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Abstract. Main stream approaches in distributed artificial intelligence
(DAI) are essentially logic-based. Little has been reported to explore
probabilistic approach in DAI. On the other hand, Bayesian networks
have been applied to many AI tasks that require reasoning under un-
certainty. However, as commonly applied, a single-agent paradigm is as-
sumed in Bayesian networks.

This paper extends multiply sectioned Bayesian networks (MSBNs) for
single-agent systems into a framework for multi-agent distributed inter-
pretation systems. Each cooperative agent is represented as a Bayesian
subnet that consumes its own computational resource, gathers its own
evidence, and can answer queries. Unlike in single-agent systems where
evidence is entered one subnet at a time, multiple agents may acquire
evidence in parallel. We add to the set of single-agent MSBN operations
new belief propagation operations which, when performed, regain global
consistency. Due to the inter-agent ’distance’ and the associated com-
munication cost, global consistency can not be maintained constantly.
We show that, when the proposed operations are followed, between two
successive communications, the answers to queries from an agent are con-
sistent with all local evidence gathered so far, and are consistent with all
global evidence gathered up to the last communication.

Keywords: knowledge representation and integration, approx-
imate reasoning, probabilistic reasoning, Bayesian networks,
distributed artificial intelligence, distributed reasoning.

1 Introduction

Probabilistic reasoning in Bayesian networks (BNs), as commonly applied, as-
sumes a single-agent paradigm: A single processor accesses a single global net-
work representation, updates the joint probability distribution over the network
variables as evidence becomes available, and answers queries. Concurrency, as
applied to BNs, primarily aims at performance and decentralization of control
[10, 4], but not at modeling inference among multiple agents with multiple per-
spectives. The resultant individual concurrent element is thus ’fine-grained’, e.g.,
a node in a BN [10] or a clique in the junction tree representation of a BN [4].

The single-agent paradigm is inadequate when uncertain reasoning is per-
formed by elements of a system between which there is some ’distance’, which
may be spatial, temporal, or semantic (elements are specialized differently) [1].



Such systems pose special issues that must be addressed. A multi-agent view is
thus required where each agent is an autonomous intelligent subsystem. Each
agent holds its own partial domain knowledge, accesses some information source,
and consumes some computational resource. Each agent communicates with
other agents to achieve the system’s goal cooperatively.

Distributed artificial intelligence (DAI), a subfield of artificial intelligence,
addresses the problems of designing and analyzing such ’large-grained’ coor-
dinating multi-agent systems [2, 3]. Main stream approaches, e.g., blackboard
systems, contract nets, and open systems are essentially logic-based. To our best
knowledge, little has been reported to explore probabilistic approach in DAI.

This paper reports our pilot study to apply probabilistic approach to dis-
tributed multi-agent reasoning. Our representation is based on multiply sec-
tioned Bayesian networks (MSBNs)[12], which were developed for single-agent-
oriented, modular knowledge representation and more efficient inference[11]. We
show that the modularity of MSBNs allows a natural extension into a multi-agent
reasoning formalism.

We address the use of MSBNs in distributed interpretation, a subclass of
problems in DAI. As defined originally by Lesser and Erman [7], an interpreta-
tion system accepts evidence from some environment and produces higher level
descriptions of objects and events in the environment. A distributed interpreta-
tion system is needed when sensors for collecting evidence are distributed, and
communication of all evidence to a centralized site is undesirable. Examples of
such systems include sensor networks, medical diagnosis by multiple specialists,
trouble-shotting of complex artifacts and distributed image interpretation.

Section 2 briefly introduce BNs and single-agent MSBNs. Section 3 presents
the semantic extension of single-agent MSBNs to multi-agent MSBNs. Each co-
operative agent is represented as a Bayesian subnet that consumes its own com-
putational resource, gathers its own evidence, and can answer queries. Section 4
discusses new technical issues raised due to the extension, which are addressed
in subsequent sections.

Section 5 extends the evidence entering operation proposed originally [12] to
include both specific evidence and virtual evidence.

Unlike in single-agent systems where evidence is entered one subnet at a
time, multiple agents may acquire evidence asynchronously in parallel. Section 6
addresses this and adds new belief propagation operations to the set of single-
agent MSBN operations.

Section 7 shows that global consistency is guaranteed when the proposed
operations are followed. Due to the inter-agent ’distance’ and the associated
communication cost, global consistency can not be maintained constantly. It
is also shown that, when the proposed operations are followed, between two
successive communications, the answers to queries from an agent are consistent
with all local evidence gathered so far, and are consistent with all global evidence
gathered up to the last communication.

Section 8 discusses the role of causal independence in our framework.



2 Single Agent Oriented MSBNs

A BN [10, 8, 6, 4] is a triplet (N, E, P ). N is a set of nodes (variables). E
is a set of arcs such that D = (N, E) is a directed acyclic graph (DAG). For
each node Ai ∈ N , the strengths of the causal influences from its parent nodes
πi are quantified by a conditional probability distribution p(Ai|πi). The basic
dependency assumption embedded in BNs is that a variable is independent of its
non-descendants given its parents. P is a joint probability distribution (JPD).
For a BN with α nodes, P can be specified by the following product due to the
assumption: P = p(A1 . . .Aα) =

∏α
i=1 p(Ai|πi).

In the following, we briefly introduce single-agent oriented MSBNs. For a
formal presentation of MSBNs, see [12]. A MSBN consists of a set of interrelated
Bayesian subnets. Each subnet represents one subdomain in a large domain. Each
subnet shares a non-empty set of variables with at least one other subnet. The
interfacing set between each pair of subnets must satisfy a d-sepset condition
such that, when the pair is isolated from the MSBN, the interfacing set renders
the two subnets conditionally independent.

The overall structure with which the subnets of a MSBN are organized is
subject to a constraint called soundness of sectioning. Without the condition, a
MSBN is subject to loss of information when later transformed into its secondary
representation: a linked junction forest. A sufficient condition for sound section-
ing is to construct a MSBN with a hypertree structure. The hypernodes in the
hypertree are subnets of the MSBN. The hyperlinks are interfacing sets between
subnets. Conceptually, the hypertree structured MSBN is built by adding one
subnet (hypernode) to existing ones at a time. Only one interfacing set (hyper-
link) to an existing subnet is explicitly stored. A hypertree structured MSBN
guarantees that each subnet renders the rest of the MSBN conditionally inde-
pendent. Figure 1 depicts a hypertree structured MSBN. Each box represents a
subnet. Boundaries between boxes represent interfacing sets. The superscripts
of subDAGs indicate a possible order of construction.
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Fig. 1. A MSBN with a hypertree structure.

Once a hypertree structured MSBN is constructed, it is then converted into
a linked junction forest of the identical hypertree structure. Each hypernode in
the hypertree is a junction tree (clique tree, join tree) converted from a subnet
in the hypertree structured MSBN. The conversion of a subnet to a junction tree



is subject to a separability constraint to guarantee non-distorted belief propa-
gation. Each hyperlink of the hypertree is a set of linkages converted from the
corresponding interfacing set in the hypertree structured MSBN.

Parallel to the transformation of the graphical structure, there is a corre-
sponding transformation of the probability tables in the MSBN to belief tables
in the junction forest. The conversion is subject to a supportiveness constraint
such that belief can be propagated without blocking. The overall conversion guar-
antees a joint system belief of the linked junction forest can be assembled from
belief tables distributed in the forest, which is equivalent to the joint probability
distribution of the MSBN.

To answer queries by efficient local computation in a linked junction forest
(LJF), the LJF must be made consistent. A LJF is Locally consistent if all
junction trees (JTs) are internally consistent, i.e., when marginalized onto the
same set of variables different belief tables in a junction tree yield the same
marginal distribution. A LJF is boundary consistent if each pair of linked JTs
are consistent with respect to their interfacing set. A LJF is globally consistent
iff it is both locally consistent and boundary consistent.

A set of operations are developed to achieve consistency in a LJF during
evidential reasoning: BeliefInitialization establishes initial global consistency.
DistributeEvidence causes an outward belief propagation within a JT, and
brings the JT internally consistent after evidence on variables in a single clique
has been entered. CollectEvidence causes an inward belief propagation within
a JT. UnifyBelief brings a JT internally consistent after evidence on variables
in multiple cliques has been entered. EnterEvidence updates belief in a JT in
light of new evidence, and brings the JT internally consistent again by calling
either DistributeEvidence or UnifyBelief. UpdateBelief updates the belief
of a JT T relative to an adjacent JT, and brings T internally consistent. Dis-
tributeBelief initiated at a JT T causes an outward belief propagation in the
LJF radiating from T . ShiftAttention allows the user to enter multiple pieces
of evidence into a JT of current attention, and, when the user shifts attention to
a target JT, maintains consistency along the hyperpath in the hypertree struc-
tured forest from the current JT to the target.

3 Representing Multiple Agents in MSBNs

A MSBN represents a large domain by representing a set of subdomains. From
the viewpoint of reasoning agents, a MSBN represents multiple perspectives of a
single agent. For example, PAINULIM [11] consists of three subnets which repre-
sents a neurologist’s three different perspectives of the neuromuscular diagnostic
domain: clinical, EMG and nerve conduction perspectives.

In a multi-agent system, each agent can be considered as holding its own
perspective of the domain. This partial perspective may be over a subdomain,
a period of time, or a geographical area. The modular representation of MSBN
thus allows a natural extension to multi-agent system, with a modification of the
semantics: Instead of representing one agent’s multiple perspectives of a domain,
a multi-agent MSBN represents multiple agents in a domain each of which holds



one perspective of the domain. Each subnet corresponds to one such perspective.
We extend the example by Lauritzen and Spiegelhalter [6] to illustrate this:

Example 1 Dyspnoea (δ) may be due to tuberculosis (τ ), lung cancer (ι) or
bronchitis (β). A recent visit to Asia (ν) increases the chances of τ , while smoking
(ζ) is a known risk factor for both τ and ι. After an initial diagnosis based on
the above information, to further discriminate between τ and ι, a clinician may
request lab tests from a radiology lab and a biology lab. Radiology lab has two
relevant tests for τ and ι: X-ray (χ) and laminagraphy (α). Biology lab has two
relevant tests as well: sputum test (ρ) and biopsy (o). Lab reports describe their
impression upon τ and ι based on the results of the test(s).

The above fictitious example involves three agents: a clinical doctor, a radi-
ologist, and a biologist. Diagnosis of a patient with dyspnoea is their common
goal. But each agent has its own perspective of the same patient. The distance
between them is semantic.

A multi-agent MSBN can be constructed as a decision aid in such a domain.
The MSBN consists of three agents: clinical, radiological, and biological subnets.
The three agents may process evidence in parallel. Though it makes sense that
the radiologist and biologist may not be involved until the clinician’s initial diag-
nosis has been reached, and the patient has to visit them in sequence, considering
the time delay required to develop lab results, the radiological and biological sub-
nets may well receive evidence and be posed with queries at the same time. The
resultant multi-agent MSBN is illustrated in Figure 2. The transformed LJF is
shown in Figure 3.
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Fig. 2. A multi-agent MSBN representing three medical specialists diagnosing a patient
with dyspnoea. D1: clinical subnet, D2: radiological subnet, D3: biological subnet.
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4 Consistency Issues in Multi-agent MSBNs

The natural extension of MSBNs to multi-agent systems implies that all the
technical constraints applicable to the construction of single-agent MSBNs must
be followed in the construction of multi-agent MSBNs. In addition, evidential
reasoning in multi-agent systems raises new issues regarding consistency, which
must be addressed. To appreciate the issues, we first review how consistency is
maintained in single-agent MSBNs:

Initial global consistency is obtained by BeliefInitialization (Section 2).
The agent focuses attention on one subdomain at a time. Therefore, evidence is
entered one subnet at a time. As the agent shifts attention to each subnet and
enters evidence, ShiftAttention (Section 2) maintains (local) consistency along
the hyperpath in the hypertree structured forest. It is proven [12] that such local
consistency is actually at the global level, i.e., answers to queries at the current
JT is consistent with the evidence acquired in the entire LJF.

4.1 How to regain global consistency?

Notice that ShiftAttention being able to maintain local consistency at the
global level depends directly on the fact that evidence is always entered at the
current subnet and nowhere else. In a multi-agent system, multiple agents may
acquire evidence asynchronously in parallel. ShiftAttention can no longer be
used to maintain global consistency. It must be replaced by new operations which
we shall refer to as communication. We propose the communication operations
in Section 6 and prove their property in Section 7.

4.2 What is the consistency level between communications?

ShiftAttention maintains directly only local consistency. But the local consis-
tency happens to be at the global level in a single-agent MSBN! In a multi-agent
MSBN, local consistency at a JT means one thing, and the global consistency
means another. We can no longer shot two birds with one stone.

Even with new communication operations, due to the inter-agent ’distance’
and the associated communication cost, global consistency can not be main-
tained constantly. A question that must be answered is, between two successive
communications which regain global consistency, what is the consistency level of
each agent after acquiring additional evidence? We prove a theorem to answer
this question in Section 7.

5 Entering Virtual Evidence

Entering virtual evidence (described below) to a directed tree has been discussed
in [8]. Undirected tree representations (junction tree or LJF) provide more flex-
ible inference mechanism. But to our best knowledge, virtual evidence has not
been treated formally in such representations. Evidence entering operations for
such representations only considered entering specific evidence (described below)
into a junction tree [5] or a LJF [12]. To be complete, in this section, we extend
EnterEvidence to include entering virtual evidence into a LJF. This result is



applicable to both single-agent MSBNs and multi-agent MSBNs. Our presenta-
tion assumes some familiarity with the technical details of MSBN construction.
Readers who are interested in results pertinent to only multi-agent reasoning
can skip this section, and assume the previous EnterEvidence operation for
the rest of the paper.

A piece of evidence is obtained by one agent’s observation, made at one time,
of a set of variables contained in its subnet. Different agents may acquire pieces
of evidence from their local sources asynchronously in parallel.

Pearl [10] classifies evidence into specific and virtual. Specific evidence on a
variable is obtained by a direct observation of the value of the variable. Virtual
evidence “corresponds to judgments based on undisclosed observations that are
outside the network but have a bearing on variables in the network”. For ex-
ample, an X-ray image of chest may be regarded as normal or abnormal. Since
there is no universally agreeable way to determine mechanically the status of an
X-ray image, a radiologist must interpret the pattern subjectively.

Each piece of evidence is represented by an evidence function. See [12] on
the evidence function for specific evidence. We first consider a piece of virtual
evidence that involves only a single variable. Suppose the virtual evidence has a
direct bearing on a variable A. Pearl [10] suggests to code such evidence into a
BN by adding a child node e to A and assessing the distribution p(e|A). Following
this representation, we analyze its impact on the LJF. Since e is contained in only
one subnet in the MSBN, it is sufficient to analyze its impact on the subnet/JT
that contains e. We shall denote them by S and T , respectively.

During moralization and triangulation, since the node e is a leaf with a single
parent, no link is added between e and other nodes in S. Hence the only clique
that e will participate is C0 = {e, A}. During construction of T , since the only
possible variable that C0 can share with other cliques is A, C0 can always be
configured as a leaf in T with an arbitrary neighbour clique C such that A ∈ C.

Suppose T is internally consistent before e is observed. After e is observed,
DistributeEvidence can be called on C0. The updated belief table (BT) on C
is B′(C) = B(C) ∗ B′(A)/B(A) where B(A) and B′(A) stand for the previous
and the updated sepset BTs, respectively. Since e is observed as True, B′(A) =∑

e B′(C0) =
∑

e B′(eA) = B′(eA) = p(e|A) ∗ B(A). Substituting B′(A) in
the above equation, we have B′(C) = B(C) ∗ p(e|A). This means that virtual
evidence can be represented and entered in a LJF in exactly the same way as
specific evidence, and we do not need to create the clique C0 at all in the first
place. We summarize the above analysis in the following definition:

Definition 2 (Evidence function) Let S = (N, E, P ) be a subnet in a MSBN.
Let X ⊂ N be a set of variables involved in a piece of evidence, and let the space
of A ∈ X be A. An evidence function f :

⋃
A∈X A → [0, 1] is defined by the

following rule:

1. If A is directly observable, for each a ∈ A assign to f(a) either 1 or 0
depending on whether a is still a possible outcome of A.



2. If A’s value is not directly observable, but is interpreted by an autonomous
interpreter based on an observation e, then assign to f(a) the subjective
conditional probability p(e|a) of the interpreter.

Let f : X → Z be a function. Let Y ⊂ X be a subset of the domain X. We
define the restriction of f restricted to Y as a function fY : Y → Z according to
the rule: for each y ∈ Y , fY (y) = f(y).

The extended EnterEvidence operation that handles both specific and vir-
tual evidence is defined as follows:

Operation 3 (EnterEvidence) Let T be a JT in a LJF. Let X be a set of
variables in T that is involved in a piece of evidence E represented by an evidence
function f :

⋃
A∈X A → [0, 1]. When EnterEvidence is initiated at T to enter

E, the following are performed: (1) For each A ∈ X, a belief universe U =
(C, B(C)) such that A ∈ C is arbitrarily selected, and B(C) is multiplied by f
restricted to A. (2) If X ⊆ C, i.e., only a single universe is involved in the above
step, DistributeEvidence is called in U , otherwise UnifyBelief is called in
any universe. EnterEvidence is associated with JTs.

6 Added Operations for Regaining Global Consistency
As discussed in Section 4, parallel evidence entering at multiple agents renders
the single-agent MSBN operation for maintaining global consistency invalid. In
order to regain global consistency in a multi-agent LJF, we extend the inward-
outward belief propagation method in a single junction tree [4] to a LJF. Jensen’s
method propagates belief through a single information channel (a unique path
exists between any two cliques in a junction tree). Belief propagation in a LJF
must be performed over multiple linkages. Fortunately, the latter problem has
been solved in single-agent MSBNs with the operation UpdateBelief.

Following the above idea, we add two new operations CollectNewBelief
and CommunicateBelief to regain global consistency in a multi-agent LJF.
CollectNewBelief causes an inward belief propagation in the LJF. Commu-
nicateBelief calls CollectNewBelief and DistributeBelief to propagate ev-
idence obtained from multiple agents (JTs) inward first and then outward to the
entire LJF.

Operation 4 (CollectNewBelief) Let T be a JT in a LJF. Let caller be
either the LJF or a neighbour JT. When CollectNewBelief is called in T ,
the following are performed: (1) T calls CollectNewBelief in all neighbours
except caller if caller is a neighbour. (2) After each neighbour being called has
finished CollectNewBelief, T updates its belief with respect to the neighbour
by UpdateBelief. CollectNewBelief is associated with JTs.

Operation 5 (CommunicateBelief) When CommunicateBelief is initiated
at a LJF F , the following are performed: (1) A JT T in F is arbitrarily selected.
(2) CollectNewBelief is called in T . (3) When T has finished CollectNew-
Belief, DistributeBelief is called in T . CommunicateBelief is associated
with the LJF.



7 Consistency After and Between Communications

We answer the two questions raised in Section 4. Proofs of theorems are omitted
due to the limited space. First, we show that the operations proposed in Sec-
tion 6, when performed, guarantees global consistency among multiple agents:

Theorem 6 (Multi-agent consistency) Let F be a supportive, globally con-
sistent and separable LJF converted from a MSBN of hypertree structure. Let Z
be a subset of JTs of F . After the following operations, F is globally consistent:
(1) For each JT in Z, use EnterEvidence to enter finite pieces of evidence
into the JT. (2) Use CommunicateBelief to communicate belief among JTs.

CommunicateBelief involves global computation of multiple agents and
information exchange over ’distance’. Due to the cost involved, Communicate-
Belief can not be performed frequently. Therefore, each agent may acquire multi-
ple pieces of evidence between two successive CommunicateBelief operations,
and may have to answer queries before the next CommunicateBelief can be
performed. The second question we address is: what is the consistency level of
these answers to queries. Theorem 7 shows that, between two successive com-
munications, a JT is consistent with all local evidence acquired so far, and is
consistent with all global evidence acquired up to the last communication. This
is the best that one can expect.

Theorem 7 (Semi-up-to-date) Let F be a supportive and separable LJF con-
verted from a MSBN of hypertree structure. Let Z be a subset of JTs of F .

After a CommunicateBelief in F followed by a finite number of EnterEv-
idence to each JT in Z, the marginal distributions obtained in a JT T ∈ Z are
identical as would be obtained if only the EnterEvidence operations in T were
performed after the CommunicateBelief.

8 Discussion

In a MSBN, the interface between any pair of subnets satisfies a d-sepset condi-
tion such that, to make neighbours up-to-date, it is sufficient to pass the up-to-
date distribution on the interfacing set between them and nothing else.

Each subnet is transformed into a single JT. The tree structure maintains
a single information path between any pair of nodes in the JT such that local
belief updating can be performed efficiently. The price paid is the multiple paths
between neighbour JTs: Passing evidence from one JT to a neighbour requires
computation proportional to the number of linkages between them.

Such built-in preference of the efficiency of local computation over the effi-
ciency of communication is consistent with the general assumption in multi-agent
intelligent systems. In DAI, we assume that the distance between agents prevents
constant communication. Therefore, each agent must rely on its local resource
in its problem solving, and can communicate with other agent only occasionally.

One of the major concerns in DAI is how to balance the need to maintain
as much as possible global consistency and the need to reduce the traffic of



communication. As argued by Pearl [10], a tree structure makes use of causal
independence and allows the most efficient information passage among a group
of elements. Our study on MSBNs highlights the MSBNs that are organized into
a hypertree structure. This structural preference is a more general case of the
exploration of the causal independence in singly connected BNs [9] and in the
JT representation of multiply connected BNs [4].

If we call an element which can render a pair of elements conditionally in-
dependent a ’causal mediator’, we see an increase of complexity of the internal
structures of causal mediators in the three cases. In singly connected BNs, a
causal mediator is an internal node in the network. In the JT representation of
multiply connected BNs, a causal mediator is an internal clique, a group of vari-
ables. In MSBNs/LJFs of hypertree structure, a causal mediator is a subnet/JT.
As argued by Pearl [10], conditional independence should not be viewed as a re-
strictive assumption for mathematical convenience, nor as an occasional grace of
nature for which we must passively wait, but rather as a mental construct that
we should actively create. The progression of probabilistic reasoning techniques
from singly connected BNs, to the JT representation of multiply connected BNs,
and to MSBNs/LJFs is just one example of such endeavor.
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