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Abstract

An expert system PAINULIM in neuromus-
cular diagnosis involving painful impaired
upper limbs has been developed based on
Bayesian belief networks. Although the
startling advance has been made on proba-
bilistic reasoning in Bayesian networks, when
application domains are large as is the case
for PAINULIM, the computation overhead
(both time and space) is still forbidding. The
problem gets more serious when application
systems are to be constructed on microcom-
puters which are currently the major com-
putational equipments in hospitals and clin-
ics. Construction of medical expert systems
on hospital equipments is often desired due
to the tight schedule of medical profession-
als and lengthy process of knowledge acquisi-
tion and system refinement as in the case of
PAINULIM. The problem can be traced to
the current representation of Bayesian net-
works which does not consider domain struc-
tures and lumps all variables into a homo-
geneous network. In a large domain, new
evidence and queries are often directed to a
small subdomain in a period of time, which
we term as locality. We developed the multi-
ply sectioned Bayesian network technique to
treat the above problem by representing and
exploiting locality naturally existing in the
PAINULIM application domain. We present
major issues in knowledge acquisition and
representation in PAINULIM.

1 Introduction

We present our research in development of PAINULIM
expert system for neuromuscular diagnosis involving
painful impaired upper limbs. As the limitation of
rule-based systems for reasoning under uncertainty has

been identified [4, 5, 15], we have chosen to build
PAINULIM based on Bayesian belief networks.

Bayesian nets combine the probability theory with
graphic representation of domain models. In Bayesian
nets, the probability theory provides a language which
embeds many intuitive inference patterns of reason-
ing under uncertainty and guarantees the consistency
of inference made upon the representation [15]. The
graphical domain models convey directly to users the
dependence and independence assumptions made of
the domains, which facilitates knowledge acquisition
and makes the representation transparent. They also
allow quick identification of dependence relations such
that efficient computation for inference are possible
and the difficulty associated with general probabilistic
reasoning [19] can be avoided when the networks are
sparse.

PAINULIM has a large representation domain. This
slows down the system response during system testing
and demands more powerful computation equipments
not available in the hospital lab. On the other hand,
the tight schedule of medical staff demands knowledge
acquisition and system testing within hospital envi-
ronments and demands short response time in system
testing. These conflicting demands have motivated us
to develop the multiply sectioned Bayesian network
(MSBN) technique to reduce the computational com-
plexity in expert systems with the size of PAINULIM
or larger.

In this paper, we discuss the issues on the knowl-
edge representation and acquisition in PAINULIM.
We emphasize the representation using the MSBN
technique to implement large application systems in
smaller computers. We present a case consultation us-
ing PAINULIM, and our initial system testing results.

2 PAINULIM Application Domain

PAINULIM is an expert system in neuromuscular di-
agnosis. It is intended to cover diagnosis of patients
characterized by painful impaired upper limbs due to



diseases of spinal cord and/or peripheral nervous sys-
tem. The 15 most common diseases considered by
PAINULIM include: the Amyotrophic Lateral Scle-
rosis, the Parkinsons disease, the Anterior horn cell
disease, the Root diseases, the Intrinsic cord disease,
the Carpal tunnel syndrome, the Radial nerve lesion,
the Thoracic outlet syndrome, etc.

Trying to serve all levels of users would greatly in-
crease the size and complexity of a knowledge based
system. This in turn demands more resource for the
system development, and after the system is completed
demands computation equipments possibly not attain-
able for all levels of users. PAINULIM is intended for
users with the following knowledge and experience:

• minimum competence in clinical medicine espe-
cially in neuromuscular diseases;

• basic knowledge of nerve conduction study tech-
niques; and

• minimum experience of EMG patterns in common
neuromuscular diseases.

Users who can benefit from PAINULIM are

• students and residents in neurology, physical
medicine and neuromuscular diseases;

• doctors who are practicing EMG and nerve con-
duction in their offices;

• experienced EMGers as a formal peer review (self
evaluation); and

• hopefully different labs to adapt uniform proce-
dures and criteria for diagnosis.

Clinical diagnosis is performed in steps as anatomi-
cal, pathological and etiological. PAINULIM currently
works at anatomical level only. With its performance
satisfactory at this level, we plan to extend it into the
other levels.

3 Bayesian Belief Networks For
Expert Systems

Most medical expert systems require reasoning un-
der uncertainty. As the limitation of rule-based sys-
tems for reasoning under uncertainty has been iden-
tified [4, 5, 15], there has been active research in
recent years on knowledge based system methodolo-
gies based on Bayesian belief networks (Bayes be-
lief net, causal probabilistic network, causal network,

and influence diagram are other terms used in litera-
ture). Although it has been shown [3] that the prob-
abilistic inference in a general Bayesian net is NP-
complete, several algorithms have been developed for
efficient inference computation in networks with spe-
cial topologies or with general but sparse topologies
[15, 16, 17, 8, 12, 11, 2]. We also see that several ex-
pert systems in medicine based on Bayesian networks
have been emerged: QMR [18] in internal medicine,
MUNIN [1] in EMG, PATHFINDER [6], INTELLI-
PATH [18] in pathology, and QUALICON [21] in nerve
conduction studies.

Bayesian nets combine the probability theory with
graphic representation of domain models. Nodes in
graphs represent random variables each of which has
a set of mutually exclusive and exhaustive outcomes.
We use ‘node’ and ‘variable’ interchangeably under the
context of Bayesian nets. The graphs in Bayesian nets
are directed acyclic graphs. The arcs in the graphs sig-
nify the existence of direct causal influences between
the linked variables. The basic dependence assump-
tion embedded in Bayesian nets is: a variable is inde-
pendent of its non-descendants given its parents. Each
Bayesian net has an underlying joint probability dis-
tribution quantifying the strengths of the causal influ-
ences signified by the arcs. The joint distribution spec-
ifies the distribution of each variable Ei conditioned by
the values of its parents πi in the form of a conditional
probability table p(Ei|πi).

Since Bayesian nets have demonstrated to be a natu-
ral, concise knowledge representation and a consistent
inference formalism for expert systems reasoning un-
der uncertainty, we have chosen to base PAINULIM’s
representation on Bayesian belief networks.

4 Locality In Large Application
Domain

PAINULIM’s Bayesian net representation has 78 vari-
ables representing disease hypotheses, clinical symp-
toms, EMG and nerve conduction study results with
180 arcs connecting them. Each variable has up to 3
possible outcomes. During the system development,
the tight schedule of medical staff demands (1) knowl-
edge acquisition and system testing within hospital
environments where most computing equipments are
personal computers; and (2) short response time in
system testing. On the other hand, the space and
time complexity of PAINULIM system tends to slow
down the response and to demand more powerful com-
puting equipments not available in the hospital lab.
This motivates us to improve the current Bayesian net-
work representation in order to reduce the computa-



tion complexity. We made the following observation
of PAINULIM domain.

A neurologist, making clinical examination on a pa-
tient complaining painful impaired upper limbs, may
temporarily consider only his findings’ implication on
a set of diseases candidates. He may not start to con-
sider the diagnostic significance of each available lab-
oratory test until he has finished the clinical exam-
ination. After each clinical finding, he dynamically
change the most likely disease candidates and based
on that he chooses the best question to ask the pa-
tient next or the best examination to perform on the
patient next. After the clinical examination of the pa-
tient, findings highlight certain disease candidates and
make others less likely, which may suggest that further
nerve conduction studies are of no help at all, while
EMG tests are diagnostically beneficial. Since EMG
tests are usually not comfortable on the part of pa-
tients, the neurologist would not perform a test unless
it is diagnostically necessary. Thus he would perform
each test depending on results in previous ones.

From this scene, we see an important phenomenon
- locality. That is, during the clinical examination,
only clinical findings and disease candidates are of cur-
rent interests to the neurologist. And during EMG
tests, only EMG test results and their implications on
a subset of the diseases are under the neurologist’s
attention. Furthermore, for certain percentage of pa-
tient population, either EMG tests or nerve conduc-
tion studies are not needed. If the neurologist is as-
sisted by a Bayesian network, the evidence and queries
would repeatedly towards a “small” part of the net-
work during each diagnostic period (clinical examina-
tion or EMG tests for the above scene); and for some
patients certain part of the network (nerve conduction
for the above scene) may not be interested at all. If
we can construct the Bayesian network in a way corre-
sponding to this locality, we would be able to restrict
our computation to only “interesting” part of the net-
work and substantially reduce the complexity.

To summarize, by locality, we mean that during a
particular consultation session in a large application
domain (1) new evidence and queries are directed to
small part of a large network repeatedly within a pe-
riod of time; and (2) certain part of the network may
not be of interest to users at all. Current Bayesian net
representations do not consider structure in the do-
main and lump all variables into a homogeneous net-
work. When locality exists the homogeneous network
is inefficient since the overall network has to be up-
dated each time. We discuss the multiply sectioned
Bayesian network technique in the next section which

exploits the locality in PAINULIM.

5 Representation Of Locality In
PAINULIM

We have developed general techniques which allows
the representation of locality preserving subdomains
in Bayesian networks [22]. The corresponding repre-
sentation is termed multiply sectioned Bayesian net-
works (MSBN). Using this technique, we partitioned
PAINULIM domain into 3 natural locality preserv-
ing subdomains (clinical, EMG and nerve conduction)
which are separately represented by 3 Bayesian sub-
nets (CLINICAL, EMG, and NCV) in PAINULIM.
With MSBN technique, all the system construction
steps can be conducted with only 1 subnet at a time.
Since the representation preserves the locality, the run
time computation can also be restricted to only 1 sub-
net. Thus the time and space requirements are gov-
erned by the size of 1 subnet, not the size of the overall
system. When a user’s attention is shifted from the
current active subnet to another, the technique allows
the latter to be swapped into memory and all previ-
ously acquired evidence are absorbed. The answers to
queries are always based on all the available knowledge
and evidence embedded in the overall system. The
computational savings thus obtained translate imme-
diately to smaller hardware requirement and quicker
response time. Therefore, with MSBN technique, we
have been able to use hospital equipments (IBM AT
compatible computers) to construct, refine and run
PAINULIM interactively with neurologists right in the
hospital lab. This greatly speeded up the development
of PAINULIM.

In this section, we discuss how to represent local-
ity in multiply sectioned Bayesian nets. We illus-
trate the technique using a simple network example,
and describe how it relates to the representation in
PAINULIM.

5.1 Representation of locality in MSBNs

We aim to partition a large domain such as the one
for PAINULIM according to natural locality into sub-
domains such that each subdomain can be represented
separately by a Bayesian subnet; and that these sub-
nets (the collection of them is termed a MSBN) can co-
operate with each other during inference by exchang-
ing minimum amount of information between them.
This imposes a technical constraints on the interface
between subnets. MSBN technique requires the in-
terface between 2 subnets to be a d-sepset. A set of
nodes in a Bayesian net is a d-sepset if it separates 2
subnets and every node in the set has all its parent



nodes contained in one of the 2 subnets. A node in a
d-sepset is called a d-sepnode. d-sepsets impose condi-
tional independence on subnets which they interface.
The union of d-sepsets of a subnets with its neighbor
subnets render the variables in the subnet condition-
ally independent of the variables not contained in the
subnet.

For example, in figure 1, the network Θ is sectioned
into a MSBN consists of Θ1, Θ2 and Θ3. {H1, H2, H3}
is the d-sepset between Θ1 and Θ3. H2 has 2 parents
A1 and A2 in Θ which are both contained in Θ1. In
PAINULIM, the MSBN consists of 3 subnets (clinical,
EMG, and nerve conduction) which are interfaced by
disease variables having no parents.

The network Θ is a multiply connected network
(more than 2 pathes can exist between 2 nodes). Many
medical domains have to be represented in multiply
connected networks. For such networks, when sparse,
we can transform them into secondary structures as
permanent representation in order to perform efficient
inference computation. When doing so in MSBNs,
it is important that resultant secondary structures
still preserve the locality. A sectioning which allows
the preservation of locality in secondary structure is
termed as a sound sectioning. We call the resultant
MSBN a sound MSBN. This imposes another techni-
cal constraint for sectioning. One of the rules is: if
there is a subnet which contains nodes of all the d-
sepsets in the network, then this sectioning is sound.
The subnet is termed a covering subnet. Other condi-
tions for sound sectioning are discussed in [22].

For example, in figure 1, the subnet Θ1 is the cover-
ing subnet since it contains all the d-sepnodes between
each pair of subnets. In PAINULIM, the CLINICAL
subnet is the covering subnet which contains all the
disease variables considered by the system. This is
natural because clinical examination is the stage where
doctors would consider all the disease hypotheses.

5.2 Transform MSBNs into locality
preserving junction forests

After we have a sound MSBN, the transformation into
a secondary structure can take place. MSBN tech-
nique allows the transformation to be conducted by
local computation at the level of subnets. Thus com-
putation during transformation is governed by the size
of only 1 subnet. The first step of transformation is to
moralize the subnets, which adds links between parents
for every node and then drops the directions. The sec-
ond step is to triangulate the graphs, which adds links
to the graphs until every cycle of length 4 or more
has a chord. During these 2 steps, communication
between subnets is necessary to ensure that links be-

tween d-sepnodes are added identically in subnets con-
taining them. With proper communication conducted,
the triangulation in each subnet can be performed by
maximum cardinality search [20].

For example, in figure 1, after the moralization, Θ1,
Θ2 and Θ3 become Υ1, Υ2 and Υ3 respectively. And
after triangulation, they become Λ1, Λ2 and Λ3 re-
spectively. The purpose of the operations is to change
the network topology such that (1) the hints for con-
struction of an equivalent probability distribution in
the secondary structure becomes graphically explicit;
and (2) the coordination needed for information prop-
agation through multiple pathes becomes graphically
explicit.

The third step is to identify cliques in each resultant
graph. A clique is a maximal set of nodes pairwise con-
nected. The fourth step is to assign local probability
distributions for cliques [22]. The fifth step is to or-
ganize the collection of cliques corresponding to each
subnet into a junction tree (or join tree). A junction
tree is a tree with its nodes labeled by cliques, and the
intersection of any 2 cliques on the tree is contained in
every clique in the unique path between them. This
can be done by a maximum spanning tree algorithm
[10, 13].

For example, in figure 1, Γ1, Γ2 and Γ3 are the junc-
tion trees constructed from Λ1, Λ2 and Λ3 respectively.

The sixth step is to create linkages between junc-
tion trees such that evidence can be propagated from
one to another when the attention shift happens. The
linkages between 2 junction trees are maximum inter-
sections of cliques and the d-sepset between the 2 cor-
responding subnets. It is show in [22] that without
the introduction of multiple linkages between junction
trees, one would either lost locality in the secondary
structure or would have to increase the size of the total
state space exponentially.

For example, in figure 1, there are 2 linkages between
Γ1 and Γ3 which are {H2, H3} and {H3, H4}. All the
linkages are illustrated by bands.

The junction trees corresponding to original
Bayesian subnets and linkages between them are col-
lectively termed a junction forest which constitutes the
permanent representation of the application domain
where evidential reasoning takes place. The original
MSBN still serves as the user interface while the com-
putation for inference is only performed in the junction
forest.

5.3 Evidential reasoning in junction forests

After a junction forest is constructed, an initialization
[22] is performed to propagate background knowledge



Figure 1: Top left: a Bayesian network Θ; top right: a MSBN corresponding to Θ; middle left: moralized graphs
for the MSBN at the top right; middle right: triangulated graphs for the moral graphs at the middle left; bottom:
a junction forest for the MSBN at the top right.

stored in different junction trees into the rest of junc-
tion forest. This operation is done once for all. After
the initialization, the prior marginal probability (back-
ground belief) for each variable in the MSBN can be
obtained by efficient computation at any junction tree
which contains it.

Due to locality preserving property of junction for-
est, at any time during a consultation session, only
1 junction tree needs to be active in memory. When
several pieces of evidence are available to the current
active junction tree, they are entered to cliques which
contain them such that corresponding variables are in-
stantiated, and the local probability distributions are
updated. Then the evidence are propagated to the
rest of the junction tree by an operation UnifyBelief
started at any clique in the junction tree. After that,
updated marginal probabilities for all the variables in
the junction tree can be obtained efficiently by local
computation at each clique. The same happens for
each new batch of evidence and queries. Thus compu-
tational savings are gained by not having to compute
all the current inactive subnets.

For PAINULIM, if the current active junction tree is

the EMG tree, after each EMG test, the result can be
entered and updated probabilities for all the relevant
diseases and EMG tests unperformed can be obtained
by computation at only the EMG junction tree.

Suppose a MSBN has a covering subnet which is
the case in PAINULIM. When the user’s attention
shifts from the junction tree corresponding to cover-
ing subnet to another junction tree or the other way
around, the target tree will be swapped into memory
and an operation UpdateBelief is performed to absorb
all previously acquired evidence. If the attention shift
happens from a noncovering junction tree to another
noncovering junction tree, the covering junction tree is
swapped and UpdateBelief is performed first and then
the target junction tree. Thus up to 2 UpdateBelief
operations are required for a system with n subnets
and a covering subnet. The more general case is dis-
cussed in [22]. Due to the locality, several batches of
evidence and queries are usually computed before an
attention shift happens; and some subnets will catch
no attention during a query session. Therefore the run
time computation complexity for a MSBN/junction
forest is about 1/n of that required by a corresponding



homogeneous Bayesian network. By adopting MSBN
technique and representing PAINULIM domain into 3
subnets, we have been able to reduce the computation
complexity (both space and time) in PAINULIM by
half taking into account the repetition of d-sepnodes
and computation required for attention shift.

6 Other Issues in Knowledge
Acquisition and Representation

6.1 Multiple Diseases

Many probability-based medical expert systems have
assumed that diseases are mutually exclusive [6], for
example, PATHFINDER [6] and MUNIN [1]. A few
did not, for example, QMR [7]. When this assumption
is valid, diseases can be lumped into 1 variable in the
Bayesian network which simplify the network topology.

PAINULIM considers 15 most common diseases in
patients complaining painful impaired upper limbs.
Since a patient could suffer from multiple neuromus-
cular diseases, the assumption of mutually exclusive
diseases is not valid in PAINULIM domain. We have
therefore represented each disease by a separate node.

Although this representation is acceptable for most
of the 15 diseases, there is an exception: the Amy-
otrophic lateral sclerosis (ALS), and the Anterior horn
cell disease (AHCD). Both are disorders of the motor
system. AHCD involves only the lower motor neuronal
system (between the spinal cord and the muscle), but
ALS additionally involves the upper motor neuron (be-
tween the brain and the spinal cord). However when
one speaks of ALS it is not considered as an AHCD
plus disease, but an entity by itself. Therefore, con-
ceptually, a neurologist would never diagnose a patient
to have both ALS and AHCD. We have represented
this conceptual exclusion by an arc directed from ALS
to AHCD with probability p(AHCD = yes|ALS =
yes) = 0. A more concise representation is to combine
the 2 into 1 variable which is Motor Neurone Disease
(MND). The variable will have 3 exclusive and exhaus-
tive outcomes: ALS, AHCD, NEITHER. We are now
adopting the second representation in newer version of
PAINULIM.

6.2 Acquisition of probability distribution

In PAINULIM, a clinical finding or a lab test result
can have up to 7 parent disease nodes. In binary case,
this will require 28 − 1 = 255 numbers to fully spec-
ify the required conditional probability distribution at
the finding node. It would be frustrating if all these
numbers have to be elicited from a human neurologist.

We have found that the leaky noisy OR gate model
[15, 9] is a powerful tool for managing distribution ac-

quisition. When a symptom can be caused by n explic-
itly represented diseases, the model assumes (1) each
disease has a probability of being sufficient to produce
the symptom in the absence of all other diseases; (2)
the probability of each disease being sufficient is inde-
pendent of the presence of other diseases; and (3) due
to the incompleteness of representation there is a non-
zero probability that the symptom will manifest in the
absence of any of the diseases represented explicitly.

We found that the above assumptions are quite valid
in PAINULIM domain. A symptom will occur in any
given disease with a unique frequency. Should there
exist more than one disease that could cause the same
symptom, the frequency of occurrence of this particu-
lar symptom will be heightened. Using the leaky noise
OR gate model, we have been able to assess the above
mentioned distribution by eliciting only 8 numbers.

7 Shell Implementation

We implemented an expert system shell WEBWEAVR
which incorporates the MSBN technique and leaky
noisy OR gate model. This shell is in turn used to
construct the PAINULIM expert system.

WEBWEAVR shell is written in C and is imple-
mented in IBM PC to suit the computing environment
in Neuromuscular Disease Unit, Vancouver General
Hospital (VGH) where PAINULIM is constructed. It
can be run in XT, AT or 386 although AT or above is
recommended. The shell consists of a graphical editor,
a structure transformer, and consultation inference en-
gine. The graphical editor allows users to construct
MSBNs in a visually intuitive manner. The structure
transformer transforms constructed MSBNs into junc-
tion forests. The consultation inference engine does
the evidence entering and evidential reasoning.

Figure 2 illustrate the WEBWEAVR shell with 6
screen dumps. In the upper left screen, a Bayesian
subnet is drawn using a mouse. In the upper right
screen, the name of a variable and its possible out-
comes are entered. In the middle left screen, the con-
ditional probability distribution for a child variable is
entered. Each subnet can be constructed in this way
separately. In the middle right screen, the composi-
tion of the MSBN for PAINULIM is specified. In the
bottom left screen, a menu is displayed which allows a
user to specify the d-sepset to be entered next. In the
bottom right screen, the d-sepset between CLINICAL
and EMG subnets is specified.

WEBWEAVR supports the construction of any
MSBN which has a covering subnet.



Figure 2: Top left: drawing a Bayesian subnet with mouse operation; top right: naming a variable and speci-
fying its outcomes; middle left: specifying the conditional probability distribution for a variable; middle right:
specifying the subnets composing the MSBN of PAINULIM; bottom left: specifying the d-sepset to be entered
next; bottom right: specifying a d-sepset.

8 A Query Session With PAINULIM

In this section, we snapshot several major steps of a
query session with PAINULIM in the diagnosis of a
particular patient to illustrate its capability.

Since clinical examination is always the first stage
in the diagnosis of a patient, correspondingly the
CLINICAL subnet is always the one to start with
PAINULIM. Before any evidence is available, the prior
probabilities for all the diseases and symptoms can
be obtained which reflect the background knowledge
about a patient population. The top screen in Figure 3
shows the CLINICAL subnet with prior probabilities
displayed in histograms. The middle screen shows the
same subnet with the same probabilities but a different
layout is adopted with full names of variables displayed
and arcs omitted. Users of PAINULIM can select one
of the layouts depending on their perspective. The for-
mer layout provides richer information while the latter
gives neat screen. We use the latter layout in the fol-

lowing illustration.
The patient presents with weakness of flexion (curl-

ing inwards) of the fingers and the thumb, as well as
extension (straightening back) of the thumb. Other
symptoms and signs are not known. After this 3 pieces
of evidence are entered, the bottom screen in Figure 3
shows the updated (posterior) probabilities for dis-
eases and symptoms above 30% of chance. The possi-
ble sites of involvement based on the available clinical
evidence are: the Median Nerve (79%), the Root C6,7
(33%), the Radial Nerve (30%), and the Plexus Poste-
rior Cord (30%).

Further evidence is to be obtained from EMG tests
and we move to the EMG subnet. Before any EMG
test result is entered, the up-to-date probabilities for
variables in EMG subnet are displayed in the upper
screen in Figure 4. The display threshold (set by the
button RATE) is still 30%. We see the same 4 diseases
are highlighted with the same posterior probabilities.
The likely abnormal EMG findings are also highlighted



Figure 3: Top: CLINICAL subnet with prior probabilities; middle: same subnet with a neater layout; bottom:
updated probabilities after clinical evidence is entered.



Figure 4: Top: EMG subnet with clinical evidence absorbed; bottom: updated probabilities after EMG findings
are entered.

to help the user to plan EMG tests.
After several EMG tests are performed with abnor-

malities found in the following muscles: the Abductor
pollicis brevis, the First dorsal interosseous, the Ex-
tensor digitorum communis, the Paraspinals C6,7 and
the Paraspinals C8,T1; and with the status of other
muscles in the limb not available, the revised disease
candidates are: the Root C6,7 (90%), the Root C8,T1
(71%), the Median nerve (65%), and the Ulnar nerve
(39%) (the lower screen in Figure 4).

Evidence from the above two subnets is positive ev-
idence. Moving to the NCV subnet, we see in the
upper screen of Figure 5 that the previous evidence
has been absorbed and up-to-date probabilities of rel-
evant diseases and nerve conduction findings are dis-
played. The first study is done on motor and sensory
conduction in the Ulnar nerve with results being nor-
mal. This is considered as negative evidence. After the
results are entered into the NCV subnet, the Ulnar

nerve lesion becomes unlikely and disappeared from
highlighted diseases (the middle screen in Figure 5).
The 3 nodes with centers whitened correspond to the
new evidence.

With results of further nerve conduction studies in
the Median and Radial nerves being also normal, pos-
terior probabilities for the Median and Ulnar nerves
drop to near 0. The final diagnosis is narrowed to Root
C6,7 (98%) as well as Root C8,T1 (98%), or multiple
root disease. An experienced physician would come up
with the same diagnosis.

9 Remarks

Bayesian belief networks have demonstrated to be a
natural, concise knowledge representation and a con-
sistent inference formalism for expert systems reason-
ing under uncertainty. Although the startling ad-
vance has been made on probabilistic reasoning us-



Figure 5: Top: NCV subnet with clinical and EMG evidence absorbed; middle: updated probabilities after the
results form nerve conduction studies in Ulnar nerve are entered; bottom: final diagnosis after nerve conduction
studies are finished.



ing Bayesian networks in recent years, when appli-
cation domain is large, the computational overhead
(both time and space) is still forbidding. The problem
gets more serious when the application systems are to
be constructed, refined and used on microcomputers
which are currently the major computational equip-
ments in hospitals and clinics. Construction of medical
expert systems on hospital equipments is often desired
due to the tight schedule of medical professionals and
lengthy process of knowledge acquisition and system
refinement.

The problem is traced to the current homogeneous
representation in Bayesian nets. We developed a solu-
tion (the MSBN technique) to the problem by repre-
senting and exploiting locality naturally existing in the
PAINULIM application domain. Although our expe-
rience is from the domain of neuromuscular diagnosis,
we believe that the locality is a general feature for
many large application domains.

The MSBN technique is implemented in WEB-
WEAVR shell which supports the construction of large
expert systems based on Bayesian networks. Using
the shell we have developed the PAINULIM system in
neuromuscular diagnosis of patients with painful im-
paired upper limbs. The computation complexity of
PAINULIM is reduced by half with MSBN technique.
About 30 clinical cases in Neuromuscular Disease Unit,
Vancouver General Hospital have been used to test
PAINULIM with agreement rate to neurologists very
high. The system is under further refinement and eval-
uation currently.
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