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Abstract

A pseudo-independent (PI) domain is a problem domain where a proper
subset of a set of collectively dependent variables displays marginal indepen-
dence. Common algorithms for learning belief networks cannot learn a faithful
representation of the domain dependence when the data is obtained from a PI
domain. Since we usually have no a priori knowledge whether a domain of
interest is PI or not, we may learn an incorrect belief network, suffer from the
consequence, and be not aware of it. Design of more reliable learning algo-
rithms depends highly on a better understanding of these domains. This paper
reports our progress towards such a goal.

We characterize the whole spectrum of discrete PI domains with formal
definitions. This forms a basis for studying them. We present our progress on
parameterization of PI domains which eventually will lead to a better under-
standing of the mechanism that forms PI domains. Whether PI domains exist
in practice is a common concern. We show that parity and modulus addition
problems are special PI domains, which provides positive evidence. Application
of our results to learning is discussed.
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1 INTRODUCTION

A belief network (BN) [5], a Bayesian network or a decomposable Markov network
(DMN) [8], consists of a graphical structure whose nodes are labeled by domain
variables and a joint probability distribution (jpd) that is factorized according to the
structure. The structure encodes probabilistic dependence among domain variables
and the jpd quantifies the strength of the dependence. The structure of a Bayesian
network is a directed acyclic graph and that of a DMN is a chordal graph.1 BNs are
becoming widely applied to AI tasks where representing and reasoning with uncertain
knowledge are essential. As an alternative and supplement to encoding uncertain
knowledge from domain experts, learning BNs from data is studied by many [1, 2, 8].
The learning task is to take as input a dataset observed from a problem domain,

1For the purpose of this paper, we shall use DMNs.



and to infer one or more sparse BN(s) that can later be used to answer probabilistic
queries about the domain.

It is important that a learned BN is both a faithful and a compact representation
of the probabilistic dependence among domain variables. If it is not faithful, answers
to queries obtained from it will be incorrect. If it is not compact, query processing will
be inefficient. Since what we have is the data and the domain dependence is unknown
to us, how do we know that the learned BN is faithful and compact? Pearl [5] showed
that the structure of a faithful BN is an I-map (defined below), and the structure of
a both faithful and compact BN is a minimal I-map (defined below). How can we
tell if a learned BN is a minimal I-map? We cannot in practice. Instead, we depend
on the reliability of our learning algorithm. We must ensure that the algorithm used
will learn an approximate minimal I-map when the data is obtained from any one of
a wide range of problem domains. Otherwise, we may learn an unfaithful BN, receive
incorrect answers to queries from it, and suffer from the decision errors.

Formally, the concepts involved can be described as follows: For disjoint subsets
A, B and C of nodes in a graph G, we use < A|C|B > to denote that nodes in C
intercept all paths between A and B. A graph G is an I-map of a problem domain
with a set N of variables if there is an one-to-one correspondence between nodes of
G and variables in N such that for all disjoint subsets A, B and C of N , < A|C|B >
implies that A and B are conditionally independent given C. G is a minimal I-map
of a problem domain, if no link in G can be removed such that the resultant graph is
still an I-map.

Common algorithms for learning BNs rely on identifying local dependence among
variables. For example, an algorithm may start with a graph without links. It
compares all graphs with a single link (local dependence) and chooses the one that
best fits the data. It then compares all graphs with an additional link, and continues
the process until some stopping condition is met. It has been shown [7, 8] that for a
class of problem domains, the BNs learned by these algorithms are not approximate
I-maps. That is, these algorithms are unreliable.

What feature this class of difficult domains? In these domains, a proper subset
X of a set Y of collectively dependent variables displays marginal independence.
They are thus termed pseudo-independent (PI) domains [8]. Since members of Y are
collectively dependent, a faithful BN has links between each pair of members. On the
other hand, since members of X are marginally independent, the above algorithms
cannot find a link to add among them, which results in a non-I-map.

How can we improve the reliability of learning algorithms? Since they fail in PI
domains, we need to improve our understanding about PI domains, which will lead
to the design of more reliable algorithms. This paper presents our progress towards
such understanding. We characterize the whole spectrum of discrete PI domains
(Sections 2 and 3) with formal definitions. We present a parameterization of full PI
domains (defined below) as the initial step towards parameterization of general PI
domains (Section 4), which will lead to a better understanding of the mechanism that
forms PI domains. A commonly asked question is “do PI domains exist in practice?”.
We show in Section 5 that the parity problems and modulus addition problems are
both PI domains. We discuss in Section 6 the application of our results to learning.

2 NOTIONS OF PROBABILISTIC DEPENDENCE

The concept of conditional independence is well known. In this section, we distinguish
several notions of probabilistic dependence (particularly the collective and general



dependence) that are less commonly used but are essential to the understanding of
PI domains.

Let N be a set of discrete variables in a problem domain. Each variable is associ-
ated with a set of possible values. We shall denote the values by consecutive integers
0, 1, 2, . . .. A configuration or a tuple of N ′ ⊆ N is an assignment of values to every
variable in N ′, e.g., (X1 = 0,X2 = 1, . . .) which we shall denote by (x1,0, x2,1, . . .). A
probabilistic domain model (PDM) over N determines the probability of every tuple
of N ′ for each N ′ ⊆ N . Without confusion, we shall use problem domain and PDM
interchangeably.

For three disjoint sets A, B and C of variables, A and B are conditionally inde-
pendent given C if P (A|B,C) = P (A|C) whenever P (B,C) > 0. When C = φ, A
and B are marginally independent. If each variable X in a subset A is marginally
independent of A \ {X}, then P (A) =

∏
X∈A P (X). We shall say that variables in A

are marginally independent.
A pair of variables X and Y are pairwise dependent if P (X|Y ) 6= P (X). Pairwise

dependence is the opposite of marginal independence between the pair. A set N of
variables are collectively dependent if for each proper subset A ⊂ N , there exists no
proper subset C ⊂ N \ A such that P (A|N \ A) = P (A|C). Collective dependence
does not eliminate possible marginal independence within a proper subset, as will be
seen in Section 3.

A set N of variables are generally dependent if for any proper subset A, P (A|N \
A) 6= P (A). Like collective dependence, general dependence does not eliminate pos-
sible marginal independence within a proper subset. Furthermore, collective depen-
dence is not required. Namely, for some proper subset A, there can be a proper subset
C ⊂ N \ A such that P (A|N \ A) = P (A|C).

General dependence is weaker dependence than collective dependence. Each may
coexist with either conditional independence or marginal independence within proper
subsets. General dependence is the opposite of marginal independence between a
proper subset and the rest of domain variables.

3 FORMALIZATION OF PI DOMAINS

Without confusion, we shall use PI domain and PI model interchangeably. PI models
(domains) can be classified into three types. The most restrictive type is full PI
models.

Definition 1 (Full PI model) A PDM over a set N (|N | ≥ 3) of variables is a
full PI model if the following two conditions hold: (S1) For each X ∈ N , variables
in N\{X} are marginally independent. (S2) Variables in N are collectively dependent.

Table 1 shows the jpd of a binary full PI model, where X = (X1,X2,X3,X4)
and marginals are P (x1,0) = 0.7, P (x2,0) = 0.6, P (x3,0) = 0.35, P (x4,0) = 0.45.
Any subset of three variables are marginally independent, e.g., P (x1,1, x2,0, x3,1) =
P (x1,1) P (x2,0) P (x3,1) = 0.117. The four variables are collectively dependent, e.g.,
P (x1,1|x2,0, x3,1, x4,0) = 0.257 and P (x1,1|x2,0, x3,1) = P (x1,1|x2,0, x4,0) =
P (x1,1|x3,0, x4,0) = 0.3.

In a full PI model, every proper subset of N displays marginal independence. This
is relaxed in the partial PI models.

Definition 2 (Partial PI model) A PDM over a set N (|N | ≥ 3) of variables
is a partial PI model if the following two conditions hold: (S1’) There exists a



X P (.) X P (.) X P (.) X P (.)
(0, 0, 0, 0) 0.0586 (0, 1, 0, 0) 0.0517 (1, 0, 0, 0) 0.0359 (1, 1, 0, 0) 0.0113
(0, 0, 0, 1) 0.0884 (0, 1, 0, 1) 0.0463 (1, 0, 0, 1) 0.0271 (1, 1, 0, 1) 0.0307
(0, 0, 1, 0) 0.1304 (0, 1, 1, 0) 0.0743 (1, 0, 1, 0) 0.0451 (1, 1, 1, 0) 0.0427
(0, 0, 1, 1) 0.1426 (0, 1, 1, 1) 0.1077 (1, 0, 1, 1) 0.0719 (1, 1, 1, 1) 0.0353

Table 1: A full PI model.

partition {N1, . . . , Nk} (k ≥ 2) of N such that variables in each subset Ni are generally
dependent, and for each X ∈ Ni and each Y ∈ Nj (i 6= j), X and Y are marginally
independent. (S2) Variables in N are collectively dependent.

Table 2 shows the jpd of a partial PI model over two trinary variables and one bi-
nary variable, where X = (X1,X2,X3) and the marginals are P (x1,0) = 0.3, P (x1,1) =
0.2, P (x1,2) = 0.5, P (x2,0) = 0.3, P (x2,1) = 0.4, P (x2,2) = 0.3, P (x3,0) = 0.4,
P (x3,1) = 0.6. The partition is {{X1}, {X2,X3}}. X1 is marginally independent of
each variable in the other subset, e.g., P (x1,1, x2,0) = P (x1,1) P (x2,0) = 0.06. How-
ever the variables in the other subset are pairwise dependent, e.g., P (x2,0, x3,1) =
0.1 6= P (x2,0) P (x3,1) = 0.18. The three variables are collectively dependent, e.g.,
P (x1,1|x2,0, x3,1) = 0.1 and P (x1,1|x2,0) = P (x1,1|x3,1) = 0.2. Similarly, P (x2,1|x1,0, x3,1)
= 0.61, P (x2,1|x1,0) = 0.4, P (x2,1|x3,1) = 0.5.

X P (.) X P (.) X P (.) X P (.) X P (.) X P (.)

(0, 0,0) 0.05 (0,1,1) 0.11 (1,0,0) 0.05 (1,1, 1) 0.08 (2,0,0) 0.10 (2,1,1) 0.11
(0, 0,1) 0.04 (0,2,0) 0.06 (1,0,1) 0.01 (1,2, 0) 0.03 (2,0,1) 0.05 (2,2,0) 0.01
(0, 1,0) 0.01 (0,2,1) 0.03 (1,1,0) 0 (1,2, 1) 0.03 (2,1,0) 0.09 (2,2,1) 0.14

Table 2: A partial PI model.
Proposition 3 establishs the relation between the two types of PI models defined

so far. The proof is trivial. Its converse is not true in general since variables in some
subset of a partial PI model may be pairwise dependent as in Table 2.

Proposition 3 A full PI model is a partial PI model.

A partial PI model involves the entire set N of domain variables. An embedded
PI submodel displays the same dependence pattern but involves only a proper subset
of N .

Definition 4 (Embedded PI submodel) Let a PDM be over a set N of generally
dependent variables. A proper subset N ′ ⊂ N (|N ′| ≥ 3) of variables forms an
embedded PI submodel if the following two conditions hold: (S4) N ′ forms a partial
PI model. (S5) The partition {N1, . . . , Nk} of N ′ by S1’ extends into N . That is,
there is a partition {A1, . . . , Ak} of N such that Ni ⊆ Ai, (i = 1, .., k), and for each
X ∈ Ai and each Y ∈ Aj (i 6= j), X and Y are marginally independent.

Definition 4 requires that variables in N are generally dependent. It eliminates
the possibility that a proper subset is marginally independent of the rest of N .

Table 3 shows the jpd of PDM with an embedded PI model over three variables
X1, X2 and X3, where the marginals are P (x1,0) = 0.3, P (x2,0) = 0.6, P (x3,0) =
0.3, P (x4,0) = 0.34, P (x5,0) = 0.59. Within the embedded PI model, the partition



(X1, .., X5) P (.) (X1, .., X5) P (.) (X1, .., X5) P (.) (X1, .., X5) P (.)
(0, 0, 0, 0, 0) 0 (0, 1, 0, 0, 0) .0018 (1, 0, 0, 0, 0) .0080 (1, 1, 0, 0, 0) .0004
(0, 0, 0, 0, 1) 0 (0, 1, 0, 0, 1) .0162 (1, 0, 0, 0, 1) .0720 (1, 1, 0, 0, 1) .0036
(0, 0, 0, 1, 0) 0 (0, 1, 0, 1, 0) .0072 (1, 0, 0, 1, 0) .0120 (1, 1, 0, 1, 0) .0006
(0, 0, 0, 1, 1) 0 (0, 1, 0, 1, 1) .0648 (1, 0, 0, 1, 1) .1080 (1, 1, 0, 1, 1) .0054
(0, 0, 1, 0, 0) .0288 (0, 1, 1, 0, 0) .0048 (1, 0, 1, 0, 0) .0704 (1, 1, 1, 0, 0) .0864
(0, 0, 1, 0, 1) .0072 (0, 1, 1, 0, 1) .0012 (1, 0, 1, 0, 1) .0176 (1, 1, 1, 0, 1) .0216
(0, 0, 1, 1, 0) .1152 (0, 1, 1, 1, 0) .0192 (1, 0, 1, 1, 0) .1056 (1, 1, 1, 1, 0) .1296
(0, 0, 1, 1, 1) .0288 (0, 1, 1, 1, 1) .0048 (1, 0, 1, 1, 1) .0264 (1, 1, 1, 1, 1) .0324

Table 3: A PDM containing an embedded PI model.

consists of subsets A = {X1} and B = {X2,X3}. Outside the PI submodel, A
extends to include X4 and B extends to include X5. Each variable in one subset
is marginally independent of each variable in the other subset, e.g., P (x1,1, x5,0) =
P (x1,1) P (x5,0) = 0.413. Variables in the same subset are pairwise dependent, e.g.,
P (x2,1, x3,0) = 0.1 6= P (x2,1) P (x3,0) = 0.12. The three variables in the submodel are
collectively dependent, e.g., P (x1,1|x2,0, x3,1) = 0.55 and P (x1,1|x2,0) = P (x1,1|x3,1) =
0.7. However, X4 is independent of other variables given X1, and X5 is independent
of other variables given X3, e.g., P (x5,1|x2,0, x3,0, x4,0) = P (x5,1|x3,0) = 0.9.

Since variables in a PI submodel are collectively dependent, in a minimal I-map of
the PDM, the submodel is complete. Figure 1 shows I-maps for PI models in Table 1
through 3.
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Figure 1: The I-maps for PI models in Table 1 (left), 2 (middle) and 3 (right).

Note that a PI model is not something we wish to construct, but rather is a
problem domain of interest. We usually don’t know a priori whether a domain is PI
or not. What we try to construct (learn) is a BN faithfully representing the domain
no matter it is PI or not.

4 PARAMETERIZATION OF PI DOMAINS

A general discrete probability distribution has kn−1 independent parameters (values)
where n is the number of variables and k is the number of possible values each variable
can take. A PI model is more constrained and has less parameters. We study how
a PI model is composed of these parameters. Such an understanding can provide
hints for how to learn these models, can provide a direct method to simulate these
models which can then be used to test our learning algorithms, and can guide us in
determining what problem domains may or may not contain a PI model.

In this section, we present results on parameterization of full PI models as our
progress towards parameterization of general PI models. The number of parameters of
a PDM that contains an embedded PI submodel depends on the number of parameters



of the PI submodel and the number of parameters in the rest of the model. Hence
the parameterization of general PI models depends on the parameterization of partial
PI models. By Proposition 3, full PI models are special cases of partial PI models.
We therefore have chosen to tackle first the parameterization of full PI models. The
following Theorem 5 applies to a general (vs binary) full PI model and Theorem 8
applies to a general binary (vs uniform marginal) full PI model.

Theorem 5 The total number of parameters of a full PI model is W = W1 + W2.
The number W1 is the count of marginal parameters (marginals),

W1 =
n∑

i=1

(Di − 1),

where n is the total number of variables and Di ≥ 2 is the number of values that the
ith variable can take. The number W2 is the count of joint probability parameters
(joints),

W2 = 1 +
n∑

i=1

C(n,i)∑

j=1

i∏

k=1,Xjk
∈Yj

(Djk
− 2),

where j ranges from 1 to the total number of combinations taking i variables out of n
each time, Yj = {Xj1 , ...,Xji} denotes one combination of i variables, and Djk

is the
number of values that the variable Xjk

can take.

Proof:
In a full PI model, each variable may have a different marginal distribution, which

implies W1.
To derive W2, we assume that the W1 marginals have been specified and we then

determine the value for each joint. We group the joints according to the number
of variables taking non-zero values. For example, the group GP0 contains a sin-
gle joint P (x1,0, . . . , xn,0), and the group GP1 contains joints P (x1,l1, x2,0, . . . , xn,0),
P (x1,0, x2,l2, x3,0, . . . , xn,0), . . . , where l > 0. We determine the values of joints group
by group in ascending order of the group index.

The single joint of GP0 is not uniquely determined by the W1 marginals. We can
specify this joint subject to the constraint P (x1,0, . . . , xn,0) 6=

∏n
i=1 P (xi,0) due to S2.

This gives the first term, 1, in the formula for W2.
Next, we consider GPi (i ≥ 1) where each joint has i variables with non-zero values.

There are C(n, i) ways to choose the i variables. Denote each set of i variables by
Yj = {Xj1 , ...,Xji}, where 1 ≤ j ≤ C(n, i). Denote the set of joints in GPi associated
with Yj by J . For each joint in J , each Xjk

(1 ≤ k ≤ i) may take any value from
{1, . . . ,Djk

− 1}, and hence |J | =
∏i

k=1,Xjk
∈Yj

(Djk
− 1). If we restrict the value range

to {1, . . . ,Djk
− 2}, there are exactly

∏i
k=1,Xjk

∈Yj
(Djk

− 2) distinct such joints in J .

Denote this subset of joints by J ′. None of the joints in J ′ can be uniquely determined
by the other joints in J ′ plus the W1 marginals, the joints in GP0, . . . , GPi−1, S1 and
S2. However, once we have specified joints in J ′, each joint in J \ J ′ is uniquely
determined through S1, e.g.,

Di−1∑

j=0

P (x1,l1, . . . , xi−1,li−1, xi,j, xi+1,0, . . . , xn,0) = (
i−1∏

k=1

P (xk,lk))(
n∏

k=i+1

P (xk,0)),



where l > 0. Hence the contribution of GPi to W2 is
∑C(n,i)

j=1

∏i
k=1,Xjk

∈Yj
(Djk

− 2).

The formula for W2 now follows. 2

For a full PI model over four trinary variables, W1 = 8, W2 = 16, W = 24
(compare with 34 − 1 = 80 parameters for a general jpd). If one of the variables is
binary, then W1 = 7, W2 = 8, W = 15 (compare with 2 ∗ 33 − 1 = 53). A binary
full PI model of n variables has a very small number of parameters. Since W1 = n
and W2 = 1, we have W = n + 1 (compare with 2n − 1). It differs from a marginally
independent model of the same number of variables by just one parameter.

A general partial PI model will have more parameters than a full PI model with
the same set of variables. This is because a proper subset of variables in a general
partial PI model may be dependent on each other. Additional parameters are needed
to determine exactly how they are dependent on each other within the subset. Our
current research is attempting the parameterization of general partial PI models.

Note that although W parameters can be non-uniquely specified in a full PI model,
they cannot be specified independently, but rather must follow S1 and S2. Proposi-
tions 6, 7 and their combination Theorem 8 show how S1 and S2 constrain the W
parameters in the binary case.

Proposition 6 The jpd of a full PI model over n ≥ 3 binary variables has the fol-
lowing form:

P (x1,0, .., xn,0) = P (xn,0|x1,0, .., xn−1,0)
n−1∏

i=1

P (xi,0), (1)

P (xl1,1, .., xlw,1, xlw+1,0, .., xln,0) =
∏n

i=1 P (xi,0)∏w
i=1 P (xli,0)

w∑

i=1

(−1)i+1(
w−i∏

j=1

P (xlj ,1))(
w∏

k=w−i+2

P (xlk,0)) + (−1)wP (x1,0, .., xn,0) (2)

where w = 1, .., n, and {l1, ..., lw} and {lw+1, ..., ln} form a partition of {1, ..., n},

P (xn,0) = max
i

P (Xi), (3)

P (xn,0|x1,0, .., xn−1,0) 6= P (xn,0), (4)

and the largest w (w ≥ 2) probabilities P (Xli) (i = 1, .., w) satisfy

w∑

i=1

(−1)i+1(
w−i∏

j=1

(1 − P (Xlj )))(
w∏

k=w−i+2

P (Xlk )) + (−1)w P (xn,0|x1,0, .., xn−1,0)
P (xn,0)

w∏

i=1

P (Xli) ≥ 0. (5)

Proof:
Since we are interested in probabilistic domains, we assume that all marginals are

in (0, 1) instead of [0,1]. To simplify the notation, we denote

P (x1,0, .., xi−1,0, xi,1, xi+1,0, .., xj−1,0, xj+1,0, .., xn,0)

by R(i|j) where the vertical bar is not to be confused with the conditioning bar in
P (Xi|Xj). That is, the tuple has Xi = 1, Xj marginalized out, and Xk = 0 for all
k 6= i, j. We denote P (x1,0, .., xn,0) by R(.) and denote P (x1,0, .., xj−1,0, xj+1,0, .., xn,0)
by R(|j). We group P (X1, ..,Xn) into GP0, .., GPn where GPi contains probabilities
of tuples in which exactly i variables take value 1.



Suppose the domain is a full PI model, then S1 and S2 hold. S1 implies that for
each n− 1-tuple, its probability is the product of the corresponding marginals. That
is, the domain satisfies n such constraints one for each subset of n − 1 variables.

Let p denote P (xn,0|x1,0, .., xn−1,0) ∈ [0, 1]. Due to S1, we have

R(.) = R(|n) p = P (x1,0)..P (xn−1,0) p.

Due to S2, we have R(.) = P (x1,0)..P (xn−1,0) p 6= P (x1,0)..P (xn,0). Hence we have
equation (1) and condition (4), and the single probability R(.) in GP0 is derived.

Next we consider the probabilities in GPw (1 ≤ w ≤ n). Without losing generality,
we derive R(1, .., w).

R(1, .., w) = R(1, .., w − 1|w) −R(1, .., w − 1)
= R(1, .., w − 1|w) − R(1, .., w − 2|w − 1) + R(1, .., w − 2)

=
w∑

i=1

(−1)i+1 R(1, .., w − i|w − i + 1) + (−1)w R(.)

=

∏n
i=1 P (xi,0)∏w
i=1 P (xi,0)

w∑

i=1

(−1)i+1(
w−i∏

j=1

P (xj,1))(
w∏

k=w−i+2

P (xk,0)) + (−1)wP (x1,0, .., xn,0)

This is equation (2). Next, we use induction to derive the condition under which
R(1, .., w) is a valid probability. We consider first R(j) in GP1. We have

R(j) = (
n∏

i=1

P (xi,0))/P (xj,0)− (
n−1∏

i=1

P (xi,0)) p = (
n−1∏

i=1

P (xi,0)) (P (xn,0)−P (xj,0) p)/P (xj,0).

It is a valid probability iff P (xn,0) ≥ P (xj,0) p. This is always satisfied if P (xn,0) =
maxi P (Xi) which is condition (3).

Without losing generality, we then consider R(1, j) (1 < j ≤ n):

R(1, j) =

∏n
i=1 P (xi,0)

P (x1,0) P (xj,0)
(P (x1,1) − P (xj,0) +

P (x1,0) P (xj,0) p

P (xn,0)
).

For it to be a valid probability, we must have

P (x1,1) − P (xj,0) +
P (x1,0) P (xj,0) p

P (xn,0)
≥ 0.

We shall view the left-hand side as a function f(P (x1,0)) of P (x1,0) with other
parameters held constant. Note that P (xi,0) = 1 − P (xi,1). The first order deriva-
tive of f(P (x1,0)) is f ′(P (x1,0)) = −1 + P (xj,0) p/P (xn,0). We have f ′(P (x1,0)) ≤
0 since P (xn,0) ≥ P (xj,0) p. This implies that f(P (x1,0)) is non-increasing with
P (x1,0), i.e., if f(P (x1,0)) ≥ 0 then for any α < P (x1,0), we have f(α) ≥ 0. Since
P (x1,0), P (xj,0) and all marginals are symmetric, we conclude that if 1 − P (Xi) −
P (Xj) +

P (Xi) P (Xj) p

P (xn,0)
≥ 0s holds for the largest marginals P (Xi) and P (Xj), then

each value in GP2 defined by equation (2) is a valid probability. We have thus verified
condition (5) for w = 2.



We now make the inductive assumption that each value in GPw−1 (w > 2) is a
valid probability if condition (5) holds. We show that each value in GPw is a valid
probability if condition (5) holds. Without losing generality, we consider R(1, .., w).
For R(1, .., w) to be a valid probability, it must be the case

w∑

i=1

(−1)i+1(
w−i∏

j=1

P (xj,1))(
w∏

k=w−i+2

P (xk,0)) + (−1)w p

P (xn,0)

w∏

i=1

P (xi,0) ≥ 0.

We shall view the left-hand side as a function f(P (x1,0)) of P (x1,0) with other pa-
rameters held constant. The first order derivative of f(P (x1,0)) is

f ′(P (x1,0)) =
w−1∑

i=1

(−1)i(
w−i∏

j=2

P (xj,1))(
w∏

k=w−i+2

P (xk,0)) + (−1)w p

P (xn,0)

w∏

i=2

P (xi,0).

From the inductive assumption on GPw−1, we know

−[
w−1∑

i=1

(−1)i(
w−i∏

j=2

P (xj,1))(
w∏

k=w−i+2

P (xk,0)) + (−1)w p

P (xn,0)

w∏

i=2

P (xi,0)] ≥ 0.

Thus f ′(P (x1,0) ≤ 0, i.e., f(P (x1,0)) is non-increasing with P (x1,0). This implies that
if f(P (x1,0)) ≥ 0, then for any α < P (x1,0), we have f(α) ≥ 0. Since P (x1,0), .., P (xw,0)
and all marginals are symmetric, we conclude that if condition (5) holds for the largest
w marginals, then each value in GPw is a valid probability. The proposition is proven.
2

Proposition 7 A PDM over n ≥ 3 binary variables is a full PI model if its jpd
satisfies equations (1) and (2) subject to conditions (3) through (5).

Proof: Since equation (1) and condition (4) hold, S2 is true. To show S1 holds, it
suffices to show R(.)+R(j) =

∏j−1
i=1 P (xi,0)

∏n
i=j+1 P (xi,0) and R(1, .., w)+R(1, .., w+

1) =
∏w

i=1 P (xi,1)
∏n

i=w+2 P (xi,0).
From equations (1) and (2) with w = 1, we obtain R(.) + R(j) =

(
∏n

i=1 P (xi,0))/P (xj,0).
From equation (2), we obtain

R(1, .., w) + R(1, .., w + 1)

=

∏n
i=1 P (xi,0)∏w
i=1 P (xi,0)

w∑

i=1

(−1)i+1(
w−i∏

j=1

P (xj,1))(
w∏

k=w−i+2

P (xk,0)) +

∏n
i=1 P (xi,0)∏w+1
i=1 P (xi,0)

w+1∑

i=1

(−1)i+1(
w−i+1∏

j=1

P (xj,1))(
w+1∏

k=w−i+3

P (xk,0))

=

∏n
i=1 P (xi,0)∏w+1
i=1 P (xi,0)

[
w∑

i=1

(−1)i+1(
w−i∏

j=1

P (xj,1))(
w+1∏

k=w−i+2

P (xk,0)) +

w+1∑

i=1

(−1)i+1(
w−i+1∏

j=1

P (xj,1))(
w+1∏

k=w−i+3

P (xk,0))]

=

∏n
i=1 P (xi,0)∏w+1
i=1 P (xi,0)

w∏

j=1

P (xj,1). 2



Combining Propositions 6 and 7, we obtain the following theorem.

Theorem 8 A PDM over n ≥ 3 binary variables is a full PI model iff its jpd satisfies
equations (1) and (2) subject to conditions (3) through (5).

Equations (1) and (2) describe how each joint probability is composed of the n+1
parameters P (xi,0) (i = 1, . . . , n) and P (xn,0|x1,0, . . . , xn−1,0). Conditions (3) through
(5) describe the constraints that they must observe.

5 DO PI DOMAINS EXIST?

Are PI models simply mathematical constructs without practical ground? Theorem 8
shows how easy it is to form a binary full PI model. Replace P (xn,0|x1,0, . . . , xn−1,0)
in condition (5) by a parameter r ∈ [0, 1]. Suppose r 6= P (xn,0) exists such that all
marginals of a truly marginally independent domain are in the right range dictated by
condition (3) and the modified condition (5). To turn this domain into a PI model, all
it takes is to change P (xn,0|x1,0, . . . , xn−1,0) from P (xn,0) to r. This analysis provides
evidence that PI models should not be rare in real world domains. In the following,
we provide more evidence by analyzing two special cases of PI models.

It is well known that parity problems cause difficulty to many machine learning
algorithms, see for example [4, 3, 6]. A parity problem can be described as follows:
A set of marginally independent input variables {X1, ..,Xn−1} each take the value 0
or 1 with an equal chance. An output variable Xn takes 0 or 1 such that the total
number of 1’s is even (for even parity).

The following proposition shows that parity problems form a special case of binary
full PI models.

Proposition 9 A parity problem over n variables is a binary full PI model with
P (Xi) = 0.5 (i = 1, .., n). For even parity, P (xn,0|x1,0, .., xn−1,0) = 1, and for odd
parity, P (xn,0|x1,0, .., xn−1,0) = 0.

Proof: It suffices to show the even parity case due to the symmetry. From the problem
description, clearly P (Xi) = 0.5 (i = 1, .., n − 1) and P (xn,0|x1,0, .., xn−1,0) = 1. We
first show P (Xn) = 0.5. For the set of n − 1 input variables, there are 2n−1 n − 1-
tuples each occurring with probability 0.5n−1. Exactly half of them contain an even
number of 0’s. Denote this group of 2n−2 n− 1-tuples by Ge and the other group of
2n−2 n − 1-tuples by Go.

Each n−1-tuple extends into two n-tuples when Xn is added. If a n−1-tuple is in
Ge, the n-tuple with Xn = 0 has non-zero probability. If a n−1-tuple is in Go, the n-
tuple with Xn = 0 has zero probability. Hence we have P (xn,0) = 2n−2 ∗0.5n−1 = 0.5,
the probability by which a n − 1-tuple belongs to Ge.

Next, we show that equations (1) and (2) are satisfied subject to conditions (3)
through (5). It is trivial to verify equation (1) and conditions (3) and (4). The right-
hand side of equation (2) becomes 0.5n−1((−1)w − ∑w

i=1(−1)i) whose value is 0.5n−1

when w is even, and 0 otherwise. This is the expected form for the jpd. The left-hand
side of condition (5) becomes

w∑

i=1

(−1)i+10.5w−1 + (−1)w0.5w−1 = 0.5w−1[
w∑

i=1

(−1)i+1 + (−1)w].



When w is even, the sum is 0.5w−1. When w is odd, the sum is 0. 2

Note that the distinction between a unique output variable Xn and the other input
variables in a parity problem is unnecessary. Once the n variables behave according to
a particular parity, we would not be able to tell which one is the output variable since
each variable has the same marginals and each may assume the role of the output.

Recently, it was shown [6] that parity problems are special cases of modulus ad-
dition problems. The latter display similar properties of parity problems and cause
difficulty to ID3-like algorithms. A modulus addition problem can be described as
follows: A problem domain consists of a set of marginally independent and uni-
formly distributed input variables {X1, ..,Xn−1} and an output variable Xn. Each Xi

(i = 1, ..., n) has the domain {0, 1, . . . ,Di −1} where Di ≥ 2 such that for each i < n,
Di = ki Dn, where ki is a positive integer. Xn is the sum of X1, ..,Xn−1 modulo Dn.

Proposition 10 shows that modulus addition problems are also special cases of full
PI models (not restricted to binary).

Proposition 10 A modulus addition problem is a full PI model.

Proof:
It suffices to show that S1 and S2 holds. That S2 holds is trivially true. To show

that S1 holds, we need only to show P (Xn|X1, ..,Xn−2) = P (Xn). First,

P (Xn|X1, ..,Xn−2) =
∑

Xn−1

P (XnXn−1|X1, ..,Xn−2)

=
∑

Xn−1

P (Xn|X1, ..,Xn−1)P (Xn−1|X1, ..,Xn−2)

=
∑

Xn−1

P (Xn|X1, ..,Xn−1)P (Xn−1) = (1/Dn−1)
∑

Xn−1

P (Xn|X1, ..,Xn−1)

Since Xn is determined given X1, ..,Xn−1, P (Xn|X1, ..,Xn−1) is either 0 or 1. Given
the values of X1, ..,Xn−2, as Xn−1 takes values 0, ..,Dn−1 − 1 in sequence, Xn will go
through each value in its domain exactly kn−1 times. Hence the summation in the
above equation equals to kn−1 and we obtain

P (Xn|X1, ..,Xn−2) = kn−1/Dn−1 = 1/Dn.

Due to the symmetry of inputs, the above equation holds for any n − 2 inputs.
That is, the conditioning is irrelevant (removable), which implies P (Xn|X1, ..,Xn−2) =
P (Xn) = 1/Dn. 2

The above analysis provides positive evidence for the existence of PI models in
practice. Due to their existence, we cannot blindly apply unreliable learning al-
gorithms to just any problem domain as the quality of learning outcomes will be
unpredictable.

6 APPLICATION OF RESULTS TO LEARNING

We have shown that PI domains do exist. Common algorithms for learning belief
networks are not reliable in the sense that they cannot learn an approximate I-map
when the domain is PI. Development of more reliable algorithms depends highly on
a better understanding of these domains.



Our progress towards such a goal includes formal characterization of all three types
of PI models. This formalization provides a basis for the study of these models. We
also provided a parameterization of full PI models that laid some groundwork towards
the parameterization of a general PI model. Such parameterization is directly useful
to learning in several ways:

1. It provides hints for how to learn these models effectively, which will facilitate
the design of new learning algorithms.

2. It guides us in determining whether a problem domain may be a PI model. For
instance, if we know that a particular subdomain has more parameters than dictated
by Theorem 5, then we are confident that this subdomain cannot be a full PI model.
Such information is useful for configuring the learning algorithms.

3. It provides direct methods for simulation of PI models to be used in testing
learning algorithms. For example, Theorem 8, Propositions 9 and 10 provide direct
methods to simulate full PI models.

4. It provides hints for compact representation of PI submodels in a learned BN.
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