we note
several differences between CDN subnets and well known influence diagrams (IDs).

Due to the above restriction on legal arcs, a decision node in a subnet can only
have decision parents. This differs from IDs. For sequential decision making, IDs
allow chance parents for decision nodes, signifying observations available prior to
making each decision. CDNs are intended for simultaneous decision making, and
there is no essential need for such encoding. Any prior information that constrains
the domain for any di ∈ D is assumed to be reflected in Opi accordingly.

Furthermore, although both CDNs and IDs allow decision parents for decision
nodes, their syntax and semantics are different. IDs allow a decision node to have
a past decision parent. Since CDNs are for simultaneous decision making, such en-
coding of temporal sequence between decisions is not needed. Instead, arcs between
decision nodes in CDNs express atemporal constraints. In addition, arcs between
decision nodes in IDS are not associated with any numerical parameter, while in
CDNs, they are associated with numerical CPTs.

Example 3. Decision making in MAE (Example 2) can be modeled with a CDN.
Fig. 2 illustrates a CDN with T = 2. Physical formation of an agent team can be
maintained, using techniques known as cooperation frame and agent sphere.16 They
influence agent movements, so that their interactions, e.g., meeting, are regulated.
As the result, the hypertree in (c) is valid under DOICI. Details on these techniques
can be found from the above reference.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

8 Yang Xiang and Frank Hanshar

mv0
1

0
1ps mv1

0

1
1ps

mv1
1

V1 V2

G10
0ps

0
1ps mv0

0

0
0ps

0
1rw2

0
1rw1

1
0ps

1
1ef

1
1pr

pd1
1

0
0ps

0
1ps

ct 1
1

pr 1
0

ct 1
0ef 1

0

pd1
0

ef 0
2

ps1

mv0
2

0
2ps

mv1
2

1
2ps

1
1

1
1rw1 rw2

(b)

...

...V0 (c)

G

(a)

mv0
0 mv0

1 mv1
1mv1

0

2
0ps

2
1ps

2
0rw2

0ct

1
0rw

2
0pr1

0pr

1
0ct

0
0pd

1
0ef

1
0pd

1
0ps

1

0

Fig. 2. (a) CDN subnet for agent A0 . (b) Subnet for A1 . (c) Hypertree.

Agent A0 is adjacent to A1 on hypertree, and Fig. 2 (a) shows its subnet. Nodes
in V0, E0, U0 are drawn as squares, ovals, diamonds, respectively. Subscripts index
agents and superscripts index temporal steps. Movement decisions (mv) of both
A0 and A1 are modeled, as well as two private object manipulation decisions (pd).
Agent positions (ps) and position cell types (ct) are dependent on movement actions.
Temporal dependency is shown by dashed arcs.

Variables shared by A0 and A1 are shaded. The interface is decomposed into
Z = X ∪ Y ∪ W according to Def. 2 as follows:

X = {mv0
0, mv0

1, mv1
0, mv1

1}, Y = {ps0
0, ps0

1}, W = {ps1
0, ps1

1, ps2
0, ps2

1},

where Y is observed prior to decision making. Note that agent interface cannot
contain Y and W , according to.8,15 However, they are necessary for A0 and A1 to
reason about meeting and cooperation. They are enabled by Defs. 1 and 2.

2.4. Decision making

A distributed optimal decision method for CDNs was developed earlier.15 First, the
expected utility of each local action profile over Di is evaluated by the corresponding
agent Ai. Then, pairwise inter-agent communication occurs in two rounds, initiated
by an arbitrary agent A0. In round one, messages flow along hypertree towards A0,
starting from leaf agents. For each sending agent Ai, the message contains a utility
evaluation of each local action profile over its interface with the receiving agent Aj,
based on the subtree rooted at Ai. In the second round, messages flow away from
A0. For each sending agent Aj , the message contains an optimal local action profile,
over its interface with the receiving agent Ai.

After communication, an optimal joint action profile is determined. By exploring
conditional independence encoded in the hypertree, the decision method reduces
the time complexity from being exponential in |D| ≈ n ρ, to being linear in n and
exponential in ρ.15

CDNs are extensions of MSBNs,14 a framework for multiagent probabilistic rea-
soning, to decision theoretic reasoning. In addition to hypertree decomposition,
MSBNs also pioneered inter-agent message decomposition (using so-called linkage

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 9

trees), for a second level of factorization, resulting in further improvement of effi-
ciency. Decision method in earlier work of CDNs15 is unable to explore such message
decomposition.

In this work, we propose a novel mechanism for message decomposition in CDNs,
called utility clusters, that allows an exponential efficiency improvement. Utility
clusters are closely related to linkage trees, but are significantly different. They
are significantly different from the graph-theoretical perspective, but both improve
efficiency by decomposing inter-agent message. Linkage trees do so by factorizing
probabilistic messages multiplicatively in MSBNs, while utility clusters decompose
utility messages in CDNs additively.

As introduced above, existing method for simultaneous decision making in CDNs
starts by computing the expected utility of each local action profile. In this work, we
propose another technique, called partial evaluation, to replace such an evaluation
by a less expensive computation for non-optimal action profiles, whenever possible.
Partial evaluation allows a linear efficiency improvement. We propose an algorithm
suite to integrate partial evaluation and utility clustering, to enable combined effi-
ciency gain, while maintaining optimality of simultaneous decision making.

3. Length-2 CDN Subnets

The new algorithm suite we propose is directly applicable to CDNs, whose subnets
are in a regular form, or can be converted equivalently to such form. In Section 3.1,
we restrict CDN subnets to a form where decision nodes must be roots. In Sec-
tion 3.2, we further restrict subnets and define the regular form. We illustrate how
a subnet that does not conform to the regular form is transformed into one in
Section 3.3.

3.1. Decision rooted subnets

First, we regulate decision nodes in a subnet.

Definition 4. (Decision rooted subnet) A subnet is decision rooted, if all its deci-
sion nodes are root nodes.

For example, subnets in Fig. 2 are decision rooted. The only restriction of rooted
subnet is that it disallows a decision node from having other decision parents, which
is legal in a general CDN subnet. We show below that such syntactic restriction is
not semantically limiting: An arc between a decision node and its decision parents
signifies a constraint between these decisions. Decision nodes involved in such a
constraint can be semantically equivalently combined.

Example 4. Let d1 ∈ {d10, d11} and d2 ∈ {d20, d21} be two decisions in a subnet,
with an arc from d2 to d1. Decision d2 can be freely made, denoted by a uniform
CPT P (d2). The CPT P (d1|d2) associated with d1 is

P (d10|d20) = 0.5, P (d10|d21) = 1.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

10 Yang Xiang and Frank Hanshar

That is, d1 can be freely made when d2 = d20, but action d11 is prohibited when
d2 = d21. The two decisions can be combined into a single decision

d ∈ {(d10, d20), (d11, d20), (d10, d21)}.

Although the above combination may lose some representational clarity, it is
semantically equivalent: specifying the same set of decision options. To facilitate
development and implementation of the techniques presented below, we assume
that such combination has been performed recursively for each internal decision
node. Hence, we consider only decision rooted CDN subnets in the remainder.

3.2. Regular length-2 subnets

Next we define a regular form for CDN subnets.

Definition 5. (Regular length-2 subnet) A subnet is regular length-2, if the fol-
lowing holds.

(1) All decision nodes are root nodes and vice versa.
(2) All utility nodes are leaf nodes and vice versa.
(3) Every directed path from a root to a leaf has length 2.

Note that the first condition is stronger than decision rooted. It follows that
a regular length-2 subnet must be decision rooted. The inverse, however, is not
always true. Fig. 3 shows a regular length-2 subnet. Subnet in Fig. 2 (a) is not
regular length-2, as it contains chance roots ps0

0 and ps0
1, and length-3 paths from

mv0
0 and mv0

1 to rw2
0. We will sometimes refer to regular length-2 subnets simply

as being length-2.

ct
0
2

ps1
2

ps0

G mv0
0 mv0

1

2
0 rw

1
0rw

2
0pr1

0pr

1
0ct

0
0pd

1
0ef

1
0pd

1
0ps

1
1ps

2
0ef

0

mv1
1mv1

0

2

Fig. 3. A regular length-2 subnet

A subnet that is not length-2 may be transformed equivalently into length-2.

Definition 6. (Decision equivalent subnets) Two decision rooted subnets are de-
cision equivalent, if the following holds:

(1) They have the same set of decision variables.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 11

(2) They have the same set of utility variables.
(3) Expected utility of each local action profile computed from one subnet is iden-

tical to that from the other.

We illustrate below how a subnet that is not regular length-2 can be decision
equivalently transformed into regular length-2, using the subnet in Fig. 2 (a) as an
example. A general characterization of length-2 equivalent subnets and a general
transformation procedure are beyond the scope of this work.

3.3. Equivalent subnet transformation: illustration

First, remove the arc from observed chance node ps0
0 to ct10 equivalently. The arc

from ps0
0 to ps1

0 can be removed similarly. Then ps0
0 is isolated without impact to

local action profile evaluation, and can be removed equivalently. Chance ps0
1 can be

removed similarly.
To illustrate removal of arc from ps0

0 to ct10, the subnet fragment, including ps0
0,

ct10, mv0
0, and pr1

0, is depicted in Fig. 4 (a) with variable names simplified. Encoding

(a)

de’

u
(b)

de e’

u

Fig. 4. (a) A subnet fragment that is not length-2. (b) Length-2 fragment after chance root removal.

observation on e by P (e|obs), the arc from e to e′ can be equivalently removed, by
replacing CPT P (e′|e, d) at node e′ with

P (e′|d, obs) =
∑

e

P (e′|d, e)P (e|obs).

Using the above technique, ps0
0 and ps0

1 (as well their outgoing arcs) can be
removed equivalently from Fig. 2 (a). The resultant subnet is shown in Fig. 5 (a).
It is still not length-2, due to length-3 paths from mv0

0 and mv0
1 to rw2

0.

2
0ps

1
0

1
1psc

0

ef 0
2

ps1
1

ps0
1

pd0
1

ef 0
1

pd

G

0ct
2
0pr1

0pr

1
0ct

0
0pd

1
0ef

0 mv0
0 mv0

1

2

1
0rw

1
0pd

1
0ps

1
1ps

2
0ef

mv1
1mv1

0

2
1ps

2
0rw

(b)

G

(a)

mv0
0 mv0

1 mv1
1mv1

0

2
0ps

2
1ps

2
0rw2

0ct

1
0rw

2
0pr1

0pr

1
0ct

0
0

psc

Fig. 5. (a) Subnet after removing chance roots. (b) Subnet after chance node duplication.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

12 Yang Xiang and Frank Hanshar

To reduce the two paths to length-2, first create duplicate copies of ps1
0 and

ps1
1, shown as psc1

0 and psc1
1 in (b). It is equivalent as the expected utility of mv0

0

and mv0
1 through rw1

0 and rw2
0 are additively independent. Next, merge the chance

nodes between mv0
0 and rw2

0, and do the same for the other length-3 path.

1d
2d

1d
2d

(a)

e

e’
u

(b)
e’

u

Fig. 6. (a) A subnet fragment that is not length-2. (b) Length-2 fragment after merging chance
nodes.

To illustrate merging of psc1
0 and ps2

0, the subnet fragment, including mv0
0, psc1

0,
ps2

0, mv1
0, and rw2

0, is depicted in Fig. 6 (a) with simplified variable names. Chance
e can be merged into e′ as shown in (b), by replacing CPT P (e′|e, d2) at e′ with

P (e′|d1, d2) =
∑

e

P (e′|e, d2)P (e|d1).

After merging chance nodes in the two length-3 paths, subnet in Fig. 5 (b) is
decision equivalently transformed into the subnet in Fig. 3. In the remainder, we
assume that subnets of CDNs are either regular length-2, or have been converted
decision equivalently to length-2. We focus on developing a more efficient method
for simultaneous decision making in such CDNs. Since every chance variable in a
length-2 CDN has a non-empty subset of decision variables as its parents, we refer
to chance variables in length-2 CDNs as effect variables.

4. Partial Evaluation in Local Decision Making

This section presents partial evaluation for more efficient action profile evaluation in
regular length-2 subnets. A local action profile is normally evaluated by computing
its expected utility. The basic idea of partial evaluation is to replace the evaluation
by a less expensive computation for non-optimal action profiles, whenever possible.
Section 4.1 introduces partial evaluation through a trivial decision subnet, with
a single decision and a single utility. The method is generalized to subnets with
multiple decisions in Section 4.3, and to subnets with multiple utilities in Section 4.4.
The algorithms presented form the basis for local computation at individual agents,
during simultaneous decision making.

4.1. Single decision variable

First, we introduce partial evaluation through a trivial decision subnet, where ρ = 1,
η = 1, and V = {di, ei, ui}. That is, the DAG is di → ei → ui. The expected utility

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 13

of taking action di = dij is

eu(dij) = P (ei1|dij)ui(ei1) + P (ei2|dij)ui(ei2) + ...,

which requires κ probability retrievals, κ utility retrievals, κ multiplications, and κ−
1 additions. Action dij is fully evaluated, when eu(dij) is computed. Its complexity
is O(κ). To compute the optimal action (d∗

ik, meuv), where

d∗
ik = arg max

j
eu(dij) and meuv = eu(d∗

ik),

it generally involves full evaluation of each dij, with O(σ κ) complexity.
When there is no confusion, we refer to an effect value eij ∈ Efi simply as

an effect. For every action, we refer to an effect value with the highest probability
(indexed once and referenced repeatedly) as the pivot effect of the action.

Definition 7. (Pivot effect) Let dik be an action of di in the subnet di → ei → ui.
Let eik be an effect value such that

P (eik|dik) = maxjP (eij |dik).

Then eik is the pivot effect of dik. If the condition holds for multiple effect values,
one is selected arbitrarily.

Note that effect eik is obtained by varying j in eij, until P (eij |dik) is maximal.
We denote the pivot effect of action dik by eik, and refer to P (eik|dik) as the pivot
probability of dik. Consider MAE, for example, where decision move has alternative
actions m n (move north), m s, m e, m w, and halt. Its effect landing has alterna-
tive values l n (land north), l s, l e, l w, and s p (same place). Table 1 shows the
CPT P (landing|move). From the third row, the pivot effect of m n is l n, and the
pivot probability of m n is 0.90.

Table 1. Illustration of pivot assumption with CPT P (landing|move)

landing

l n l s l e l w s p move

0.90 0.03 0.03 0.03 0.01 m n

0.03 0.90 0.03 0.03 0.01 m s

0.03 0.03 0.90 0.03 0.01 m e

0.03 0.03 0.03 0.90 0.01 m w

0.025 0.025 0.025 0.025 0.90 halt

If we denote the maximum utility of ui as umax
i = maxx ui(eix), it follows that

eu(dik) ≤ P (eik|dik)ui(eik) + (1 − P (eik|dik))umax
i ≡ Qik.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

14 Yang Xiang and Frank Hanshar

Note that utility function ui(.) normally spans the range [0, 1] fully, in which case
umax

i = 1. Our method does not depend on this condition, and hence we keep umax
i

explicit.
Action dij is said to dominate dik, iff eu(dij) > eu(dik). If Qik < eu(dij), then

eu(dik) < eu(dij) and dik is dominated by dij. Computing Qik requires one pivot
probability retrieval, two utility retrievals, two multiplications, and two additions.
Action dik is partially evaluated, when Qik is computed.

Suppose pivot probabilities of alternative actions of di are nearly identical, e.g.,
Table 1, where P (l n|m n) = P (l e|m e) = P (s p|halt) = 0.90. As another example,
a message may be sent by email or post (alternative actions). Emails most likely
arrive in seconds (pivot effect of action emailing), while post mails most likely
arrive in days (pivot effect of post mailing). P (arrive in seconds|emailing) and
P (arrive in days|post mailing) (pivot probabilities) are similar.

Formally, we make the following pivot assumption:

∀j, k P (eij|dij) = P (eik|dik) ≡ p, (j 6= k). (1)

That is, for any effect, its pivot probabilities for distinct actions are identical.
Partial evaluation of action dik amounts to computing

Qik = p ui(eik) + (1 − p)umax
i .

To determine dominance of dij over dik and, in particular, whether

Qik = p ui(eik) + (1 − p)umax
i < eu(dij) (2)

holds, we check equivalently whether

ui(eik) <
eu(dij)

p
− 1 − p

p
umax

i

holds. We assume that dij has been fully evaluated, and the right hand side (thresh-
old) has been obtained before dik is evaluated. If the above inequality holds, dik is
dominated by dij, it can be rejected with just one utility retrieval and one compar-
ison, and the threshold can be reused for evaluating the next action. Hence, partial
evaluation of dik has O(1) complexity.

This leads to partial evaluation based decision for computing (d∗
ik, meuv) as

follows:

(1) Apply full evaluation to the first action and establish threshold.
(2) For each alternative action, apply partial evaluation, and reject it if so war-

ranted.
(3) Otherwise, apply full evaluation to it and update threshold.
(4) Select the last accepted action as d∗

ik.

Using this procedure, efficiency is gained by evaluating a dik fully, only if the
above inequality fails. Let θ ∈ (0, 1) be the percentage of dik fully evaluated. Then
the complexity of partial evaluation based decision is O(θ σ κ + σ).

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 15

4.2. Examples for single decision variable

We illustrate partial evaluation based decision with examples.

Example 5. Consider a trivial decision subnet with DAG di → ei → ui, di ∈
{0, 1, 2, 3, 4}, ei ∈ {0, 1, 2, 3, 4}, and parameters in Table 2. The optimal action

Table 2. CPT P (ei|di) (left) and utility function ui(ei) (right) for Example 5

ei

0 1 2 3 4 di

0.09 0.07 0.01 0.80 0.03 0
0.09 0.04 0.80 0.05 0.02 1
0.80 0.02 0.03 0.08 0.07 2
0.06 0.04 0.03 0.80 0.07 3
0.80 0.04 0.02 0.01 0.13 4

di ui(ei)
0 0.6
1 0.2
2 1.0
3 0.0
4 0.9

(d∗
ik, meuv) from a full evaluation is d∗

ik = 1 and meuv = 0.88.
The pivot assumption (Eq. 1) holds for P (ei|di) and the pivot probability is

p = 0.8. Applying partial evaluation, di0 is fully evaluated to get eu(di = 0) = 0.105.
For di1, apply Eq. (2) to obtain estimate Qi1 = 0.8 ∗ 1.0 + 0.2 ∗ 1.0 = 1.0 > 0.105.
Hence, di1 is fully evaluated to get eu(di = 1) = 0.88. For di2, the estimate is
Qi2 = 0.68 < 0.88 and di2 is rejected. Subsequently, di = 3 and di = 4 are all
rejected. Hence, the resultant optimal action is d∗

ik = 1 and meuv = 0.88, and is
identical to the result of full evaluation. Out of the five alternative actions of di,
only two of them (di = 0, 1) are fully evaluated.

In practice, pivot assumption may not always hold. The example below shows
that the soundness of partial evaluation is not sensitive to violation of the pivot
assumption.

Example 6. Consider another subnet with parameters in Table. 3. The optimal
action from a full evaluation is d∗

ik = 1 and meuv = 0.888.
Pivot assumption does not hold in P (ei|di), as pivot probabilities for distinct di

values are 0.85, 0.82, 0.6, 0.89, 0.9, respectively. Suppose the first pivot probability
p = 0.85 is used for partial evaluation. First, di0 is fully evaluated to get eu(di =
0) = 0.081. For di1, estimate is Qi1 = 0.85 ∗ 1.0 + 0.15 ∗ 1.0 = 1.0 > 0.081. Hence,
di1 is fully evaluated to get eu(di = 1) = 0.888. Subsequently, di = 2, 3, 4 are all
rejected. Hence, the same optimal action as full evaluation is obtained. This shows
that violation of the pivot assumption does not necessarily prevent identification of
the optimal action.

Although partial evaluation is not sensitive to violation of pivot assumtion, there
is no guarantee that the result is truly optimal when pivot assumption does not hold,

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

16 Yang Xiang and Frank Hanshar

Table 3. CPT P (ei|di) (left) and utility function ui(ei) (right) for Example 6

ei

0 1 2 3 4 di

0.09 0.04 0.01 0.85 0.01 0
0.07 0.04 0.82 0.05 0.02 1
0.60 0.12 0.13 0.08 0.07 2
0.03 0.01 0.03 0.89 0.04 3
0.90 0.04 0.02 0.01 0.03 4

di ui(ei)
0 0.6
1 0.2
2 1.0
3 0.0
4 0.9

as shown below.

Example 7. Consider another subnet with parameters in Table. 4. The optimal
action from a full evaluation is d∗

ik = 1 and meuv = 0.601.

Table 4. CPT P (ei|di) (left) and utility function ui(ei) (right) for Example 7

ei

0 1 2 3 4 di

0.07 0.04 0.82 0.05 0.02 0
0.30 0.22 0.13 0.08 0.27 1
0.09 0.04 0.01 0.85 0.01 2
0.03 0.01 0.03 0.89 0.04 3
0.90 0.04 0.02 0.01 0.03 4

di ui(ei)
0 0.2
1 1.0
2 0.6
3 0.0
4 0.9

Pivot assumption does not hold in P (ei|di). Suppose the first pivot probability
p = 0.82 is used for partial evaluation. First, di0 is fully evaluated to get eu(di =
0) = 0.564. For di1, estimate Qi1 = 0.82∗0.2+ 0.18∗ 1.0 = 0.344 < 0.564 and di1 is
rejected. Similarly, the subsequent 3 actions are also rejected. The final decision is
d∗

ik = 0 and meuv = 0.564, which is suboptimal. Note that meuv = 0.564 is fairly
close to 0.601 from full evaluation.

To summarize, when pivot assumption holds, partial evaluation is guaranteed
to be optimal while allowing computational savings. When the assumption does
not hold, partial evaluation can still be optimal, although not guaranteed. In the
experimental study (Section 6), we evaluate how likely optimal decisions can still
be obtained when pivot assumption does not hold and how close the suboptimal
decisions are relative to the optimal.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 17

4.3. Multiple decision variables

Next, we generalize partial evaluation to the case where ρ > 1 and η = 1. That is,
multiple decision variables collectively influence a utility ui, e.g., subnet in Fig. 7.
We first generalize pivot effect of action in Def. 7 to compound pivot effect of a
local action profile.

4d

6e

d3

e5

d5

3u

Fig. 7. A length-2 subnet where ρ > 1 and η = 1

Definition 8. (Compound pivot effect) Let S = (D, E, U, G, P, T) be a regular
length-2 subnet, where ρ > 1 and η = 1. Let d be a local action profile over D.

(1) A compound effect e′′ of d is a configuration over E.
(2) For each ei ∈ E, parent set δi ⊂ D of ei, and local action profile proj(d, δi), the

effect value eij is the pivot effect of local plan proj(d, δi) if

eij = arg max
k

P (eik|proj(d, δi)),

breaking ties arbitrarily.
(3) The compound pivot effect e of d is the configuration of all pivot effects over

E.

Example 8. For the subnet in Fig. 7, d = (d31, d42, d51) is a local action profile,
and so is proj(d, δ6) = (d42, d51). Configuration (e51, e62) is a compound effect.

If e51 is the pivot effect of local action profile (d31, d42), and e62 is the pivot
effect of (d42, d51), then (e51, e62) is the compound pivot effect of d.

Without confusion, we simply omit the word ‘compound’ in ‘compound effect’
and ‘compound pivot effect’. Let d be a local action profile over D, e be its pivot
effect, e′′ be any other effect, and eu(d) be the expected utility of d. Then

eu(d) = P (e|d)ui(e) +
∑

e′′

P (e′′|d)ui(e′′). (3)

Below, we consider a decision subtask, which will be the basis for local compu-
tation by individual agents, during simultaneous decision making. Let β be a subset
of D and γ = D \ β. Let b be an action profile over β, y be an action profile over
γ, and (b, y) be a join of action profiles. The decision subtask is to obtain a pair of
functions (meu(β), peer(β)), where meu : β → [0, 1] and peer : β → γ, such that
for each b,

meu(b) = max
y

eu(b, y) and peer(b) = arg max
y

eu(b, y).

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

18 Yang Xiang and Frank Hanshar

Note that peer(b) returns an optimal local action profile over γ, when β is
constrained to local action profile b. Hence, we refer to β as the constraint scope,
and γ as the optimization scope. In other words, the function pair (meu(β), peer(β))
specifies, for each constraint b over β, the maximum expected utility (MEU) meu(b),
and the corresponding optimal action profile (b, peer(b)) over D.

Example 9. Let β = {d3, d4} and γ = {d5} for the subnet in Fig. 7, assuming
binary decision variables. A function pair (meu(β), peer(β)) takes the following
form.

b meu(b) peer(b)
(d31, d41) 0.70 (d52)
(d31, d42) 0.65 (d51)
(d32, d41) 0.82 (d51)
(d32, d42) 0.73 (d52)

For a given local action profile d over D, denote b = proj(d, β), y = proj(d, γ).
Then, d = (b, y). The decision subtask requires evaluating eu(d) = eu(b, y) for each
d. To evaluate eu(d) for a given d by Eq. (3), P (e′′|d) must be computed for each
e′′ over E.

Example 10. For subnet in Fig. 7, we have P (e′′|d) = P (e5, e6|d3, d4, d5) =
P (e5|d3, d4)P (e6|d4, d5).

Computing P (e′′|d) for a particular e′′ involves m probability retrievals and m−1
multiplications. There are κm alternative e′′. Hence, a full evaluation of d by Eq. (3)
takes m κm probability retrievals, κm utility retrievals, m κm multiplications, and
κm − 1 additions. The complexity of a full evaluation of d is thus O(m κm). To
obtain meu(β) by full evaluation, a total of σρ alternative d must be evaluated, and
the complexity is thus O(σρ m κm).

For more efficient computation, we explore partial evaluation introduced in Sec-
tion 4.1. First, we extend pivot assumption on a single effect variable with a single
decision parent, to multiple effect variables each with multiple decision parents.

Definition 9. (Pivot assumption) Let ei be an effect variable, in a regular length-2
subnet S, with parent set δi. Let δik be kth configuration of δi, and eik be its pivot
effect. Subnet S satisfies pivot assumption if, for every ei, the following holds:

∀ j, k P (eij |δij) = P (eik|δik), (j 6= k). (4)

The practical interpretation is that, for each effect variable, its pivot probabilities
for distinct action profiles are approximately identical.

Example 11. In MAE, the pivot effect of moving north, followed by moving east,
is landing on the north east location. The pivot effect of moving south, followed by
moving west, is landing on the south west location. The two corresponding pivot
probabilities are approximately identical.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 19

As shown later in our experiments, even though our decision method is de-
rived from the pivot assumption, the method works well, when Eq. (4) holds only
approximately. We observe

eu(d) = P (e|d)ui(e) +
∑

e′′

P (e′′|d)ui(e′′) ≤ P (e|d)ui(e) + (1 − P (e|d))umax
i , (5)

where umax
i = max

e′′
ui(e′′).

It then follows from the pivot assumption that

∀ d, d
′

P (e|d) = P (e′|d′) ≡ p,

where d 6= d
′
, and e (e′) is the pivot effect of local action profile d (d

′
).

Example 12. For the subnet in Fig. 7, suppose pivot probability of e5 given action
profile (d3, d4) is 0.7, and that of e6 given (d4, d5) is 0.9. Then, from Example 10,
it follows p = 0.7 ∗ 0.9 = 0.63.

When pivot assumption holds, inequation (5) becomes

eu(d) ≤ p ui(e) + (1 − p)umax
i .

Let eu(d
′
) be given for d

′
. For an alternative action profile d, if

p ui(e) + (1 − p)umax
i < eu(d

′
), (6)

it follows that eu(d) < eu(d
′
), and d is dominated by d

′
. Partial evaluation of d by

Eq. (6) takes only two utility retrievals, with complexity O(1).
Extending partial evaluation based decision in Section 4.1 with the above oper-

ation, the decision subtask to obtain (meu(β), peer(β)) can be solved by PeDecSu.
In the algorithm, the scope of each for or if statement is indicated by indentation.

Algorithm 1. PeDecSu
Input: subnet over D ∪E ∪U where U = {ui}, max utility umax

i , pivot probability
p, constraint scope β ⊂ D, and optimization scope γ = D \ β;

Output: function pair (meu(β), peer(β));

for each constraint b over β,
pick an action profile y′ over γ to fully evaluate by Eq. (3) and get eu(b, y′);
set meu(b) = eu(b, y′) and peer(b) = y′;
set threshold th = (eu(b, y′) − (1 − p)umax

i)/p;
for each action profile y over γ where y 6= y′,

retrieve ui(e) for pivot effect e of d = (b, y);
if ui(e) ≥ th,

fully evaluate d by Eq. (3) to get eu(d);
meu(b) = eu(d), peer(b) = y, th = (eu(d) − (1 − p)umax

i)/p;
return (meu(β), peer(β));

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

20 Yang Xiang and Frank Hanshar

Note that when β = ∅, the optimization scope γ = D. In the return value of
PeDecSu, meu(β) becomes a single value, and peer(β) becomes a single optimal
local action profile d

∗
over D.

Let θ ∈ (0, 1) be the percentage of local action profiles fully evaluated by
PeDecSu. Its complexity is then O(θ σρ m κm + σρ) ≈ O(θ σρ m κm). Propo-
sition 1 summarizes key properties of PeDecSu, whose proof is straightforward,
given the above analysis.

Proposition 1. PeDecSu satisfies the following.

(1) For each constraint b over β, meu(b) is the MEU.
(2) For each b, peer(b) is the optimal action profile over γ.
(3) Its complexity is O(θ σρ m κm).

4.4. Multiple utility variables

Next, we generalize partial evaluation to decision subnets where ρ > 1 and η > 1.

Example 13. Fig. 8 shows a subnet with η = 2 and a weight wi is associated with

d1 d2 d3

2e 3ee1 e4

u21u

Fig. 8. A length-2 subnet where ρ > 1 and η > 1

each ui (i = 1, 2). The optimal local action profile cannot be obtained by solving the
decision problem as two independent sub-problems, one over {d1, d2} and the other
over {d2, d3}. This is because the optimal action profile over {d1, d2, d3} may be
incompatible with the optimal action profile over either {d1, d2} or {d2, d3}. Hence,
fully evaluating a local action profile over D amounts to compute

eu(d1, d2, d3)

= w1

∑

e1,e2

P (e1|d1)P (e2|d2)u1(e1, e2) + w2

∑

e3,e4

P (e3|d2)P (e4|d3)u2(e3, e4).

In general, let d be a local action profile over D, e be its pivot effect, e′′ be any
alternative effect, and eu(d) be expected utility of d. For each utility ui (i = 1, ..., η)
with parents πi, let αi be the set of decision ancestors of ui (see Fig. 9). In Fig. 8,
α1 for u1 is {d1, d2}. Define ei = proj(e, πi), and di = proj(d, αi). Then, a full
evaluation of d computes

eu(d) =
η∑

i=1

wi

P (ei|di) ui(ei) +

∑

e′′i

P (e′′i |di) ui(e′′i)

 . (7)

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 21

iu...

...

...

m

πi

αi

ρ

η

Fig. 9. Illustration of symbols

Below, we extend solution to the decision subtask in Section 4.3 to subnets
where η > 1. As will be seen, simultaneous decision making involves such subtasks
by individual agents. Let β be the given constraint scope, and γ = D \ β be the
optimization scope. The decision subtask is to obtain (meu(β), peer(β)) such that,
for each action profile b over β,

meu(b) = max
y

eu(b, y) and peer(b) = arg max
y

eu(b, y),

where y is any action profile over γ.
Applying an analysis to Eq. (7) similarly as in Section 4.3, the complexity to

fully evaluate d is O(η m κm). The complexity to obtain meu(β) by full evaluation
is O(σρ η m κm). We consider efficiency improvement with partial evaluation.

Example 14. Consider the subnet in Example 13. If ej is the child node of di, we
denote its pivot effect corresponding to dik by ejk. We have

eu(d1x, d2y, d3z) ≤
w1P (e1x|d1x)P (e2y|d2y)u1(e1x, e2y) + w2P (e3y|d2y)P (e4z|d3z)u2(e3y, e4z)

+ w1(1 − P (e1x|d1x)P (e2y|d2y))umax
1 + w2(1 − P (e3y|d2y)P (e4z|d3z))umax

2 .

If the pivot assumption (Def. 9) holds, denote the pivot probability of ei by pi. We
have

eu(d1x, d2y, d3z) ≤ w1p1p2u1(e1x, e2y) + w2p3p4u2(e3y, e4z)

+ w1(1 − p1p2)umax
1 + w2(1 − p3p4)umax

2 ≡ Q.

Suppose, for action profile (d′
1x, d′

2y, d
′
3z), eu(d′

1x, d′
2y, d

′
3z) has been obtained. For

action profile (d1x, d2y, d3z), we compute the above value Q. If

Q < eu(d′
1x, d′

2y, d
′
3z), (8)

it follows that eu(d1x, d2y, d3z) < eu(d′
1x, d′

2y, d
′
3z), and (d1x, d2y, d3z) is dominated

by (d′
1x, d′

2y, d
′
3z). Partial evaluation of (d1x, d2y, d3z) by Eq. (8) takes only four

utility retrievals.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

22 Yang Xiang and Frank Hanshar

In general, each utility ui has a set πi of effect parents (see Fig. 9). Let the
effect parents be indexed by j. Assuming pivot assumption, each effect parent of
ui is associated with a pivot probability pij . Given eu(d′) from full evaluation of
action profile d′, and an alternative action profile d, if

η∑

i=1

wi

(

∏

j

pij) ui(ei) + (1 − (
∏

j

pij)) umax
i

 < eu(d′),

then d is dominated by d′. This leads to threshold assignment and dominance test
below:

th = eu(d′) −
η∑

i=1

wi(1 − (
∏

j

pij)) umax
i , (9)

η∑

i=1

wi(
∏

j

pij) ui(ei) < th. (10)

By pre-computing wi(
∏

j pij) for each ui, partial evaluation of d using Eq. (10) has a
complexity of O(η). Extending PeDecSu with the above operations, PeDecMu makes
partial evaluation based decision, with multiple decision and utility variables.

Algorithm 2. PeDecMu
Input: subnet over D ∪ E ∪ U , max utility umax

i for each ui, a pivot probability
pij for each ui and its jth parent, β ⊂ D and γ = D \ β;

Output: function pair (meu(β), peer(β));

for each constraint b over β,
pick an action profile y′ over γ and denote d′ = (b, y′);
fully evaluate d′ by Eq. (7) to get eu(d′);
set meu(b) = eu(d′), peer(b) = y′, and threshold th by Eq. (9);
for each action profile y over γ where y 6= y′,

denote d = (b, y);
test dominance by Eq. (10);
if test fails,

fully evaluate d by Eq. (7) to get eu(d);
meu(b) = eu(d), peer(b) = y, and update th by Eq. (9);

return (meu(β), peer(β));

When β = ∅, the return value of PeDecMu, meu(β), becomes a single value, and
peer(β) becomes a single optimal action profile d

∗
over D. Proposition 2 summarizes

key properties of PeDecMu.

Proposition 2. PeDecMu satisfies the following.

(1) For each constraint b over β, meu(b) is the MEU.
(2) For each b, peer(b) is the optimal action profile over γ.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 23

(3) Its complexity is O(θ σρ η m κm).

Comparing the complexity O(σρ η m κm) by full evaluation, PeDecMu reduces
the complexity by a factor of θ. If θ = 20%, then PeDecMu will be 5 times faster.

5. Utility Cluster Based Partial Evaluation in Simultaneous
Decision Making

In this section, we present a novel technique, utility clusters, to decompose inter-
agent messages, in the context of simultaneous decision making in regular length-2
CDNs. It is integrated seamlessly with partial evaluation. The technique decom-
poses messages additively, and improves efficiency exponentially from the existing
method.15

Simultaneous decision making is carried out by two rounds of message passing,
interleaved with local decision making by partial evaluation. The hypertree is viewed
as directed from an arbitrary agent (as root), so that adjacent agents are referred to
as parent and child according to the direction. In the first round, utility messages
flow from leaf agents towards the root. Section 5.1 introduces utility clusters in the
context of message computation by leaf agents. Message computation by general
agents are considered in Section 5.2, where the clustering is extended to an arbitrary
agent. In the second round, presented in Section 5.3, local action profiles over agent
interfaces flow from the root agent towards leaf agents.

5.1. Utility clusters and messages from leaf agents

Let a leaf agent A be associated with the subnet over D ∪ E ∪ U . Let the set
of decision variables in its interface with the adjacent agent B on hypertree be
SD ⊂ D. Message utm0(SD) that A sends to B is a MEU function that, for each
local action profile sd over SD, specifies

utm0(sd) = max
rd

eu(sd, rd), (11)

where rd is a local action profile over RD = D \ SD. In other words, we have

utm0(SD) = meu(SD).

From Proposition 2, it follows that, if A applies PeDecMu with β = SD, the re-
turn value meu(β) satisfies meu(β) = utm0(SD). Since complexity of PeDecMu is
exponential on ρ, we seek to improve its efficiency by message decomposition below.

Generally speaking, additive contributions of utility variables to utm0(SD) may
enable decomposition in evaluating utm0(SD). On the other hand, as demonstrated
at the start of Section 4.4, decomposition at the level of individual utility variables is
not always feasible. We explore the existence of private decisions, that is, variables
in RD. In the following, we classify utility variables in relation to SD and RD,
which provides a basis for sound decomposition.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

24 Yang Xiang and Frank Hanshar

For each utility ui and its decision ancestors αi, we define

βi = αi ∩ SD and γi = αi \ βi = αi ∩ RD.

That is, βi is decision ancestors of ui shared between A and B, and γi is decision
ancestors of ui private to A. Each utility variable can be classified, based on the
relation between αi, SD, and RD, into one of four cases:

Definition 10. Let SD be the set of decision variables in an agent interface, and αi

be the decision ancestor set of a utility variable ui. Let βi = αi∩SD and γi = αi\βi.
Then ui is in case k, if the kth condition below holds.

(1) γi = ∅.
(2) γi 6= ∅, βi 6= ∅, and γi ∩ γj = ∅ for all uj where j 6= i.
(3) γi 6= ∅, βi 6= ∅, and γi ∩ γj 6= ∅ for some uj where j 6= i.
(4) βi = ∅.

The four cases are interpreted as follows.

Case 1: αi = βi is entirely shared.
Case 2: There exists no other utility variable uj , such that ui and uj have a com-

mon private decision ancestor.
Case 3: There exists at least one utility variable uj , such that ui and uj have a

common private decision ancestor.
Case 4: αi = γi is entirely private.

Example 15. Consider Fig. 10, where SD = {d2, d3}. Then u2 is case 1, u1 is case
2, u3 is case 3, and u4 is case 4.

2u
1u

d3d1 5dd4d2

4uu3

Fig. 10. Illustration of classification of utility variables

Proposition 3. The four cases of utility variable in Def. 10 are mutually exclusive
and exhaustive.

Proof. The mutual exclusion is obvious. We show that they are exhaustive.
First, we have either βi = ∅ (case 4) or βi 6= ∅. Assuming βi 6= ∅, we then have

either γi = ∅ (case 1) or γi 6= ∅. Next, we assume βi 6= ∅ and γi 6= ∅. Then either
another utility variable uj exists with a common private decision ancestor (case 3),
or no such uj exists (case 2).

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 25

From Proposition 3, it suffices to analyze message meu(SD) decomposition,
enabled by ui of each case. Denote

bi = proj(sd, βi) and yi = proj(sd, γi).

[Case 1] For this case, bi = proj(sd, αi). We refer to the subnet segment that
contains ui, all its ancestors (including πi and αi), and arcs among them, as the
subnet segment of ui. In Fig. 10, subnet segment of u2 is highlighted by the dashed
box.

We observe that (a) contribution of ui to meu(SD) can be evaluated using its
subnet segment, independently of other uj ∈ U , and (b) the contribution is additive.
To see (a), note that contribution of ui to meu(SD) is expected utility function
eu(αi), whose evaluation is completely determined by the subnet segment of ui. To
see (b), note that if meu(sd) = v is obtained using A’s subnet, meu(sd) = v′ is
obtained using A’s subnet with node ui removed, and eu(bi) = v′′ is obtained using
the subnet segment of ui, then

v = v′ + v′′. (12)

Therefore, we can compute eu(αi) using the subnet segment of ui according to
Eq. (3). As it involves full evaluation for each bi, the complexity is

O(σ|αi| m κm). (13)

[Case 2] For this case, the contribution of ui to meu(SD) is also additive, and
obtainable from its subnet segment. Formally, in addition to a relation similar to
Eq. (12) (except all terms are meu() values), this can be seen from an alternative
perspective. Let (bi, yi) be a local action profile over αi, such that eu(bi, yi) =
maxyi

′′ eu(bi, yi
′′), where eu(αi) is computed from the subnet segment of ui. Let z

over D \ γi be a local action profile with proj(z, βi) = bi, and yi
′ be a local action

profile over γi, such that

eu(z, yi
′) = max

yi
′′

eu(z, yi
′′),

where eu(D) is computed from A’s subnet. Then, there must be

eu(z, yi
′) = eu(z, yi).

That is, if a local action profile over private decision ancestors of ui is optimal,
viewed from the subnet segment of ui, then it is optimal viewed from the entire
subnet as well.

Therefore, we can apply PeDecSu to the subnet segment of ui. Set parameters
of PeDecSu to D = αi, β = βi, and γ = γi. The return value meu(βi) is the additive
contribution of ui to meu(SD). The return value peer(βi) will be used later, and
needs to be stored. Applying Proposition 1 to this case, the complexity to obtain
meu(βi) is

O(θ σ|αi| m κm). (14)

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

26 Yang Xiang and Frank Hanshar

[Cases 3 and 4] Unlike utility variables in cases 1 and 2, contribution of a case 3 or
case 4 utility variable to meu(SD) cannot be individually and additively evaluated.

Example 16. The contribution of u4 in Fig. 10 to meu(d2, d3) cannot be evaluated
independently using its subnet segment, because the segment contains neither d2

nor d3.
The contribution of u3 to meu(d2, d3) cannot be evaluated independently using

its subnet segment either, because an optimal action profile over {d3, d4} is not
necessarily compatible with any optimal action profile over {d3, d4, d5}.

We show below that by proper grouping of case 3 and case 4 utility variables
into correlated clusters, we can evaluate contribution of each cluster independently
and additively. Each cluster is obtained by starting with one variable of case 3,
whose existence is established below.

Proposition 4. Let SD be agent interface of a connected subnet, such that there
exists a utility variable that is neither case 1 nor case 2, relative to SD. Then there
exists at least one utility variable that is case 3.

Proof. We prove by contradiction. Suppose not all utility variables are case 1 or
case 2, and all utilities, that are not case 1 or case 2, are case 4. Let ui be such a
case 4 variable. By Def. 10, αi is entirely private. Since there exists no case 3 utility
variable that shares any decision ancestor in αi, it follows that the subnet segment
of ui is disconnected from SD: a contradiction to that the subnet is connected.
Therefore, from Proposition 3, there must be at least one utility variable that is
case 3.

Proposition 4 says whenever cases 1 and 2 do not cover all utilities, there exist
some in case 3. Let a correlated cluster be initiated with a case 3 utility ui. By
Def. 10, there exists uj such that ui and uj share a private decision ancestor. Note
that uj may be case 3 or case 4. Add uj to the cluster, and continue until no
such utility variable can be found. In Fig. 10, u3 and u4 form a correlated cluster.
Formally, a correlated cluster is defined as follows.

Definition 11. Let SU = {u1, ..., uη′} ⊆ U be a subset of utility variables in a
subnet. SU is a correlated cluster if

(1) u1 is case 3,
(2) for each ui (i = 2, ..., η′), there exists j < i with γj ∩ γi 6= ∅, and
(3) no proper superset of SU satisfies the above two conditions.

We extend subnet segment of a single utility variable to subnet segment of a cor-
related cluster, which contains utility nodes in the cluster, ancestors of each utility
node in the cluster, and arcs among them. The contribution to meu(SD) by utility
variables in a correlated cluster can be evaluated independently (of evaluations of

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 27

other clusters) and additively (e.g., Eq. (12)), using its subnet segment. This can
be seen by applying the same argument for case 2 to the cluster.

From counter-examples in Example 16, we have Proposition 5 below.

Proposition 5. A correlated utility cluster and its subnet segment is the minimum
unit, where contribution of utility variables to meu(SD) can be independently and
additively evaluated.

For each correlated cluster with its utility variables indexed as u1, ..., uη′, we
apply PeDecMu to its subnet segment. Denote α′ = ∪η′

i=1αi, β′ = ∪η′

i=1βi, γ′ =
∪η′

i=1γi. Set parameters of PeDecMu to D = α′, β = β′, and γ = γ′. The return
value meu(β′) is the additive contribution of the cluster to meu(SD). Return value
peer(β′) is needed later and is to be stored. Applying Proposition 2, the complexity
to obtain meu(β′) is

O(θ σ|α′| η′ m κm). (15)

Let SU1, SU2, ... be subsets of U , where ∪iSUi = U , and each SUi is either a
singleton under case 1, or a singleton under case 2, or a correlated cluster from
cases 3 or 4. Let α′

i, β′
i and γ′

i denote the sets of decision ancestor variables for SUi.
Then Eq. (11) can be computed as

utm0(sd) = (
∑

i

eui(proj(sd, β′
i))) +

∑

j

meuj(proj(sd, β′
j)), (16)

where each eui() is the contribution from a SUi under case 1, and each meuj() is
the contribution either from a SUj under case 2 or from a SUj under case 3 or 4.

When |α′
i| for each ui under case 1 is small, and there are enough private decision

variables in the subnet, the second term in Eq. (16) (involving utility variables of
cases 2, 3, 4) dominates the computation. From Eqs. (14) and (15), the complexity
to obtain utm0(sd) is the following, where |α∗| = maxi |α′

i|,

O(θ σ|α∗| η m κm). (17)

It is significantly more efficient than O(θ σρ η m κm) (Proposition 2) as the complex-
ity would be, if PeDecMu is directly applied to the subnet. It is only exponential on
cardinality of the largest cluster decision ancestor set, while the latter is exponential
on ρ = |D|.

5.2. Utility clusters and messages from general agents

Before generalizing to an arbitrary agent, we consider non-leaf agents in the first
round of message passing. Let D be the set of decision variables of a non-leaf
agent A. A receives utility messages from child agents A1, ..., Ak, over interfaces
SD1, ..., SDk, respectively, and then computes and sends a utility message over
interface SD with parent agent B (see Fig. 11).

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

28 Yang Xiang and Frank Hanshar

1A kA
1SD SDk... ...

...

D,E,U

B
ASD

...

Fig. 11. First round message passing by non-leaf agent A

We denote message from Aj by utmj(SDj), which specifies utmj(sdj) for each
local action profile sdj over SDj . To absorb incoming utmj(SDj) in computing
outgoing message utm0(SD) to B, we let A modifies its subnet as follows. The
modification is intended to maintain the subnet as regular length-2.

For each decision variable di ∈ SDj with domain Opi, add a new child node
ei with domain Efi = Opi. Associate CPT P (ei|di) with it, such that P (ei|di) =
1 whenever ei = di and P (ei|di) = 0 otherwise. Hence, ei is deterministically
dependent on di. Denote the set of new child nodes added relative to SDj as SEj .
Add a new utility node utmj with SEj as its parents, associate it with the function
utmj(SEj), such that utmj(SEj) = utmj(SDj), and assign it weight wj = 1. Note
that the weight assignment does not follow sum-to-one stated in Section 2.2. The
modification to A’s subnet is summarized in algorithm UpdateSubnet.

After UpdateSubnet, A’s subnet is still regular length-2. Message utm0(SD)
outgoing to B can be computed, using the method in Section 5.1 and Eq. (16).
For each sd over SD, utm0(sd) is the MEU, according to all subnets on hypertree
rooted at A’s subnet, as will be seen below.

Algorithm 3. UpdateSubnet
Input: decision subnet S over D ∪ E ∪ U , incoming messages utm1(SD1), ...,
utmk(SDk) over agent interfaces SD1, ..., SDk, and agent interface SD for out-
going message;

for each SDj ,
initialize SEj = ∅;
for each di ∈ SDj ,

add child node ei to di in S;
set domain of ei to Efi = Opi;
set CPT of ei to deterministic P (ei|di);
SEj = SEj ∪ {ei};

add utility node utmj in S;
for each e ∈ SEj , connect e as a parent of utmj ;
for each di ∈ SDj , rename variable di in utmj(SDj) as ei;
associate function utmj(SEj) from last step with node utmj;
set weight for node utmj to wj = 1;

return;

For the root agent, after UpdateSubnet, it performs PeDecMu with β = ∅ to

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 29

obtain an optimal local action profile d
∗
. The first round of message passing now

ends.

Algorithm 4. CollectUtilPeUc
Input: decision subnet of agent A;

1 if A is not a leaf agent,
2 for each child agent Ai, receive utmj(SDj);
3 call UpdateSubnet;
4 if A is root agent,
5 call PeDecMu with β = ∅ and get return value d

∗
;

6 return d
∗
;

7 denote the set of utility variables in current subnet by U ;
8 U ′ = U ;
9 classify variables in U ′ into 4 cases;
10 while U ′ 6= ∅,
11 remove ui ∈ U ′ from U ′;
12 if ui is case 1, compute eu(αi) using subnet segment of ui and Eq. (3);
13 else if ui is case 2,
14 call PeDecSu with subnet segment of ui and parameters αi, βi, γi;
15 get return value (meu(βi), peer(βi)) and save peer(βi);
16 else if ui is case 3,
17 for each uj ∈ U ′ in the same correlated cluster with ui, remove uj from U ′;
18 call PeDecMu with subnet segment of the cluster and α′, β′, γ′;
19 get return value (meu(β′), peer(β′)) and save peer(β′);
20 compute utm0(SD) by Eq. (16) from eu(αi), meu(βi) and meu(β′) above;
21 send utm0(SD) to agent B;

Algorithm 4 specifies the overall operation of a general agent A, during the first
round of message passing, whose parent agent, if any, is B, and whose child agents,
if any, are A1, ..., Ak. The interface of A with B is SD, and that with Ai is SDi.

A leaf agent executes lines 7 through 21. The root agent executes lines 1 through
6. Each other agent executes all lines except 4 through 6. For such an agent, the
subnet at line 7 is the updated one and so is the set U .

Proposition 6 establishes the key property of CollectUtilPeUc, when executed
by non-root agents.

Proposition 6. For each non-root agent A, after running CollectUtilPeUc, its
message utm0(SD) is the MEU function with respect to partial action profiles, over
union of subsystems on the sub-hypertree rooted at A.

Proof. We prove by induction on depth dep ≥ 1 of the hypertree (length of the
longest path from the root to a leaf). When dep = 1, A is a leaf, and utm0(SD) is
obtained by Eq. (16). From Propositions 1 and 2, the statement holds.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

30 Yang Xiang and Frank Hanshar

Assume that the statement holds for dep ≤ k, where k ≥ 1. Consider dep = k+1.
A is non-leaf, and lines 2 and 3 are run. Due to the inductive assumption, during
UpdateSubnet, adding subnet segment for each incoming message utmj(SDj) is
equivalent to including in Eq. (16) a MEU function for the sub-hypertree rooted at
child agent Aj . Hence, utm0(SD) is the MEU function for the sub-hypertree rooted
at A.

Proposition 7 establishes the key property of CollectUtilPeUc, when executed
by the root agent.

Proposition 7. For the root agent A, after running CollectUtilPeUc, the return
local action profile d

∗
is globally optimal.

Proof. Agent A runs only lines 1 through 6. By an inductive argument similar to
the proof of Proposition 6, note that during UpdateSubnet, adding subnet segment
for each incoming message utmj(SDj) is equivalent to including in Eq. (7) a MEU
function for the sub-hypertree rooted at child agent Aj . From Proposition 2, the
statement holds.

5.3. Decision message distribution

The second round of message passing starts at the root agent. It projects the optimal
local action profile to interface with each adjacent agent on hypertree, and sends
the projected action profile to the agent. When a non-root agent A receives the
local action profile sd

∗
over its interface SD with the parent agent B, it uses the

message to compute its optimal local plan. The computation is organized based on
the four case classification of its utility variables (Section 5.1).

If ui is case 1, then αi ⊂ SD, and the optimal local action profile over αi is

sdi
∗

= proj(sd
∗
, αi). (18)

If ui is case 2, A obtains bi
∗

= proj(sd
∗
, βi), and retrieves yi

∗ = peer(bi
∗
) using the

peer function, stored during CollectUtilPeUc. The optimal local action profile over
αi is

sdi
∗

= (bi
∗
, yi

∗). (19)

For case 3 and 4 utility variables in the same correlated cluster (which we index
by i), the optimal plan over the cluster’s decision ancestor set α′ is obtained. A

obtains b
′∗

= proj(sd
∗
, β′), and retrieves y′∗ = peer(b

′∗
) using the peer function,

stored during CollectUtilPeUc. The optimal local action profile over α′ is

sdi
∗

= (b
′∗

, y′∗). (20)

After the optimal local action profile over each αi (cases 1 and 2) or α′ (cases 3
and 4) is specified, the optimal local action profile over D (decision nodes in A) is
the action profile join

d
∗

= (sd1
∗
, sd2

∗
, ...). (21)

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 31

Algorithm DistributeActionPeUc specifies operations of a general agent A.

Algorithm 5. DistributeActionPeUc
Input: decision subnet over D ∪ E ∪U ;

1 if A is root with d
∗

from CollectUtilPeUc,
2 send proj(d

∗
, SDj) to each child agent Aj ;

3 return;
4 receive message sd

∗
over interface SD with agent B;

5 U ′ = U ;
6 while U ′ 6= ∅,
7 remove ui ∈ U ′ from U ′;
8 if ui is case 1, obtain sdi

∗
over αi by Eq. (18);

9 else if ui is case 2, obtain sd∗
i over αi by Eq. (19);

10 else if ui is case 3,
11 for each uj ∈ U ′ in the same correlated cluster with ui, remove uj from U ′;
12 obtain sdi

∗
over α′ by Eq. (20);

13 compute d
∗

by Eq. (21);
14 if A is non-leaf,
15 for each child agent Aj, send message proj(d

∗
, SDj) to Aj ;

The root agent executes lines 1 through 3. A leaf agent executes lines 4 through
13. Each other agent executes lines 4 through 15. The second round of message
passing ends at leaf agents. The system coordinator executes DecisionPeUc, which
causes distributed execution of the above algorithms.

Algorithm 6. DecisionPeUc

select an agent A arbitrarily;
call CollectUtilPeUc in A;
call DistributeActionPeUc in A;

Theorem 1 establishes the optimality of DecisionPeUc. The joint action profile
in the theorem is a virtual object, and is never physically constructed.

Theorem 1. After DecisionPeUc, the joint action profile formed by joining the
local action profile d

∗
at each agent is optimal.

Proof. By Proposition 7, after the root agent A completes CollectUtilPeUc, d
∗

obtained is the projection of a globally optimal joint action profile to the root
subsystem.

The optimal local action profile under each interface constraint is stored as a
peer() function, in CollectUtilPeUc. It is retrieved in DistributeActionPeUc by each
child agent Aj of root. Hence, d

∗
obtained by Aj , during DistributeActionPeUc, is

the projection of the globally optimal joint action profile to the subsystem at Aj .
Applying this argument recursively for each non-root agent down the hypertree, d

∗

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

32 Yang Xiang and Frank Hanshar

obtained by the agent during DistributeActionPeUc is the projection of the globally
optimal joint action profile to the subsystem of the agent.

From Eq. (17), the total complexity of DecisionPeUc is approximately

O(n θ σ|α∗| η m κm). (22)

This represents a complexity reduction by a ratio of θ/σρ−|α∗|, relative to the earlier
algorithm.15 It consists of an exponential factor σρ−|α∗| due to utility clustering, as
well as a linear factor θ due to partial evaluation.

6. Experimental Evaluation

To evaluate the effectiveness of DecisionPeUc empirically, multiple sets of experi-
ments were performed. We report two sets of them that are representative. The first
set evaluates efficiency gain due to partial evaluation and utility clustering, both
individually and in combination. The experiments confirm the linear efficiency gain
due to partial evaluation, and the exponential improvement due to utility clustering.
Section 6.1 reports setup and result for this set of experiments.

The second set assesses the robustness of the pivot assumption (Def. 9). The
pivot assumption states that, for each effect variable, probabilities of pivot effects for
different action profiles are identical. The first set of experiments above also confirms
optimal decision making under pivot assumption. The second set of experiments
shows that optimal or near-optimal decision making can be achieved when the
assumption is relaxed. Setup and result of this set of experiments are reported in
Section 6.2.

6.1. Efficiency gain due to partial evaluation and utility clustering

MAE is used as the testbed (Example 3 with T = 1). The multiagent system,
referred to by 4A6D, consists of n = 4 agents, with the hypertree organization
A1 − A2 − A3 − A4. Agent subnets are structured similarly to those in Example 3,
and are converted equivalently to regular length-2. Each agent has between two to
three movement decisions that are shared with agents adjacent on the hypertree.
In addition, each agent has 6 private decisions. Each decision variable has domain
cardinality σ = 5. Each effect variable has domain cardinality κ = 5.

The 4A6D agent team is placed at 30 distinct team locations, and simultaneous
decision making is performed for each team location, to determine the optimal joint
action profile. For each team location, uncertainty on movements and other actions
is represented in agent subnet CPTs, and reward distribution at neighborhood cells
is encoded by utility functions. For all CPTs, the pivot assumption holds exactly,
with the pivot probability value being 0.9. All utility functions are such that the
density of high utility cells (of utility value > 0.5, where each utility ∈ [0, 1]) is
about 5%.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 33

The maximum number of shared decisions per agent is 3, and the number of
private decisions per agent is 6. Hence, the maximum number of decisions per agent
is 9. The corresponding number of local action profiles per agent is 1,953,125. The
number of joint action profiles for 4A6D team is 1.455× 1025.

Four alternative methods for simultaneous decision making in CDNs are imple-
mented distributively in Java:

FeNoUc The existing method15 that is based on full evaluation
FeUc The existing method enhanced by utility clustering
PeNoUc The existing method enhanced by partial evaluation
PeUc The algorithm DecisionPeUc

Simultaneous decision making is run, distributively using a dual-core 2.9 GHz lap-
top, for each team location, by each method, with A4 as the root agent.

For each team location, the decision made by FeNoUc is used as the golden
standard, since it is proven to be optimal, is based on full evaluation (not influenced
by pivot assumption), and is not influenced by utility clustering. The expected
utility of the joint action profile obtained by FeNoUc is then compared against
those obtained by alternative methods. For each team location, each of the other
three methods returned joint action profiles with the expected utility identical to
that of FeNoUc. Hence, optimal simultaneous decision making is achieved by all
methods in each case. This confirms the optimality of DecisionPeUc, under the
pivot assumption.

Fig. 12. 4A6D team runtimes by four alternative methods. The x-axis is indexed by team location,

and the y-axis measures runtime in seconds.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

34 Yang Xiang and Frank Hanshar

Fig. 12 depicts team runtime for each team location by each method. The mean
team runtime for each method across all team locations, and the corresponding
standard deviation are summarized in Table 5.

Table 5. Summary of runtimes (in seconds) by alternative methods

FeNoUc PeNoUc FeUc PeUc
mean 380.8 128.6 23.8 2.8
stdev 25.6 41.4 13.9 0.3

The impact of partial evaluation on efficiency can be observed by comparing
runtimes between FeNoUc and PeNoUc for each team location, and averaging the
ratios. The comparison can also be performed between FeUc and PeUc. The result
from data plotted in Fig. 12 shows that PeNoUc runs about 3.3 times as fast as
FeNoUc, and PeUc runs about 8.7 times as fast as FeUc. In both pairs of com-
parisons, the runtime improvement reflects the percentage of action profiles that
are fully evaluated: a linear factor. We observe that partial evaluation works more
effectively, by a ratio of 2.6 (8.7/3.3), when coupled with utility clustering.

The impact of utility clustering on efficiency can be observed by a similar aver-
aging of runtime ratio, between FeNoUc and FeUc, and between PeNoUc and PeUc.
The result from data plotted in Fig. 12 shows that, FeUc runs about 22.4 times as
fast as FeNoUc, and PeUc runs about 46.5 times as fast as PeNoUc. The largest
utility cluster in a 4A6D agent contains 6 decision variables, and the corresponding
subnet has 9 decision variables, each of which has 5 possible actions. Hence, the the-
oretical exponential factor of efficiency gain by utility clustering is 59−6 = 125 times
(see end of Section 5.3). We observe that utility clustering works more effectively,
by a factor of 2.1 (46.5/22.4), when it is coupled with partial evaluation.

The combined impact of partial evaluation and utility clustering on efficiency
can be evaluated by comparing runtimes between FeNoUc and PeUc. The data
shows that PeUc runs about 138.7 times as fast as FeNoUc: combining a linear
factor and an exponential.

The statistical significance of the above comparisons are verified with Friedman
test. The rank sums of FeNoUc, PeNoUc, FeUc, and PeUc are 120, 90 60, 30,
respectively, resulting in the test statistics 90. For α = 0.005, the critical value is
12.84. Hence, null hypothesis is rejected at the α = 0.005 level of significance. For
post-hoc analysis, 3 pairwise comparisons are performed, FeNoUc versus PeNoUc,
PeNoUc versus FeUc, and FeUc versus PeUc. The rank sum difference between each
pair is 30, that is larger than the critical value 29.35 for α = 0.005. Hence, the null
hypothesis in the one-sided test is rejected for each pair. In other words, at the
α = 0.005 level, PeUc is significantly faster than FeUc, FeUc is significantly faster
than PeNoUc, and PeNoUc is significantly faster than FeNoUc.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 35

Beside the above reported, we have run several additional sets of experiments,
including teams 4A3D, 4A4D, and 4A5D (with 3, 4 and 5 private decisions per
agent, respectively). The results generally demonstrate the similar trends, as re-
ported above. Due to difference in numbers of decision variables, runtimes by Fe-
NoUc increase by roughly 5 times among 4A3D, 4A4D, 4A5D, 4A6D, in that order.
As decisions by 4A3D, 4A4D, 4A5D teams are less expensive, runtime differences
between FeUc and PeUc are not as pronounced as 4A6D reported above (PeUc al-
ready takes only 2.8s), due to computation overhead not counted in the complexity
analysis. Since results from teams such as 4A3D, 4A4D, 4A5D do not reveal as well,
as the results from 4A6D, the general trends for scaling up, they are not included
in our report. On the other hand, more expensive teams, such as 4A7D, would take
significantly longer to run (at least 380s × 5 = 1900s per execution of FeNoUc),
but are expected to show only similar trends as 4A6D, they are not tested in large
scale.

To evaluate how well PeUc scales up, we extended 4A6D agent team into addi-
tional agent teams 6A6D, 8A6D, 10A6D, 12A6D, 14A6D, 16A6D, 18A6D, 20A6D
and have run PeUc on each. That is, each team has n = 4, 6, 8, 10,12,14,16,18,20
agents. Each agent has up to 3 shared decisions and 6 private decisions. Recall that
the number of joint action profiles for 4A6D team is 1.455× 1025. Each additional
agent increases that number by 78,125 times. Fig. 13 depicts their runtime in sec-
onds. As n scales up from 4 to 20, the runtime grows slightly more than linear.
Although hyperchain agent organizations are used, the result is representative for
hypertrees of radius n (with the root agent at the center). This demonstrates that
PeUc scales up well. For 20 agents, it takes about 1 minute and hence near real-time
performance is achieved by 20A6D team.

Fig. 13. PeUc runtime for teams 4A6D, 6A6D, 8A6D, 10A6D, 12A6D, 14A6D, 16A6D, 18A6D,
and 20A6D

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

36 Yang Xiang and Frank Hanshar

6.2. Sensitivity of optimality to pivot assumption

The pivot assumption requires that, for each effect variable, probabilities of pivot
effects for different action profiles of its decision parents are identical. The first
set of experiments reported above confirmed optimality of DecisionPeUc, when the
assumption holds exactly. Since the assumption cannot be expected to hold for
every application, we report below a second set of experiments, to assess robustness
of the pivot assumption.

Let ei be an effect variable of 5 possible values (the case in our testbed), with
decision parent set δi. The pivot probability for any action profile over δi must be in
the range [0.2, 1). The lower bound 0.2 corresponds to a uniform distribution, and
the upper bound to the case that all possible values of ei are very unlikely, except
the pivot effect. This range constrains our setup on pivot probabilities.

The set of experiments are divided into three groups. Each group consists of
30 4A3D team locations. For the first group, all CPTs in agent subnets have pivot
probabilities in the range of [0.8, 0.9]. The upper bound 0.9 is identical to the pivot
probability in the first set of experiments. For instance, if pivot probabilities in
Table 1 were in the range of [0.8, 0.9], then at least one row would have the pivot
probability 0.9, at least one row would have 0.8, and other rows would have pivot
probabilities in between. With pivot probabilities scattered between 0.8 and 0.9 for
different action profiles, the pivot assumption no longer hold. The range for the
second group is [0.7, 0.9], which is twice the width as the first group. The range for
the third group is [0.3, 0.9], which covers almost the whole constraint range [0.2, 1).
A total of 90 team locations are used in the experiments.

To adopt PeUc to these environments, the method works as if the pivot as-
sumption holds, but the pivot probability value used in decision making is either
the maximum or the minimum pivot probability value in the CPT. We refer to the
modified methods as PeUcMax and PeUcMin, respectively. For example, for the
first group above, PeUcMax uses 0.9 as the pivot probability, and PeUcMin uses
0.8.

For each of the 90 team locations, we run FeUc to obtain the optimal expected
utility over joint action profiles, as it does not depend on partial evaluation, is
exact, and is more efficient than FeNoUc. We then run PeUcMax and PeUcMin,
and calculate the ratio between the expected utility of the decision they obtain, and
that of the decision obtained by FeUc. We will refer to this ratio as the optimality
ratio (OR). If an execution of PeUcMax or PeUcMin obtains the identical expected
utility as FeUc, the optimality ratio is 100 percent. A suboptimal result is indicated
by a less than 100 percent ratio.

Fig. 14 (left) depicts the optimality ratios from PeUcMax, and Fig. 14 (right)
depicts those from PeUcMin. The number of suboptimal runs, the mean optimality
ratio, and the standard deviation, for each group and each method, are summarized
in Table 6.

As shown by Table 6 (2nd and 3rd column), for pivot probability (PP) range

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 37

[0.8, 0.9], both PeUcMax and PeUcMin made optimal decisions, for each of the 30
cases in the first group. It demonstrates that optimal decision is still achievable,
when the pivot assumption does not hold, as long as pivot probability values are
reasonably close.

Fig. 14. Left: Optimality ratios from PeUcMax. Right: Optimality ratios from PeUcMin.

Table 6. Summary on numbers of suboptimal runs and optimality ratios by PeUcMax and PeUcMin

PP range [0.8, 0.9] [0.7, 0.9] [0.3, 0.9]

PeUcMax PeUcMin PeUcMax PeUcMin PeUcMax PeUcMin

subop runs 0 0 3 6 15 8
mean OR 100 100 99.96 99.8 99.2 99.6
stdev OR 0 0 0.1 0.4 1.3 1.1

As shown by 4th and 5th column, when pivot probability range widens to
[0.7, 0.9], between 10% (3 out of 30 by PeUcMax) and 20% (6 out of 30 by PeUcMin)
of decisions are suboptimal. However, these suboptimal decisions yield no less than
98.5% of the optimal expected utility (see Fig. 14). It demonstrates that near opti-
mal decision is achievable, when the pivot assumption is clearly violated, and pivot
probability values are fairly different.

When the pivot probability range widens to [0.3, 0.9] in the third group (last
two columns), it represents the worst condition, as far as the violation of the pivot
assumption is concerned. The percentages of suboptimal decisions reach 50% by
PeUcMax and 27% by PeUcMin. Still, no less than 94% of the optimal expected
utility is obtained.

Overall, the experiments demonstrate that, although pivot assumption is suf-
ficient for optimality of partial evaluation, it is not a necessary condition. Partial
evaluation is fairly robust with respect to the pivot assumption. Hence, combined
with utility clustering, DecisionPeUc is widely applicable, where pivot assumption
does not hold exactly, and it enables optimal or near-optimal simultaneous decision

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

38 Yang Xiang and Frank Hanshar

making with significant efficiency gain.

7. Related Work

We discuss several frameworks for cooperative multiagent decision making. It is
not an exhaustive review, but to note literature that are most closely related to
CDNs. Where a framework is primarily for competitive multiagent, it is indicated
explicitly.

7.1. Decision-theoretic frameworks

A number of frameworks for sequential decision making have been developed based
on decentralized partially observable Markov decision process (DEC-POMDP) and
its fully observable counterpart (DEC-MDP). The problem of generating optimal
policies for DEC-POMDPs is known to be NEXP-complete.3 CDNs focus on si-
multaneous decision making. The complexity of optimal decision making in gen-
eral CDNs is exponential on the number of decision variables over all agents.15

Hence, optimal solution methods are intractable for general DEC-MDPs2 and DEC-
POMDPs,17 as well as for general CDNs.

Transition and observation independence (TOI) has been exploited for more
tractable optimal policy generation18–20 in TOI DEC-POMDPs. TOI implies that
actions taken by one agent cannot affect any other agent’s observation or local state.
Because decision variables in CDN agent interfaces affect local states at other agents,
systems encoded as CDNs are not subject to TOI restriction.

Policies for DEC-MDPs or DEC-POMDPs can be generated offline at planning
time. Generation can be conducted centrally17,18,21,22 or distributively.23 Alterna-
tively, planning can be performed online24,25 to determine the next joint action
profile. Since only the actual observation history, rather than all possible histories,
needs to be considered, the planning can be more efficient. Between the two alterna-
tives, execution-centric frameworks21,26,27 combine simplified offline planning with
execution-time communication of agent observation-action sequence to achieve co-
ordination. CDNs focus primarily on simultaneous decision making. However, they
are applicable to some Dec-POMDPs such as MAE (see16 for relation between MAE
and Dec-POMDP), where computation in CDNs is similar to online planning (see
discussion after Example 2). DEC-POMDPs online planning methods24,25 are ap-
proximate, while decision making methods for CDNs (15 and this work) are optimal.

A DEC-POMDP environment is described by a set of states.3,17,21,23,26 A fac-
tored DEC-POMDP has a state space spanned by a set of state variables,2,22 and
allows conditional independence among variables to be exploited by encoding transi-
tion and observation models through graphical models. It also allows decomposition
of reward model by exploiting additive or other independence.

MSBNs, evolved from their modular forms10,14 in early 1990s to multiagent,11,28

are among the earliest multiagent probabilistic graphical models. CDNs are exten-
sions of MSBNs from probabilistic frameworks to decision theoretic ones. Both

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 39

MSBNs and CDNs employ the hypertree decomposition (Def. 1). The hypertree de-
composition is explored subsequently in other probabilistic graphical models, e.g.,
OOBNs12 and some Dec-MDP frameworks.13

In addition to the hypertree decomposition, MSBNs also pioneer in inter-agent
message decomposition, through linkage trees.14 Neither OOBNs, nor Dec-MDP
frameworks,13 nor the earlier CDN framework15 explore such message decomposi-
tion. A main contribution of the current work is to enable exploration of inter-agent
message decomposition in CDNs, through utility clusters (Section 5). Note also that
planning in some Dec-MDP frameworks13 is approximate, while decision making in
CDNs is optimal.

Some frameworks for DEC-MDP,2 or DEC-POMDP,26 assume that models are
common knowledge. Other frameworks use centralized offline planning.17,18,21,22,27

These frameworks are not concerned with agent privacy. In CDN decision mak-
ing, identities of private variables, their associated numerical information, and deci-
sions made over private decision variables are neither centralized nor communicated.
Hence, simultaneous decision making in CDNs preserves agent privacy. Such pri-
vacy preservation is necessary for certain applications, e.g., collaborative industrial
design,8 and CDNs are well positioned to support them.

IDs29 can be viewed as a subclass of factored POMDPs. IDs support sequential
decision making, while CDNs focus on simultaneous decision making. CDN subnets
differ from IDs as detailed in Section 2.3. IDs allow chance parents for decision
nodes. Such is not needed, and is disallowed in CDN subnets. Arcs between decision
nodes in IDs are not associated with quantitative knowledge. In CDN subnets, such
arcs are associated with decision constraints, specified in terms of CPTs.

CDNs differ significantly from MAIDs.4 An MAID is a centralized representation
of a game among competitive agents. The developer of an MAID oversees the payoff
structures of all agents, has the access of the entire MAID, and can analyze it
by centralized computation. A CDN is a distributed representation of cooperative
agents (with privacy) for optimal decision making. Each CDN agent has the access
of its own subnet, without any knowledge about private variables of other subnets,
nor their internal structures and numerical parameters. There is no agent in the
system, who has the knowledge over all subnets. An optimal joint action profile
emerges from distributed simultaneous decision making (Theorem 1). It cannot be
derived by centralized computation, since no agent has all the knowledge necessary,
nor is it physically represented centrally anywhere.

7.2. Other related frameworks

A widely applied multiagent framework is BDI,1,30 which models the informational,
motivational, and deliberative states of an agent in terms of belief, desire, and
intention, respectively. The framework is not limited to cooperative agents. BDI
is primarily a logic framework, and it has no quantitative evaluation of degree of
optimality. On the other hand, CDN is decision-theoretic with probabilistic belief

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

40 Yang Xiang and Frank Hanshar

representation, and utility based preference quantification.
Distributed constraint optimization (DCOP) is another area of multiagent coop-

eration. DCOP problems do not typically involve stochastic environments and hence
do not consider uncertainty. A number of frameworks for solving DCOP problems
exist, and an extensive review of them is beyond scope of this work. One particular
framework, however, based on DPOP5 and its various extensions,31 is closely related
to CDN decision making methods. Computation in both DPOP and CDNs follow a
dynamic-programming style. However, CDN models uncertainty, while DPOP does
not. DPOP uses a pseudo-tree organization, while CDN uses a junction tree orga-
nization. An organizational unit in DPOP is a single-variable-agent, while a unit in
CDN is a multi-variable-subsystem.

8. Conclusion

This work makes a number of contributions to simultaneous decision making for
cooperative multiagent systems in stochastic environment.

First, the agent interface in CDNs is extended to include certain chance variables
while maintaining its support to more efficient decision making. Second, equivalent
representation and transformation of CDNs into regular length-2 CDNs are devel-
oped, which facilitates model manipulation during decision making. The third con-
tribution is partial evaluation, sanctioned by the pivot assumption, which ensures
optimal decision making while improving efficiency by a linear factor. The experi-
mental evaluation shows that partial evaluation is robust with respect to the pivot
assumption, and is thus widely applicable. In particular, a sufficiently wide range of
pivot probabilities enables the optimal or near optimal partial evaluation. Fourth,
subnet decomposition by utility clusters is developed, sanctioned by existence of
private decisions in each agent. Utility clustering improves efficiency further by an
exponential factor. Finally, a new, general simultaneous decision making algorithm
suite is formulated, that integrates the above techniques.

A number of directions deserve further investigation, including a characteriza-
tion of length-2 equivalent CDNs, a general algorithm of decision equivalent trans-
formation of CDNs into regular length-2, a necessary and sufficient condition for
optimal partial evaluation, and a time-bounded partial evaluation for time-critical
applications.

Acknowledgements

Financial support from NSERC, Canada through Discovery Grant is acknowledged.

References

1. A. Rao and M. Georgeff, “BDI agents: from theory to practice”, Proc. 1st Inter. Conf.
on Multi-Agent Systems, 1995, pp. 312-319.

2. C. Boutilier, “Planning, learning and coordination in multiagent decision processes”,
Proc. Conf. on Theoretical Aspects of Rationality and Knowledge, 1996, pp. 195-210.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 41

3. D.S. Bernstein, S. Zilberstein, and N. Immerman, “The complexity of decentralized
control of Markov decision processes”, Proc. 16th Conf. on Uncertainty in Artificial
Intelligence, 2000, pp. 32-37.

4. D. Koller and B. Milch, “Multi-agent influence diagrams for representing and solving
games”, Proc. 17th Inter. Joint Conf. on Artificial Intelligence, 2001, pp. 1027-1034.

5. A. Petcu and B. Faltings, “A scalable method for multiagent constraint optimization”,
Proc. 19th Inter. Joint Conf. on Artificial Intelligence, 2005, pp. 266-271.

6. T. Leaute and B. Faltings, “Protecting privacy through fistributed vomputation in
multi-agent decision making”, J. Artificial Intelligence Research. 47 (2013) 649-695.

7. Y. Xiang, Y. Mohamed, and W. Zhang, “Distributed constraint satisfaction with
multiply sectioned constraint networks”, International J. Information and Decision
Sciences. 6(2) (2014) 127-152.

8. Y. Xiang, J. Chen, and A. Deshmukh, “A decision-theoretic graphical model for col-
laborative design on supply chains”, in Advances in Artificial Intelligence, LNAI 3060,
eds. A.Y. Tawfik and S.D. Goodwin (Springer, 2004) pp. 355-369.

9. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence (Morgan Kaufmann, 1988).

10. Y. Xiang, D. Poole, and M. Beddoes, “Exploring localization in Bayesian networks for
large expert systems”, Proc. 8th Conf. on Uncertainty in Artificial Intelligence, 1992,
pp. 344-351.

11. Y. Xiang, “Distributed multi-agent probabilistic reasoning with Bayesian networks”,
in Methodologies for Intelligent Systems, eds. Z.W. Ras and M. Zemankova (Springer-
Verlag, 1994) pp. 285-294.

12. D. Koller and A. Pfeffer, “Object-oriented Bayesian networks”, Proc. 13th Conf. on
Uncertainty in Artificial Intelligence, 1997, pp. 302-313.

13. C. Guestrin and G. Gordon, “Distributed planning in hierarchical factored MDPs”,
Proc. 18th Conf. on Uncertainty in Artificial Intelligence, 2002, pp. 197-206.

14. Y. Xiang, D. Poole, and M. Beddoes, “Multiply sectioned Bayesian networks and
junction forests for large knowledge based systems”, Computational Intelligence. 9(2)
(1993) 171-220.

15. Y. Xiang, J. Chen, and W.S. Havens, “Optimal design in collaborative design net-
work”, Proc. 4th Inter. Joint Conf. on Autonomous Agents and Multiagent Systems
(AAMAS’05), 2005, pp. 241-248.

16. Y. Xiang and F. Hanshar, “Multiagent expedition with graphical models”, Inter. J.
Uncertainty, Fuzziness and Knowledge-Based Systems. 19(6) (2011) 939-976.

17. M.T.J. Spaan, F.A. Oliehoek, and C. Amato, “Scaling up optimal heuristic search
in Dec-POMDPs via incremental expansion”, Proc. 6th Workshop on Multiagent Se-
quential Decision-Making in Uncertain Domains, 2011, pp. 63-70.

18. R. Becker, S. Zilberstein, V. Lesser, and C.V. Goldman, “Solving transition indepen-
dent decentralized Markov decision processes”, J. Artificial Intelligence Research. 22
(2004) 423-455.

19. R. Nair, P. Varakantham, M. Tambe, and M. Yokoo, “Networked distributed
POMDPs: A synthesis of distributed constraint optimization and POMDPs”, Proc.
20th National Conference on Artificial Intelligence, 2005, pp. 133-139.

20. P. Varakantham, J. Marecki, Y. Yabu, M. Tambe, and M. Yokoo, “Letting loose a
SPIDER on a network of POMDPs: Generating quality guaranteed policies”, Proc.
Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems, 2007, pp. 817-824.

21. M. Roth, R. Simmons, and M. Veloso, “What to communicate? execution-time de-
cision in multi-agent POMDPs”, Proc. 8th Inter. Symp. on Distributed Autonomous
Robotic Systems, 2006, pp. 1-10.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

42 Yang Xiang and Frank Hanshar

22. F. Oliehoek, Matthijs Spaan, S. Whiteson, and N. Vlassis, “Exploiting locality of
interaction in factored Dec-POMDPs”, Proc. 7th Inter. Conf. on Autonomous Agents
and Multiagent Systems, 2008, pp. 517-524.

23. P. Velagapudi, P. Varakantham, K. Sycara, and P. Scerri, “Distributed model shaping
for scaling to decentralized POMDPs with hundreds of agents”, Proc. Int. Joint Conf.
on Autonomous Agents and Multi-Agent Systems, 2011, pp. 955-962.

24. C. Besse and B. Chaib-draa, “Parallel rollout for online solution of Dec-POMDPs”,
Proc. of 21st Int. FLAIRS Conference (FLAIRS-21), 2008, pp. 619-624.

25. F. Wu, S. Zilberstein, and X. Chen, “Multi-agent online planning with communica-
tion”, Proc. Inter. Conf. on Automated Planning and Scheduling, 2009, pp. 321-329.

26. D.V. Pynadath and M. Tambe, “The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models”, J. Artificial Intelligence Research. 16
(2002) 389-423.

27. J. Kwak, R. Yang, Z. Yin, M.E. Taylor, and M. Tambe, “Teamwork in distributed
POMDPs: Execution-time coordination under model uncertainty”, Proc. 10th Int.
Conf. on Autonomous Agents and Multiagent Systems, 2011, pp. 1261-1262.

28. Y. Xiang, “A probabilistic framework for cooperative multi-agent distributed inter-
pretation and optimization of communication”, Artificial Intelligence. 87(1-2) (1996)
295-342.

29. R.A. Howard and J.E. Matheson, “Influence diagrams”, in Readings on the Principles
and Applications of Decision Analysis, eds. R.A. Howard and J.E. Matheson (Strategic
Decisions Group, Menlo Park, CA, 1984) pp. 721-762.

30. L. de Silva, S. Sardina, and L. Padgham, “First principles planning in BDI systems”,
Proc. 8th Inter. Conf. on Autonomous Agents and Multiagent Systems, 2009, pp. 1105-
1112.

31. A. Kumar, B. Faltings, and A. Petcu, “Distributed constraint optimization with struc-
tured resource constraints”, Proc. 8th Inter. Conf. on Autonomous Agents and Mul-
tiagent Systems, 2009, pp. 923-930.

September 7, 2014 15:9 WSPC/INSTRUCTION FILE ijufks3

Multiagent Decision Making in CDNs by Utility Cluster Based Partial Evaluation 43

Appendix: Notation

A : Set of agents
n : Number of agents
A, B, Ai : Agent

E : Collection of chance variables
κ : Max domain cardinality of chance variables
D : Collection of decision variables
σ : Max domain cardinality of decision variables

U : Collection of utility variables
m : Max parent set cardinality for utility variables
wi : Weight of utility variable ui

awj : Weight of agent Aj

S, Si : Subnet
D, Di : Set of decision variables in a subnet
E, Ei : Set of chance variables in a subnet
U, Ui : Set of utility variables in a subnet
V, Vi : Collection of all variables in a subnet
ρ : Number of decision variables in a subnet
η : Number of utility variables in a subnet

di : Decision variable
Opi : Domain of di

ei : Effect variable
Efi : Domain of ei

δi : Parent set of ei

ui : Utility variable
πi : Parent set of ui

αi : Decision ancestors of ui

jd : Joint action profile
d, di : Local action profile
β : Constraint scope
γ : Optimization scope
b : Local action profile over constraint scope
y : Local action profile over optimization scope
SD : Agent interface
sd : Local action profile over SD

θ : Percentage of local action profiles fully evaluated

