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Abstract
A number of frameworks for decentralized probabilistic reasoning, constraint reasoning, and deci-
sion theoretic reasoning assume a junction tree agent organization (JT-org). A natural decomposi-
tion of agent environment may not admit a JT-org. Hence, JT-org construction involves three related
tasks: 1. Recognize whether a JT-org exists for a given environment decomposition. 2. When JT-
orgs exist, construct one. 3. When no JT-org exists, revise the environment decomposition so that
one exists and then construct it. Task 3 requires re-decomposition of the environment. However,
re-decomposition incurs loss of JT-org linked privacy, including agent privacy, topology privacy,
privacy on private variables, and privacy on shared variables. We propose a novel algorithm suite
DAER (Distributed Agent Environment Re-decomposition) that accomplishes all three tasks dis-
tributively. For Tasks 1 and 2, DAER incurs no loss of JT-org linked privacy. For Task 3, it incurs
significantly less privacy loss than existing JT-org construction methods. Performance of DAER is
formally analyzed and empirically evaluated.
Keywords: Coordination and control models for multiagent systems, Organisations and institu-
tions, Self-organization, Privacy in MAS

1. Introduction

Decentralized probabilistic reasoning, constraint reasoning, and decision theoretic reasoning are
essential tasks of cooperative multiagent systems. Many frameworks exist to perform those tasks in
multi-agent systems. Some do not assume specific agent organization, e.g., [6, 15]. Some assume
a total order among agents, e.g., [9, 3]. Some are based on a lattice topology, e.g., [11]. Some use
a pseudotree, e.g., [12, 13, 5, 7]. Multiply Sectioned Bayesian Networks (MSBNs) [17, 19] are the
earliest multiagent systems based on JT organizations (JT-orgs). JT-orgs have now been applied
to other frameworks, e.g., distributed constraint optimization [16, 2] and decentralized decision
theoretic reasoning [20]. It has been shown [16] that JT-orgs are superior than pseudotrees. More
generally, for a number of distinct information processing tasks, JT-orgs are shown to guarantee
exact answers [1].

Privacy is an important issue in multiagent systems [8, 22, 10]. For instance, four types of
privacy have been identified [8] in distributed constraint reasoning: agent privacy, topology privacy,
constraint privacy, and decision privacy. Very few works exist on protecting privacy during JT-org
construction. Construction techniques employed by several frameworks that depend on JT-orgs,
e.g., [18, 16, 2], compromise privacy on private variables, shared variables, agent identities and
adjacency relations, as shown in [21]. The above four types of privacy from distributed constraint
reasoning do not adequately capture these privacy losses. First, JT-org construction does not involve
constraint privacy and decision privacy. Second, although loss on agent identities correspond to
agent privacy, and loss on agent adjacency relations correspond to topology privacy, privacy losses
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on private and shared variables are not covered by any of the four types. In this paper, we refer to
the overall privacy related to JT-org construction as JT-org linked privacy. It includes four specific
types of privacy: We refer to privacy on agent identities and adjacency relations as agent privacy
and topology privacy, respectively. We refer to the remaining two types of privacy as privacy on
private variables and privacy on shared variables.

Two fundamentally different approaches on privacy exist. The first transmits private information
into the public domain, but makes it unintelligible to unintended receivers by cryptographic tech-
niques, e.g., [22]. Although it may require multiple external servers that are not always available or
justifiable for the benefit, recent progresses, e.g., [8, 14], are able to protect privacy without using
external servers. The second approach minimizes the amount of private information transmitted,
e.g., [10]. It is the approach we take in this work.

A natural decomposition of agent environment may not admit a JT-org. Hence, JT-org construc-
tion involves three related tasks:

1. Recognize whether a JT-org exists for a given environment decomposition.
2. When JT-orgs exist, construct one.
3. If no JT-org exists, revise environment decomposition so that one exists and then construct it.

HTBS (HyperTree construction based on Boundary Set) is an algorithm that performs Tasks 1
and 2 [21]. It does so without JT-org linked privacy loss. Hence, when environment admits JT-orgs,
HTBS is superior than alternative construction methods, such as those in Action-GDL [16] and
DCTE [2], which incur JT-org linked privacy loss. Action-GDL and DCTE do not perform Task 1
explicitly.

When no JT-orgs exist for the given environment decomposition, methods in Action-GDL and
DCTE perform Task 3, while incurring privacy loss. HTBS, on the other hand, terminates after
Task 1, without constructing a JT-org.

The main contribution of this work is a novel algorithm DAER that integrates and significantly
extends HTBS, and accomplishes all three tasks. When agent environment decomposition admits
no JT-orgs, DAER performs Task 3 by modifying the decomposition, as Action-GDL and DCTE do,
but with considerably less JT-org linked privacy loss (as demonstrated experimentally in Section 6).
This advancement significantly improves JT-org linked privacy in multiagent systems that utilize JT
agent organizations, such as MSBN [17], Action-GDL [16], and DCTE [2].

Table 1: Summary of distributed JT-org construction methods
Method Tk 1 Priv Loss Tk 2 Priv Loss Tk 3 Priv Loss Amt Loss
ActGDL no n/a yes priv, shar yes priv, shar medium
DCTE no n/a yes priv, shar, id, adj yes priv, shar, id, adj high
HTBS yes none yes none no n/a n/a
DAER yes none yes none yes shar, id, adj very low

Table 1 summarizes main properties of three distributed JT-org construction methods in com-
parison with those of DAER. The Tk i column specifies whether Task i is explicitly performed by
each method. The Priv Loss column specifies whether the method incurs JT-org linked privacy loss,
and if so the type of loss: priv for private variables, shar for shared variables, id for agent identity,
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and adj for agent adjacency relation. The Amt Loss column records the relative amount of privacy
loss on Task 3. The comparisons covered by the last 3 columns on Task 3 and the last row on DAER
are detailed in this paper. Details on the remaining comparisons can be found in [21].

The remainder is organized as follows. Section 2 reviews JT-org of agents and HTBS. Sec-
tions 3 through 5 present DAER, its assessment on privacy loss, and analysis of its soundness. The
empirical evaluation of DAER is reported in Section 6, followed by conclusion in Section 7.

2. Background

Consider a set A = {A0, ..., Aη−1} of cooperative and independent agents, whose environment is
described by a collection V of variables. The environment V is decomposed into a set of overlapping
subenvironments Ω = {V0, ..., Vη−1}, where ∪η−1i=0 Vi = V , such that agent Ai controls Vi. A
variable that appears in a unique subenvironment Vi is a private variable. Otherwise, it is a shared
variable. If Ai and Aj (j 6= i) share variables, their border is the set of variables that they share,
Iij = Vi ∩ Vj 6= ∅, and the two agents are adjacent.

Figure 1: Environment decomposition cluster graph (a), undirected environment decomposition
graph (b), communication graph (c), and boundary graph (d)

Environment decomposition Ω can be depicted by an environment decomposition cluster graph
(Fig. 1 (a)), where each cluster is a subenvironment and each link between two clusters is labeled by
their border. Ω can also be depicted by an undirected environment decomposition graph (Fig. 1 (b)),
obtained from the above cluster graph by mapping each distinct cluster member (a variable) to
a node and connecting members of each cluster pairwise. Fig. 1 (a) and (b) illustrate a (trivial)
environment

Ω = {V0 = {a, b, u, y}, V1 = {c, d, u, w, y, z}, V2 = {g, h, x, y, z},

V3 = {e, f, v, w}, V4 = {i, j, v, x}}.
For distributed probabilistic reasoning, probabilistic knowledge over each Vi can be encoded as a
Bayesian subnet, e.g., MSBN [19]. For decentralized constraint optimization, constraints over each
Vi can be encoded as a constraint subnet, e.g., Action-GDL [16] and DCTE [2].

The boundary of an agent is the union of its borders. The boundary of A1 in the above example
is W1 = {u,w, y, z}. The boundary set of a multiagent system is the collection of boundaries of its
agents. The boundary set of the above example is

W = {W0 = {u, y},W1 = {u,w, y, z},W2 = {x, y, z},W3 = {v, w},W4 = {v, x}}.

A boundary set can be depicted by a cluster graph, called communication graph (CG), where each
cluster is a boundary and each link between two clusters is a border (see Fig. 1 (c)). It can also be
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depicted by an undirected graph, called boundary graph (BG), obtained from CG by mapping each
distinct cluster member to a node and connecting members of each cluster pairwise (see Fig. 1 (d)).
CG and BG involve shared variables only.

A JT-org is a tree subgraph (including all clusters) of the environment decomposition cluster
graph, such that intersection of any two subenvironments is contained in every subenvironment on
the path between the two. Fig. 2 (a) shows an environment decomposition cluster graph and (b) is
a corresponding JT-org. The intersection of V0 and V2 is {y} and is contained in V1. A JT-org can
be equivalently expressed as a tree subgraph of the communication graph, as shown in (c). This
alternative representation will be applied below as it is more concise (without private variables).

Figure 2: Environment decomposition cluster graph (a), JT-org (b), and JT-org over boundaries (c)

A decomposition may not admit a JT-org. The environment decomposition in Fig. 1 (a) is an
example: Its subenvironments cannot be organized into a JT-org. Hence, construction of JT-org
involves three related tasks: (1) Recognize whether a JT-org exists for a given environment decom-
position. (2) When JT-orgs exist, construct one. (3) When no JT-org exists, revise environment
decomposition so that one exists and then construct it.

When agents are developed by independent suppliers, e.g., in an MSBN system for monitor-
ing a fertilizer plant, a natural environment decomposition embeds at least four types of private
information relative to each agent:

1. private variables
2. shared variables each shared with a particular subset of adjacent agents
3. agent identity
4. agent adjacency relations

These types of information may be leaked when agents conduct Tasks 1, 2, and 3, which we refer
to as privacy loss. A private variable may be leaked to other agents, e.g., b of A0 in Fig. 1 (a)
leaked to A1. A shared variable may be leaked to non-adjacent agents, e.g., u shared by A0 and
A1 in Fig. 1 (a) leaked to A2. The identity of an agent and its adjacency relation may be leaked
to non-adjacent agents. For instance, the identity of A0 and the adjacency of A0 and A1 may be
leaked to A3. Additional private knowledges exist, such as the structure of Bayesian subnet or
constraint subnet within each subenvironment. They are not involved during JT-org construction
and are immune to privacy loss once the organization operates due to characteristics of associated
inference algorithms (see [21]).

Privacy loss is common in existing multiagent frameworks that depend on JT-org. For instance,
JT-org construction in MSBNs performs Tasks 1 and 2. It leaks shared variables, agent identities
and adjacent relations to a coordinator agent [18]. JT-org constructions in Action-GDL and DCTE
perform Tasks 2 and 3. Action-GDL is based on pseudotree conversion and leaks information on
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private and shared variables [16]. DCTE [2] is based on variable propagation and incurs loss on all
four types of JT-org linked privacy.

HTBS is a recent algorithm for Tasks 1 and 2 without privacy loss [21]. It is founded on a
classification of boundary sets as follows: A clique in an undirected graph is a maximal set of nodes
that are pairwise connected, e.g., {u,w, y, z} in Fig. 1 (d). A clique in a BG is boundary contained,
if it is a subset of a boundary. A graph is chordal if every cycle of length> 3 has a chord, which is a
link outside the cycle but connecting 2 nodes of the cycle. For instance, 〈u,w, z, y, u〉 in Fig. 1 (d) is
a cycle of length 4. The link 〈u, z〉 is a chord of the cycle, and so is 〈y, w〉. The cycle 〈z, w, v, x, z〉
also has length 4, but it does not have a chord. Due to existence of this chordless cycle, Fig. 1 (d) is
not chordal. If we add a link 〈x,w〉 to Fig. 1 (d), the cycle will have a chord, and the graph will be
chordal.

A boundary set W has three possible types, depending on the nature of its BG. W is Type 1, if
the BG is chordal and its cliques are boundary contained. W is Type 2, if the BG is not chordal.
W is Type 3, if the BG is chordal but some clique is not boundary contained. The BG in Fig. 1
(d) is non-chordal, as shown above. Hence, the above boundary set W is Type 2. An environment
decomposition admits a JT-org iff its boundary set is Type 1 [21]. Since W is Type 2, no JT-org
exists for the above decomposition Ω.

Soundness and completeness of boundary set typing rest on the relation between undirected
graphs and JTs whose clusters are cliques of the graphs. It is well known that a JT exists whose
clusters are cliques of an undirected graph, iff the graph is chordal. This relation directly leads to
the conclusion drawn on Type 2. Since each cluster in a JT-org must also be a boundary, this leads
to the conclusions drawn on Type 3 and Type 1. Formal analysis can be found in [21].

HTBS consists of recursive agent self-eliminations. An agent Ai with boundary Wi can be self-
eliminated relative to an adjacent agent Aj with Wj , if Wi equals their border, Wi = Iij . After Ai
is eliminated, Wj is updated by removing any variable that Aj uniquely shared with Ai. In Fig. 1
(c), A0 can be self-eliminated relative to A1, and W1 is reduced to {w, y, z} (with u removed). A
boundary set is Type 1 iff a single agent remains after all possible self-eliminations (Theorem 2 in
[21]). In that case, a JT-org emerges from the trace saved during HTBS. Otherwise, no JT-org exists.

Figure 3: (a) Graph from Fig. 1 (d). (b) After node u is eliminated from (a). (c) Cliques of the
graph in (a). (d) A graph from adding one link to (a). (e) After node u is eliminated from
(d). (f) After node y is eliminated from (e). (g) The JT from cliques of (d).

Soundness and completeness of HTBS rest on the relation between graphical elimination and
existence of JTs. A node x in an undirected graph is eliminated if nodes adjacent to x are pairwise
connected (with links added if necessary), and then x is removed from the graph. Fig. 3 (b) shows
the result of eliminating node u from the graph in (a).

5



A JT, whose clusters are cliques of an undirected graph, exists iff all nodes of the graph can be
eliminated one by one, and no link is added in the process. After u is eliminated from the graph
in Fig. 3 (a), no node can be eliminated from the graph in (b) without requiring addition of a link.
For instance, to eliminate node v next, link 〈w, x〉 must be added. Therefore, no JT exists whose
clusters are cliques of the graph in (a). These clusters are shown in Fig. 3 (c). No matter how they
are connected, the result cannot be a JT. Next, consider the graph in (d), which differs from (a) by
the extra link 〈w, x〉. After eliminating node u, the result is shown in (e). After eliminating y from
(e), the result is shown in (f). The remaining nodes can be eliminated in the order (v, z, w, x), and
no link is ever added in the entire process. Hence, a JT exists whose clusters are cliques of the graph
in (d). The JT is shown in Fig. 3 (g).

More details on the relation between graphical elimination and existence of JTs can be found
from [4, 18]. Self-elimination of agents in HTBS extends this relation by grouping the elimination
operations within each agent, and catching the agent elimination trace. Note that self-elimination of
agents does not enable existence of JT-org. It simply identifies JT-org existence.

3. DAER for Environment Re-decomposition

For a multiagent system that is based on JT-org, if the environment decomposition does not admit
a JT-org, it must be revised. Assuming that no variable can be removed, the only option is to share
some variables beyond their original scope. This results in privacy loss on these variables. If they are
shared with non-adjacent agents, privacy loss occurs on agent identity, as well as on agent adjacency
relations, as shown below. The challenge is to minimize such loss.

We present DAER, a novel algorithm suite, that integrates and significantly extends HTBS to
accomplish all three tasks of JT-org construction distributively. DAER performs Tasks 1 and 2 with-
out privacy loss. When agent environment decomposition admits no JT-org, DAER re-decomposes
the environment and constructs a JT-org, with significantly lower privacy loss than Action-GDL
and DCTE (shown in Section 6). It differs form methods in Action-GDL and DCTE as follows:
(1) DAER operates on CGs or BGs, rather than environment decomposition cluster graphs or their
undirected equivalent. Hence, DAER is free from privacy loss on private variables. (2) DAER is
based on a numerical evaluation of privacy loss, so that agent developers can influence privacy loss
and trade among different types of privacy loss.

We make the standard assumption that agent communication is reliable such that messages
do not get lost, and are received in the order they were sent. We assume that agents are honest,
but curious: They follow the intended algorithm/protocol, but are interested in learning private
information of other agents from messages received.

3.1 Overview of DAER

Algo. 1 presents DAER at a high abstraction level. Given an agent environment (A,Ω,W ), DAER
takes (A,W ) as input. It runs in multiple rounds. Each round consists of an HTBS stage and an
elimination-expansion (EE) stage.

The HTBS stage (lines 2 to 4) runs HTBS, during which agents self-eliminate (becoming inac-
tive), until no such elimination is possible. If a single active agent is left, then (A,Ω,W ) admits a
JT-org, and one emerges distributively [21], as indicated in line 3. Otherwise, (A,Ω,W ) does not
admit JT-org, as indicated by line 4. Hence, in the first round, DARE accomplishes Tasks 1 and 2
of JT-org construction through lines 2 to 4.
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Algorithm 1 DAER(A,W )

1 do
2 hasJT = HTBS(A, W);
3 if hasJT = true, return JT-org;
4 declare “no JT-org”;
5 each active agent plans a best neighbor for expansion;
6 select one active agent AX with boundary X and its active neighbor AY with boundary Y ;
7 AX shares X \ Y with AY , and AY expands Y into Y ∪X;
8 AX self-eliminates relative to AY , and becomes inactive;

If the first round continues to line 4, then (A,Ω,W ) does not admit JT-org, and the EE stage
(lines 5 to 8) is run, in which only remaining active agents participate. The EE stage of the first
round and the remaining rounds of DAER perform Task 3. Before presenting algorithmic details of
the EE stage, we illustrate with the example in Fig. 1.

Suppose that HTBS starts by a leader agent A0. From Fig. 1 (c), since W0 = I01, A0 self-
eliminates relative to A1, and A1 leads subsequent computation. Elimination will be attempted in
sequence by remaining agents, but none is able to. Eventually, A1 declares non-existence of JT-org.

During the EE stage, active agents operate on a reduced CG, without W0 and incident links
(Fig. 4 (a)). First, each agent plans a best neighbor for boundary expansion (line 5). For instance,
A2 has two alternative options. It can share x with A1, expanding W1 into {w, x, y, z}, which
allows A2 to self-eliminate relative to A1. Alternatively, A2 can share y and z with A4, expanding
W4 into {v, x, y, z}, which allows A2 to self-eliminate relative to A4.

Figure 4: Reduced CGs after elimination of A0 (a), A3 (b), and A2 (c)

The first option has a single newly shared variable, while the second option has two. If privacy
loss is measured only by the number of newly shared variables, then the first option is better. We
elaborate on measures of privacy loss and the local option evaluation in Section 4. For now, it
suffices that each agent locally plans for a best neighbor to expand, assuming arbitrary tie-breaking.

Subsequently, active agents select a best expansion plan globally (line 6) through a distributed
depth-first-search (DFS) over the CG in Fig. 4 (a). Since A1 announces the outcome in the HTBS
stage, it acts as the leader and root of DFS. Suppose that agents are activated during DFS in the
order (A1, A2, A4, A3), where the expansion plan of A3 has the minimum privacy loss L. The
search organizes agents into a DFS tree, which is the chain (A1, A2, A4, A3) in this example. As
agents report back to their parents the best loss found, eventually A1 knows the best loss L. By
propagating L down the DFS tree, A3 knows that its expansion plan has been selected.

Suppose that the winning plan of A3 is to share w with A4. This expands W4 into {v, w, x}
(line 7), and allows A3 to self-eliminate (line 8). Fig. 4 (b) shows the new CG. As the result of
sharing w, a border is introduced between A4 and A1. This terminates the first round of DAER.
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In the second round of DAER, HTBS is run, led by A4. Since no agent can self-eliminate, A4

eventually declares non-existence of JT-org. During EE, suppose A2 is selected by DFS. It shares x
with A1 and self-eliminates. After expansion, W1 becomes {w, x}.

Figure 5: Re-decomposed CG (a) and the JT-org (b)

In the third round of DAER, HTBS is run in the CG of Fig. 4 (c), led by A1. After A1 self-
eliminates, the single remaining agent A4 declares “JT-org exists” and DAER terminates (line 3).
The re-decomposed CG is shown in Fig. 5 (a), and the JT-org emerging from the trace saved during
HTBS stages is in (b).

As illustrated above, the key operations that enable construction of the JT-org is the boundary
expansions at selected agents. Their rationality can be intuitively understood as follows: Recall
from the end of Section 2 on the relation between graphical elimination and existence of JTs: The
elimination process plays the role of identification of existence of JT. If the undirected graph does
not have a JT, then any elimination process will add links with certainty no matter in what order
the nodes are eliminated. As a result, a JT exists whose clusters are cliques of the graph augmented
with these links. General presentation on these graph-theoretic operations can be found in [4, 18].
After presenting relevant algorithms, we establish soundness of DAER formally.

3.2 Leader Agents

Although Algo. 1 appears centrally controlled (for easy comprehension), the computation consists
of a sequence of distributed HTBS and EE stages, each initiated by a leader agent. Algo. 2 describes
how a leader agent is selected and its role. Since any active agent may be the leader for a specific
stage, Algo. 2 is executed by every agent Ag in response to relevant messages or events.

Algorithm 2 Lead(m, e)
Input: m is an incoming message; e is an event;

1 if e is external request to start HTBS,
2 initiate HTBS;
3 else if e is declaration of “no JT-org” by Ag,
4 initiate search for best expansion;
5 else if m requests boundary expansion,
6 expand boundary of Ag relative to sender of m;
7 initiate HTBS;
8 else if e is declaration of “JT-org exists” by Ag,
9 initiate halting of DAER;

The first round of DAER starts with an HTBS stage. The HTBS computation assumes an exter-
nally specified leader agent [21]. DAER assumes the same. It may be arbitrarily specified and the
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choice does not affect soundness of DAER. This agent is the only leader agent externally specified
for DAER. The only role of this agent is to lead the first HTBS stage in the first round of DAER,
as lines 1 and 2. Leaders of all HTBS stages in subsequent rounds are internally determined during
DAER, as shown below.

At end of an HTBS stage, an agent declares “no JT-org” or “JT-org exists”. In the original HTBS
[21], the agent then starts a halting process. DAER handles these events differently. When HTBS
ends with “no JT-org”, the announcing agent becomes leader of the next EE stage, as indicated in
lines 3 and 4. When HTBS ends with “JT-org exists”, the current, expanded boundary set is type 1
(established later). Each agent has a possibly expanded boundary. Using the trace saved, a JT-org is
well defined and each agent knows its adjacent agents in the JT-org Lines 8 and 9 encapsulate the
corresponding computation.

During EE stage, the best expansion among active agents is determined, and the winning agent
AX (line 6 of Algo. 1) is notified. AX runs lines 7 and 8 of Algo. 1, and the expanding agent AY
runs line 7, which ends the EE stage. The next HTBS stage is initialized by AY through lines 5 to 7
of Algo. 2. This is how the leader of each HTBS stage, except the first one, is selected.

3.3 Elimination-Expansion

Next, we present distributed algorithms for EE stage, which accomplish lines 6 to 8 of Algo. 1. We
mention how computation in line 5 is integrated, but will elaborate later.

At the start of DAER, each agent knows adjacent agents in the current CG and the border with
each, and hence its own boundary. For the decomposition in Fig. 1 (c), agent A1 knows identities
of A0, A2, and A3, the borders {u, y}, {y, z}, and {w}, respectively, and its boundary {u,w, y, z}.
During the first HTBS, A0 is self-eliminated. Hence, at the start of the first EE stage, A1 maintains
active adjacent agents A2 and A3, and borders with them, as a partial view of the CG in Fig. 4 (a).
Note that the active boundary of A1 is reduced to {w, y, z}.

Each agent has a procedure GetBestExpP lan, which computes line 5 of Algo. 1 locally. We
elaborate GetBestExpP lan in Section 4. For now, it suffices to say that GetBestExpP lan re-
turns (among other things) the lowest (best) privacy loss score over its alternative expansion plans.

Below, we present a suite of algorithms for active agents to respond to messages from other
active agents. They involve a distributed depth-first-search. Although depth-first-search is well
known, we specify key steps unique to our current task. Since privacy loss is the main focus, the
presentation makes it transparent what information is distributed between agents and what is not.

We refer to the agent executing the algorithm as Ai and the message sender as Ac. Ai has a flag
visited for itself and one for each active adjacent agent, that are initialized to false.

Algo. 3 DFS is activated either by the leader agent of EE stage (see lines 3 and 4 in Algo. 2),
or by an active agent in response to a DFS(inScore) message. In the first case, only lines 1
to 5 are run. In the second case, line 1 and lines 6 to 14 are run. Through DFS, Ai performs
local bookkeeping during depth-first-search. Once bestScore is initialized in line 1, Ai maintains
and updates this value. During depth-first-search, agents are organized into a search tree, which is
referred to as DFS-tree below.
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Algorithm 3 DFS

1 run GetBestExpPlan to get bestScore;
2 if Ai is leader of the EE stage,
3 label self as root of DFS-tree; visited = true;
4 run ForwardDFS(bestScore);
5 return;
6 retrieve inScore from message;
7 label Ac as visited;
8 if Ai is visited,
9 label Ac as non-adjacent on DFS-tree;
10 send NonChildReport to Ac;
11 else
12 label Ac as parent on DFS-tree;
13 bestScore = min(bestScore, inScore);
14 run ForwardDFS(bestScore);

DFS calls Algo. 4 ForwardDFS to extend depth-first-search to other agents.

Algorithm 4 ForwardDFS(bestScore)

1 select an unvisited active adjacent agent Ak;
2 if Ak exists,
3 send DFS(bestScore) message to Ak;
4 label Ak as visited;
5 else
6 if Ai is not the root of DFS-tree,
7 send ChildReport(bestScore) to Ac;
8 else run Notify(bestScore);

During depth-first-search, Ai runs Algo. 5 to respond to NonChildReport.

Algorithm 5 RespondNonChildReport

1 label Ac as non-adjacent on DFS-tree;
2 run ForwardDFS(bestScore);

During ForwardDFS, Ai runs Algo. 6 to respond to ChildReport.

Algorithm 6 RespondChildReport

1 label Ac as a child on DFS-tree;
2 retrieve inScore from message and associate it with Ac;
3 bestScore = min(bestScore, inScore);
4 run ForwardDFS(bestScore);
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Executions of Algos. 3 through 6 end with the root agent of DFS-tree knowing the best privacy
loss score among all agents (line 3 of Algo. 6). It initiates a forward message propagation along the
DFS tree to notify the winning agent (line 8 of Algo. 4). The root agent does so by running Algo. 7.
Any other agent that executes Algo. 7 is activated by message from its DFS-tree parent (see line 5).

Algorithm 7 Notify(winningScore)

1 if Ai’s bestScore = winningScore,
2 run ShareVariable;
3 else
4 select a DFS-tree child agent Ak such that score associated with Ak = winningScore;
5 message Ak to run Notify(winningScore);

It may appear uncertain whether agent Ak in line 4 exists. That is guaranteed for the reason
below: The winningScore either originates from the root agent of the DFS-tree or a non-root
agent. If it originates from the root, since Notify(winningScore) is initiated by the root in line 8
of Algo. 4, the test in line 1 of Algo. 7 will succeed and line 4 will not be run. Therefore, Line 4 is
only run when winningScore originates from a non-root agent.

Since winningScore originates from a non-root, it must be associated with a DFS-tree child of
the root through ChildReport. That child agent is identified as Ak when the root runs Algo. 7 and
executes line 4. Hence, success of finding Ak in line 4 is certain when the root runs line 4.

The same argument can be applied recursively to the sub-DFS-tree rooted at Ak. Therefore,
success of finding Ak in line 4 is certain no matter Ai is a child of the root or is an agent further
downstream on the DFS-tree. Hence, line 5 is well defined. If multiple expansion plans have the
same winningScore, the ties are broken arbitrarily.

Propagation of Notify operation eventually reaches the agent whose expansion plan generated
winningScore. Note that throughout execution of Algos. 3 through 7, no expansion plan of any
agent, including the expansion plan of the winning score, is included in any message among agents.
Only scores of expansion plans are included messages. As will be elaborated in Section 4, the score
of an expansion plan is a sum of multiple privacy weights, each of which is in [0, 1]. A given sum
value can be made of a few weights close to 1, or many weights close to 0, giving no accurate
indication of the number of weights (and the scale of the plan).

We now continue with realization of the winning plan. By line 2 of Algo. 7, the winning agent
Ai runs Algo. 8. We refer to the agent to expand according to the winning plan as Ak.

Algorithm 8 ShareV ariable

1 compute Q = Wi \ Iik;
2 let SQ be the set of agents sharing some variable in Q with Ai;
3 send message Expand(Q,SQ) to Ak;
4 Ai self-eliminates relative to Ak;

Algo. 8 is the primary source of privacy loss. The set Q of variables is shared with a new agent
Ak. The identity of each agent in SQ, if not already adjacent to Ak, is revealed to Ak (line 3).
Consider the CG in Fig. 4 (a) reproduced in Fig. 6 (a). Suppose A3 runs Algo. 8 with Ak = A4.

11



Figure 6: Illustration of Algo. 8 and Algo. 9, where Fig. 4 (a) and (b) are reproduced

Then Q = {v, w} \ {v} = {w} and SQ = {A1}. When A3 sends message Expand(Q,SQ) to A4,
variable w is disclosed to A4, and so is the identity of A1.

In response to the Expand message from Algo. 8, Ak (which we now refer to by Ai according
to our convention) will perform Algo. 9. Lines 1 through 3 compute the set T of variables that
Ai shared uniquely with Ac. Line 5 adds variables received from Ac to the boundary of Ai, and
removes those in T since Ac is now self-eliminated (line 4 of Algo. 8).

Algorithm 9 RespondExpand

1 denote the set of adjacent agents of Ai other than Ac by S;
2 initialize a set T to be the border between Ai and Ac;
3 for each agent Aj ∈ S, T = T \ Iij;
4 retrieve Q and SQ from Expand message;
5 Wi = (Wi ∪Q) \ T ;
6 become adjacent to each agent in SQ if not already so;
7 S = S ∪ SQ;

Continue with the above example in Fig. 6 (a), where A4 runs Algo. 9. We have S = {A2}
(line 1) and T is initialized to T = {v} (line 2). T remains the same after line 3. At line 5,
W4 = ({v, x} ∪ {w}) \ {v} = {w, x}. After line 6, A4 and A1 become adjacent (Fig. 6 (b)). At
line 7, S = {A1, A2}.

Note that through line 6, the identity of Ai is disclosed to agents in SQ. In the example, the
identity of A4 is disclosed to A1. We will elaborate on additional loss in Section 4. The execution
of Algo. 9 ends an EE stage.

4. Evaluating Privacy Loss

We present how DAER agents evaluate privacy losses of their expansion plans. A new scheme of
measure for privacy loss using privacy weights is developed in Section 4.1. How agents evaluate
expansion plans using the measure is presented in Section 4.2. In Section 4.3, we present a protocol
for regulating privacy weight assignment by agents, to prevent unfair game-theoretic behavior.

4.1 Measure of Privacy Loss

We have assumed that each agent can select an expansion plan by a method GetBestExpP lan,
which depends on a measure of privacy loss for expansion plans. As stated in Section 2, JT-org
construction may suffer from privacy loss on private and shared variables, on agent identities, and
on agent adjacency relations. Few measures exist to evaluate such privacy loss. The measure in [10]
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assumes that agent identities and their state spaces are publicly known, and hence is not applicable.
Four types of privacy have been identified [8] in distributed constraint reasoning: agent privacy,
topology privacy, constraint privacy, and decision privacy. They do not adequately capture JT-org
linked privacy: JT-org construction does not involve constraint privacy and decision privacy, while
privacy losses on private and shared variables during JT-org construction are not covered by the
four types. The measure in [21] assumes that leak of each piece of private information contributes
one unit to the total loss. The scheme does not admit that some information is more sensitive than
others. It is suited for loss evaluation at the system level, but does not support evaluation at the agent
level. We develop a new measure of privacy loss such that (1) it allows agents to trade off disclosure
of private information of different sensitivity, and (2) privacy loss of each boundary expansion can
be evaluated locally by the relevant agent.

In particular, we assume that each private variable x has a privacy weight ωx ∈ [0, 1], assigned
by agent in charge of x. Each shared variable x has a weight ωx ∈ [0, 1], agreed by sharing agents.
Each agent A has a weight ωA ∈ [0, 1] for its identity. Value of ωA is assigned by A and known to
each adjacent agent. Each pair of adjacent agents A and B assign a weight ωAB ∈ [0, 1] to their
adjacency relation. A higher weight signifies that the information is more sensitive, and that the
agent is less willing to disclose it. For instance, let weights of shared variables x and y of an agent
be ωx > ωy. If one variable must be disclosed beyond original adjacent agents in order to construct
JT-org, the agent rather discloses y than x.

There are multiple ways by which the above weights can be determined. Analysis of relative
merits of such protocols is beyond the scope of this work, and is left for future research, except an
example protocol is presented in Section 4.3. DAER assumes that these weights are part of the given
environment decomposition, and DAER aims to produce a re-decomposition (if necessary) that
minimizes privacy loss determined by these weights. Below, we consider how an agent evaluates
expansion plans using the weights.

4.2 Evaluation of Privacy Loss

[Variable based loss] When an agent leaks a variable x to another agent, it incurs ωx units of
privacy loss. Let S be a set of variables, where each x ∈ S is shared between agent A and some
adjacent agent. Let B be an agent that does not share any variable in S with A. When A discloses
S to B, the variable (var) based loss is Lossvar =

∑
x∈S ωx.

Note that Lossvar applies to both private variables and shared variables. Since DAER work on
CG, it only suffers loss on shared variables. In our experimental comparison (Section 6) with alter-
native JT-org construction methods, Lossvar is calculated for both types of variables as appropriate.

[Loss of agent privacy] When a set S of variables is shared with a new agent, it also incurs loss
of agent privacy. This was illustrated by the example of Fig. 6 (a), where agent A3 is adjacent to
A1 and A4. A3 shares the variable w with A1, but not A4. When A3 newly shares w with A4, the
identity of A1 is disclosed to A4 and vice versa.

In general, suppose agent A is adjacent to B and C. A shares variable x with B, but not C.
When A newly shares x with C, potential identity loss arises. If B already shares variables with
C, no identity loss occurs. Otherwise, identity of B is leaked to C, and identity of C is leaked
to B, since B and C are now adjacent. No identity loss is incurred relative to agent A. Since the
identity loss depends on whether B and C already share variables, we denote their relation by a
binary function ncv(B,C) (no common variable).
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Definition 1 If agents B and C have a common variable, then ncv(B,C) = 0. Otherwise,
ncv(B,C) = 1.

The following proposition characterizes the condition of identity loss.

Proposition 1 Agent A is adjacent to B and C, and shares variable x with B, but not C. When A
newly shares x with C, identity loss occurs between B and C, iff ncv(B,C) = 1.

Proof: If ncv(B,C) = 0, by Def. 1, B and C have common variables and know the identity of
each other before the sharing of x with C. Hence, no identify loss is incurred due to the sharing. If
ncv(B,C) = 1, B and C are not adjacent before the sharing of x with C, but will be so after the
sharing. Hence, identity loss occurs. �

Since agent A needs to evaluate the loss due to sharing x with C, we describe the knowledge
state of A through an extended ncv function.

Definition 2 If agents A, B, and C have a common variable, then ncv(A,B,C) = 0. Otherwise
ncv(A,B,C) = 1.

From Defs. 1 and 2, the lemma below follows:

Lemma 1 For agents A, B, and C, ncv(B,C) = 1 implies ncv(A,B,C) = 1.

Although the knowledge of A is ncv(A,B,C), it sometimes allows A to evaluate identity loss
with certainty.

Proposition 2 AgentA is adjacent toB and C, shares x withB, but not C, and ncv(A,B,C) = 0.
If A newly shares x with C, it incurs no identity loss between B and C.

Proof: From the contrapositive form of Lemma 1, ncv(A,B,C) = 0 implies ncv(B,C) = 0. By
Prop. 1, the conclusion follows. �

The situation in Prop. 2 occurs when A shares a variable y 6= x with both B and C. By Prop. 2,
A knows that sharing x with C will not cause identity loss.

Unfortunately, the knowledge of ncv(A,B,C) does not always allow agent A to determine
identity loss due to sharing x with C. When A has no common variable with B and C, i.e.,
ncv(A,B,C) = 1, B and C may or may not share variables. That is, from ncv(A,B,C) = 1,
A cannot infer ncv(B,C), nor whether sharing x with C causes identity loss.

The above analysis leads to the following general evaluation of identity loss when A newly
shares a set S of variables with an adjacent agent C.

Theorem 1 Let A and C be adjacent agents, and S be a set of variables contained in A but not
in C. Let AS be any agent that contains some variable in S (hence is adjacent to A) and satisfies
ncv(A,AS , C) = 1. If A newly shares S with C, the agent privacy loss incurred is

Lossid =
∑
AS

ncv(AS , C) (ωAS
+ ωC).
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Proof: Since the loss is additive over eachAS , it suffices to consider oneAS . If ncv(A,AS , C) = 0,
by Prop. 2, there is no identity loss between AS and C.

When ncv(A,AS , C) = 1, the loss depends on ncv(AS , C). By Prop. 1, if ncv(AS , C) = 0,
there is no loss. If ncv(AS , C) = 1, the loss is ωAS

+ ωC . �

Since the value of ncv(AS , C) is unknown to A, so is that of Lossid. Therefore, we let each
agent evaluate identity based loss according to the upper bound of Lossid

MaxLossid =
∑
AS

(ωAS
+ ωC) ≥ Lossid,

and minimize the upper bound.
[Loss of topology privacy] As analyzed above, explicit disclosure of private information over

shared variables and agent identities occurs with Algos. 8 and 9. Implicit disclosure of agent ad-
jacency relations occurs as well. In the example of Fig. 6 (a), agent A3 is adjacent to A1 and A4.
A3 shares variable w with A1, but not A4. A3, A1, and A4 do not share common variables. Hence,
adjacency A3-A1 is unknown to A4, and adjacency A3-A4 is unknown to A1. When A3 newly
shares w with A4, A4 can infer A3-A1 adjacency, and A1 can infer A3-A4 adjacency.

In general, suppose agent A is adjacent to B and C. A shares variable x with B, but not C.
Furthermore, A, B, and C have no common variables, i.e., ncv(A,B,C) = 1. Hence, C does not
know that A and B are adjacent, and B does not know that A and C are adjacent either. When A
shares x with C, A informs C to become adjacent with B (Algo. 9). This allows C to infer the
A-B adjacency relation (privacy loss). Furthermore, by being adjacent with C due to sharing x
and observing A being self-eliminated, B can infer A-C adjacency. The loss does not depend on
whether B and C already share variables. That is, the value of ncv(B,C) is irrelevant.

Theorem 2 Let A and C be adjacent agents, and S be a set of variables contained in A but not
in C. Let AS be any agent that contains some variable in S (hence is adjacent to A) and satisfies
ncv(A,AS , C) = 1. If A newly shares S with C, the loss of topology privacy incurred is

Lossbr =
∑
AS

(ωA,AS
+ ωA,C),

where br refers to border.

Proof: The loss is additive over each AS . Hence, it suffices to consider one AS . We analyze privacy
loss by value of ncv(A,AS , C).

If ncv(A,AS , C) = 0, adjacency between any pair among A, AS and C is a prior knowledge
of the third. Hence, the sharing of S does not incur loss of topology privacy.

If ncv(A,AS , C) = 1, adjacencyA-AS was unknown toC but is known toC due to the sharing.
The privacy loss incurred is ωA,AS

. Similarly, the privacy loss incurred by disclosing adjacencyA-C
to AS is ωA,C . The result of Lossbr follows. �

In summary, when agent A proposes to newly share a set S of variables with an adjacent agent
C, the expansion plan is evaluated in procedure GetBestExpP lan. The evaluation computes the
following upper bound of the privacy loss

MaxLoss = Lossvar +MaxLossid + Lossbr.
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For example, suppose that A2 in Fig. 6 (a) evaluates the expansion plan of sharing S = {y, z}
with A4. Let the relevant privacy weights be the following:

ωx = 0.806, ωy = 0.622, ωz = 0.875, ωA0 = 0.723, ωA1 = 0.237, ωA2 = 0.991, ωA4 = 0.253,

ωA0,A2 = 0.716, ωA1,A2 = 0.162, ωA2,A4 = 0.682.

We have included weights relevant to A0 since it is adjacent to A2 in the CG in Fig. 1 (c), even
though A0 has been eliminated in an earlier HTBS stage. The privacy loss is evaluated as follows:

Lossvar = 0.622 + 0.875, MaxLossid = (0.723 + 0.253) + (0.237 + 0.253),

Lossbr = (0.716 + 0.682) + (0.162 + 0.682), MaxLoss = 5.207.

A DAER execution consists of K ≥ 1 rounds. If the environment decomposition Ω has a JT-
org, then K = 1 and the first round consists of the HTBS stage only. The total privacy loss is 0. If
Ω does not admit a JT-org, the first HTBS stage will conclude accordingly, an EE stage will follow,
and K > 1. After K − 1 rounds with alternating HTBS and EE stages, the Kth round consists of
the HTBS stage only, that has no privacy loss. The HTBS stages do not have privacy loss. Hence,
the total privacy loss is accumulated from the first K − 1 EE stages. Since loss of each expansion is
independent of other expansions, the total loss is the sum of losses from the K − 1 EE stages.

4.3 Possible Protocol for Assigning Privacy Weights

We have measured each piece of private information with a weight in [0, 1]. This allows an agent to
trade disclosure of information of different sensitivities. We illustrate this function in Section 6.1.
On the other hand, since DAER greedily minimizes the privacy loss of the agent society, individual
agents can display game-theoretic behavior in assigning privacy weights: By assigning the largest
possible weights for pieces of its own privacy information, an agent can avoid disclosing them dur-
ing JT-org construction, at the price of increased disclosure of private information by other agents.
Therefore, a protocol that regulates privacy weight assignment is desirable. Thorough investigation
of viable protocols and analysis of their properties are beyond the scope of this work, and are an
important direction of future work. As DAER functions with any privacy weights, unless reason-
able weight assignment protocols are impossible, this issue does not undermine the soundness and
generality of DAER. Below, we suggest a simple protocol of the kind, and show that meaningful
weight assignment protocols do exist.

We believe that a reasonable privacy weight assignment protocol should have the following
(minimum) properties: (1) It should prevent an agent from assigning maximum weights arbitrarily
for each piece of private information. (2) It should not cause disclosure of private information. (3)
Whether an agent followed the protocol is auditable in principle.

We consider a protocol which stipulates a constant µ ∈ (0, 1), e.g., µ = 0.5, and requires each
agent to assign weights with their average being equal to µ. Denote the number of privacy weights
that an agent assigns by M . For instance, there is one weight for its agent identity, one weight for
each agent adjacency, and so on. The sum of all weights assigned by an agent must be µ M .

During DAER execution, a pair of agents can become adjacent and a new weight is needed.
The protocol requires the new weight to be assigned a value µ. This ensures that the new weight
maintains the µ (M + 1) average. The value stipulates a moderate sensitivity: It is preferable not to
be disclosed, but can be if necessary.
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Next, we consider how well the protocol addresses the 3 properties: Since the maximum sum
of M weights is M , while the agent can only assign weights that sum to µ M < M , the property
(1) is satisfied. No additional information is disclosed by each agent, and hence the property (2) is
satisfied. The weights are propagated in aggregated form during DAER execution. Hence, whether
an agent assigned its privacy weight according to the protocol is auditable in principle: the property
(3) is satisfied.

We view any weight assignment protocol as an associated component of the computational
framework in which DAER functions, and not a component of DAER. Indeed, even if there is no
regulation on the game-theoretic behavior such that agents assign weights close to 1 arbitrarily,
DAER will still be able to minimize the overall privacy loss as measured by such weights.

The above protocol serves as a proof of existence of meaningful weight assignment protocols.
It may need to be refined, and other alternatives are possible. We leave thorough investigation and
analysis of alternative protocols to future work.

5. Soundness and Complexity

Assuming that the initial environment decomposition Ω does not admit a JT-org, Theorem 3 below
shows that upon termination of DAER, the final expanded environment decomposition Ω′ has a
JT-org, while the privacy loss is greedily minimized.

Theorem 3 Let Ω be an environment decomposition that does not admit a JT-org and DAER be
run on Ω to completion. Let Ω′ be the environment decomposition obtained by enlarging those
boundaries of Ω as expanded by DAER. Then

1. no privacy loss is incurred at the HTBS stage of each round,

2. privacy loss at the EE stage of each round is upper bounded by that of the winning plan,

3. the upper bound is optimal for the round, and

4. Ω′ has a JT-org.

Proof: Condition 1 follows from the privacy loss analysis of HTBS in [21] (Section 8.2).
Condition 2 follows from Theorem 1, Theorem 2, the MaxLoss used by GetBestExpP lan,

and the depth-first-search employed in the EE stage. Condition 3 is also derived from the depth-
first-search.

It may be argued that satisfaction of Condition 4 alone is insignificant. For instance, sharing all
variables among all agents will do so trivially. The significance of Condition 4 here is its coexistence
with Conditions 1 through 3. We prove Condition 4 below in such a context.

Since Ω does not admit a JT-org, DAER runs to completion in K > 1 rounds. In the first HTBS
stage, zero or more agents are self-eliminated, and more than one agent remain at the end of the
HTBS stage. By Algo. 1, the round 1 includes an EE stage.

During the EE stage, one agent AX with boundary X is selected to expand the boundary Y of
an adjacent agent AY . As the result, AX is self-eliminated. Counting from both stages, a total of
one or more agents (boundaries) are eliminated in round 1.

After round 1, boundaries of all agents remain the same, except that boundary Y is expanded
into Y ∪ X . Denote the updated environment decomposition by Ω+

2 . On the other hand, round 2
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of DAER runs effectively on an environment decomposition which we denote by Ω−2 . Ω−2 does not
include agents in Ω that were eliminated during round 1. The active boundary for AY is Y ∪ X
without variables that were uniquely shared with AX . Hence, Ω+

2 and Ω−2 characterize the initial
context of round 2.

Using the same notation, the initial context of round 1 is characterized by Ω+
1 and Ω−1 , where

Ω+
1 = Ω−1 = Ω.

Each subsequent round i ≥ 2 starts with Ω+
i and Ω−i . If Ω−i does not admit a JT-org, the HTBS

stage in round i is followed by the EE stage, one or more agents are eliminated in round i, and
DAER continues into round i+ 1. Otherwise, the HTBS stage in round i terminates DAER with the
resultant environment decomposition Ω′ = Ω+

i .
Since Ω consists of a finite number (n) of boundaries, and at least one boundary is eliminated

in each round, DAER terminates in K < n rounds. In round K, the HTBS stage ends with a single
agent left uneliminated.

Let ρ = (A′1, A
′
2, ..., A

′
n−1) be the order in which the n−1 agents are eliminated during DAER.

The order starts with agents eliminated during HTBS stage in round 1, followed by the agent elim-
inated during EE stage in round 1, followed by agents eliminated during HTBS stage in round 2,
and so on. We show that starting with Ω′ = Ω+

K , n-1 agents can be self-eliminated in the order ρ,
without any boundary expansion in between.

Suppose A′1, ..., A
′
i were eliminated during the HTBS stage in round 1 of DAER. Since their

boundaries are never modified, they remain the same in Ω′. For each boundary in Ω = Ω−1 , its
counter part in Ω′ may have been expanded but has never been reduced. Hence, each ofA′1, A

′
2, ..., A

′
i

can be self-eliminated relative to the same corresponding agent as during round 1 of DAER.
The next agent in the order is A′i+1, and it was eliminated during the EE stage of round 1.

Suppose A′i+1 was eliminated relative to Ak. Since the boundary of Ak in Ω′ has been expanded
during round 1 into a superset of the boundary of A′i+1, A′i+1 can still be eliminated relative to Ak.

Since each boundary ceases to change after its elimination during DAER and any boundary can
only expand but never shrink, each remaining agent in ρ can be self-eliminated from Ω′. After their
elimination, a single active agent is left, and hence Ω′ is type 1. By Theorem 2 (briefly introduced
at the end of Section 2) of [21], it follows that Ω′ has a JT-org. �

By Theorem 3, DAER re-decomposes the environment to enable construction of a JT-org. A JT-
org can be specified distributively from the trace saved during HTBS ([21]), which can be directly
extended to DAER. This is illustrated in Fig. 5 (b).

Theorem 4 establishes that DAER accomplishes all three tasks of JT-org construction., where
each resultant condition corresponds to one such task.

Theorem 4 Let Ω be an environment decomposition and DAER be run on Ω to completion. Then
the following holds:

1. No matter whether Ω admits a JT-org, DAER will recognize so explicitly.

2. If Ω admits a JT-org, DAER will construct one without privacy loss.

3. Otherwise, DAER will construct one while greedily minimizing the privacy loss.

Proof: Assume that DAER is run on Ω to completion. By the analysis immediately following
Algo. 1, the conditions 1 and 2 hold. The condition 3 follows from Theorem 3. �
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Let η be the initial number of boundaries and e be the initial number of borders (we omit newly
created borders during DAER as they are not substantial). Each round consists of an HTBS stage
and an EE stage, each of which involves a depth-first-search over the currently active CG. In each
depth-first-search, O(e) messages are passed. Each round eliminates at least one boundary and a
single boundary is active at the end of DAER. Hence, DAER concludes in O(η) rounds. Its overall
time complexity is O(e η).

6. Experimental Evaluation

We report empirical evidence on the effectiveness of DAER. First, we provide a case study to
demonstrate how the measure of privacy loss employed by DAER enables tradeoff of disclosure
of private information of different sensitivity. It also connects components of DAER presented sep-
arately earlier into a coherent whole. Secondly, we compare performance of DAER with alternative
distributed JT-org construction methods on their relative privacy loss.

6.1 Trading Privacy Disclosure

Suppose the CG of environment decomposition is that of Fig. 1 (c), and the privacy weights are
assigned according to the protocol in Section 4.3 with the value µ = 0.5. Since DAER is free
from privacy loss on private variables, the protocol requires weights of the remaining three types of
JT-org linked privacy to sum to µM . Privacy weights for agent identity and adjacency are shown
in Table 2, and privacy weights on variable identity and domain for shared variables are shown in
Table 3.

Table 2: Privacy weights for agent identity and adjacency (underlined are created during DAER)
Agt i ωAi Agt j A1 A2 A3 A4

A0 0.50 ωAi,Aj 0.34 0.62
A1 0.56 0.36 0.56
A2 0.01 0.50 0.33
A3 0.99 0.94
A4 0.41

In our experimental implementation, we have differentiated privacy on a variable into that about
its identity and that about its domain (see Table 3). This differentiation allows accommodation
of JT-org construction methods, e.g., DCTE, where disclosure of identity for a variable does not
necessitates disclosure of its domain (see Section 9.2 in [21]).

Table 3: Privacy weights on variable identity and domain for shared variables
Variable u v w x y z
Identity 0.32 0.18 0.16 0.78 0.59 0.83
Domain 0.99 0.19 0.48 0.67 0.14 0.67
Weight 1.31 0.37 0.64 1.45 0.73 1.50
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For each agent with M weights, their sum is µ M , which regulates the game-theoretic behavior
of the agent. For instance, weights of A0 sum to

ωA0 + ωA0,A1 + ωA0,A2 + ωIdu + ωIdy + ωDomu + ωDomy = 3.5 = 7µ.

In round 1 of DAER, A0 is self-eliminated relative to A1 during HTBS stage, and the reduced
CG is that of Fig. 4 (a). In the EE stage, active agents evaluate expansion plans locally. A1 has two
expansion plans. The first expands A2 with {w}, which incurs privacy loss

ωw + ωA2 + ωA3 + ωA1,A2 + ωA1,A3 = 2.56.

The second plan expands A3 with {y, z}, which incurs loss

ωy + ωz + ωA0 + ωA3 + ωA1,A0 + ωA1,A3 + ωA2 + ωA3 + ωA1,A2 + ωA1,A3 = 6.54.

Note that although A0 has been eliminated, since A0 contains y, when y is newly shared with A3,
the privacy loss relative to A0 must be counted. In comparison, the first plan is best with privacy
loss 2.56.

A2 has two expansion plans: expanding A1 with {x} yielding loss 3.11, and expanding A4 with
{y, z} yielding loss 5.75. The first plan is best with privacy loss 3.11. A3 has two expansion plans:
expanding A1 with {v} yielding loss 2.84, and expanding A4 with {w} yielding loss 3.11. The first
plan is best with privacy loss 2.84. Finally, A4 has two expansion plans: expanding A2 with {v}
yielding loss 2.64, and expanding A3 with {x} yielding loss 3.72. The first plan is best with privacy
loss 2.64.

Subsequently, through the distributed depth-first-search, the globally optimal expansion plan is
selected as the first plan of A1: expanding A2 with {w}. It leads to the elimination of A1, which
reduces the CG to that of Fig. 7 (a). Since A2 and A3 become adjacent, a new weight for their
adjacency is created (see Table 2).

Figure 7: Reduced CG after round 1 (a), reduced CG after round 2 (b), and resultant JT-org (c)

The round 2 of DAER follows. No agent can be self-eliminated during the HTBS stage. In the
EE stage, active agents evaluate expansion plans locally. A2 has two plans, and the best plan is
expanding A3 with {x} yielding loss

ωx + ωA3 + ωA4 + ωA2,A3 + ωA2,A4 = 3.68.

Note that since A3 and A4 are adjacent, the privacy loss measured by ωA3 and ωA4 does not really
occur. However, the adjacency is unknown to A2 and hence the upper found of 3.68. A3 has two
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plans, and the best plan is expanding A2 with {v} yielding loss 2.23. A4 has two plans, and the best
plan is expanding A2 with {v} yielding loss 2.64.

The distributed depth-first-search selects the plan by A3 as globally optimal. It leads to the
elimination of A3, which reduces the CG to that of Fig. 7 (b).

In round 3 of DAER, the HTBS stage eliminates one of the remaining agents, and terminates
DAER with the JT-org in Fig. 7 (c), where A2 has been expanded with {v, w}. Comparing Fig. 1
(c) and Fig. 7 (c), we see that under the given privacy weight assignment, w in A1 and A3 is newly
shared with A2, and v in A3 and A4 is newly shared with A2.

Suppose v is regarded highly sensitive by A3 and A4, and they prefer to avoid disclosing v if
possible. Hence, they assign the following weights differently from Tables 2 and 3:

ωA3 = 0.82, ωA4 = 0.24, ωIdv = 0.68, ωDomv = 0.79.

Weights for agent identities are reduced from those in Table 2, weights for variable v are increased
from those in Table 3, and the µM average is maintained. That is, the agents must be willing
to sacrifice the privacy of some other information, in order to ensure preservation of privacy for
variable v. We show the execution of DAER below:

In round 1 of DAER, A0 is self-eliminated as above. In the EE stage, although each agent has
the same optional expansion plans, their privacy losses are now different. The second plan of A3,
expanding A4 with {w}, now has loss 2.01 and becomes the best. Subsequent depth-first-search
selects it as the global optimal, which leads to the CG in Fig. 8 (a).

Figure 8: Reduced CG after round 1 (a), reduced CG after round 2 (b), and resultant JT-org (c)

In the EE stage of round 2, the best plan ofA4 is expandingA1 with {x} yielding loss 2.85. The
depth-first-search selects it as globally optimal. It leads to the elimination of A4, which reduces the
CG to that of Fig. 8 (b).

In round 3 of DAER, the HTBS stage eliminates one of the remaining agents, and terminates
DAER with the JT-org in Fig. 8 (c). Comparing Fig. 1 (c) and Fig. 8 (c), we see that w in A1 and
A3 is newly shared with A4, x in A2 and A4 is newly shared with A1, and v is not shared beyond
the original agents.

Table 4: Comparison of variable disclosure between two DAER executions
Execution A1 A2 A3 A4

First w v,w v

Second w x w x
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In the previous execution of DAER, v inA3 andA4 is newly shared. In the alternative execution,
this is avoided and replaced by newly sharing x in A2 and A4 (Table 4). From the perspective of
A4, disclosure of v is traded with disclosure of x, as well as its identity to A1.

In general, by assigning privacy weights differently, an agent can trade disclosure of information
with different sensitivities. The protocol exemplified ensures that they cannot reduce the amount of
private information disclosed at the price of increased amount of disclosure by other agents. On
the other hand, DAER will greedily minimize the overall privacy loss of the multiagent system
no matter how privacy weights are assigned. The simple protocol for privacy weight assignment
presented above only serves to show that such protocols exist. We leave the in-depth study of
privacy weight assignment protocols to future research.

6.2 Evaluating Privacy Loss and Efficiency

To evaluate effectiveness of DAER in preserving JT-org linked privacy and its efficiency, we empir-
ically compare DAER with alternative distributed JT-org construction methods in ActionGDL and
DCTE. The experiment is conducted using simulated agent environments that do not admit a JT-org.
We identify three independent parameters of environments that critically influence the performance
of alternative methods. They are the number of agents (N ), the maximum boundary size (Y ), and
the ratio between numbers of private and shared variables per subenvironment (R). Other relevant
parameters exist, such as the maximum subenvironment size (SubenvSz) and the maximum border
size (BdrSz). SubenvSz is excluded as it is dependent on Y and R, and must increase as Y and R
in order to be valid. BdrSz is also dependent on Y , and must increase as Y . We therefore simulated
agent environments according to N , Y , and R.

To evaluate how performance of JT-org construction methods depends on the environment pa-
rameters, we simulated three sets of environments. Environments in each set are identical on values
of two parameters, with the third parameter varying its value. In particular, each set is divided into 5
groups differing by the value of the third parameter. Each group consists of 50 distinct environments
of identical parameter values. The experimental environments are summarized in Table 5.

Table 5: Summary of experimental environments
Env Set N Y R # Env Groups # Envs

1 10,50,100,150,200 20 1 5 250
2 50 10,15,20,25,30 1 5 250
3 50 15 1,2,3,4,5 5 250

Environments in the 1st set differ by the number of agents/subenvironments. For each environ-
ment, Y = 20 and R = 1. Hence, the maximum subenvironment size is 40 from Y ∗ (1 +R). The
number of agents varies across groups from 10 per environment to 200. Each environment in the
N = 200 group has about 2400 variables. The set consists of 5 groups with 50 environments per
group, and has a total of 250 distinct environments.

Environments in the 2nd set differ by the maximum subenvironment size. Each environment
has 50 subenvironments, with the maximum subenvironment size varies across groups from 20 to
60. Half of the variables of each agent are private.

Environments in the 3rd set differ by the ratio of the number of private variables over that of
shared variables. Each environment has 50 subenvironments. The number of private variables per
subenvironment varies across groups from the same number of shared variables to being 5 times as
many. Hence, their maximum subenvironment size varies across groups from 30 to 90 variables.
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For each environment, privacy weights for variables, agent identities, and border relations are
simulated following the protocol in Section 4.3. The protocol requires each agent to assign all four
types of privacy weights, with their average being µ = 0.5.

Each environment is run by DAER, ActionGDL, and DCTE, until a JT-org is constructed. DCTE
leaks identities of some variables, but not their domains. It can leak both identity and domain for
other variables. For fair comparison, 2 weights are associated with each variable, one for leak of
its identity and another for leak of its domain. The total number of distinct environments is 750,
resulting in a total of 2250 runs.

Figure 9: Privacy losses (left) and runtimes (right) for the 1st set of environments.

Fig. 9 (left) shows privacy losses (in log10) by each method for the 1st set of 250 environments.
Each boxplot shows the results over 50 environments in the same group by a particular method. All
boxplots by the same method have the same color. The 1st three boxplots in the left correspond
to the environment group with N = 10, processed by DAER (red), ActionGDL (blue), and DCTE
(green), respectively.

As the number of agents N increases from 10 to 200, privacy loss by each method increases.
The average privacy losses by DAER range from 13.7 (N = 10) to 80.3 (N = 200). Those
by ActionGDL range from 106.0 to 3210.1. Those by DCTE range from 660.6 to 240332.4. At
N = 200, the average privacy loss by ActionGDL is 40 times higher than DAER, and that by
DCTE is 2994 times higher.

Fig. 9 (right) shows runtimes (msec in log10) by each method. As N increases, runtime by each
method increases. The average runtimes by DAER range from 16.8 msec to 288.4 msec. Those
by ActionGDL range from 32.7 msec to 1076.5 msec. Those by DCTE range from 18.4 msec to
6073.3 msec. At N = 200, the average runtime by ActionGDL is 3 times higher than DAER, and
that by DCTE is 21 times higher. Hence, DAER performed significantly better on both privacy loss
and runtime, while the number of agents scales up.

Fig. 10 (left) shows privacy losses for the 2nd set of 250 environments, where the maximum
boundary size Y increases from 10 to 30. As the boundary size increases, privacy loss by each
method increases as well. The average privacy losses by DAER range from 24.4 (Y = 10) to 42.1
(Y = 30). Those by ActionGDL range from 277.2 to 1081.8. Those by DCTE range from 6807.2
to 21887.3. At Y = 30, the average privacy loss by ActionGDL is 25 times higher than DAER, and
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Figure 10: Privacy losses (left) and runtimes (right) for the 2nd set of environments.

that by DCTE is 520 times higher. Hence, DAER suffers significantly less privacy loss across the
range of boundary sizes.

Fig. 10 (right) shows runtimes by each method. As Y increases, runtime by each method in-
creases. The average runtimes by DAER range from 15.6 msec to 22.0 msec. Those by ActionGDL
range from 25.5 msec to 230.5 msec. Those by DCTE range from 97.1 msec to 254.1 msec. At
Y = 30, the average runtime by ActionGDL is 10 times higher than DAER, and that by DCTE is
11 times higher. Hence, runtime by DAER is significantly less than alternative methods, and more
so when boundaries become larger.

Figure 11: Privacy losses (left) and runtimes (right) for the 3rd set of environments.

Fig. 11 (left) shows privacy losses for the 3rd set of 250 environments, where the ratio R in-
creases from 1 to 5. DAER is immune to privacy loss by private variables, and the average privacy
loss remains about 29, unaffected by increase in R. Although ActionGDL is not immune to privacy
loss by private variables (see analysis in [21]), the result shows that its loss remains about 470 (16
times higher than that of DAER), also unaffected by increase in R. On the other hand, the average
privacy losses by DCTE increased from 10026.6 to 39434.5 (1359 times higher than that of DAER).
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Fig. 11 (right) shows runtimes by each method. As R increases, runtime by DAER remains at
about 17 msec. Those by ActionGDL range from 48.2 msec to 863.0 msec. Those by DCTE range
from 127.4 msec to 440.1 msec. At R = 5, the average runtime by ActionGDL is 50 times higher
than DAER, and that by DCTE is 25 times higher. Overall, privacy loss and runtime by DAER are
both the lowest, and are unaffected by increases in private variables. The level of privacy loss by
ActionGDL is in the middle of the three methods, is unaffected by increases in private variables,
but its runtime grows faster than DCTE. DCTE has the highest privacy loss, the loss has the most
significant growth with R, but its runtime growth is less significant than ActionGDL.

In summary, DAER has significantly less privacy loss and runtime as the number of agents, sizes
of subenvironments, and the ratio of private variables scale up, when compared with alternative
methods.

7. Conclusion

The main contribution of this work is the DAER algorithm suite. DAER is the first known algo-
rithm that performs all three tasks of JT-org construction. When the environment decomposition
admits a JT-org, DAER constructs one without JT-org linked privacy loss. Coupled with suitable
protocols to regulate agent privacy weight assignment, DAER allows each agent to quantify sensi-
tivity of different pieces of private information, so that less sensitive information is disclosed when
it is necessary to disclose some. When the environment decomposition does not admit a JT-org,
DAER re-decomposes the environment to construct a JT-org, while greedily minimizing the privacy
loss. Although DAER does not guarantee the minimal total privacy loss, our experiments show that
DAER dominates the alternative methods with significantly lower privacy loss (up to 4 orders of
magnitude relative to DCTE). It is categorically superior over alternative methods by being immune
to privacy loss over private variables.

DAER is efficient with linear time on the number of agents and the number of adjacent agent
pairs. Experimentally, its runtime is significantly less than alternative methods across a range of
values for the number of agents, the size of subenvironments, and the ratio of private variables.

DAER is general relative to privacy weight assignment, in the sense that no matter how agents
quantify the sensitivity of their privacy, DAER always greedily minimizes the privacy loss over
the agent society. Although game-theoretic behavior of agents is possible in their privacy weight
assignment, protocols that regulate such behavior and prevent agents from doing so exist. We pre-
sented one such protocol to demonstrate their existence, and leave in-depth study of such protocols
to future research.
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