
Privacy Preserving Existence Recognition and
Construction of Hypertree Agent Organization∗

Yang Xiang and Kamala Srinivasan
School of Computer Science, University of Guelph, Canada

January 27, 2015

Abstract

Decentralized probabilistic reasoning, constraint reasoning, and decision theoretic reasoning are
some essential tasks of cooperative multiagent systems. Several frameworks for these tasks organize
agents into a junction tree (JT). We show that existing techniques for JT existence recognition and con-
struction leak information on private variables, shared variables, agent identities and adjacency, that can
potentially be protected. We present a scheme to quantify these privacy losses. We develop two novel
algorithms for JT existence recognition and for JT construction when existing, that provide strong guar-
antee of agent privacy. Our experimental comparison shows that the proposed algorithms out-perform
existing techniques, one of them having the lowest privacy loss and the other having no privacy loss,
while being more efficient than most alternatives.

1 Introduction

Decentralized probabilistic reasoning, constraint reasoning, and decision theoretic reasoning (referred to
as decision making below) are some essential tasks of cooperative multiagent systems (MAS). For sim-
plicity, we refer to these tasks asinference. A number of alternative frameworks have been proposed for
multiagent probabilistic reasoning [VKV02, Xia02], multiagent constraint reasoning [MB04, MSTY05,
PF05, SF05, ZJSF08, VRAC10, BM10, XMZ14], and multiagent decision making [GD01, KM01,
XH11]. Some frameworks do not assume a specific agent organizational structure [VKV02, KM01].
Some assume a total order among agents [MB04]. Some use a pseudotree organization [MSTY05, PF05,
MSY08]. Some depend on a junction tree (JT) organization [VRAC10, BM10, Xia02, XMZ14, XH11].
A cluster in the JT may not have an internal structure [VRAC10, BM10] or each cluster may itself be or-
ganized into a local JT [Xia02, XMZ14, XH11], in which case the JT organization is called ahypertree.
In this paper, we refer to JT organization and hypertree interchangeably. Hypertree is used to emphasize
that clusters of the JT may be internally structured. JT is used when the topological nature (running
intersection, defined below) of the organization is emphasized.

An effective agent organization not only needs to support inference but also agent privacy [SR04,
SAZB05, SFP06, MPB+06, GPBT06, FLP08, DMS+08]. JT is one such organization. We show that
a hypertree not only enables sound and efficient inference, but also has the potential for certain types
of agent privacy. However, the potential does not ensure its delivery. We show that existing hypertree-
based frameworks leak information on private variables, on shared variables, and on agent identities and
adjacency, that can potentially be protected. Such compromise of privacy may limit adoption of these
frameworks.

Consider trouble-shooting a complex piece of equipment (e.g., a chemical fertilizer plant) by an
MAS, a task of multiagent probabilistic reasoning. The equipment consists of multiple components
supplied by independent venders, who also supply computational agents each monitoring and trouble-
shooting a component by cooperating with other agents. The agents can form a multiply sectioned
Bayesian network (MSBN) [Xia02], where the core knowledge of each agent is encoded as a Bayesian

∗This article significantly extends Xiang and Srinivasan [XS13b, XS13a] as part of the Canadian AI 2013 Proceedings.

1

subnet [Pea88] over many variables. Variables (nodes) in a subnet represent states of various devices
and sensors in the component. When two components interact (e.g. the output of one feeds into the
other), the subnets share variables that represent states of their interface. Knowledge on unique (private)
variables in each subnet is typically proprietary to the component vendor. Knowledge on shared variables
between subnets are often proprietary to the relevant component vendors. Knowledge on the identity of
an agent and its interfacing relations, which translates into knowledge on existence of certain component
and its interfacing relations, is often proprietary to the owner of the plant.

Suppose an agent honestly follows MSBN algorithms (therefore conducting trouble-shooting tasks
as specified) and log messages exchanged during operation. These messages are sent to its vendor for
purposes such as monitoring, bookkeeping, and maintenance. If these messages contain identities of
other agents in the MAS, their interfacing relations, and variables in their subnets, then a significant
amount of proprietary knowledge is leaked beyond their owners. Without strong guarantees against such
loss of privacy, the plant owner would hesitate to adopt an MSBN-based MAS, and component vendors
would hesitate to participate in such a MAS, in fear of losing their intellectual property. Similar situations
exist in collaborative industrial design on supply chain [XCD04] and other applications.

A number of operations, including inference, are performed over the lifetime of a hypertree-based
MAS. Among them, the most critical to agent privacy is hypertree construction. We identify three types
of agent privacy that are naturally preserved during inference in such a MAS but are compromised by
existing hypertree-based MAS frameworks. We propose a new algorithm for hypertree construction, if it
exists, that significantly improves preservation of these types of privacy. We propose a second algorithm
that recognizes hypertree existence while preserving privacy. We show that it can extend to construction
as well. To the best of our knowledge, no known hypertree-based MAS frameworks provide the same
degree of agent privacy during hypertree construction as the proposed algorithms.

Hypertree construction concerns three technical issues. The first determines whether a hypertree
exists given the environment decomposition of an application. The second concerns how to construct
a hypertree when one exists. The third involves how to modify an environment decomposition that has
no hypertrees. This paper addresses the first two issues. For the third, we show that an environment
decomposition without hypertrees can be modified to have one at the cost of a limited loss of privacy.
How to make the modification while minimizing such loss is deferred to the sequel of this research.

Two fundamentally different approaches for privacy can be identified. One is to transmit private
information into the public, but make it unintelligible to unintended receivers by encryption [YSH05,
LOF10]. The other does not transmit private information in the first place. This is the approach taken
in this work. We show that by carefully designing messages and message passing protocols, hypertree
recognition and construction can be performed without leaking the three types of private information.

We assume that all agents honestly follow intended algorithms as in the above trouble-shooting ex-
ample. This is a standard assumption in multiagent probabilistic reasoning and constraint reasoning,
and in certain cooperative decision making. This assumption is justified by the fact that deviation from
intended algorithms most likely lead to incorrect results, e.g., incorrect posterior probabilities in prob-
abilistic reasoning and infeasible solutions in constraint reasoning. An agent that fails to perform its
intended task will eventually be detected and abandoned. Hence, agents following the intended algo-
rithms should be the norm. Under the assumption, this work does not address adversarial behaviors of
agents. We present hypertree recognition and construction algorithms with strong guarantees against
leaking of three types of private information from any agent to others.

Section 2 introduces background on JT-based organization and terminology. We show how private
information is leaked by existing MAS frameworks in Section 3 and define measures to quantify such
privacy loss. Section 4 reformulates hypertree construction into alternative problems that allow develop-
ment of algorithms that fundamentally protect certain types of privacy. Section 5 presents an approach to
construct a JT as a distributed maximum spanning tree, and shows the privacy loss by related methods.
A novel algorithm DPMST is presented in Section 6 with the analysis of its soundness, complexity, and
privacy. Section 7 considers hypertree existence recognition and proves two necessary and sufficient
conditions. These conditions lead to a second algorithm HTBS for recognizing hypertree existence, that
is presented in Section 8 with the analysis of soundness, by-product, complexity, and privacy. Experi-
mental evaluations of DPMST and HTBS, as well as five alternative methods, are reported in Section 9.
Proofs of formal results are collected at the Appendix.

2

2 Background and Terminology

2.1 Hypertree Based Frameworks

Decentralized probabilistic reasoning, constraint reasoning, and decision making are essential inference
tasks of a MAS. We briefly overview inference frameworks that are based on hypertrees. These frame-
works decompose an application environment into overlapping subenvironments with each agent con-
trolling one. In the trouble-shooting environment, each subenvironment corresponds to an equipment
component. Multiply sectioned Bayesian networks (MSBNs) [Xia96, Xia02] are the earliest framework
for exact multiagent probabilistic reasoning based on hypertrees. The core of each agent is a Bayesian
subnet over its subenvironment. Agents acquire local observations asynchronously. By passing two
messages over each JT link, exact posterior probabilities relative to all observations are obtained at every
agent. Typical applications include medical diagnosis [XPE+93], equipment trouble-shooting [Xia02],
and intelligent sensor networks [Xia08].

Multiple sectioned constraint networks (MSCNs) [XZ07, XMZ14] solve distributed constraint satis-
faction problems with complex local problems such as university timetabling [XZ08]. The core of each
agent is a constraint subnet that encodes variables and constraints over its subenvironment. The associ-
ated inference algorithm is sound and complete. DCTE [BM10] and Action-GDL [VRAC10] conduct
distributed constraint optimization using JTs. They do not structure each subenvironment into a subnet.
A major difference of MSCN from DCTE and Action-GDL is that each hypertree node in MSCN embeds
a constraint subnet and inference is optimized within the subnet.

Collaborative decision networks (CDNs) solve multiagent decision problems such as collaborative
design in supply chains [XCD04] and multiagent expedition [XH11]. The core of each agent is a decision
subnet that encodes probabilistic dependency, alternative decisions, and preference relations. The opti-
mal global design (of maximum expected utility) or team movement is computed distributively. CDN is
also a hypertree-based framework for distributed constraint optimization. It differs from MSCN, DCTE
and Action-GDL in that it models uncertainty with Bayesian probabilities and models objective functions
as utility functions.

A subenvironment may be internally structured into a subnet as in MSBN, MSCN, and CDN, or
unstructured as in Action-GDL and DCTE. Frameworks assuming structured subenvironments allow
more efficient inference as subenvironments scale up. These subnets can conceptually be merged into a
single global structure, which we refer to as thedependency graphof the MAS. In this paper, it suffices to
assume that the dependency graph is an undirected graph (see below). For frameworks over unstructured
subenvironments, we assume the existence of a subnet for each subenvironment where variables are
pairwise connected.

2.2 Terminology

Let V be a collection of environment variables whose inter-dependency is described by adependency
graph G= (V,E). Let A = {A0, ...,Aη−1} be a set of agents that decomposeV into a set of overlapping

subenvironmentsΩ = {V0, ...,Vη−1}, where∪η−1
i=0 Vi = V such that agentAi controls subenvironmentVi .

The tuple(G,A,Ω) specifies a MAS over the environmentV.
If Ai andAj (j 6= i) share variables, the intersectionIi j = Vi ∩Vj 6= /0 is their border and the two

agents areborderingor adjacent. Each variable in a border is asharedvariable. A variable unique to
a subenvironment is aprivate variable. For each agentAi , the union of its bordersWi = ∪ j 6=i Ii j is its
boundary. The collection of agent boundariesW = {W0, ...,Wη−1} is theboundary setof the MAS.

The environment decomposition of a MAS can be visualized by anenvironment decomposition
graph, a cluster graph where each cluster is a subenvironment and each link is a border. A boundary
set can be visualized by acommunication graph, a cluster graph where each cluster is a boundary and
each link is a border. Fig. 1 illustrates a trivial MAS, whose dependency graph, environment decomposi-
tion graph, and communication graph are shown in (a), (b) and (c), respectively. The subenvironment of
A0 isV0 = {a,b,u,y}, wherea andb are private variables. The border betweenA1 andA2 is I12 = {y,z}.
The boundary ofA1 is W1 = {u,w,y,z}.

Our formulation of subenvironments differs from much of the constraint reasoning literature where

3

{u,y}

{w}

{v}

{y,z}

{y}
{u,y}

{w}

{v}

{y,z}

{y}

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�
�

�
�
�
�
�

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

��������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

u,y

u,w,y,z
y,z

v

v,w

(c)

W , A
W , A

W , A
W , A

W , A

0 0

2 2

4 4

3 3

1 1

g,h,y,z
e,f,v,w

a,b,u,y

c,d,u,w,y,z

(d)

{u,y}

{w}

{v}

{y,z}

i,j,v

V , A0 0
V , A1 1

V , A3 3
V , A4 4

V , A2 2

c

d

u
a

f

ev

w

i

j

yg

h

(a)

G=(V,E)b

g,h,y,z
e,f,v,w

a,b,u,y

c,d,u,w,y,z

(b)
i,j,v

V , A0 0
V , A1 1

V , A3 3
V , A4 4

V , A2 2

z

Figure 1: (a) Dependency graph. (b) Environment decomposition graph. (c) Communication
graph. (d) JT organization.

variables are disjointly partitioned among agents that interact through shared constraints. For the border
{y,z} betweenA1 andA2, the alternative formulation may assigny to A1 andz to A2 with the agents
sharing a constraint overy andz. As previously shown [XMZ14], the two formulations are equivalent.
By sharing the constraint, both variables as well as their domains are known to both agents and are
effectively shared. One exception [SSHF00] to the above does not reveal a constraint to all agents with
variables in the constraint, although the method does not provide strong guarantee for non-disclosure.

In MAS literature, the number of variables controlled by an agent varies from one (e.g., Action-GDL)
to hundreds or more. We focus on the MAS with complex local problems where each agent controls a
large number of variables. It has been suggested [Yok01] that a complex local problem can be handled
by a virtual agentthat embeds multiple single-variable basedphysical agents. Under our formulation
of subenvironments, no agent is truly single-variable. We will take the virtual agent perspective when
discussing frameworks such as Action-GDL and refers to them as single-variable-per-physical-agent
nevertheless.

A JT is a cluster tree where each link between two clusters is labeled by their nonempty intersection.
The intersection of any two nonadjacent clusters is contained in every cluster on the path between the
two (running intersection). Subenvironments (and agents) of a MAS may be organized into a JT, where
each cluster is a subenvironment and each link is a border. Fig. 1 (d) shows a JT organization.

A JT organization prescribes direct message pathways between agents. Two agents can exchange
messages whenever they are adjacent in the JT. Messages between adjacent agents during inference are
restricted to concern shared variables only and two messages along each JT link (one in each direction)
are sufficient to ensure sound inference. In multiagent probabilistic reasoning, a message encodes the
sender agent’s belief over shared variables, e.g., in MSBNs [Xia96, Xia02]. In multiagent constraint
reasoning, a message encodes partial solutions over shared variables, e.g., in MSCNs [XZ07, XMZ14].
In multiagent decision making, a message is either an expected utility function over shared variables, or
a partial action profile over these variables, e.g., in CDNs [XCD04, XH11].

2.3 JTs and Pseudotrees

While JTs are commonly used in probabilistic reasoning e.g., [Jen88, Xia02] and centralized con-
straint reasoning, e.g., [Dec03], pseudotrees are commonly used in multiagent constraint reasoning,
e.g., [MSTY05, PF05]. For convenience of a broader readership, we briefly discuss their connection.

i

j

g
h

fe

d

b
a

(b) e,h,v

c,h,y,z
d,v,w

b,u,w,y,z

V4
j

i
h
g c

b
c

d

e f

a

(a)

a,u,y V0

V2

V1

V3
(c)

Figure 2: (a) A dependency graph. (b) A possible pseudotree of (a). (c) An environment
decomposition graph (unrelated to (a)).

Given a dependency graphG, a pseudotreeT with the same set of nodes and links can always be
obtained. Start with any node, referred to as theroot, traverseG depth first and backtrack when there is
no adjacent unvisited node. Links traversed aretree linksof T, directed away from the root, that define

4

parent/childrelations among nodes. Remaining links areback linksof T , also directed away from the
root, that definepseudoparent/childrelations. Fig. 2 (b) shows a possible pseudotree obtained from (a)
with the roota. An important property of a pseudotree is that nodes adjacent inG fall in the same branch
of T.

An environment decomposition may not have a JT as it may be impossible to connect subenviron-
ments into a tree with running intersection. Fig. 1 (b) has a JT in (d), but Fig. 2 (c) has no JT for the reason
below. Consider clustersV1,V2,V3,V4 and possible links among them〈V1,V2〉, 〈V1,V3〉, 〈V2,V4〉, 〈V3,V4〉.
A JT cannot simultaneously contain all four links since a cycle is formed. If link〈V1,V2〉 is absent,z is
not running. If〈V1,V3〉 is absent,w is not running. Similarly, running intersection cannot hold if any of
the other two links is absent. Hence, Fig. 2 (c) has no JT.

3 Privacy for Agents Organized in Hypertree

3.1 Agent Privacy

As MAS organizations, hypertrees allow sound inference with the time complexity being linear on the
number of agents [Xia02, XZ07, XMZ14, BM10, VRAC10, XH11]. As illustrated in the trouble-
shooting example, cooperation requires information exchange but should respect privacy as much as
possible. A hypertree has the potential for several types of privacy. Since messages during inference in-
volve only variables shared between adjacent agents on the hypertree, at least three types of information
need not be exchanged during inference and can potentially be kept private. We refer to them as three
types of privacy.

Privacy on private variable This means non-disclosure of the identity (label) of any private variable
and its domain (of possible values) to other agents. For instance, variablea of A0 in Fig. 1 should
not be revealed toA1. Even if obfuscation is applied to variables and value labels, the disclosure
still prompts targeted probing.

Privacy on shared variable This requires that the identity and domain of any shared variable should
not be disclosed beyond agents that share it. For instance, variablew, shared byA1 andA3, should
not be revealed toA4.

Privacy on agent identity and bordering relation This requires non-disclosure of any agent’s identity
and its bordering relations to non-bordering agents. For instance, the identity ofA4 and its bor-
dering relation withA3 should not be revealed toA1. We sometime refer to bordering relations as
agent adjacency, which should not be confused with adjacency in a hypertree.

We refer to the three types collectively as agent privacy.

3.2 Privacy Loss in Hypertree Construction

A number of operations may be performed over the lifetime of a hypertree-based MAS. Among them, the
most critical to agent privacy is the hypertree construction. Once the hypertree is constructed, inference
naturally maintains privacy due to restriction on message content. It is through hypertree construction
that agent privacy is compromised in existing frameworks, as we show below.

Action-GDL It is a single-variable-per-physical-agent framework [VRAC10], and we assume that
a virtual agent embeds multiple physical-agents. For clarity, we equate nodes and variables to physical
agents and reserve the wordagentfor a virtual agent. At the start, each variable in the dependency graph
knows the identity of each adjacent variable and its domain.

A pseudotree of the dependency graph is first constructed by a distributed depth-first search (DFS).
During DFS, each node only passes messages to adjacent nodes and no information on non-adjacent
nodes is contained in messages. Hence, no privacy loss occurs during the pseudotree construction.

Next, the pseudotree is converted into a JT. Each pseudotree node forms its cluster by including
(1) its own variable, (2) variables of its parent and pseudoparents, and (3) cluster variables of each child
except the child variable. When a variable is shared by two agents, it is reasonable to assume that the
corresponding pseudotree node is accessible by both agents. As the result, the JT cluster at the node is

5

known to both agents. If the cluster includes a variable outside the subenvironment of one agent, privacy
loss is incurred on both the identity and the domain of the variable as domain information is used by
inference operation at the cluster.

Consider applying Action-GDL to environment decomposition in Fig. 3 (a). A possible pseudotree
is shown in (b) and the resultant JT is shown in (c). Since variableb is contained in the subenvironment
of A0, A0 has access to JT cluster{b,d} at nodeb. Hence, private variabled of agentA1 is leaked to
A0. Since inference at each cluster uses the domain of each variable in the cluster, the leak includes the
variable domain. Similarly,d is also leaked toA2. Furthermore,b is a variable shared only betweenA0

andA1. Through access to cluster{b,c,d} at nodec, b is leaked toA2.

a

d

b
c

e

A0

2A

A1

2A

A1
b,d

a,b
c,e

A0

d

A0
c,e

b,c,dA1

a,b
2A

b,c,d

(a) (b) (c)

Figure 3: (a) Environment decomposition graph. (b) A pseudotree. (c) Resultant JT.

To summarize, Action-GDL incurs privacy loss on identity and domain for both private and shared
variables, but has no loss on agent identity and adjacency.

DCTE The JT used by DCTE [BM10] is constructed by a method [PGM05] where each agent
controls multiple variables. Two agents can exchange messages directly even if no variable is shared
[PGM05]. Since this leads to unnecessary additional privacy loss, we consider a revised version where
each agent only knows and sends messages to bordering agents.

First, the agents organize themselves into a spanning tree. In the process, a root is elected and a
parent is selected for each agent. Each agent initializes its choice for the root and the parent to itself
and sends the choice to bordering agents. By comparing agent IDs from messages, each agent updates
its choice and passes on until an agent with the lowest ID is elected as the root of the spanning tree and
every agent settles down on its parent in the spanning tree. Since the ID of the root choice can propagate
far beyond adjacency, it causes privacy loss on agent identity. When agentAi receives fromAj on its
parent choice ofAk, adjacency ofAj andAk is leaked toAi .

Subsequently, each agent enlarges its subenvironment into a cluster that satisfies running intersection,
which effectively transfers the spanning tree into a JT. IfAi is adjacent toAj in the spanning tree,Ai sends
to Aj its own variables and all variables reachable in the subtree rooted atAi . If Aj receives two messages
that both include variablex, it addsx to its cluster to ensure running intersection.

Fig. 4 (a) shows a subenvironment decomposition and (b) is a possible spanning tree. As shown in
(c), messages during JT construction leak identities of all variables to each agent. Hence, this method
has the maximum loss on both private and shared variable. To summarize, the JT construction by DCTE

A
a,c,e

A1

b,c,d
(a)

2A
a,c,e

A1

b,c,d

A2 2AA0

a,b
A1

a,b
0 0A

(b) (c)

a,b,c,e a,c,e

b,c,d a,b,c,d
a,b,ca,c,eb,c,d

Figure 4: (a) Environment decomposition graph. (b) A spanning tree. (c) Resultant JT.

incurs all three types of privacy loss.
Both Action-GDL and DCTE are algorithm suits for distributed constraint optimization. Due to the

focus of this work, their names in this paper refer to only the portion for hypertree construction.
COORD-Plus For MSBN, MSCN and CDN frameworks, a hypertree is constructed by a coordi-

nator agent [Xia02, XMZ14] with the access of borders between each pair of agents, plus one private
variable per agent (see Section 4.1). Assuming that the coordinator is one of the agents, it determines the

6

existence of a hypertree, constructs one if exists, and informs each agent about the hypertree neighbors.
We refer to this method as COORD-Plus. All agent identities and bordering relations, and identities of
all shared variables are leaked to the coordinator, but there is nothing leaked to other agents. There is no
loss on variable domain.

3.3 Quantification of Privacy Loss

We define a scheme to quantify the loss of the three types of privacy. Such quantification allows pre-
cise evaluation and comparison of privacy performance by alternative frameworks. VPS is one scheme
[MPB+06] whose quantification is based on estimates of an agent’s possible state by other agents be-
fore and after an algorithm execution. It assumes that agent identities and their state spaces are publicly
known. Although reasonable for applications such as meeting scheduling, this assumption does not hold
in our context, as can be easily seen from the trouble shooting example. In the following, we develop an
alternative scheme for quantifying the three types of privacy loss.

Let border(Ai ,Aj) be a function that returns 1 ifAi bordersAj and 0 otherwise. Letknow(Ai,Aj) be
a function that returns 1 ifAi knows the identity ofAj and 0 otherwise. After a hypertree algorithm is
run, the differenceknow(Ai ,Aj)−border(Ai ,Aj) quantifies privacy loss on agent identity atAi . Its value
is 1 (one unit of loss) ifAi does not borderAj but the identity ofAj is leaked toAi , and is 0 otherwise.
Thesystem privacy loss(SPL) on agent identity is

SPLaid = ∑
i
∑
j 6=i

(know(Ai ,Aj)−border(Ai ,Aj)).

The correspondingmaximum system privacy loss(MSPL) is

MSPLaid = ∑
i
∑
j 6=i

(1−border(Ai ,Aj)).

For Fig. 1 (b),MSPLaid = 2+1+2+2+3= 10. Thenormalized system privacy loss(NSPL) on agent
identity is

NSPLaid = SPLaid/MSPLaid =
∑i ∑ j 6=i(know(Ai,Aj)−border(Ai ,Aj))

∑i ∑ j 6=i(1−border(Ai ,Aj))
∈ [0,1], (1)

whereNSPL= 1 signifies the maximum loss andNSPL= 0 signifies no loss.
For privacy loss on bordering relation, letknowBdr(Ai ,Aj ,Ak) be a function that returns 1 ifAj

bordersAk and it is known byAi , and returns 0 otherwise. The system privacy loss on bordering relation
is

SPLbdr = ∑
i

∑
j 6=i

∑
k6=i,k6= j

border(Aj ,Ak)∗knowBdr(Ai ,Aj,Ak).

The corresponding maximum loss is

MSPLbdr = ∑
i

∑
j 6=i

∑
k6=i,k6= j

border(Aj ,Ak).

For Fig. 1 (b),MSPLbdr = 3+ 2+ 3+ 3+ 4 = 15. The normalized system privacy loss on bordering
relation is

NSPLbdr =
∑i ∑ j 6=i ∑k6=i,k6= j border(Aj ,Ak)∗knowBdr(Ai,Aj,Ak)

∑i ∑ j 6=i ∑k6=i,k6= j border(Aj ,Ak)
∈ [0,1]. (2)

Let private(x,Ai) be a function that returns 1 if variablex∈Vi is private toAi and 0 otherwise. Let
knowID(Ai,x) be a function that returns 1 ifAi knows the identity ofx and 0 otherwise. The system
privacy loss on private variable identity is

SPLpvid = ∑
i
∑
j 6=i

∑
x∈Vj

private(x,Aj)∗knowID(Ai,x).

7

The corresponding maximum loss is

MSPLpvid = ∑
i
∑
j 6=i

∑
x∈Vj

private(x,Aj).

For Fig. 1 (b),MSPLpvid = 8+8+8+8+8= 40. The normalized system privacy loss on private variable
identity is

NSPLpvid =
∑i ∑ j 6=i ∑x∈Vj

private(x,Aj)∗knowID(Ai,x)

∑i ∑ j 6=i ∑x∈Vj
private(x,Aj)

∈ [0,1]. (3)

Let knowDom(Ai ,x) be a function that returns 1 ifAi knows the domain ofx and 0 otherwise. The
system privacy loss on private variable domain is

SPLpdom= ∑
i
∑
j 6=i

∑
x∈Vj

private(x,Aj)∗knowDom(Ai,x).

The corresponding maximum loss is identical toMSPLpvid above. The normalized system privacy loss
on private variable domain is

NSPLpdom=
∑i ∑ j 6=i ∑x∈Vj

private(x,Aj)∗knowDom(Ai,x)

∑i ∑ j 6=i ∑x∈Vj
private(x,Aj)

∈ [0,1]. (4)

Let shared(x,Ai ,Aj) be a function that returns 1 ifx ∈ Vi is shared byAi andAj , and 0 otherwise.
The system privacy loss on shared variable identity is

SPLsvid = ∑
i

∑
j 6=i

∑
k6=i,k6= j

∑
x∈Vj

shared(x,Aj ,Ak)∗knowID(Ai,x).

The corresponding maximum loss is

MSPLsvid = ∑
i

∑
j 6=i

∑
k6=i,k6= j

∑
x∈Vj

shared(x,Aj ,Ak).

For Fig. 1 (b),MSPLsvid = 4+2+4+5+6 = 21. The normalized system privacy loss on shared variable
identity is

NSPLsvid =
∑i ∑ j 6=i ∑k6=i,k6= j ∑x∈Vj

shared(x,Aj ,Ak)∗knowID(Ai,x)

∑i ∑ j 6=i ∑k6=i,k6= j ∑x∈Vj
shared(x,Aj ,Ak)

∈ [0,1]. (5)

The system privacy loss on shared variable domain is

SPLsdom= ∑
i

∑
j 6=i

∑
k6=i,k6= j

∑
x∈Vj

shared(x,Aj ,Ak)∗knowDom(Ai,x).

The corresponding maximum loss is identical toMSPLsvid above. The normalized system privacy loss
on shared variable domain is

NSPLsdom=
∑i ∑ j 6=i ∑k6=i,k6= j ∑x∈Vj

shared(x,Aj ,Ak)∗knowDom(Ai,x)

∑i ∑ j 6=i ∑k6=i,k6= j ∑x∈Vj
shared(x,Aj ,Ak)

∈ [0,1]. (6)

Note that privacy loss on variable identity and loss on variable domain are independent in general.
For instance, COORD-Plus leaks identities of shared variables to the coordinator, but the domains of
these variables are not leaked.

The problem of privacy preserving hypertree construction can be expressed with the above measures.

Problem 1 (Privacy preserving hypertree construction) Given the environment decomposition of a
MAS such that a hypertree exists, how can agents construct a hypertree, while keeping privacy loss
as small as possible as measured by Eqns. (1) through (6)?

8

4 Problem Reformulations

4.1 Boundary Set Based Problem Reformulation

To solve Problem 1, we reformulate it as follows. It was observed [Xia02] that private variables of
a subenvironment can be aggregated into one. Hence, after COORD-Plus constructed JT using the
aggregated subenvironments, each aggregated private variable is replaced with the original set of private
variables. The new cluster tree is a valid JT. We claim that the aggregated private variable can be avoided,
which leads to a more succinct problem context. Proposition 1 establishes that a JT-based organization
can be constructed without referencing private variables.

Proposition 1 Given V,Ω, and W of a MAS, let T be a JT with boundaries in W as clusters. Let
T ′ be a cluster tree with subenvironments inΩ as clusters, such that it is isomorphic to T with each
subenvironment mapped to the corresponding boundary in T . Then T′ is a JT.

We refer to the JTT in Proposition 1 as aboundary based JT. Based on Proposition 1, we reformulate
Problem 1.

Problem Reformulation 1 (Boundary set based hypertree construction)Given the boundary set of
a MAS such that a boundary based JT exists, how can agents construct such a JT, while keeping the
privacy loss as small as possible as measured by Eqns. (1), (2), (5), and (6)?

Eqns. (3) and (4) are left out from the reformulation, as the loss due to private variables is guaranteed
to be zero. The reformulated context can be elaborated as follows.

• A JT exists with boundaries inW as clusters.

• For every pair ofi 6= j , Ai andAj know each other and can pass messages if they have a border
Ii j = Wi ∩Wj 6= /0.

• For eachi, Ai knows nothing about variables in other boundaries and outsideWi.

To solve the reformulated Problem 1, the task of agents is to compute a boundary based JT such that
each agent knows its adjacent agents in the JT, and the process does not disclose information on agent
identity, border relation and boundary beyond the above knowledge state.

4.2 Maximum Spanning Tree Based Problem Reformulation

To solve the above problem, we explore the relation between JT and maximum spanning tree (MST).

1. Given a boundary setW with a JT, letCGbe the communication graph andΨ be a weighted graph
isomorphic toCG. That is, for each boundaryWi ∈W, create a nodexi in Ψ. Add a link〈xi ,xj〉 to
Ψ if there is a borderIi j betweenWi andWj. Assign the link weight asw(xi ,xj) = |Ii j |. Fig. 5 (a)
and (b) illustrateCGandΨ.

2. LetΨ′ be any MST ofΨ andT be a cluster tree subgraph ofCG isomorphic toΨ′. That is,T has
the same set of clusters asCGand, for each link〈xi ,xj〉 of Ψ′, Wi andWj are adjacent inT . Fig. 5
(c) and (d) illustrateΨ′ andT.

4 4x , A

2 2x , A

x , A1 1
0 0x , A

x , A3 3
4 4x , A

2 2x , A

x , A1 1
0 0x , A

x , A3 3

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

u,yW , A
W , A

W , A
W , A

W , A

0 0

2 2

4 4

3 3

1 1

h,v

h,v,w
h,y,z

h,u,w,y,z 3

2

2

2

u,yW , A
W , A

W , A
W , A

W , A

0 0

2 2

4 4

3 3

1 1

h,v

h,v,w
h,y,z

h,u,w,y,z

(d)

1

1

1

3

2

2

2
1

(c)(b)(a)

Figure 5: (a) A communication graph. (b) The weighted graph isomorphic to (a). (c) A MST
of (b). (d) The cluster tree subgraph of (a) isomorphic to (c).

9

Proposition 2 asserts the nature ofT . It is based on a well-known result, e.g., [Jen88, Xia02], phrased
in the current context. It follows from Proposition 2 that Fig. 5 (d) is a JT that solves the reformulated
Problem 1.

Proposition 2 The cluster tree T is a JT, iff a boundary based JT exists.

In the above process, the communication graphCGand weighted graphΨ can both be specified from
local information onW at each agent. Once the MSTΨ′ is obtained, the cluster treeT can be specified
from local information onΨ′ andW. Hence, there is no disclosure of privacy in these steps. The critical
step is constructing MSTΨ′ from Ψ. This leads to another equivalent reformulation of Problem 1, based
on Proposition 2.

Problem Reformulation 2 (MST based hypertree construction) Given the boundary set of a MAS
such that a boundary based JT exists, letΨ be a weighted graph isomorphic to the communication
graph. How can agents construct a MST fromΨ, while keeping privacy loss as small as possible as
measured by Eqns. (1) and (2)?

Eqns. (5) and (6) are left out from the reformulation, as only a count of shared variables between
bordering agents is used, with their identities and domains excluded. The context of the reformulated
problem can be elaborated as follows.

• Agents are one-to-one mapped to nodes in the weighted graphΨ. Hence, agent identity and node
identity are interchangeable below, and so are agent bordering relation and node adjacency.

• For every pair ofi 6= j , Ai andAj know each other and the weightw(xi ,xj), and can pass messages,
if they are adjacent inΨ.

To solve the reformulated problem, the task of agents is to compute a MST such that each node
knows adjacent nodes in the MST, and the process minimizes disclosure of node identity and adjacency.

5 Distributed MST Construction

5.1 Work Related to Distributed MST Construction

Before presenting our distributed MST algorithm, we review the relevant literature. Among them, we
refer to the pioneering work [GHS83] as GHS and describe it in details. Since algorithms for minimum
or maximum spanning trees differ only in the comparison operator (Min versusMax), we refer to both
as the MST.

GHS The method is based on the notion of MST fragments, each initially made of a single node.
Smaller fragments are combined into larger ones concurrently based on a level control until a single
fragment (the MST) is left. It has a time complexityO(η log η). Each fragment of more than one node
is identified by the weight of a core link. This fragment identity is propagated to all nodes of the fragment
to coordinate growth. To ensure unique fragment identities, GHS assumes distinct link weights, which
generally does not hold. To accommodate nondistinct weights, the weight of each link is appended with
identities of its end nodes. Hence, a fragment identity contains node identity and adjacency.

To summarize, when GHS is applied to MST based hypertree construction, each node corresponds
to an agent. Hence, it incurs privacy loss on agent identity and adjacency through the propagation of
fragment identities. Due to the problem reformation, there is no loss on private and shared variables.

Other methods Awerbuch [Awe87] proposed a three-stage algorithm, which was later improved
[FM95], with time complexityO(η). It starts with a counting stage to getη . Then GHS is run to grow
each fragment to anΩ(η/log η) size. A variant of GHS follows, with a more accurate level updating
to speed up computation. Non-distinct link weights are handled using the same technique as GHS and
hence the method suffers the same privacy loss.

An improved algorithm [GKP98] is proposed with time complexityO(d + η 0.613 log∗ η), where
d is the diameter (maximum length of a simple path) of the weighted graph. It first uses a variant of
GHS to produce multiple fragments of small diameters and then combines them into a MST by a rooted

10

operation. Its limitation on privacy is identical to GHS. Another algorithm [KP98] consists of two parts.
In the first part, a

√η -dominating setD of size at most
√η is computed as well as a partition of the

weighted graph into fragments, one per node inD. The second part combines the fragments into a MST
by the rooted operation above [GKP98]. Since the first part employs a simplified GHS, its limitation on
privacy is identical.

One algorithm [KP08] computes an approximate MST. Due to the necessary and sufficient relation
between JT and MST (Proposition 2), an approximate MST cannot yield a JT. Hence, the method is not
applicable to the reformulated Problem 1. Another algorithm [NCKB12] computes a set of MSTs, one
for each component of a disconnected graph. As a parallel algorithm, access of the entire graph by each
processor is assumed. Hence it is applicable only when privacy is not a concern.

In summary, applicable existing methods of distributed MSTs all incur privacy loss on agent identity
and adjacency when applied to MST based hypertree construction. In Section 6, we presentDPMSTas a
solution to Problem 1 that incurs no loss on agent identity and significantly less loss than GHS on agent
adjacency.

5.2 Distributed MST for Privacy on Agent Identity and Bordering Relation

We introduce the main idea ofDPMSThere and specify it formally in Section 6. For improved privacy,
we take a different direction from GHS and its extensions [Awe87, FM95, GKP98, KP98]. Rather than
growing multiple fragments simultaneously, we extend Prim’s algorithm [Pri57] distributively and grow
a MST through a rooted control. As the result,DPMSTdoes not assume distinct link weights and needs
not append node identities to link weights.

Precisely stated, the task is as follows. Given a distributed representation of a connected, weighted
graphΨ of η nodes, construct a MSTΨ′ by distributed computation. For adjacent nodesv andx, the
weight of link 〈v,x〉 is w(v,x). Each node initially knows each adjacent node (neighbor) and their link
weight. It knows nothing about other nodes and links between them.

DPMST initializesΨ′ with a node inΨ, referred to as theroot, and buildsΨ′ up as adirectedsingle-
rooted tree inη −1 rounds. Anoutgoinglink of Ψ′ is a link ofΨ with only one end inΨ′. In each round,
a best outgoing link〈p,c〉 (with a maximum weight) is selected, wherep is in Ψ′, and bothc and〈p,c〉
are added toΨ′. We refer top as thetree-parentof c andc as atree-childof p. For any node inΨ′, we
refer to its tree-parent or a tree-child as itstree-neighbor. Each nodev maintains the following data.

1. The state ofv is indicated by a variablestate∈ {OUT, IN,DONE}. OUT means thatv is not in
Ψ′, IN means thatv is in Ψ′, andDONE means thatv is terminated (halted).

2. The state of each neighborx is maintained by a variablenbstate(x)∈ {OUT, IN,DONE}.

3. A pointertree-parentpoints to the parent ofv in Ψ′.

4. A weight tableis maintained afterv is added toΨ′. Each row is indexed by a neighborx of v, that
either corresponds to an outgoing link (ifx is not inΨ′), or leads to an outgoing link (ifx is in Ψ′).
A weight denoted byw(x) is stored at each row. Ifx is not inΨ′, w(x) = w(v,x). Otherwise,w(x)
is the weight of the best outgoing link throughx in Ψ′.

During execution, four types of messages are passed.

Noti f y A MST tree-leaf notifies a neighbor that the latter is added to the current MST.

AnnounceThe sender announces to each neighbor that the former is in the MST.

Expand The sender instructs a tree-child to expand the current MST by adding a new node.

Report The sender reports to its tree-parent either the best outgoing weight (bow) or termination.

These messages carry no information on node identity or adjacency. We make the standard as-
sumptions on message transmission: (1) Transmission of each message takes at most one time unit; (2)
Messages are received in order of sending; (3) Local computation time at each node can be ignored. The
example below illustrates howDPMSTuses the above messages. It is formally specified in Section 6.

11

c

a, (b:2, c:1)

Ann Ann
Ann

Rep(3)

d
e (2)

(c:3, d:2, e:1)
b,

�
�
�
�

�
�
�
�

a, (b:3, c:1)

(d:1, e:1)
c,

Exp

Not

d(3) e

(c:1, d:2, e:1)
b,

��
��
��

��
��
��

��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

������

���
���
���
���

d
c,

Ann

Ann

Ann

a, (b:2)

Rep(2)

Rep(1)

e (4)

(c:1, d:2, e:1)
b,

�
�
�
�

��
��
��
��

(d:1, e:1)
c,

a, (b:2)

Exp
Not

d, (e:2)e (5)

(c:1, d:2, e:1)
b,

(c:1, d:2, e:1)
b,

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

b,

(d:1, e:1)

(c:3, d:2, e:1)

3

b

c

a, (b:2, c:1)

1
2

2

2

1 1

1

Ann

Not, Ann

d
e (1)

c,

a, (b:2)

(e:1)

d, (e:2)e (7)

c,

a, (b:2)

Rep(2)

(e:1)

d, (e:2)

Ann

R
ep(2)

e
Ann

(6)
Ann

Ann

Figure 6: Illustration of an execution ofDPMST

Example 1 Consider the weighted graph in Fig. 5 (b). For simplicity, we refer to nodes x0 through x4 as
a, b, c, d, e, shown in Fig. 6 (1). Suppose a is the root, whose weight table is created as(b : 2; c : 1). It
sends Announce to b and c, and Noti f y to b. In response, b creates its table as(c : 3; d : 2; e : 1), sends
Announce to c, d and e, and Report with bow= 3 to a. Ψ′ now contains nodes a, b (grey) and link〈a,b〉
(dashed) as shown in (2). Although the Announce from a to b can be saved, we omit such optimization
for simplicity.

Based on the Report, node a revises its table to(b : 3; c : 1) and sends Expand to b. To expand, b
sends Noti f y to c, which in turn creates its table as(d : 1; e : 1). Ψ′ now contains a, b and c as in (3).

Node c sends Announce to a, d and e, and Report to b with bow= 1. When node a receives Announce
from c, it revises its table to(b : 3). When b receives Report from c, it revises its table to(c : 1; d : 2; e: 1),
and sends Report to a with bow= 2. Upon receiving the Report, a revises its table to(b : 2) as in (4).

Next, node a sends Expand to b, which in turn sends Noti f y to d. Node d creates its table as(e : 2).
Ψ′ now contains a, b, c and d, shown in (5). Node d sends Announce to c and e, and Report to b with
bow= 2. In response, c revises its table to(e : 1), and b reports to a, shown in (6).

In the final round, Expand propagates from a to b and then to d, with d sending Noti f y to e. Node
e sends Announce to b and c. Since it has no OUT neighbors, e sends Report to d on its termination.
Its Announce to c causes c to terminate and its Report to d causes d to halt. Before halting, both c and
d send Report to b, together with the Announce from e, causing b to halt. The Report that b sends to a
before halting causes a to terminate. Now DPMST is completed, withΨ′ shown by the dashed links in
Fig. 6 (7). It is identical to Fig. 5 (c). The messages contain no agent identity or adjacency.

The weight table at each node plays a critical role. Using the table, the root decides the neighbor
to Noti f y or the tree-child forExpand. Each non-root tree-parent instructed toExpanddoes the same.
Hence, correct weight table updating is critical. An updating may be triggered by adding a new MST
nodex. After a sequence ofExpandandNoti f y reachesx, it reports its best outgoing weight based on
the outgoing links. The reports propagate along theExpand/Noti f ypath back to the root and each node
on the path updates its table. A table updating may also be triggered byAnnouncesent fromx. Suppose
a neighbory of x is in the MST beforex. Then the table aty maintainsw(x). Upon receivingAnnounce
from x, x is no longer outgoing fromy andw(x) is deleted. The deletion may reduce the best outgoing
weight fromy or causey to terminate. In either case, the reports propagate along the tree-ancestor path
of y to the root.

If x hasr neighbors, up tor sequences of reports, one along theExpand/Noti f y path fromx to the
root and each other along a tree-ancestor path fromy to the root, race to the root. If the root makes the
Expanddecision upon arrival of the first report, its table may not be updated correctly, yielding a wrong
decision. On the other hand, how manyAnnounce-induced reports will ever arrive is generally unknown
to the root. Hence, waiting ofk reports for some finitek is not optional.

We develop a rule by which the root waits for a maximum amount of time to ensure all relevant

12

reports have arrived. First, the root keeps track the maximum length ofExpand/Noti f ypathes. When a
Noti f y message reaches a new MST nodex, it reports to the tree-parent with a parameterout hop= 1.
When theReportis relayed towards the root, each MST node setsout hop= in hop+1. When the root
receives theReport, its in hop parameter is the lengthh of the MST path fromx. The root maintains
δ = maxh(h), maximized over allh reported.δ is the radius of the current MST centered at the root.

Next, we analyze the timing for theAnnounce-inducedReport. Suppose the root sends outExpand
at t0, x sends the firstAnnounceat t1, the root receives theNoti f y-inducedReportat t2, a MST node
y receives anAnnounceat t3, and the root receives theAnnounce-inducedReportat t4. The following
equations hold where time is measured by the number of message transmissions. The transmission ofh
Expand/Noti f ymessages occurs during period[t0, t1]:

t1− t0 = h. (7)

Assuming thatx sends allAnnouncemessages before itsReport, the transmission ofr − 1 Announce
messages andh Noti f y-inducedReportmessages occurs in[t1, t2], wherer is the degree ofx:

t2− t1 = r −1+h. (8)

Period[t1, t4] is bounded by the time to transmitr − 1 Announcemessages andδ Announce-induced
Reportmessages:

t4− t1 ≤ r −1+δ. (9)

From the above two equations, we derive

t4− t2 ≤ δ −h. (10)

δ − h is the maximum time that the root waits after receiving theNoti f y-inducedReportto ensure all
Announce-inducedReports are arrived. Proposition 3 estimates the necessary wait time of the root by
refining the above analysis. It is used later in a complexity analysis.

Proposition 3 Let the MST root send an Expand request at t0 and receive the Noti f y-induced Report
with parameter h. Letδ be the current radius parameter at the root and r be the degree of the new MST
node. Then, all Announce-induced Reports arrive no later than t= t0+ r −1+h+δ.

6 DPMSTAlgorithm Suite

6.1 The Algorithm Suite

We specify theDPMST algorithm suite, as a set of event-driven procedures. Before responding to
messages, every node in the weighted graphΨ is initialized so thatstate= OUT, tree− parent= nil ,
andnbstate(x) = OUT for each neighborx.

An arbitrary nodez acts as theroot that starts the process by executingStart. It adds itself to the
empty MSTΨ′, creates the weight table, and runsExpandto expandΨ′. We assume that the root is
arbitrarily specified externally, as its choice does not affect correctness of the outcome. It corresponds
naturally with reality that hypertree construction is one of the first operations of a MAS.

Procedure 1 (Start)
1 state= IN; δ = 0;
2 create weight table with one row per neighbor;
3 for each row of table indexed by x, w(x) = w(z,x);
4 send Announce message to each neighbor;
5 run Expand;

Nodev that runsExpandmay be the root to continueStart (as above) or to respond to a timer
expiration (see Proc. 6). Ifv is not the root, it must be inΨ′ to respond toExpandfrom its tree-parent.
Using the weight table,v selects a neighbory that leads to a best outgoing link. It addsy to Ψ′ if y is
OUT. Otherwise, it asksy to expand.

13

Procedure 2 (Expand)
1 select neighbor y= argmaxxw(x) from weight table, breaking ties randomly;
2 if nbstate(y) = OUT,
3 send Noti f y message to y;
4 nbstate(y) = IN; record y as a tree-child;
5 else send Expand message to y; // y must be IN

When nodev receivesNoti f y from neighborp, it is added toΨ′ and runs Proc. 3 in response. In
the process, it creates the weight table, announces the new status to neighbors, and sendsReportto p by
Proc. 4.

Procedure 3 (Response to Notify)
1 state = IN; nbstate(p) = IN; tree-parent = p;
2 create weight table with one row per neighbor x, where nbstate(x) = OUT;
3 for each row of table indexed by x, w(x) = w(v,x);
4 for each neighbor y6= p, send Announce message to y;
5 run Inform(N, hop=1);

A nodev runs In f orm to sendReport to its tree-parent. The message has several arguments.NA
indicates whether theReport is Noti f y-induced (NA= N) or Announce-induced (NA= A). Argument
hopis only used in whenNA= N. Argumentstatesignifies termination of the sub-MST rooted atv. The
best outgoing weightbow from the weight table influences the next round of expansion.

Procedure 4 (Inform(NA, hop))
1 if there is no neighbor y with nbstate(y) = OUT and each tree-child c has nbstate(c) = DONE,
2 if v is not root, send message Report(NA,hop,state= DONE,bow= nil) to tree-parent;
3 state= DONE; halt;
4 else if v is not root,
5 compute maxbow= maxxw(x) from weight table;
6 send message Report(NA,hop,state= nil ,bow= maxbow) to tree-parent;

When nodev receivesAnnouncefrom neighborx, it performs the following. The root cannot receive
Announcefrom a tree-child, but can receive from a non-child tree-descendent.

Procedure 5 (Response to Announce)
1 nbstate(x) = IN;
2 if weight table has been created, delete its row indexed by x;
3 if state= IN, run Inform(A, hop=nil);

When notev receivesReportfrom a tree-childc, it performs Proc. 6. It updates the weight table and
sendsReportto the tree-parent. Ifv is the root andReportis Noti f y-induced,v sets an expire time and
updates the radius. When the timer expires, it starts the nextExpand.

Procedure 6 (Response to Report(NA, hop, state, bow))
1 if NA = N, hop++;
2 if argument state= DONE,
3 nbstate(c) = DONE; delete the row indexed by c from weight table;
4 if there is no neighbor y with nbstate(y) = OUT and each tree-child c has nbstate(c) = DONE,
5 if v is not root, send Report(NA,hop,state= DONE,bow= nil) to tree-parent;
6 state= DONE; halt;
7 else if argument bow6= w(c) in weight table, w(c) = bow;
8 if v is not root,
9 compute maxbow= maxxw(x) from weight table;
10 send Report(NA,hop,state= nil ,bow= maxbow) to tree-parent;
11 else if NA= N, // v is root
12 set timer tomax(δ−hop,0); δ = max(δ,hop);

14

The timer setting at line 12 is based on Eqn. (10). From Procs. 4 and 6, when a node changes its state
to DONE, it is terminated. The behavior of the algorithm suite is illustrated in Example 1.

6.2 Soundness, Complexity, and Agent Privacy

The soundness ofDPMST is established in Proposition 4.

Proposition 4 Given a connected, weighted graphΨ, DPMST computes a MSTΨ′ of Ψ specified dis-
tributively such that each node knows its tree-neighbors.

Proof: Announcemessages to neighbors and recursive reporting in Procs. 4 and 6 let each current MST
node know through which neighbor the best outgoing link in its sub-MST can be reached. Based on
Eqn. (10), by communicatingNA andhop count and controlling wait time, potential incorrect expan-
sion decisions due to transient weight tables are avoided. RecursiveExpandmessages combined with
Noti f y add the best outgoing link toΨ′ in each round. Therefore,DPMST extends Prim’s algorithm
distributively and computes a MST correctly.

When a nodev is added toΨ′, it knows its notifier as the tree-parent, and its notifier knowsv as a
tree-child. Hence, whenDPMSThalts, each node knows its tree-neighbors inΨ′. �

We analyze communication cost and time complexity below. Letd denote thediameterof Ψ, e
denote the number of links, andr denote the maximum degree of nodes. For communication cost, each
node is added toΨ′ with at mostd Noti f y/Expandmessages: a subtotal ofO(d η) messages. Each link
of Ψ passes twoAnnouncemessages, one for each end when added toΨ′: a subtotal ofO(2e) messages.
After a node is added toΨ′, Reports are propagated to the root from the node (Proc. 3) and its neighbors
(Proc. 5):O(r d) messages. This yields a subtotal ofO(r d η) messages. Hence, the total number of
messages isO(r d η +2e).

For time complexity, by Proposition 3, each round of expansion is bounded atO(2d + r) time. A
total of O(η) rounds has the time complexityO((2d+ r) η).

For agent privacy, consider the overall context of solving Problem 1. By using the boundary set
based problem reformulation, there is no loss on private variable. By using the MST based problem
reformulation, there is no loss on shared variable. DuringDPMST, messages are exchanged between
neighbors only and contain no node identity or adjacency. Hence, there is no loss on agent identity. We
consider below whetherDPMSTmay disclose some agent bordering relations.

Example 2 Apply DPMST to Fig. 7 (1), where a is the root and the MST currently contains link〈a,b〉
only. Next, a asks b to expand and b notifies e. In response, e announces to a and d, and reports to
b. By relating the Expand to b, the Report with hop= 2, and the Announce from e, node a infers the
adjacency〈b,e〉.

a

b e4 1
3 2

1d c

a

c

4 1

1
b e

2
d

a

b e

dc

4 1
3 2

1
(1) (2) (3)

3

2

Figure 7: Three weighted graphs

The inference can also occur at a MST node other than the root, as summarized by the rule below.

Rule to infer adjacency Let x be the tree-parent ofy. After x sends anExpand to y, if x receives
Announcefrom neighborz andReportfrom y with hop= 2, x can infer the adjacency betweeny
andz.

Such inference is possible only within the immediate neighborhood of a node. The example below
shows that reliable adjacency inference is generally impossible.

15

Example 3 Apply DPMST to Figs. 7 (2) and (3), where a is the root and the MST currently contains
link 〈a,b〉 only. In both cases, the following sequence of events occur relative to a. Node a asks b to
expand and later b reports to a with hop= 2, where d (in (2)) or c (in (3)) is added to the MST. Node
a asks b to expand and as the result e is added to the MST. What a perceives is Announce from e and
Report from b with hop= 3. Subsequently, a asks b to expand and later b reports to a with hop= 2, due
to addition of c (in (2)) or d (in (3)) to the MST. Since the same sequence of events occur in both cases, a
cannot tell which weighted graph it is in. This inability primarily originates from non-existence of node
identity in DPMST messages.

In Section 9, we report the amount of privacy loss by DPMST due to the above rule.

7 Necessary and Sufficient Conditions for Hypertree Existence

7.1 Hypertree Existence

We have presented how to construct a hypertree from a given environment decompositionΩ, assuming
that a hypertree exists. In general, a givenΩ may not have a hypertree. For example, Fig. 2 (c) has no JT.
Hypertree existence is recognized centrally by COORD-Plus [Xia02], that incurs privacy loss on agent
identity, bordering relation, and shared variable. In this and next section, we address distributed, privacy
preserving recognition of hypertree existence.

Problem 2 (Privacy preserving recognition of hypertree existence)Given the environment decompo-
sition of a MAS, how can agents determine whether a hypertree exists, while keeping privacy loss as
small as possible as measured by Eqns. (1) through (6)?

Similarly to Proposition 1 that shows that hypertrees can be built without reference to private vari-
ables, Proposition 5 says that hypertree existence can be determined without such reference.

Proposition 5 GivenΩ and W of a MAS, if there exists no JT with boundaries in W as clusters, then
there exists no JT with subenvironments inΩ as clusters.

Based on Proposition 5, we reformulate Problem 2.

Problem Reformulation 3 (Boundary set based recognition of hypertree existence)Given the bound-
ary set of a MAS, how can agents determine whether a hypertree exists, while keeping privacy loss as
small as possible as measured by Eqns. (1), (2), (5), and (6)?

Eqns. (3) and (4) are left out from the reformulation, as zero loss on private variable is guaranteed.

7.2 Boundary Graph Based Condition

Proposition 5 establishes whether a hypertree exists soly depends on the boundary set. However, it gives
no guidance on how to recognize the existence. We identify a necessary and sufficient condition that
provides such guidance. It is described through an alternative representation of the boundary setW. An
undirected graph is theboundary graphof a MAS, if the set of nodes isN = ∪η−1

i=0 Wi and eachWi is
complete (elements pairwise connected). Fig. 8 (a) reproduces the boundary set in Fig. 1 (c) with the
boundary graph in Fig. 8 (b).

Lemma 1 establishes a condition under which a JT can be constructed from a boundary graph, where
each cluster is a boundary (although not every boundary is a cluster). A set of nodes in a graph is aclique
if they are maximally pairwise connected. Two clusters arecomparableif one is a subset of the other.

Lemma 1 Let W be the boundary set of a MAS and BG be its boundary graph such that

1. BG is chordal and

2. for each clique C in BG, there exists Wi ∈W with C⊆Wi.

Let T be a JT whose clusters are cliques in BG. For every cluster Q in T, there exists a boundary Wi = Q.

16

v,w

v

y,z
u,w,y,z

u,y

4
3

2

0

W

W
W

W
W

(d)

1

v,w

v

y,z
u,w,y,z

u,y

4
3

2

1

0

W

W
W

W
W

v

uy

z w v,w

u,w,y,z

(c)(b)(a)

Figure 8: (a) Communication graph. (b) Boundary graph. (c) JT from (b). (d) JT of (a).

Example 4 We illustrate Lemma 1 by Fig. 8. The boundary graph in (b) is chordal. It has two cliques
{u,w,y,z} and{v,w}. Each is contained in a boundary in (a), i.e., W1 and W3, respectively. Hence, both
subconditions of Lemma 1 hold. The JT T stated in the lemma is shown in (c).

Lemma 1 says that every cluster in T is a boundary. The inverse does not hold in general. That is,
not every boundary is a cluster in T , e.g., W0.

Using Lemma 1, Theorem 1 provides a necessary and sufficient condition for hypertree existence.

Theorem 1 Let W be a boundary set with the boundary graph BG. A JT exists iff the following holds.

1. BG is chordal and

2. for each clique C of BG, there exists a boundary Wi ∈W such that C⊆Wi.

Theorem 1 implies that, as far as hypertree existence is concerned, a boundary set falls into one of
three mutually exclusive and exhaustive types.

Type 1 Boundary graphs are chordal and their cliques are boundary contained.

Type 2 Boundary graphs are not chordal.

Type 3 Boundary graphs are chordal but their cliques are not boundary contained.

Example 5 Consider the boundary set in Fig. 8 (a) whose boundary graph is in (b). The boundary set
is Type 1. The JT from the boundary graph is in (c). The two clusters are associated with agents A1 and
A3. After adding a cluster for each of the three remaining agents, the boundary based JT is shown in (d).

Example 6 Fig. 9 (a) shows an environment decomposition with the boundary set in (b) and BG in (c).
Since BG is not chordal, the boundary set is Type 2. By Theorem 1, it has no JTs.

uy

z w

u,w,y,z

hh,v

h,y,z
v,w

u,y

4
3

2

1

0

W

W
W

W
W

v
(a)

g,h,y,z
e,f,v,w

a,b,u,y

c,d,u,w,y,z

h,i,j,v

V2
V3

V 1
0V

V4 (b) (c)

Figure 9: (a) Environment decomposition graph. (b) Communication graph. (c) Boundary graph.

Example 7 For the boundary set in Fig. 10 (a), BG in (b) is chordal with two cliques. Since one of them
{h,v,w} is not contained in any boundary, the boundary set is Type 3. By Theorem 1, it has no JTs.

Typing the boundary set guides algorithm development below for recognition of JT existence.

7.3 Boundary Set Based Condition

We identify a second necessary and sufficient condition for hypertree existence, which directly leads
to distributed existence recognition. First, we define an operation to eliminate a boundary from the
boundary setW, relative to a bordering boundary. When a boundaryWi ∈W is eliminated relative toa

17

h
v

w

y u
z

(a) (b)

W
W

W
W

W

4

u,y

h,u,w,y,z

v,w

h,v

h,y,z

1

3
2

0

Figure 10: (a) Communication graph. (b) Boundary graph.

boundaryWj wherei 6= j andWi ∩Wj 6= /0, it yields areduced boundary set W′ = (W\{Wi,Wj})∪{W′
j},

where
W′

j =
⋃

k6=i,k6= j

(Wj ∩Wk).

That is, the setW′ resultant from eliminatingWi relative toWj is obtained by deletingWi andWj from
W, and replacing withW′

j . W′
j is obtained by the union of borders ofAj , except the border withAi . In

other words,W′
j is the boundaryWj without variables thatAj uniquely shares withAi.

Example 8 Consider the boundary set in Fig. 8 (a), W= {W0, ...,W4}. After W0 is eliminated relative
to W1, thereduced boundary setis W′ = {W′

1,W2,W3,W4}, where W′
1 = {w,y,z}.

Without confusion, we refer to each element ofW′ as anactive boundary, whether or not it is an
element ofW. The elimination operation is well defined on the reduced boundary set and hence can
be applied iteratively. In the case where only two identical active boundaries are left, i.e., boundary set
becomes{Wi,Wj} with Wi = Wj, we define the replacementW′

j = /0. That is,W′ = { /0}.

Example 9 For the boundary set in Fig. 8 (a),

W = {W0 = {u,y},W1 = {u,w,y,z},W2 = {y,z},W3 = {v,w},W4 = {v}},

eliminations can be performed iteratively as follows.

Eliminate{u,y} relative to{u,w,y,z} : W′ = {{w,y,z},{y,z},{v,w},{v}};
Eliminate{v} relative to{v,w} : W′ = {{w,y,z},{y,z},{w}};
Eliminate{w} relative to{w,y,z} : W′ = {{y,z},{y,z}};
Eliminate{y,z} relative to{y,z} : W′ = { /0}.

Each Wi eliminated relative to Wj has been chosen to satisfy Wi ⊆Wj. Its significance is seen below.
Each reduced set W′ (except the final singleton) is a well-defined boundary set in the sense that each
variable is shared by at least two boundaries in W′. Take W′ = {{w,y,z},{y,z},{w}} for example. Each
of w, y, and z is shared by two boundaries.

Next, we establish the second necessary and sufficient condition based on boundary elimination.

Theorem 2 A MAS with the boundary set W has a JT agent organization, iff W can be eliminated
iteratively into a singleton such that each Wi eliminated relative to Wj satisfies Wi ⊆Wj.

Theorem 2 suggests the following idea for a distributed algorithm to recognize hypertree existence.

7.4 Distributed Recognition of Hypertree Existence

ConditionWi ⊆ Wj in Theorem 2 is equivalent toWi = Ii j and we refer to asborder equality. Since it
is a local condition, a privacy preserving, distributed recognition can proceed as follows. Agents are
self-eliminated one by one as long as possible.Ai can be eliminated if border equality holds relative to a
remaining agentAj . After elimination,Aj removes from its boundary variables shared uniquely withAi .
If all agents are eliminated except one (whose active boundary becomes /0), then a hypertree exists.

18

A token is passed between bordering agents by depth-first-traversal (DFT). The first round of DFT
starts at an agent with tokentok1. If an agentAi holds the token and satisfies border equality relative to
another agentAj , thenAi signifies to each bordering agent that it is eliminated and passes a new token
tok2 to Aj . Aj then starts the second round of DFT with remaining agents usingtok2. If an agent starts a
new round and has no uneliminated bordering agent, it declares existence of a hypertree.

SupposeAj starts a new round with at least one uneliminated bordering agent. When the token
backtracks toAj , if Aj still has uneliminated bordering agents, it declares non-existence of hypertrees.

By Theorem 1, hypertree existence can be analyzed according to mutually exclusive and exhaustive
types of boundary sets. We illustrate the above idea for Type 2 below. After specifying our algorithm in
Section 8.1, we illustrate for Type 1 and Type 3.

Example 10 Fig. 11 (a) shows the communication graph of the Type 2 boundary set from Example 6.
Suppose A0 starts the first round with tok1. Since it satisfies border equality relative to A1, A0 announces

h,y,z

h,v
(a)

u,y0

1

2

u,w,y,z

3

v,w

A

A

AA4

A

h,y,z

h,v
(b)

1

2

3

v,wA

AA4

A
w,y,z

Figure 11: Hypertree existence recognition with a type 2 boundary set

elimination and passes a new token tok2 to A1. A1 reduces its boundary as in (b) and starts the second
round of DFT using tok2. Since A1 does not satisfy border equality relative to any of two bordering
agents, it passes tok2 to one of them, say, A2. A2 does not satisfy border equality relative to any of two
bordering agents and passes tok2 to A4, that in turn passes to A3.

A3 cannot self-eliminate, nor does it have any unvisited agent to pass token to. Therefore, it returns
tok2 to A4. A4 returns tok2 to A2, that in turn returns to A1. A1 gets tok2 back, while having two
uneliminated bordering agents. It declares non-existence of hypertrees. Soundness of the claim can be
seen from both Theorem 2 (through non-eliminability) and Theorem 1 (through Type 2 boundary set).

8 HTBSAlgorithm Suite

We now specify a distributed algorithm suiteHTBSfor recognition of hypertree existence.

8.1 The Algorithm Suite

Activity at an agent is driven by the following messages.

• A notificationEliminatedis sent by an agent that has been self-eliminated.

• A requestStartNewDFT(tok) calls the receiver to start a new round of DFT with tokentok.

• A requestDFT(tok) calls the receiver to continue the current round of DFT with tokentok.

• A Reportis sent by an agent in response toDFT(tok), signifying that either it has completed DFT
or it has been visited in the current round. In either case, the current round of DFT backtracks to
the caller.

We refer to an agent that runs a procedure byAi and the sender of a message toAi by Ac. Before re-
sponding to messages, every agent is initialized. A flagstate∈ {IN,OUT} (set toIN) indicates whether
Ai has been eliminated. A flagnbsta(Ak) ∈ {IN,OUT} (set toIN) indicates the state of a bordering
agentAk. A variablecurtok(set tonil) keeps a token value after it has visitedAi, andvisited(Ak) (set to
f alse) indicates whether the token has visited a bordering agentAk. Ai maintains its active boundaryWi

asYi.

19

At the start of a new round, a remaining agent receivesStartNewDFT. In the first round, aleader
agent is arbitrarily selected and messaged externally. Its choice does not affect correctness of the out-
come. When messaged,Ai does the following.

Procedure 7 (Response to StartNewDFT(tok))
1 if Ac is a bordering agent,
2 nbsta(Ac) = OUT;
3 if there exists no Aj with nbsta(Aj) = IN,
4 declare “a hypertree exists” and start halting;
5 else Yi = /0; for each bordering Ak where nbsta(Ak) = IN, Yi = Yi ∪ Iik;
6 curtok= tok; parent= nil;
7 run DoDFT;

Proc.DoDFT is run from either Proc. 7 (line 7) or Proc. 9 (line 4). In both cases,Ai has at least one
remaining bordering agent. When from Proc. 7 whereAc is external, all bordering agents ofAi areIN . If
Ac is a bordering agent,Ai must have remaining bordering agents since otherwiseAi would have halted
in line 4. When from Proc. 9,Ac is a remaining bordering agent. Note when executing from Proc. 7,Ai

hasparent= nil , while when executing from Proc. 9,parent= Ac.
DuringDoDFT, Ai looks forAj with border equality. If found,Ai sendsEliminatedto each remain-

ing bordering agent andStartNewDFTto Aj . Otherwise,Ai looks for a remaining bordering agentAk

that differs fromAc. If found, Ai sendsDFT(tok) to Ak. If no suchAk exists,Ai sendsReportto Ac.

Procedure 8 (DoDFT)
1 if there exists Aj with nbsta(Aj) = IN and Yi = Ii j , // self-eliminate
2 state= OUT;
3 for each bordering Ak 6= Aj where nbsta(Ak) = IN, send Eliminated to Ak;
4 send StartNewDFT(curtok+1) to Aj ;
5 else parent = Ac; // no IN agent satisfies Yi = Ii j
6 for each bordering Ak 6= parent where nbsta(Ak) = IN, set visited(Ak) = f alse;
7 if there exists Ak 6= parent where nbsta(Ak) = IN and visited(Ak) = f alse,
8 send message DFT(curtok) to Ak;
9 else send Report to parent;

WhenAi receivesEliminated, it setsnbsta(Ac) = OUT. WhenAi receivesDFT(tok) from Ac, it
performs the following. Line 1 is run whenAi has been visited in the current round and theReport
corresponds to backtracking. Otherwise,Ai continues with the current round.

Procedure 9 (Response to DFT(tok))
1 if curtok= tok, send Report to Ac; // tok is not fresh
2 else curtok= tok; // tok is fresh to Ai
3 parent= Ac; visited(Ac) = true;
4 run DoDFT;

After Ai sendsDFT(tok) to Aj , it may receive aReport in reply. In response,Ai looks for another
remaining bordering agentAk other thanAc to continue the current round of DFT. IfAk is not found
andAi is the sender ofStartNewDFTfor the current round, it declares no hypertrees. Otherwise, it
backtracks toAc with a Report.

Procedure 10 (Response to Report)
1 visited(Aj) = true;
2 if there exists Ak 6= parent such that nbsta(Ak) = IN and visited(Ak) = f alse,
3 send message DFT(curtok) to Ak;
4 else // no unvisited bordering agent
5 if parent= nil, declare “no hypertrees” and start halting;
6 else send Report to parent;

20

SND

SND

SND

SND

A

1

3v

v,w

w
A 4

A3

v
v

A
A

A

A
A

A

0

1

2
3

4

u,y

u,w,y,z
y,z

v

v,w

(a)

A

A
A

A

1

2
3

4

w,y,z
y,z

v

v,w

(b) (c) (d)
4A

Figure 12: Execution ofHTBSwith a Type 1 boundary set

Example 11 Fig. 12 (a) shows the communication graph of the Type 1 boundary set from Example 5.
Suppose A0 is the leader receiving StartNewDFT(tok1). Since it satisfies border equality relative to A1,
A0 sends Eliminated to A1 and A2, and sends StartNewDFT(tok2) (shown as SND) to A1. In response,
A1 updates its active boundary as in (b). Since A1 does not satisfy border equality relative to A2 and A3,
it sends DFT(tok2) to one of them, say, A2. Border equality holds for A2. Hence, it sends Eliminated to
A1, followed by StartNewDFT(tok3).

In response, A1 updates its active boundary again as in (c). Now, it satisfies border equality relative
to A3. It sends Eliminated and StartNewDFT(tok4) to A3. In response, A3 updates its active boundary
as in (d). It sends Eliminated and StartNewDFT(tok5) to A4. A4 has no uneliminated bordering agent
and declares hypertree existence. Soundness of the claim can be seen from Theorem 2 (eliminability) or
Theorem 1 (Type 1).

During DFT, the active boundary of an agent may be reduced but the border between any pair of
agents never changes. Furthermore, sending bothEliminatedandStartNewDFT to a same agent is
unnecessary. For simplicity of presentation, such optimization is omitted.

Example 12 Fig. 13 (a) shows the communication graph of the Type 3 boundary set from Example 7.
Suppose A0 is the leader receiving StartNewDFT(tok1). It sends Eliminated to A1 and A2 and sends

A

4A A

v,w

3

1

h,v

h,w

(c)

A

4A A

A

A

v,w

3

2

1

0 u,y

(a)
h,v

h,y,z
h,u,w,y,z

A

4A A

A v,w

3

2

1

(b)
h,v

h,y,z
h,w,y,z

Figure 13: Execution ofHTBSwith a Type 3 boundary set

StartNewDFT(tok2) to A1. A1 updates its boundary as in (b). Since A1 does not satisfy border equality
relative to any bordering agent, it sends DFT(tok2) to one of them, say, A2. A2 sends Eliminated to A1
and A4 and StartNewDFT(tok3) to A1.

After updating its boundary as in (c), A1 sends DFT(tok3) to, say, A3. In response, A3 sends
DFT(tok3) to A4 that in turn sends to A1. Since token tok3 is not fresh to A1, it sends Report to A4.
In response, A4 sends Report to A3 that in turn sends to A1. A1 has no unvisited bordering agent and
declares no hypertrees. Soundness of the claim can be seen from Theorem 2 (non-eliminability) or The-
orem 1 (Type 3).

In Procs. 7 and 10, how to perform halting is not elaborated. One method is for the declaring agent
to send each bordering agent the claim, and halt. Each receiving agent relays to each bordering agent
except its sender and halts.

8.2 Soundness, By-product, Complexity, and Agent Privacy

HTBSconcludes with the claim of either “a hypertree exists” or “no hypertrees”. Its soundness and
completeness follow directly from Theorem 2 as stated below.

21

Corollary 1 A MAS with the boundary set W has a hypertree iff HTBS terminates with “a hypertree
exists”.

Retrospectively,DPMSTwas developed first. As it assumes hypertree existence,HTBSwas devel-
oped subsequently with the main focus on recognizing existence. AfterHTBSwas formulated as above,
we discovered to our surprise that it has a significant by-product as illustrated below.

Example 13 In Example 11, a total of four StartNewDFT messages are sent between agents (an addi-
tional one comes to the leader externally). These messages are labelled as SND in Fig. 12. Pathways of
these messages define a boundary based JT (see Fig. 8 (d)).

WhenAi sendsStartNewDFTto Aj (j 6= i), a sender-receiver relation forms. Example 13 suggests
that, ifHTBSconcludes with a positive claim,StartNewDFTsender-receiver relations define a boundary
based JT. The theorem below generalizes this observation.

Theorem 3 If a MAS with the boundary set W has a hypertree, then agent adjacency in a hypertree is
defined by StartNewDFT sender-receiver relations during HTBS.

Theorem 3 means that as long as agents keep track ofStartNewDFTsender-receiver relations, upon
claim of “a hypertree exists”, a hypertree is immediately specified without additional computation.

Next, we analyze complexity. Lete be the number of pairs of bordering agents. In each round of
traversal,O(e) messages are passed. HTBS concludes inO(η) rounds. Hence, the computation time up
to declaration isO(e η). The halting process takesO(r η) messages, wherer is the maximum number
of bordering agents per agent. Therefore, the overall time complexity isO((e+ r) η).

Finally, we consider agent privacy.HTBSsolves the reformulated Problem 2 (as well as the reformu-
lated Problem 1). Hence, only loss on agent identity, bordering relation, and shared variable are possible.
Since messages contain no information on shared variable, there is no loss on shared variables. Since
messages are passed between bordering agents only and message argument is a token, there is no loss
on agent identity and bordering relation. Note that the inference on agent adjacency duringDPMST is
not possible. The reliability of Rule to infer adjacency in Section 6.2 depends on thehopvalue. Since
no similar path length information is relayed duringHTBS, the inference is impossible.

9 Experimental Evaluation

The experimental study achieves the following purposes. First, it provides empirical evidence about
soundness ofDPMSTandHTBS. Second, it compares their effectiveness in privacy preservation with
alternative hypertree methods. Third, it compares computational costs with relevant methods. Fourth, it
evaluates the chance of hypertree existence for an arbitrary environment decomposition. Fifth, it suggests
promising direction on hypertree construction for environment decompositions without hypertrees.

9.1 Setup of Experiment on Soundness, Privacy Loss and Efficiency

A total of 405 environments are simulated using WebWeavr.1 Each of them is decomposed over between
96 and 112 agents (96≤ η ≤ 112). This scale is sufficiently large so that a further scaling up differs
quantitatively rather than qualitatively. Among the 405 environments, 137 are Type 1, 135 are Type
2, and 133 are Type 3. Hence, possible types are covered exhaustively. Environments also differ in
densities of communication graphs. Each environment is at one of three possible levels of density,
sparse, denser, anddensest, which corresponds to about 5, 16, and 27 borders per agent on average.
Each subenvironment has between 2 and 37 variables. Using the digital equipment diagnosis example
[Xia02] as the reference, where ratios of private versus shared variables are between 3.6:10 and 8.2:10,
we set the ratio for each subenvironment randomly between 3:10 and 10:10. Subenvironment sizes and
ratios of private versus shared variables are so chosen such that further scaling up differs quantitatively
rather than qualitatively. Table 1 summarizes the distribution of these environments and their indexing
(to be referenced below).

1WebWeavr is a Java-based toolkit for graphical models and is available at http://www.socs.uoguelph.ca/ ỹxiang/.

22

Table 1: Experimental environments

Env Type Type 1 Type 2 Type 3
Density Sparse Denser Densest Sparse Denser Densest Sparse Denser Densest
No. Env 45 46 46 45 45 45 45 44 44
Index 1-45 46-91 92-137 138-182 183-227 228-272 273-317 318-361 362-405

To evaluate the relative effectiveness of DPMST and HTBS, we selected alternative algorithms as
follows. Since DPMST and HTBS are intended for privacy preserving hypertree construction, the rel-
evant algorithms reviewed in Section 3.2 are the immediate candidates, including Action-GDL, DCTE,
and COORD-Plus. COORD-Plus uses one private variable per agent (Section 4.1). This can be im-
proved as justified by Propositions 1 and 5. We therefore replace COORD-Plus with a method COORD
that modifies COORD-Plus by not using the private variables.

Since DPMST is based on distributed MST construction, we considered alternative algorithms sur-
veyed in Section 5.1. They can be divided into three types, the GHS type including GHS and its im-
provements [Awe87, FM95, GKP98], the approximate type [KP08], and the parallel type [NCKB12].
As discussed in Section 5.1, approximate MST algorithms are not applicable to our problem and parallel
algorithms have much worse privacy loss than the GHS type. Hence, we eliminated these two types from
candidates for comparison. Within the GHS type, although more recent algorithms improve efficiency
relative to GHS, they suffer the same privacy loss as GHS due to the same technique used to handle
nondistinct link weights. As our primary focus is on privacy preservation rather than efficiency of dis-
tributed MST construction, we have chosen to use GHS as the representative for this type of algorithms.

In addition, a centralized algorithm, termed CENTRA, is used as the baseline for privacy loss. CEN-
TRA collects the subenvironment of every agent to a single agentAi. Ai determines hypertree existence
and if so builds a hypertree (see Section 9.3 [Xia02]). It then informs each agent of its hypertree neigh-
bors. As shown in an earlier work [MPB+06] and also verified by our experimental results below, de-
centralized approaches do not automatically outperform centralized approaches with respect to privacy
loss. Hence, the use of a centralized algorithm as the baseline is justified.

In summary, seven alternative algorithms are compared, Action-GDL, CENTRA, COORD, DCTE,
DPMST, GHS, and HTBS. Note that since CENTRA collects the subenvironment from every agent
to a single agentAi , the maximum privacy leak occurs toAi but none to other agents. To make the
result independent of the choice ofAi , we measure the system privacy loss using the expected value.
The expected normalized system privacy loss for CENTRA isE(NSPL) =1/η . Extending the analysis
in Section 3.2, COORD has the sameE(NSPL)as CENTRA on agent identity and adjacency and on
identity of shared variable, but incurs no loss on domain of shared variable and on identity and domain
of private variable.

Action-GDL, DCTE, GHS, DPMST, and HTBS are implemented in Java using WebWeavr, running
in simulated MAS environments. Each message transmission takes 1 time unit. The computational cost
(runtime) is measured by the number of time units. For all methods, an arbitrary root agent is externally
specified, that starts the clock. Each other agent is initially inactive until a message is passed to it
according to the algorithm. For Action-GDL, this root starts depth-first search and becomes the root of
the pseudotree. For DCTE, this agent generally does not end up as the root of the spanning tree. For
GHS, this root is the first awakened fragment. For DPMST, this root is the MST root and for HTBS it is
the leader.

During execution of each algorithm, each agent keeps track what are learned from messages on
unknown agent identity and adjacency, and on unknown variable identity and domain. Each DPMST
agent also uses the rule in Section 6.2 to infer agent adjacency. After the algorithm halts, information is
collected from each agent to compile the normalized loss NSPL.

GHS and DPMAT are intended for hypertree construction assuming existence and were run on 137
Type 1 environments. Action-GDL, DCTE, and HTBS were run on all 405 environments.E(NSPL)
from CENTRA and COORD are derived and used for comparison with other methods.

23

9.2 Results on Soundness and Privacy Loss

HTBS is the only distributed algorithm run for existence recognition. For all 268 environments of Type
2 and Type 3, HTBS correctly recognized non-existence of hypertrees. For the remaining 137 Type 1
environments, it constructed hypertrees. GHS and DPMST were run on 137 Type 1 environments and
constructed hypertrees in all. Action-GDL and DCTE constructed hypertrees in all 405 environments.
Hence, all alternative methods completed intended tasks correctly. Note that HTBS is strictly bounded
by the environment decomposition while Action-GDL and DCTE are not (variables can be added to the
subenvironment of an agent). Therefore, Action-GDL and DCTE constructed hypertrees for Type 2 and
Type 3 environments when HTBS declares non-existence.

Figure 14: Normalized system privacy losses on agent identity and adjacency

Fig. 14 plots NSPL on agent identity (top) and adjacency (bottom), where the horizontal axis is
labeled by environment index. When different methods yield the same NSPL, their plots are combined.
For instance, all of Action-GDL, DPMST and HTBS incur no loss on agent identity. A single curve is
shown and labeled as Ac-DP-HT. Abbreviations (first two letters) in figure legends are listed below.

Ac: Action−GDL; CE :CENTRA; CO:COORD: DC : DCTE; DP : DPMST; GH : GHS; HT : HTBS.

GHS and DPMST were run for Type 1 environments and their curves extend up to index 137.
DCTE has the highest loss on both agent identity and adjacency, and the loss is consistently higher

than the baseline (CENTRA). The loss grows as the density level increases, but is insensitive to the
type of environment. GHS has the loss on agent identity (top) close to the baseline, but its loss on agent
adjacency (bottom) is consistently lower than the baseline. In both cases, the loss decreases as the density
level increases. Action-GDL, DPMST and HTBS incur no loss on agent identity, and Action-GDL and
HTBS incur no loss on agent adjacency.

Fig. 15 plots NSPL on private variable identity (top) and domain (bottom). Since losses on private
variable identity by Action-GDL, CENTRA, and DCTE are significantly different, their losses are plot-
ted in log10 (top). Losses by COORD, DPMST, GHS, and HTBS are zero and are not shown, since
limloss→0 log10(loss) = −∞.

DCTE (top) has the maximum possible loss (NSPL= 1) on private variable identity. This is due
to global variable propagation during JT construction. The original method [PGM05] did not explicitly
differentiate identity from domain in variable propagation. Our implementation of DCTE propagates
variable IDs first and only propagate domains as needed. Since a private variable is contained in a single
agent, it is never added to another agent for running intersection. Our implementation therefore did not

24

Figure 15: Normalized system privacy losses on identity and domain of private variable

Figure 16: Normalized system privacy losses on identity and domain of shared variable

25

propagate its domain, resulting in zero loss. This experimental result suggests that their IDs need not be
propagated. Hence, DCTE can be improved to reduce loss on identity of private variable to none.

Losses by Action-GDL on both private variable identity and domain are consistently lower than the
baseline. COORD, GHS, DPMST, and HTBS incur no loss in either case.

Fig. 16 plots NSPL on the identity (top) and domain (bottom) of shared variable. Losses by Action-
GDL are identical on both and difference in the outlook is due to different scales at y-axis. Its losses are
generally lower than the baseline. DCTE’s loss on shared variable identity is consistently much higher
than CENTRA, but its loss on shared variable domain is much smaller than CENTRA. The striking
difference is due to global variable ID propagation, but domain propagation occurs at a much smaller
scale. DCTE’s loss on variable identity decreases with the density level, but its loss on variable domain
does not vary with the density. On the other hand, the loss by Action-GDL grows with the density level.
No loss is incurred by GHS, DPMST and HTBS on both variable identity and domain.

Table 2 summarizes privacy loss by alternative methods. Losses by CENTRA and COORD are
expected values. Loss on agent adjacency by DPMST is produced soly due to the rule of inference.

Table 2: Summary of privacy loss by alternative algorithms

Agent Private Var Shared Var
Id Adj Id Dom Id Dom

CENTRA 1/η 1/η 1/η 1/η 1/η 1/η
COORD 1/η 1/η 0 0 1/η 1/η

Action-GDL 0 0 x x x x
DCTE x x x 0 x x
GHS x x 0 0 0 0

DPMST 0 x 0 0 0 0
HTBS 0 0 0 0 0 0

The significance of comparison between GHS and DPMST on agent adjacency loss is evaluated by
a Friedman test. Rank sums are 137 and 274 respectively and the critical value forα = 0.01 is 27.23.
Hence, the null hypothesis is rejected at theα = 0.01 level of significance. Neither method incurs loss
on private and shared variable. Since GHS incurs loss on agent identity but DPMST does not, and loss
by DPMST on agent adjacency is significantly less, DPMST has superior privacy than GHS.

Among the alternatives, HTBS is the only one that incurs no privacy loss. DPMST has the lowest
privacy loss among all alternatives, except HTBS.

9.3 Results on Runtime

Runtimes by Action-GDL, DCTE, GHS, DPMST, and HTBS are plotted in Fig. 17. DCTE has the
highest cost due mainly to spanning tree construction. Letd be the diameter of the dependency graph
andr be the maximum node degree. Starting at an arbitrary node, it takes DCTEO(d g) time to activate
the spanning tree root, and anotherO(d g) time for each node to agree on the root, which completes the
spanning tree construction. Before 2dg time, it’s impossible to ensure that the spanning tree has been
distributively constructed. Hence, the cost of DCTE is lower-bounded by 2dg time.

Action-GDL has about the same runtime as DPMST for the denser level, does better for the sparse,
and does worse for the densest. Although GHS is the fastest due to parallel processing, HTBS’s cost is
only slightly higher than GHS but is consistently lower than all other alternatives.

The relative cost of DPMST and HTBS is somewhat surprising. From the complexityO((2d+ r)η)
for DPMST andO((e+ r)η) for HTBS, DPMST is expected to be more efficient. To the contrary,
it takes on average three times longer than HTBS in Type 1 environments. This is attributed to the
following. For HTBS, after an agent is self-eliminated, it no longer participates in further computation,
until propagation of the final claim. Hence, the active boundary set continues to shrink during the
process. ForDPMST, after a node is added to the MST, it continues to participate and may relay many

26

Figure 17: Runtime measured in time units

Expand/Report messages, until no outgoing link is reachable from it. This contributes to a longer
runtime.

9.4 Likelihood of Hypertree Existence

This experiment evaluates the likelihood of hypertree existence with an arbitrary boundary set. It is
equivalent to evaluate the likelihood of a JT for an arbitrary cluster graph. To control the scale, we set
the generating set for clusters at size 10 and let each cluster be a proper subset. A cluster has at least 2
elements to allow intersections with different clusters over different elements. All clusters in a cluster
graph have the same size, which controls the average degree of interaction between clusters. For each
cluster graph of cluster sizek, clusters are randomly selected fromC(10,k) distinct candidates. Fork= 2
the number of candidates is 45, and fork = 5 the number is 252. For each cluster graph, we select 10
clusters. For each cluster sizek = 2,3,4,5,6,7, we generate 1000 cluster graphs.

Whether a cluster graph has a JT can be determined by converting it uniquely into an undirected
graph and test its chordality (see [Xia02] for details). This is due to the well-known fact that the cluster
graph has a JT if and only if the undirected graph is chordal. Each of the 6000 cluster graphs were tested
for JT existence. The percentage of cluster graphs with JTs for each group (1000 graphs of the same
cluster size) is shown in Fig. 18.

Figure 18: Percentage of cluster graphs with JTs. The x-axis is labelled by cluster sizek.

Whenk= 2, 39% of the cluster graphs have JTs, but the rate drops to 9% whenk= 3. This is because
many undirected graphs withk = 2 have no loops and hence are chordal. Ask increases to 3, more loops
without chords formed and resultant graphs are nonchordal. Ask continues to increase, more chords are
added to loops, rendering more chordal graphs. Whenk increases to 7, 99% of the cluster graphs have
JTs.

This result demonstrates that if the communication graph is dense (such as the casek = 7), it is
highly likely that the boundary set has a hypertree. Otherwise, the boundary set is less likely to have a
hypertree. In that case, no matter how boundaries are arranged into a tree organization, it does not ensure
correct inference. Hypertree recognition is necessary to detect such situations.

27

9.5 When Boundary Set Has No Hypertrees

Next, we consider the third issue raised in Section 1 on how to modify an environment decomposition
that has no hypertrees. From Theorem 1, a boundary set of Type 2 (Fig. 9) or Type 3 (Fig. 10) has no
hypertrees. We demonstrate that both can be modified to have a hypertree by incurring a limited privacy
loss on shared variable.

h v
(b)

W

W
W

W

4

u,y

h,u,w,y,z

h,v

h,y,z

1

3
2

0

z

h
v

w

y u

h,v,w

h,w,y,z
v,w

u,w,y,z

u,y

4
3

2

1

0

W

W
W

W
W

(c)(b)(a)

uy

wz
h,v,w

W

Figure 19: (a) A boundary set. (b) The boundary graph of (a). (c) Another boundary set.
(d) The boundary graph of (c).

Fig. 19 (a) shows a boundary set modified from Fig. 9. Variablew originally shared byA1 andA3 is
now also shared byA2 andA4 (shown by underline). The new boundary graph is in (b) where a (dashed)
link is added as the result. The graph is chordal with three cliques and each is boundary contained.
Hence, the modified boundary set has a hypertree.

Fig. 19 (c) shows a boundary set modified from Fig. 10. Variableh originally shared byA1, A2 and
A4 is now also byA3. The boundary graph (d) is identical to Fig. 10 and is chordal. What differs is that
it is now boundary contained. Hence, the modified boundary set has a hypertree.

Our earlier results show that for the 268 Type 2 and Type 3 environments (indexed 138 to 405), HTBS
incurred no privacy loss while Action-GDL and DCTE incurred loss up to and higher than the baseline.
One may attribute the superior privacy of HTBS to the lesser task to recognize hypertree non-existence
and infer that the loss by Action-GDL and DCTE is necessary as they constructed hypertrees. Although
our demonstration above indicates that some privacy loss is unavoidable during construction, we claim
that up to the baseline (as Action-GDL) and higher than the baseline (as DCTE) loss is not necessary.
Our experimental results clearly support the claim. First, significant difference between losses by Action-
GDL and DCTE means that the higher than baseline loss can be avoided. Second, for the 137 Type 1
environments, HTBS performed the same task as Action-GDL and DCTE and their relative performance
on privacy loss is about the same as for Type 2 and Type 3. This suggests the following future research.
Extend HTBS to environment decompositions that have no hypertrees by modifying the decompositions
and constructing hypertrees. The direction is promising in resolving the third issue whiling incurring
much less privacy loss than Action-GDL and DCTE.

10 Conclusion

A competitive agent organization needs to support both sound inference and agent privacy. Hypertrees
have the former property and the potential to the latter. However, existing hypertree frameworks do not
deliver the potential for privacy and leak three types of private information that can be protected.

This paper presents six main contributions to address the limitation. First, we identified three types
of agent privacy that are compromised by existing hypertree techniques and defined a set of measure-
ments to quantify each type of privacy loss. Second, we proposed the boundary set based and MST based
problem reformulations that allow development of new hypertree algorithms that fundamentally protect
agent privacy on private and shared variables. Third, we proved a mutually exclusive and exhaustive
typing of boundary sets: a foundation for algorithmic study of hypertree existence. Fourth, we devel-
oped DPMST for hypertree construction, taking advantage of the MST based problem reformulation.
Although slower than GHS, DPMST has no loss on agent identity, incurs significantly lower loss on
agent adjacency, and remains efficient. It has the lowest privacy loss among alternatives, except HTBS.
Fifth, we developed HTBS for existence recognition and hypertree construction. It has no privacy loss,

28

it is efficient, and its cost is lower than alternative methods except GHS. Sixth, we conducted extensive
experiments demonstrating the superiority of DPMST and HTBS in agent privacy.

As far as tasks of existence recognition and hypertree construction are concerned, HTBS dominates
DPMST. This is because (1) DPMST handles only one task while HTBS handles both, (2) HTBS has
no privacy loss while DPMST has non-zero loss on agent adjacency, and (3) HTBS runs faster. Still,
DPMST holds its value both algorithmically and practically. It is the first distributed MST algorithm
that protects node identities and has significantly less loss on node adjacency than GHS (and its im-
provements). It provides a methodology-wise significantly different alternative and opens the door for
further improvement of the methodology. Since DPMST assumes hypertree existence, actual existence
generally has to be established by other means. However, there are cases where the hypertree existence
is known and hence DPMST is applicable. For instance, when an existing MAS with a hypertree is ex-
panded such that each new agent borders exactly one existing agent, a hypertree exists for the expanded
environment.

Performance in constraint reasoning can be improved by selecting the pseudotree used [MTB+05].
DPMST and HTBS do not try to control topology of the hypertree produced. One reason is that the
number of alternative pseudotrees for a given dependency graph is large. Every node can be the root to
produce at least one distinct pseudotree. On the other hand, the number of alternative hypertrees for a
given environment decomposition is often small, unless many agent borders are identical. For instance,
the hypertree for Fig. 1 (a) is unique. Secondly, unlike a pseudotree where the root is fixed and inference
time is thus dependent on the pseudotree, a hypertree does not have a rigid root. That is, inference on
a hypertree can be started at any agent. Although the actual root influences the inference time, the root
choice needs not be made at the time of hypertree construction.

Privacy preserving hypertree construction involves three essential issues: existence recognition, con-
struction, and modification of environment decompositions that have no hypertrees. HTBS addresses the
first. Both DPMST and HTBS address the second. We have demonstrated that an environment decom-
position without hypertrees can be modified to have one. A promising direction for a general solution of
the third issue is suggested, which extends HTBS to reduce privacy loss potentially well below existing
methods such as Action-GDL and DCTE. DPMST and HTBS involve all agents in a MAS. For MASs
that dynamically expand and shrink, incremental recognition and construction may be obtained through
extensions.

In distributed constraint optimization, a metric that combines the value of a solution with the loss
of privacy has been proposed [SDMY08]. It allows an agent to quit problem solving when anticipated
privacy loss is higher than the value of a solution. This idea is useful when an agent must trade solution
value with privacy. Such tradeoff is not a concern when a solution (recognition of hypertree existence or
its construction when existing) can be found efficiently without any loss of privacy (as by HTBS) or with
very limited loss (as by DPMST). It may become relevant as we tackle the third issue outlined above in
future research.

Both DPMST and HTBS assume an externally specified root or leader agent. The soundness of both
algorithms are independent of the choice of this agent. It is sometimes desirable to elect the root/leader
agent while preserving the three types of privacy. We leave the feasibility analysis of such an election
and, if positive, its algorithmic development for future research.

Appendix: Proofs

Proof of Proposition 1
We show that running intersection holds inT ′. LetC′ andQ′ be non-adjacent clusters inT ′ such that

C′∩Q′ 6= /0, andX′ be a cluster on the path betweenC′ andQ′. LetC, Q, X be clusters inT corresponding
toC′, Q′, X′, respectively. We show thatC′∩Q′ is contained inX′, namely,C′∩Q′ ⊆ X′.

SinceT is a JT,C∩Q is contained inX, i.e.,C∩Q⊆ X. BecauseC andQ are boundaries (made
of shared variables), it followsC′ ∩Q′ = C∩Q. That is,C′ ∩Q′ ⊆ X. SinceX is a boundary, we have
X′ = X ∪Y′, whereY′ is the set of private variables in subenvironmentX′. Hence,X ⊆ X′. From
C′∩Q′ ⊆ X andX ⊆ X′, it follows thatC′∩Q′ ⊆ X′. �

29

Proof of Proposition 3
By assumption, the transmission of each message takes at most one time unit. Combining Eqns. (7)

and (9) and substitutingt4 by t , the result follows. �

Proof of Proposition 5
Suppose that no JT exists with boundaries inW as clusters, but a JTT ′ exists with subenvironments

in Ω as clusters. Then for every pair of nonadjacent clusters inT ′ such thatC′∩Q′ 6= /0, and a clusterX′

on the path betweenC′ andQ′, it holds thatC′∩Q′ ⊆ X′.
Let T be a cluster tree with boundaries inW as clusters such that it is isomorphic toT ′ with each

boundary mapped to the corresponding subenvironment. LetC, Q, X be clusters inT corresponding to
C′, Q′, X′, respectively. SinceC andQ are boundaries,C∩Q= C′∩Q′ ⊆X′ = X∪Y′, whereY′ is the set
of private variables in subenvironmentX′. FromC∩Q⊆X∪Y′ andC∩Q∩Y′ = /0, we obtainC∩Q⊆X.
That is, running intersection holds inT andT is a JT: a contradiction to the assumption. �

Proof of Lemma 1
From subcondition 1, a JTT exists and no two clusters inT are comparable. We prove the claim by

contradiction. Suppose there exists a clusterQ in T such that for every boundaryWi ∈W, Q 6= Wi.
From subcondition 2, there exists a boundaryWi such thatQ ⊆ Wi. SinceQ 6= Wi, it follows that

Q⊂Wi. BecauseBG is the boundary graph,Wi is complete inBG. Therefore, there exists a cliqueCi in
BGsuch thatWi ⊆Ci. Since clusters ofT are cliques inBG, Ci must be a cluster inT. FromQ⊂Wi and
Wi ⊆ Ci, we haveQ⊂ Ci. That is,T contains two comparable clusters: a contradiction. Hence, every
cluster inT is a boundary. �

Proof of Theorem 1
[Necessary Condition] Suppose a JTH exists whose clusters are subenvironments. Extending Propo-

sition 1, if private variables are removed from each cluster, the resultant cluster treeT is still a JT, whose
set of clusters isW. SinceT is a JT, the boundary graphBG is chordal and subcondition 1 holds. Since
each clique ofBG is a cluster inT and each cluster ofT is a boundary, subcondition 2 follows.

[Sufficient Condition] Suppose both subconditions hold. We prove by construction. SinceBG is
chordal, a JTT exists whose clusters are cliques ofBG. By Lemma 1, every cluster inT is a boundary.
Hence, for every clusterC in T such thatC = Wi for someWi ∈W, we associateC with agentAi .

It is possible that not every agent has been associated with a cluster inT yet. In that case, consider
such an agentAi whose boundary isWi. SinceWi is complete inBG, there exists a clusterC in T such
thatWi ⊆ C. Add a new clusterWi to T , making it adjacent to clusterC only, and associate the new
cluster withAi . Repeat this for each remaining agent, until each agent is associated with a cluster inT.

Next, for each agent, add its private variables to its associated cluster inT. The resultantT is a JT
agent organization with each cluster being a subenvironment. �

Proof of Theorem 2
Based on Proposition 1, it suffices to prove the theorem relative to a boundary based JT.
[Necessary Condition] Suppose a boundary based JTT exists whose clusters are boundaries inW.

We show that boundaries inW can be eliminated iteratively usingT as a reference structure.
SinceT is a tree, there exists a leaf clusterWi. LetWj be the adjacent cluster ofWi. SinceT is a JT,

for everyWk such thatWk 6= Wi andWk 6= Wj, we haveWi ∩Wk ⊆ Wj. Hence,Wi ⊆ Wj andWi can be
eliminated fromW relative toWj to obtainW′

j and the reduced boundary setW′. ClusterWi can also be
removed fromT, with clusterWj replaced byW′

j and resultant cluster tree denoted byT ′.
Now the set of clusters ofT ′ is W′. SinceW′

j differs from Wj only in terms of variables thatWj

shares uniquely withWi, T ′ is still a JT. Hence, the above operation can be applied repeatedly, until two
boundaries are left. Since the reducedW′ is a well-defined boundary set, the two boundaries must be
identical and the last elimination results in{ /0}.

[Sufficient Condition] SupposeW can be eliminated iteratively into a singleton. Denote the sequence
of reduced boundary sets as

Wη ,Wη−1, ...,W2,W1,

whereη is the number of agents,Wη = W, W1 = { /0}, and superscript counts the number of boundaries.

30

EachWi (i > 1) is a well-defined boundary set. The elimination process can be viewed as follows. To
produceWx from Wx+1, eliminate aWi ∈Wx+1 relative to aWj ∈Wx+1. Remove fromWj variables that
it shares withWi but not with any otherWk ∈Wx+1. The result isWx. We show below that boundaries in
eachWx, for x = 2, ...,η , can be organized into a JT.

It is trivially true for x = 2, as can be seen from Example 9. We assume that it is true forx = n, and
consider the casex= n+1. Suppose whenWn is derived fromWn+1, Wi ∈Wn+1 is eliminated relative to
Wj ∈Wn+1 andWj is reduced toW′

j ∈Wn. By inductive assumption, boundaries inWn can be organized
into a JTTn. If the clusterW′

j in Tn is replaced byWj, the resultant cluster tree is still a JT, sinceWj \W′
j

is not shared by any other cluster inTn. Next, add clusterWi to Tn, and make it adjacent toWj . Since
Wi ⊆Wj , the resultant cluster tree is still a JT, and its clusters are exactly the boundaries inWn+1. Hence,
boundaries inWn+1 can be organized into a JT.

From the above induction, boundaries inW = Wη can be organized into a JT. �

Proof of Theorem 3
It suffices to show that the sender-receiver relations define a boundary based JT forW. Assume that

W has a boundary based JTT . SinceT is a cluster tree, there exists a leaf clusterWi ∈W in T, that
is adjacent to a single clusterWj 6= Wi in T . BecauseT satisfies running intersection,Wi ∩Wk ⊆ Wj

holds for everyWk ∈W, wherek 6= i. It can be equivalently written asWi ∩Wk ⊆Wi ∩Wj = Ii j for every
Wk 6= Wi. It follows that ⋃

k6=i

(Wi ∩Wk) ⊆ Ii j .

SinceWi is the boundary ofAi ,
⋃

k6=i(Wi ∩Wk) = Wi and the above becomesWi ⊆ Ii j . As Ii j is the border
betweenAi andAj , we haveWi ⊇ Ii j which yieldsWi = Ii j .

Let Q be the set of leaf clusters inT andSbe the set of links between clusters inT. Let T ′ be another
boundary based JT ofW with the correspondingQ′ andS′. In general,Q 6= Q′. However, it is always
true thatS= S′ (see Proposition 8.3 in [Xia02]).

Let T1 be the set of all boundary based JTs ofW, S1 be the set of links in any such JT, andQ1 be the
union of leaf cluster sets over all such JTs (oneQ per JT). Then, afterHTBSstarts from a leader agent,
the first agentAi that runsDoDFT and passes the test in line 1 must have its boundaryWi ∈Q1. Suppose
Ai sends the first inter-agentStartNewDFTto Aj . Hence, the sender-receiver relation〈Ai ,Aj〉 identifies
the link 〈Wi,Wj〉 in S1.

WhenAj responds toStartNewDFT, Wi is eliminated andWj is updated (asYj , Proc. 7, line 5). The
reduced boundary setW′, withoutWi andWj but with Yj , is a well-defined boundary set. Hence,T2,
S2, andQ2 can be defined accordingly fromW′, where eachT ∈ T2 has one cluster less thanT1 and
S2 = S1\{〈Wi,Wj〉} (one link less).

Applying the argument forT1 similarly to T2, anotherStartNewDFTwill be sent, resulting inT3,
S3, andQ3. Since|W|= η and|S1|= η −1, afterη −1 StartNewDFTmessages, the reduced boundary
set has|W′| = 1 and all links inS1 are identified, which specifies one of the JTs inT1. �

Acknowledgement

We thank anonymous reviewers for their very helpful comments. Financial support through Discovery
Grant from NSERC, Canada is acknowledged.

References

[Awe87] B. Awerbuch. Optimal distributed algorithms for minimum weight spanning tree, counting,
leader election, and related problems. InProc. 19th ACM Symp. Theory of Computing, pages
230–240, 1987.

[BM10] I. Brito and P. Meseguer. Cluster tree elimination for distributed constraint optimization
with quality guarantees.Fundamenta Informaticae, 102(3-4):263–286, 2010.

31

[Dec03] R. Dechter.Constraint Processing. Morgan Kaufmann, San Francisco, CA, 2003.

[DMS+08] P. Doshi, T. Matsui, M. Silaghi, M. Yokoo, and M. Zanker. Distributed private constraint
optimization. InProc. Inter. Conf. Web Intelligence and Intelligent Agent Technology, pages
277–281, 2008.

[FLP08] B. Faltings, T. Leaute, and A. Petcu. Privacy guarantees through distributed constraint
satisfaction. InProc. IEEE/WIC/ACM Intelligent Agent Technology, pages 350–358, 2008.

[FM95] M. Faloutsos and M. Molle. Optimal distributed algorithm for minimum spanning trees
revisited. InProc. 14th Annual ACM Symp. Principles of Distributed Computing, pages
231–237, 1995.

[GD01] P.J. Gmytrasiewicz and E.H. Durfee. Rational communication in multi-agent environments.
Auto. Agents and Multi-Agent Systems, 4(3):233–272, 2001.

[GHS83] R.G. Gallager, P.A. Humblet, and P.M. Spira. A distributed algorithm for minimum-weight
spanning trees.ACM Trans. Programming Languages and Systems, 5(1):66–77, 1983.

[GKP98] J. Garay, S. Kutten, and D. Peleg. A sublinear time distributed algorithm for minimum-
weight spanning trees.SIAM J. Comput., 27(1):302316, 1998.

[GPBT06] R. Greenstadt, J.P. Pearce, E. Bowring, and M. Tambe. Experimental analysis of privacy
loss in DCOP algorithms. InProc. Inter. Joint Conf. Autonomous Agents and Multiagent
Systems, pages 1424–1426, 2006.

[Jen88] F.V. Jensen. Junction tree and decomposable hypergraphs. Technical report, JUDEX, Aal-
borg, Denmark, February 1988.

[KM01] D. Koller and B. Milch. Multi-agent influence diagrams for representing and solving games.
In Proc. 17th Inter. Joint Conf. on Artificial Intelligence, pages 1027–1034, 2001.

[KP98] S. Kutten and D. Peleg. Fast distributed construction of smallk-dominating sets and appli-
cations.J. Algorithms, 28(1):40–66, 1998.

[KP08] M. Khan and G. Pandurangan. A fast distributed approximation algorithm for minimum
spanning trees.Distributed Computing, 20(6):391402, 2008.

[LOF10] T. Leaute, B. Ottens, and B. Faltings. Ensuring privacy through distributed computation in
multiple-depot vehicle routing problems. InProc. ECAI Workshop on Artificial Intelligence
and Logistics, pages 25–30, 2010.

[MB04] A. Maestre and C. Bessiere. Improving asynchronous backtracking for dealing with com-
plex local problems. InProc. 16th European Conf. on Artificial Intelligence, pages 206–210,
2004.

[MPB+06] R.T. Maheswaran, J.P. Pearce, E. Bowring, P. Varakantham, and M. Tambe. Privacy loss in
distributed constraint reasoning: a quantitative framework for analysis and its applications.
J. Autonomous Agents and Multi-Agent Systems, 13(1):27–60, 2006.

[MSTY05] P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: asynchronous distributed constraint
optimization with quality guarantees.Artificial Intelligences, 161(1-2):149–180, 2005.

[MSY08] Marius C. M.C. Silaghi and Makoto Yokoo. ADOPT-ing: unifying asynchronous distributed
optimization with asynchronous backtracking.J. Autonomous Agents and Multi-Agent Sys-
tems, 19(2):89–123, 2008.

[MTB+05] R.T. Maheswaran, M. Tambe, E. Bowring, J.P. Pearce, and P. Varakantham. Taking DCOP
to the realworld: efficient complete solutions for distributed multi-event scheduling. In
D. Kudenko, D. Kazakov, and E. Alonso, editors,Proc. 2004 Inter. Conf. on Autonomous
Agents and Multiagent Systems, LNCS (LNAI) 3394, pages 310–317. Springer, Heidelberg,
2005.

[NCKB12] S. Nobari, T.T. Cao, P. Karras, and S. Bressan. Scalable parallel minimum spanning for-
est computation. InProc. 17th ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming, pages 205–214, 2012.

32

[Pea88] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

[PF05] A. Petcu and B. Faltings. A scalable method for multiagent constraint optimization. InProc.
19th Inter. Joint Conf. on Artificial Intelligence, pages 266–271, 2005.

[PGM05] M. Paskin, C. Guestrin, and J. McFadden. A robust architecture for distributed inference in
sensor networks. InProc. Information Processing in Sensor Networks, pages 55–62, 2005.

[Pri57] R.C. Prim. Shortest connection networks and some generalizations.Bell Syst. Tech. J.,
(36):1389–1401, 1957.

[SAZB05] M.C. Silaghi, A. Abhyankar, M. Zanker, and R. Bartak. Desk-mates (stable matching)
with privacy of preferences, and a new distributed CSP framework. InProc. Inter. Florida
Artificial Intelligence Research Society Conf., pages 83–96, 2005.

[SDMY08] M.C. Silaghi, P. Doshi, T. Matsui, and M. Yokoo. Distributed private constraint optimiza-
tion problem: cost of privacy loss. InProc. AAMAS Workshop on Distributed Constraint
Reasoning, pages 1–12, 2008.

[SF05] M.C. Silaghi and B. Faltings. Asynchronous aggregation and consistency in distributed
constraint satisfaction.Artificial Intelligence, 161(1-2):25–54, 2005.

[SFP06] M.C. Silaghi, B. Faltings, and A. Petcu. Secure combinatorial optimization simulating DFS
tree-based variable elimination. InProc. 9th Inter. Symp. on AI and Math., pages 1–10,
2006.

[SR04] M.C. Silaghi and V. Rajeshirke. The effect of policies for selecting the solution of a DisCSP
on privacy loss. InProc. 3rd Inter. Joint Conf. Autonomous Agents and Multiagent Systems,
pages 1396–1397, 2004.

[SSHF00] M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous search with aggregations. In
Proc. AAAI’2000, pages 917–922, 2000.

[VKV02] M. Valtorta, Y.G. Kim, and J. Vomlel. Soft evidential update for probabilistic multiagent
systems.Int. J. Approximate Reasoning, 29(1):71–106, 2002.

[VRAC10] M. Vinyals, J.A. Rodriguez-Aguilar, and J. Cerquides. Constructing a unifying theory of dy-
namic programming DCOP algorithms via the generalized distributive law.J. Autonomous
Agents and Multi-Agent Systems, 22(3):439–464, 2010.

[XCD04] Yang Xiang, Junjiang Chen, and Abhi Deshmukh. A decision-theoretic graphical model for
collaborative design on supply chains. In A.Y. Tawfik and S.D. Goodwin, editors,Advances
in Artificial Intelligence, LNAI 3060, pages 355–369. Springer, 2004.

[XH11] Yang Xiang and Frank Hanshar. Multiagent expedition with graphical models.Inter. J.
Uncertainty, Fuzziness and Knowledge-Based Systems, 19(6):939–976, 2011.

[Xia96] Yang Xiang. A probabilistic framework for cooperative multi-agent distributed interpreta-
tion and optimization of communication.Artificial Intelligence, 87(1-2):295–342, 1996.

[Xia02] Yang Xiang. Probabilistic Reasoning in Multiagent Systems: A Graphical Models Ap-
proach. Cambridge University Press, Cambridge, UK, 2002.

[Xia08] Yang Xiang. Building intelligent sensor networks with multiagent graphical models. In
N. Ichalkaranje G.P. Wren and L.C. Jain, editors,Intelligent Decision Making: An AI-Based
Approach, pages 289–320. Springer-Verlag, 2008.

[XMZ14] Yang Xiang, Younis Mohamed, and Wanling Zhang. Distributed constraint satisfaction with
multiply sectioned constraint networks.International J. Information and Decision Sciences,
6(2):127–152, 2014.

[XPE+93] Yang Xiang, B. Pant, A. Eisen, Michael Beddoes, and David Poole. Multiply sectioned
Bayesian networks for neuromuscular diagnosis.Artificial Intelligence in Medicine, 5:293–
314, 1993.

33

[XS13a] Yang Xiang and Kamala Srinivasan. Boundary set based existence recognition and con-
struction of hypertree agent organization. In O.R. Zaiane and S. Zilles, editors,Advances
in Artificial Intelligence, LNAI 7884, pages 187–198. Springer-Verlag Berlin Heidelberg,
2013.

[XS13b] Yang Xiang and Kamala Srinivasan. Construction of privacy preserving hypertree agent
organization as distributed maximum spanning tree. In O.R. Zaiane and S. Zilles, editors,
Advances in Artificial Intelligence, LNAI 7884, pages 199–210. Springer-Verlag Berlin Hei-
delberg, 2013.

[XZ07] Yang Xiang and Wanling Zhang. Multiagent constraint satisfaction with multiply sectioned
constraint networks. In Z. Kobti and D. Wu, editors,Advances in Artificial Intelligence,
LNAI 4509, pages 228–240. Springer-Verlag, 2007.

[XZ08] Yang Xiang and Wanling Zhang. Distributed university timetabling with multiply sectioned
constraint networks. InProc. 21th Inter. Florida Artificial Intelligence Research Society
Conf., pages 567–572, 2008.

[Yok01] M. Yokoo. Distributed Constraint Satisfaction. Springer, 2001.

[YSH05] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed constraint satisfaction: reaching
agreement without revealing private information.Artificial Intelligence, (161):229–246,
2005.

[ZJSF08] M. Zanker, D. Jannach, M.C. Silaghi, and G. Friedrich. A distributed generative CSP frame-
work for multi-site product configuration. In M. Klusch, M. Pechoucek, and A. Polleres,
editors,Cooperative Information Agents XII, pages 131–146. 2008.

34

