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Abstract

Multiply sectioned Bayesian networks (MSBNs) provide a framework for proba-
bilistic reasoning in a complex single user oriented system as well as in a cooperative
multi-agent distributed interpretation system. During the construction or dynamic
formation of a MSBN, automatic verification of the acyclicity of the overall structure
is desired. Well known algorithms for acyclicity test assume a centralized storage of the
structure to be tested. We discuss why a centralized test is undesirable and propose
a distributed algorithm that verifies the acyclicity through cooperation among sub-
nets/agents. The algorithm does not require each agent to reveal its internal structure
and thus supports construction of a MSBN from subnets built by different vendors.

1 Introduction

Multiply sectioned Bayesian networks (MSBNs) is an extension of Bayesian networks (BNs)
[1, 4, 3]. A MSBN consists of a set of interrelated Bayesian subnets that collectively define
a BN [12, 11]. Each subnet shares a non-empty set of variables with at least one other
subnet. Subnets are organized into a hypertree structure such that probabilistic inference
can be performed coherently in a modular and distributed fashion. The modularity improves
inference efficiency in a complex single user oriented system [10]. It also allows MSBNs to
be extended into a coherent framework for probabilistic reasoning in cooperative multi-agent
distributed interpretation systems [8].

The structure of a BN is a directed acyclic graph (DAG). The overall structure of a MSBN,
the composition of subnet structures, is also a DAG. To ensure the correct composition,
automatic verification of acyclicity of the composed structure is desired. Although algorithms
for testing acyclicity based on topological sorting are well known, see [6] for example, they
assume a centralized storage of the graph to be tested. We analyze some design considerations
that make a centralized test undesirable. We then propose a distributed algorithm in terms
of a set of distributed operations for testing acyclicity of the composed structure through
cooperation of subnets/agents.

The theory and applications of MSBNs are briefly reviewed in Section 2. The concepts
necessary to the rest of the paper are formally defined. We discuss in Section 3 reasons
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why a distributed verification of acyclicity is preferred. It is shown in Section 4 that some
‘obvious’ solutions to distributed verification do not solve the problem. The graph-theoretic
foundation for the proposed algorithm is derived in Section 5 and the algorithm is presented
in Section 6 with a proof of its correctness. Its complexity is analyzed in Section 7.

2 Overview of MSBNs

In this section, we briefly overview the theory of MSBNs and their applications. More details
on MSBNs can be found in [12, 10, 7, 8].

A BN S is a triplet (N,D,P ) where N is a set of variables, D is a DAG whose nodes are
labeled by elements of N , and P is a joint probability distribution (jpd) over N . We shall
call N the domain of S, D the structure of S and P the distribution or jpd of S.

A MSBN M is a collection of Bayesian subnets that together define a BN. These subnets
are required to satisfy certain conditions that permit the construction of distributed inference
algorithms. One of these conditions requires that nodes shared by different subnets form a
d-sepset, as defined below.

Let Gi = (N i, Ei) (i = 1, 2) be two graphs. We shall refer to the graph G = (N1 ∪
N2, E1 ∪ E2) as the union of G1 and G2, denoted by G = G1 t G2.

Definition 1 (d-sepset) Let Di = (N i, Ei) (i = 1, 2) be two DAGs such that D = D1 tD2

is a DAG. The intersection I = N1 ∩ N2 is a d-sepset between D1 and D2 if for every
A ∈ I with its parents π in D, either π ⊆ N1 or π ⊆ N2. Each node in a d-sepset is called
a d-sepnode.

The d-sepset concept is a syntactic condition. Semantically, it can be shown that when a
pair of subnets are isolated from M , their d-sepset renders them conditionally independent.
Therefore, d-sepset provides a simple syntactic rule to facilitate independent specification
of semantically correct subnets. Figure 1 (left) shows the three DAGs Di (i = 1, 2, 3) of a
MSBN for diagnosis of three neuromuscular diseases, Median nerve lesion (Medn), Carpal
tunnel syndrome (Cts) and Plexus upper trunk lesion (Pxut).1 The d-sepset between each
pair of DAGs is {Medn,Cts, Pxut}. In general, d-sepsets between different pairs of DAGs
of M may be different.

Just as the structure of a BN is a DAG, the structure of a MSBN is a multiply sectioned
DAG (MSDAG) with a hypertree organization, or simply a hypertree MSDAG defined as
follows:

Definition 2 (Hypertree MSDAG) A hypertree MSDAG D =
⊔

i D
i, where each Di is a

connected DAG, is a DAG that is built by the following procedure:
Start with an empty graph (no node). Recursively add a DAG Dk, called a hypernode,

to the existing MSDAG
⊔k−1

i=1 Di subject to the constraints:
[d-sepset] For each Dj (j < k), the intersection Ijk = N j ∩ Nk is a d-sepset when the

two DAGs are isolated.

1The example is taken from a fraction of PAINULIM [10] modified for illustration.
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Figure 1: Left: The DAGs of an example MSBN, where each d-sepnode is highlighted by a
dotted circle. Middle: The hypertree organization of the DAGs in the left. Right: A general
hypertree MSDAG (unrelated to the left).

[Local covering] There exists Di (i < k) such that, for each Dj (j < k; j 6= i), we have
Ijk ⊆ N i. For an arbitrarily chosen such Di, I ik is called the hyperlink between hypernodes
Di and Dk, and Di and Dk are said to be adjacent.

Note that a hypertree MSDAG is a tree where each node is a hypernode as defined above
and each link is a hyperlink. The DAGs in Figure 1 (left) can be organized into the trivial
hypertree MSDAG in Figure 1 (middle), where each hypernode is labeled by a DAG and
each hyperlink is labeled by a d-sepset. Figure 1 (right) depicts a general hypertree MSDAG.
Although DAGs of a MSBN should be organized into a hypertree, each DAG may be multiply
connected (more than one path exist between a pair of nodes), e.g., D1. Moreover, there can
be multiple paths between a pair of nodes in different DAGs in a hypertree MSDAG. For
instance, multiple paths are formed between apb and mcmp after D2 and D3 are unioned.
The local covering condition ensures that for any undirected cycle across two adjacent DAGs,
both of its two paths are through the corresponding d-sepset. Together with the d-sepset
condition, they ensure that in a hypertree structured M , each hyperlink renders the two
parts of M that it connects conditionally independent. An intuitive justification of this
structure is given in [9].

A MSBN is defined as follows. Readers are referred to [12] for more details.

Definition 3 A MSBN M is a triplet (N ,D,P). N =
⋃

i N
i is the total universe where

each N i is a set of variables. D =
⊔

i D
i (a hypertree MSDAG) is the structure where

nodes of each DAG Di are labeled by elements of N i. P =
∏

i P
i(N i)/

∏
k P k(Ik) is the

joint probability distribution (jpd). Each P i(N i) is a probability distribution over
N i such that whenever Di and Dj are adjacent in D, the marginalizations of P i(N i) and
P j(N j) onto the d-sepset I ij are identical. Each P k(Ik) is such a marginal distribution over
a hyperlink of D. Each triplet Si = (N i,Di, P i) is called a subnet of M .

Without confusion, we shall say that two subnets Si and Sj are adjacent if Di and Dj

are adjacent.
A MSBN can be used as a framework for probabilistic reasoning in a single user oriented

system in a large problem domain. The single user implies that evidence and queries are
restricted to one subdomain at a time. Using a MSBN is most beneficial if subdomains of
the problem domain are loosely coupled (the size of each d-sepset is reasonably small relative
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to the size of the subdomain) and evidence and queries are focused on one subdomain for
a period of time before shifting to a different subdomain. For example in Figure 1 (right),
the user may focus attention on a subnet S1 whose structure is D1. After several pieces of
evidence are entered and queries are issued to this subnet, the user may shift attention to
the subnet S3. The inference operations of MSBNs will then propagate evidence from S1 to
S2 and then to S3. The user can then enter evidence on variables contained in S3. It can be
shown that with such a restricted belief propagation during attention shift, the answers to
queries obtained in S3 are always consistent to all evidence accumulated in the entire MSBN.
Computational complexity, however, is reduced by not having to update any subnets not on
the hyperpath from the current subnet to the next target subnet. Application domains of
single-user MSBNs include diagnosis of natural systems [10] and model-based diagnosis of
artificial systems [5]2.

 Decision
Actuator

Sensors

Reasoner

Maker
Bayesian
  Subnet

Distributed Global
Structure VerifierCommunicator

Sensitivity
 Analyzer

Figure 2: Main components of an agent in a MSBN-based multi-agent system.

MSBNs can be extended into a framework for probabilistic reasoning in cooperative
multi-agent distributed interpretation systems. Each agent holds its partial perspective of
a large problem domain (Subnet in Figure 2), accesses a local evidence source (Sensors in
Figure 2), communicates with other agents infrequently (Communicator), reasons with the
local evidence and limited global evidence (Reasoner), and answers queries (Reasoner) or
takes actions (Decision Maker/Actuator). It can be shown [8] that if all agents are coopera-
tive (vs self-interested), and each pair of adjacent agents are conditionally independent given
their shared variables and have common initial belief on the shared variables, then a joint
system belief is well defined which is identical to each agent’s belief within its subdomain
and supplemental to the agent’s belief outside the subdomain. Even though multiple agents
may acquire evidence asynchronously in parallel (compared with the single user oriented
system where evidence is always entered into the current subnet of focus), the communica-
tion operations of MSBNs ensure that the answers to queries from each agent are consistent
with evidence acquired in the entire system after each communication. Since communication
is infrequent, the operations also ensure that between two successive communications, the
answers to queries for each agent are consistent with all local evidence gathered so far and
are consistent with all evidence gathered in the entire system up to the last communication.
Therefore, a MSBN can be characterized as one of functionally accurate, cooperative dis-
tributed systems [2]. Potential applications include decision support to cooperative human

2Although MSBNs are not referenced directly, the representation formalism used is a special case of
MSBNs. For example, the set of input nodes I, output node O, mode node M , and dummy node D [5],
which forms an interface between a higher level and a lower level in the hierarchy, is a d-sepset [12]. The
‘composite joint tree’ [5] corresponds to the ‘hypertree’ [12]. The way in which inference is performed in the
composite join tree corresponds to the operation ShiftAttention [12].
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users in uncertain domains and troubleshooting a complex system by multiple knowledge
based subsystems [8].

3 Why Distributed Verification?

As defined in Section 2, the structure of a MSBN is a hypertree MSDAG which should be a
DAG. Automatic verification of acyclicity of this structure is desirable in the construction of
large MSBNs. Algorithms that test whether a directed graph is a DAG based on topological
sorting are well known, see for example [6]. These algorithms, however, assume a central
representation of the graphical structure to be tested.

A central representation of all DAGs in a MSBN is not desirable for at least two reasons.
First, the construction of a multi-agent MSBN requires only the knowledge of the functional-
ity of each subnet and the interface (d-sepset) between subnets (BNs). Knowing the internal
structure of each subnet is not necessary. Therefore, each subnet may be developed by an in-
dependent vendor who may not be willing to disclose the structural details. The assumption
of a central representation of all DAGs will eliminate the possibility of cooperating agents
built by such vendors.

Secondly, a MSBN can potentially be dynamic. That is, subnets may join or leave the
MSBN as the system is functioning. It is desirable to verify the correctness of the structure
of the system whenever the member subnets change. It is also desirable that the verification
does not require the communication of all DAGs to a central location or does not depend
upon a single agent to maintain a repository of all DAGs in the current system.

In this paper, we propose a distributed algorithm for verification of the acyclicity of a
MSBN structure. During the verification process, each agent only provides answers to adja-
cent subnets on questions regarding d-sepnodes, and it does not reveal its internal structure
beyond that.

4 Issues in Distributed Verification

Recall from Definition 2 that a hypertree MSDAG is built from a set of DAGs subject to
the d-sepset and local covering conditions. However a directed graph built from a set of
DAGs subject to these two conditions may still contain directed cycles. We shall refer to the
resultant graph as a hypertree DAG union since it may not qualify as a hypertree MSDAG.
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Figure 3: A cyclic DAG union.
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Figure 3 shows two DAGs D1 and D2 with their d-sepset being {a, b}. If we union the
two DAGs, it clearly satisfies the local covering condition. However, the union contains the
directed cycle (a, c, d, b, g, a) and thus is not a DAG.

The above cycle can be detected if we union the pair of DAGs and test the acyclicity.
Although the pairwise verification may detect some directed cycles, pairwise acyclicity in a
hypertree DAG union does not guarantee the global acyclicity.
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Figure 4: Three DAGs which are pairwise acyclic but whose union is cyclic.

Consider the three DAGs in Figure 4. The union of D1 and D3 is acyclic and so is
the union of D3 and D2. However, when the three DAGs are unioned, a directed cycle
{a, c, d, b, n, k, g, j, l, a} is formed. Clearly, a distributed verification of acyclicity requires
cooperation beyond pairs.

5 Verification by Marking Nodes

In this section, we show that acyclicity of a directed graph can be verified by marking root
and leaf nodes recursively. Once it is established, we can mark non-d-sepnodes locally and
mark d-sepnodes by cooperation as presented in the next section. A node is a root if each
arc connected to it is directed away from it. A node is a leaf if each arc connected to it is
directed toward it. A node x is marked if x and arcs connected to x are ignored from further
verification process. The following two propositions show that marking of root/leaf nodes
does not change acyclicity.

Proposition 4 Let G be a directed graph and x be either a root or a leaf in G. Then the
acyclicity of G remains after x is marked.

Proof:
If G is acyclic, then marking x cannot create a directed cycle in G. Suppose G is cyclic.

Then there exists a non-empty set O of directed cycles in G. If x is a root, it does not have
any incoming arc. If x is a leaf, it does not have any outgoing arc. Therefore, x cannot
participate in any cycles in O, which implies that none of the cycles in O will be changed
after x is marked. 2

Once a root or leaf is marked, other nodes may become roots or leaves. Hence marking
roots and leaves can be performed recursively while preserving the acyclicity.
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Next, we show that if a directed graph is acyclic, every node in it will be marked by
recursive applications of Proposition 4. On the other hand, if it is cyclic, at least three nodes
will be left unmarked.

Proposition 5 Let G be a directed graph. G is acyclic iff it is empty after recursive marking
of roots and leaves.

Proof:
Without losing generality, we assume that G has at least two nodes and is connected.

Suppose G is acyclic. Then G has at least one root and one leaf. According to Proposition 4,
after all of them are marked, the resultant graph is still acyclic and has new roots and leaves.
Since G has a finite number of nodes, after recursive marking of roots and leaves, eventually
G will have no unmarked nodes.

Next, suppose G is cyclic. Then G has at least one directed cycle θ consisting of at least
three nodes. For each node x in θ, it is neither a root nor a leaf and thus cannot be marked
as such. Marking of any nodes outside θ cannot turn x into a root or a leaf. Hence none
of the nodes in θ can be marked by recursive marking of roots and leaves. Since G has a
finite number of nodes, after recursive marking of roots and leaves, eventually there will be
no roots or leaves to mark in G while all nodes (at least three) in θ are unmarked. 2

We now consider a hypertree DAG union G whose nodes are classified into d-sepnodes and
non-d-sepnodes. Since G is a connected directed graph, Proposition 5 can be applied to test
its acyclicity. However, although non-d-sepnode roots and leaves can be recognized locally
within each subnet, d-sepnode roots and leaves can only be recognized through cooperation
among subnets. For example, the node i (a non-d-sepnode) in Figure 4 is a leaf both in D2

(appearing markable locally) and in the DAG union (hence markable globally). On the other
hand, k (a d-sepnode) is a leaf in D3 (appearing markable locally), a root in D2 (appearing
markable locally), but a non-root/non-leaf in the DAG union (hence not markable globally).
Moreover, marking of d-sepnode roots and leaves may turn some non-d-sepnodes into new
roots or leaves. The following proposition shows that recursive and alternate marking of
non-d-sepnode roots/leaves and d-sepnode roots/leaves is sufficient to test the acyclicity of
a hypertree DAG union.

Corollary 6 Let G be a hypertree DAG union. Let G′ be the graph resulting from recursive
and alternate marking of non-d-sepnode roots/leaves and d-sepnode roots/leaves in G until
no more nodes can be marked. Then G is acyclic iff G′ is empty.

Proof:
According to Proposition 5, if G is acyclic, at each round of recursive marking, either

some non-d-sepnode roots/leaves or some d-sepnode roots/leaves can be marked, until G
is empty. If G is cyclic, at each round of recursive marking, either some non-d-sepnode
roots/leaves or some d-sepnode roots/leaves can be marked, until only nodes in directed
cycles in G are left unmarked (at least three).

The alternate marking of d-sepnodes and non-d-sepnodes is necessary. Otherwise, the
marking may halt prematurely even if G is acyclic. 2

To illustrate the necessity of alternate marking, consider the acyclic DAG union in Fig-
ure 5. Without using alternate marking, we have only two options: (a) recursive marking of
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all non-d-sepnode roots/leaves followed by recursive marking of all d-sepnode roots/leaves,
or (b) recursive marking of all d-sepnode roots/leaves followed by recursive marking of all
non-d-sepnode roots/leaves. Using option (a), non-d-sepnodes c (root) and d (leaf) in D1

will be marked in the first stage. Neither of the non-d-sepnodes e and f in D2 can be marked
at this stage. In the second stage, the d-sepnodes a (now a root) and b (now a leaf) can be
marked. The marking terminates with e and f unmarked. Using option (b), no d-sepnode
can be marked in the first stage since neither a nor b is a root or leaf. In the second stage,
non-d-sepnodes c (root) and d (leaf) in D1 will be marked. The marking terminates with
a, b, e and f unmarked. Using alternate marking by starting with non-d-sepnodes, c and d
will be marked in the first stage. In the second stage, d-sepnodes a and b will be marked. In
the third stage, non-d-sepnodes e and f will be marked. Now the resultant graph is empty.
Alternate marking by starting with d-sepnodes gives the same result.

f

e

b

a

d

c 2D1D

Figure 5: A cyclic DAG union.

Note that the corollary holds even when G is an arbitrary DAG union (not subject to the
two conditions in Definition 2), and d-sepnodes are replaced by shared nodes. Such generality
is not needed for our purpose.

Corollary 6 forms the basis for a distributed verification algorithm which we present in
Section 6.

6 Cooperative Verification

As demonstrated in Sections 4 and 5, in order to verify the acyclicity of a hypertree DAG
union, agents must cooperate. Since cooperation requires communication which incurs over-
head, it is desirable to simplify the task for cooperation as much as possible. According to
Corollary 6, non-d-sepnode roots/leaves in a hypertree DAG union can be marked separately
and recursively. We define a preprocessing operation to mark these nodes before cooperation
starts.

Let a DAG in a hypertree DAG union G be arbitrarily chosen. If we treat this DAG as
the root of the hypertree and direct the hyperlinks of the hypertree away from it, then the
hypertree is converted into a directed tree. For each given DAG, we can then refer to each
adjacent DAG as its child or its parent in the normal sense.

Operation 7 (PreProcess) When PreProcess is called in a DAG D, the following are
performed:
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1. D recursively marks each non-d-sepnode root or leaf.

2. D calls PreProcess in each child DAG.

After PreProcess is completed in G, nodes left unmarked in each DAG are either isolated
d-sepnodes, or nodes that form directed paths ended with d-sepnodes. Cooperation among
DAGs is needed to further the verification process. Figure 6 shows the three DAGs in
Figure 4 after PreProcess is initiated in any of them. Only directed paths are left in this
case. We will see isolated d-sepnodes in a later example.
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Figure 6: The DAG union in Figure 4 after local preprocessing. Marked nodes are shown as
grey.

To find out if a d-sepnode x can be marked, a DAG uses the operation CollectFamilyInfo

to determine if x is a root or leaf through cooperation. The operation passes a triple (x, p, c)
around all child DAGs which contain x. The purpose is to collect the parent/child infor-
mation for x, where p is a count of the number of DAGs that contain parents of x and c
is a count of the number of DAGs that contain children of x. The caller in the following
definition refers to either a parent DAG or the next higher level of operation which initiated
this operation.

Operation 8 (CollectFamilyInfo) When CollectFamilyInfo(x) is called in a DAG D,
the following are performed:

1. D forms a triple t0 = (x, p0, c0), where p0 = 1 if D contains an (unmarked) parent of
x and p0 = 0 otherwise, and c0 = 1 if D contains an (unmarked) child of x and c0 = 0
otherwise.

2. If D has no child DAG to which x is a d-sepnode, or p0 = c0 = 1, then D returns t0
to caller.

3. Otherwise, D calls CollectFamilyInfo(x) in each child DAG to which x is a d-
sepnode.

4. After each child DAG being called has returned their triples (assuming k DAGs are
called), t1, t2, . . . , tk, D returns a triple t = (x, p = maxk

i=0 pi, c = maxk
i=0 ci) to caller.

Once a d-sepnode x is determined to be a root (p = 0) or a leaf (c = 0), the operation
DistributeMark is used to mark it in every DAG that contains it.
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Operation 9 (DistributeMark) When DistributeMark(x) is called in a DAG D, the
following are performed:

1. D marks the node x.

2. D recursively marks any non-d-sepnode root or leaf.

3. If D has any adjacent DAG to which x is a d-sepnode except caller, then D calls
DistributeMark(x) in each of them.

Note that in this operation the marking of each d-sepnode is alternated with the marking
of non-d-sepnodes as required by Corollary 6.

The operation MarkNode combines CollectFamilyInfo and DistributeMark to perform
one round of marking of d-sepnodes. It marks each d-sepnode root/leaf down the hypertree,
and alternates each marking with the marking of non-d-sepnode roots/leaves in each DAG.

Operation 10 (MarkNode) When MarkNode is called in a DAG D, the following are
performed:

1. D returns false if it has no child DAG, otherwise continues.

2. For each unmarked d-sepnode x with a child DAG of D, D calls CollectFamilyInfo(x)
in itself. When the triple (x, p, c) is returned to D, D calls DistributeMark(x) in itself
if p = 0 or c = 0.

3. D calls MarkNode in each child DAG.

4. If any child DAG returns true or DistributeMark(x) was called in D, then D returns
true to caller. Otherwise, D returns false (no node is marked).

The operation MarkedAll checks whether all nodes in a hypertree DAG union have been
marked after roots and leaves have been recursively marked. According to Corollary 6, G is
acyclic iff true is returned.

Operation 11 (MarkedAll) When MarkedAll is called in a DAG D, the following are
performed:

1. If there exists a node in D that has not been marked, then D returns false.

2. Otherwise, if D has no child DAG, it returns true. If D has child DAGs, D calls
MarkedAll in each child DAG.

3. If any child DAG returns false (with unmarked nodes), then D returns false. Oth-
erwise, D returns true.

Finally, the top level operation TestAcyclicity combines the previously defined opera-
tions to verify the acyclicity of G.

Operation 12 (TestAcyclicity) When TestAcyclicity is initiated in a hypertree DAG
union G, the following are performed:
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1. A DAG D is arbitrarily chosen as the root of the hypertree.

2. D calls PreProcess in itself.

3. D calls MarkNode in itself repeatedly until false is returned (no node is marked in the
last call).

4. D calls MarkedAll in itself. If true is returned, then TestAcyclicity returns acyclic
(G is acyclic). Otherwise, return cyclic.

The following theorem establishes the correctness of the algorithm.

Theorem 13 The operation TestAcyclicity correctly determines the acyclicity of a hy-
pertree DAG union.

Proof:
According to Corollary 6, it is sufficient to mark non-d-sepnode roots/leaves and d-

sepnode roots/leaves recursively and alternately. PreProcess does the first round of re-
cursive marking of non-d-sepnode roots/leaves, and repeated MarkNode performs the subse-
quent recursive and alternate marking. Each MarkNode identifies d-sepnode roots/leaves by
CollectFamilyInfo (either p = 0 or c = 0) and then marks them as well as new non-d-
sepnode roots/leaves by DistributeMark. By Corollary 6, MarkNode will not return false

until all roots and leaves are marked. MarkedAll tests if the DAG union is empty and will
determine the acyclicity correctly. 2

We illustrate the performance of TestAcyclicitywith two examples, a cyclic DAG union
and an acyclic one. The first is the DAG union depicted in Figure 4.

• Suppose D1 is selected as the root. After PreProcess the union looks as Figure 6.

• When D1 calls MarkNode in itself, it calls in itself CollectFamilyInfo(a) which is
then propagated to D3. D3 returns a triple (a, 1, 0) to D1. Subsequently, D1 generates
the final triple (a, 1, 1) and terminates CollectFamilyInfo(a). Since neither p nor c
is zero, DistributeMark(a) is not called.

D1 then calls in itself CollectFamilyInfo(b) which eventually terminates similarly
as CollectFamilyInfo(a).

• D1 calls MarkNode in D3. D3 calls in itself CollectFamilyInfo(j) which is then
propagated to D2. D2 returns a triple (j, 1, 0) to D3. Subsequently, D3 generates the
final triple (j, 1, 1) and terminates CollectFamilyInfo(j). No DistributeMark is
called.

D3 then calls in itself CollectFamilyInfo(k) which eventually terminates similarly
as CollectFamilyInfo(j).

• D3 calls MarkNode in D2 which returns false since D2 has no child DAG. This causes
D3 to return false to D1 which also returns false and terminates MarkNode.

• D1 calls MarkedAll in itself and returns false immediately. TestAcyclicity then
terminates with cyclic returned.
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Figure 7: An acyclic DAG union.

As another example, consider the DAG union in Figure 7. It is identical to that in
Figure 4 except that the arc from g to j is now reversed.
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Figure 8: Performance of TestAcyclicity in the DAG union of Figure 7.

• Suppose D1 is selected as the root. Figure 8 (a) shows the union after PreProcess.
Note that nodes j and k are isolated in D2 but cannot be marked during PreProcess.
PreProcess is so defined since an isolated d-sepnode in one DAG may still participate
in a directed cycle in other DAGs. It would be inconsistent to mark it in one DAG
and to keep it unmarked in another.

• When MarkNode is first called in D1 within TestAcyclicity, it calls CollectFamilyInfo(a)
in itself and then CollectFamilyInfo(b) as in the previous example.
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• D1 calls MarkNode in D3. D3 calls in itself CollectFamilyInfo(j) which is then
propagated to D2. D2 returns a triple (j, 0, 0) to D3. Subsequently, D3 generates the
final triple (j, 0, 1) and terminates CollectFamilyInfo(j).

Since p = 0, D3 calls DistributeMark(j) in itself. It marks j and l, and then calls
DistributeMark(j) in D2 which marks j as well. Figure 8 (b) shows the resultant
union.

D3 then calls in itself CollectFamilyInfo(k) which eventually terminates similarly
as CollectFamilyInfo(j). Figure 8 (c) shows the resultant union.

• D3 calls MarkNode in D2 which returns false. Since DistributeMark was called in
D3, it returns true to D1 which returns true and terminates the first call of MarkNode
in TestAcyclicity.

• When MarkNode is called in D1 the second time within TestAcyclicity, D1 calls in
itself CollectFamilyInfo(a) which is then propagated to D3. D3 returns a triple
(a, 0, 0) to D1. Subsequently, D1 generates the final triple (a, 0, 1) and terminates
CollectFamilyInfo(a).

Since p = 0, D1 calls DistributeMark(a) in itself. This causes the marking of a, c, d
in D1 and a in D3. Figure 8 (d) shows the resultant union.

D3 then calls in itself CollectFamilyInfo(b). It eventually terminates similarly as
CollectFamilyInfo(a) with b marked in both D1 and D3. Figure 8 (e) shows the
resultant union.

• D1 calls MarkNode in D3 which then calls MarkNode in D2. D2 has no child DAG and re-
turns false, which causes D3 to return false to D1. Since DistributeMarkwas called
in D1, it returns true and terminates the second call of MarkNode in TestAcyclicity.

• When MarkNode is called in D1 the third time within TestAcyclicity, it propagates
MarkNode to D3 and then to D1. Eventually, false is returned.

• When MarkedAll is called in D1, it propagates the operation to the rest of the union.
Eventually, true is returned.

• The operation TestAcyclicity terminates with acyclic returned.

7 Complexity Analysis

We denote the maximum number of nodes in a DAG by m, the maximum number of adjacent
nodes of a node in a DAG by t, the maximum number of nodes in a d-sepset by k, the
maximum number of DAGs that may contain a d-sepnode by s, and the total number of
DAGs in the hypertree DAG union by n.

To recursively mark all non-d-sepnodes in a DAG, O(t m) nodes need to be checked.
Hence PreProcess checks O(n t m) nodes.

Each CollectFamilyInfo (relative to a single d-sepnode) tests a d-sepnode in O(s)
DAGs. To mark a d-sepnode, O(s) DAGs perform the marking, each of which also checks
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O(t m) non-d-sepnodes. Hence the complexity of CollectFamilyInfo and DistributeMark

for each marked d-sepnode is O(s t m). The complexity of each MarkNode called from
TestAcyclicity is then O(n k s t m). Since at least one d-sepnode will be marked for
each call of MarkNode, Marknode will be called O(n k) times. Hence the complexity of all
MarkNode calls is O(n2 k2 s t m).

MarkedAll checks O(n m) nodes. Therefore, the worst case complexity of TestAcyclicity
is O(n2 k2 s t m).

8 Discussion

In this paper, we presented an efficient distributed algorithm, for verification of acyclicity of
the overall structure of a MSBN. An important feature of the algorithm is that it does not
require each subnet/agent in the system to reveal its internal structure. From the definition
of CollectFamilyInfo, clearly each agent only provides information regarding whether each
shared node has any parent or child in the DAG that the agent is responsible for. Therefore,
the algorithm supports the construction of MSBNs constructed from multiple computational
agents built by multiple vendors while providing automatic verification of correctness of the
overall structure.

Our distributed algorithm is based on Corollary 6 which in turn is based on Proposition 5.
Proposition 5 extends the idea of topological sorting in that the latter is equivalent to
marking only root nodes. Even in a centralized test, Proposition 5 allows a more efficient
test than topological sorting. This is because Proposition 5 admits on average twice as
many markable nodes at each recursive marking, leaving less nodes to check in subsequent
marking processes. Although topological sorting can also be extended into a distributed
algorithm, the advantage of TestAcyclicity is more prominent in cooperative test. Since
MarkNode marks more nodes in each round than topological sorting does, many less calls of
MarkNode will be made (much more efficient cooperation), which translates into a reduction
in communication overhead.

As mentioned in Section 3, distributed verification facilitates dynamic formation of a
MSBN. In general, TestAcyclicity should be performed whenever the member subnets
of a MSBN change. However, there are special cases where the execution of a full scale
TestAcyclicity is unnecessary. For example, if a new subnet only interfaces with one
existing subnet and the d-sepset between them contains root nodes only, then the acyclicity
of the new DAG union can be confirmed locally. One useful direction for future research is
to identify such special cases and to develop simplified verification operations accordingly.

Acknowledgements

This work is supported by the Research Grant OGP0155425 from the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada. Helpful comments on an earlier draft from T. Chu
and S. Hunter are acknowledged.

14



References

[1] E. Charniak. Bayesian networks without tears. AI Magazine, 12(4):50–63, 1991.

[2] V.R. Lesser and D.D. Corkill. Functionally accurate, cooperative distributed systems. IEEE
Trans. on Systems, Man and Cybernetics, SMC-11(1):81–96, 1981.

[3] R.E. Neapolitan. Probabilistic Reasoning in Expert Systems. John Wiley and Sons, 1990.

[4] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

[5] S. Srinivas. A probabilistic approach to hierarchical model-based diagnosis. In Proc. 10th
Conf. Uncertainty in Artificial Intelligence, pages 538–545, Seattle, Washington, 1994.

[6] D.F. Stubbs and N.W. Webre. Data Structures with Abstract Data Types and Modula-2.
Brooks/Cole, 1987.

[7] Y. Xiang. Optimization of inter-subnet belief updating in multiply sectioned Bayesian net-
works. In Proc. 11th Conf. on Uncertainty in Artificial Intelligence, pages 565–573, Montreal,
1995.

[8] Y. Xiang. A probabilistic framework for cooperative multi-agent distributed interpretation
and optimization of communication. Artificial Intelligence, 87(1-2):295–342, 1996.

[9] Y. Xiang. Semantics of multiply sectioned Bayesian networks for cooperative multi-agent
distributed interpretation. In G. McCalla, editor, Advances in Artificial Intelligence, pages
213–226. Springer, 1996.

[10] Y. Xiang, B. Pant, A. Eisen, M. P. Beddoes, and D. Poole. Multiply sectioned Bayesian
networks for neuromuscular diagnosis. Artificial Intelligence in Medicine, 5:293–314, 1993.

[11] Y. Xiang, D. Poole, and M. P. Beddoes. Exploring locality in Bayesian networks for large
expert systems. In Proc. 8th Conf. on Uncertainty in Artificial Intelligence, pages 344–351,
Stanford, 1992.

[12] Y. Xiang, D. Poole, and M. P. Beddoes. Multiply sectioned Bayesian networks and junction
forests for large knowledge based systems. Computational Intelligence, 9(2):171–220, 1993.

15


