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Abstract

Multiply sectioned Bayesian networks (MSBNs) provides a coherent framework for
probabilistic inference in a cooperative multiagent distributed interpretation system.
Inference in MSBNs can be performed e�ectively using a compiled representation. The
compilation involves the triangulation of the collective dependency structure (a graph)
de�ned in terms of the union of a set of local dependency structures (a set of graphs).
Privacy of agents eliminates the option to assemble these graphs at a central location
and to triangulate their union.

Earlier work solved distributed triangulation in a restricted case. The method is
conceptually complex and the correctness of its extension to the general case is di�cult
to justify. In this paper, we present a new method that is conceptually simpler and is
e�cient. We prove its correctness in the general case and demonstrate its performance
experimentally.

1 Introduction

Multiply sectioned Bayesian networks (MSBNs) provides a coherent framework for proba-
bilistic inference in a large domain [9]. It can be applied under a single agent paradigm [8]
or a cooperative multi-agent paradigm [6]. It supports object-oriented inference [3].

Inference in a MSBN can be performed e�ectively using a compiled representation called
a linked junction forest (LJF) [9]. The compilation of a MSBN into a LJF takes several steps
that are similar in principle to the compilation of a Bayesian network (BN) into its junction
tree of belief universes [2]. This work focuses on the triangulation step. In particular, the
input of the process is a set of undirected graphs with overlapping nodes which collectively
de�nes a graph union G (to be de�ned formally), and the output is a corresponding set of
chordal supergraphs which collectively de�nes a chordal supergraph of G.

Under the multiagent paradigm, each agent may be constructed by an independent vendor
who embeds the know-hows about a subdomain into the agent. For example, the vendor of
a component in a complex system can build an agent with the know-hows of the component
embedded. The vendor may not be willing to reveal the know-hows when the agent is
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integrated into a multiagentMSBN. To protect the know-hows of such vendors, it is desirable
not to force each agent to reveal its internal structure (the graph local to the agent). This
privacy requirement eliminates the option to assemble these graphs at a central location and
to triangulate their union as in the single-agent paradigm.

An algorithm to solve the problem under a restrictive condition was presented in [9]. The
method is conceptually complex and the correctness of its extension to the general case is
di�cult to justify formally. In this work, we present a conceptually simple method to solve
the problem and we prove its correctness in the general case.

In Section 2, we motivate this research with an overview of MSBNs and its applications.
We brie
y introduce the graph-theoretical terminologies to be used in the rest of the paper
in Section 3. We de�ne the problem of multiagent triangulation in Section 4. In Section 5 we
present our method in the simplest case and prove its correctness. The method is extended
to a more general case in Section 6. Building on the results of Sections 5 and 6, we present
the most general case in Sections 7 and 8. The experimental study is presented in Section 9.
We analyze the complexity of the proposed algorithms in Section 10.

2 Overview of MSBNs

In this section, we brie
y introduce the framework of MSBNs. A BN [4] S is a triplet
(N;D;P ) where N is a set of domain variables, D is a DAG whose nodes are labeled by
elements of N , and P is a joint probability distribution (jpd) over N speci�ed in terms of
probability distributions of each node in D conditioned on its parents.
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Figure 1: (a) A digital circuit. (b) The structure of a BN representing the circuit.

Figure 1 (a) shows a simple digital circuit. A BN (b) can be used to model the circuit
for trouble-shooting purpose. The BN represents each device and each input/output as
a node/variable, and represents a direct dependence between each pair of variables by an
arc. The dependence is probabilistic in general, especially for the faulty behavior of devices.
Each node is thus associated with a probability distribution conditioned on its parents. For
example, the node g (output of an OR gate) is associated with the distribution p(gja; e;G2).
The distribution de�nes how the value of g depends on the values of its parent variables. For
instance, p(g = 0ja = 0; e = 0; G2 = normal) = 1:0 represents how input a = 0 and e = 0
to G2 determine g when the gate is normal. On the other hand, p(g = 0ja = 0; e = 0; G2 =
abnormal) = 0:3 represents that g takes the correct value for the same input 30% of time
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when the gate is abnormal (and takes the wrong value 70% of the time). The BN can then
be used to answer queries such as \p(G2 = abnormaljg = 1; a = 0; c = 1) =?".

A MSBN [9] M is a collection of Bayesian subnets that together de�nes a BN. These
subnets should satisfy certain conditions to permit coherent distributed inference. One
condition requires that nodes shared by two subnets form a d-sepset, as de�ned below.

Let Gi = (Ni; Ei) (i = 0; 1) be two graphs. The graph G = (N0 [N1; E0 [E1) is referred
to as the union of G0 and G1, denoted by G = G0 tG1.

De�nition 1 Let Di = (Ni; Ei) (i = 0; 1) be two DAGs such that D = D0 tD1 is a DAG.
The intersection I = N0 \N1 is a d-sepset between D0 and D1 if for every x 2 I with its
parents � in D, either � � N0 or � � N1. Each x 2 I is called a d-sepnode.

Just as the structure of a BN is a DAG, the structure of a MSBN is a multiply sectioned
DAG (MSDAG) with a hypertree organization:

De�nition 2 A hypertree MSDAG D =
F
iDi, where each Di is a connected DAG, is a

connected DAG constructible by the following procedure:
Start with an empty graph (no node). Recursively add a DAG Dk, called a hypernode,

to the existing MSDAG
Fk�1
i=0 Di subject to the constraints:

[d-sepset] For each Dj (j < k), Ijk = Nj \Nk is a d-sepset when the two DAGs are isolated.
[local covering] There exists Di (i < k) such that, for each Dj (j < k; j 6= i), we have
Ijk � Ni: For an arbitrarily chosen such Di, Iik is the hyperlink between Di and Dk which
are said to be adjacent.

We use PT (N) to denote a probability distribution over a set N of variables that is
associated with an object T . A MSBN is then de�ned as follows:

De�nition 3 A MSBN M is a triplet M = (N ;D;P). N =
S
iNi is the total universe

where each Ni is a set of variables. D =
F
iDi (a hypertree MSDAG) is the structure where

nodes of each DAG Di are labeled by elements of Ni. P =
Q

i PDi
(Ni)=

Q
k PIk (Ik) is the jpd.

Each PDi
(Ni) is a distribution over Ni such that whenever Di and Dj are adjacent in D, the

marginalizations of PDi
(Ni) and PDj

(Nj) onto their d-sepset are identical. Each PIk (Ik) is
such a marginal distribution over a hyperlink Ik of D. Each triplet Si = (Ni;Di; Pi) is called
a subnet of M . Si and Sj are adjacent if Di and Dj are adjacent.
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Figure 2: An example MSDAG of three DAGs.

Figure 2 illustrates MSBN with a trivial MSDAG. The hypertree is depicted in the left
and the three DAGs are shown in the right. The d-sepnodes are highlighted with double
ovals.

3



 Decision
Actuator

Sensors

Reasoner

Maker
Bayesian
  Subnet

Distributed Global
Structure VerifierCommunicator

Sensitivity
 Analyzer

Figure 3: Main components of an agent in a MSBN-based multi-agent system.

MSBNs provide a framework for probabilistic reasoning in cooperative multi-agent dis-
tributed interpretation systems. Each agent holds its partial perspective of a large problem
domain (Subnet in Figure 3), accesses a local evidence source (Sensors in Figure 3), com-
municates with other agents infrequently (Communicator), reasons with the local evidence
and limited global evidence (Reasoner), and answers queries (Reasoner) or takes actions
(Decision Maker/Actuator). If agents are cooperative, and each pair of adjacent agents are
conditionally independent given their shared variables and have common initial belief on the
shared variables, then a joint system belief is well de�ned which is identical to each agent's
belief within its subdomain and supplemental to the agent's belief outside the subdomain [6].
Even though multiple agents may acquire evidence asynchronously in parallel, the communi-
cation operations of MSBNs ensure that the answers to queries from each agent are consistent
with evidence acquired in the entire system after each communication. Since communication
is infrequent, the operations also ensure that between two successive communications, the
answers to queries for each agent are consistent with all local evidence gathered so far and
are consistent with all evidence gathered in the entire system up to the last communication.
Potential applications of the framework include decision support to cooperative human users
in uncertain domains and troubleshooting a complex system by multiple knowledge based
subsystems [6].

3 Graph-theoretical terminologies

In this section, we brie
y introduce the graph-theoretic terminologies that the remaining
of the paper depends on. Additional terminologies that are used but are not essential to
understanding are included in the Appendix.

We shall call a graph G = (N;E) as G over N . The adjacency of a node x is the set of
nodes adjacent to x, and is denoted by adj(x). A set X of nodes in G is complete if each
pair of nodes in X is adjacent. A chord is a link connecting two nonadjacent nodes. G is
triangulated or chordal if every cycle of length > 3 has a chord.

A node x in a graph G = (N;E) is eliminated if adj(x) is made complete by adding links
(if necessary) before x and links incident to x are removed. Each link thus added is called
a �ll-in. Let F be the set of �ll-ins added in eliminating all nodes in some order. Then the
graph G0 = (N;E [ F ) is chordal. A graph is chordal i� all nodes can be eliminated one by
one in some order without �ll-ins [2].

Our method is based on node elimination in a certain order. We state this concept
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precisely:

De�nition 4 Let G be a graph over N1 [ N2 such that N1 \ N2 = �. G is eliminable in
the order (N1; N2) if it is possible to eliminate all nodes in N1 one by one �rst and then
eliminate all nodes in N2 one by one without any �ll-ins.

The concept can be extended such that the order is speci�ed as a n-tuple. For simplicity,
we shall write (fag; fbg; fcg) as (a; b; c).

We de�ne the concept of graph-consistency to refer to a pair of graphs whose subgraphs
over shared nodes are identical.

De�nition 5 Let G1 over N1 and G2 over N2 be two graphs such that N1\N2 6= �. Then G1

and G2 are said to be graph-consistent if the subgraphs of G1 and G2 spanned by N1 \N2

are identical.

4 The problem of cooperative triangulation

Performing inference directly in a MSBN is di�cult since its MSDAG is often multiply
connected. As one of the most e�cient ways of inference in a multiply connected BN uses a
junction tree (JT) (Appendix) representation, we compile a MSBN into a set of inter-related
JTs called a linked junction forest (LJF) [9] for inference. In the LJF, the JTs are organized
into the identical hypertree structure as the MSDAG. The compilation of a MSBN into a
LJF takes several steps, some of which parallel the compilation of a BN. We discuss only the
�rst four steps that are relevant to the purpose of this paper:

The �rst step, called moralization, is to convert the MSDAG into its moral graph by
completing parents for each node and dropping the directions of links. Since the MSDAG is
the union of a set of DAGs, its moral graph is de�ned in terms of the union of moral graphs
of these DAGs.

The second step is to triangulate the moral graph of the MSDAG into a chordal graph.
This is needed for the same reason in compiling a BN: a JT of a graph exists i� the graph is
chordal. Again, this chordal graph is de�ned as the union of a set of chordal graphs each of
which is obtained from the moral graph of a DAG. Each component graph should be chordal
since we want to organize each subnet into a JT for local inference.

The third step is to convert each chordal graph in the union into a junction tree (JT) of
belief universes [2] to be used in the inference computation.

The fourth step is to compile each hyperlink (d-sepset) of MSDAG into a linkage tree [6].
This step allows an agent's belief on d-sepset (a probability distribution) to be factorized
compactly so that communication between agents can be performed more e�ciently when
the d-sepset is large. More details on this can be found in [5]. We give here a de�nition
of linkage trees equivalent to that in [6] (but computationally less e�cient) to facilitate the
discussion. The proof of equivalence is trivial.

De�nition 6 Let I be the d-sepset between JTs Ta and Tb in a LJF. Repeat the following
until no variable can be removed:
(1) Remove a variable x 62 I if x is contained in a single clique C.
(2) If C becomes a subset of an adjacent clique D after (1), union C into D.
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Let L be the graph resultant from the procedure. Then L is a linkage tree of Ta with
respect to I if [l2Ll = I, where each clique l in L is a linkage. De�ne a clique in Ta that
contains l as its linkage host and break ties arbitrarily.

It can be shown [7] that the linkage tree L is a JT, and that if Ta is an I-map (Appendix),
then L is an I-map over I. Therefore, to propagate belief on I from Ta to Tb during inference,
it is su�cient to propagate belief on each linkage [5] since

B(I) = [
Y

l

B(l)]=[
Y

q

B(q)];

where each l is a linkage in L with its belief table B(l) and each q is a separator in L with
its belief table B(q).

On the other hand, if [l2Ll � I when the procedure in De�nition 6 halts, in which case L
is not a linkage tree, then B(I) cannot be compactly represented by the above equation and
can only be obtained by more expensive computation [9]. The following theorem identi�es
the condition under which the linkage tree exists1. The condition is that the graph from
which Ta is constructed must be triangulated in a certain way.

Theorem 7 Let G be a graph over N from which a JT T is constructed. Let I be a subset
of nodes in G.

Then a linkage tree of T exists with respect to I i� G is eliminable in the order (N nI; I).

Proof:
[Su�ciency] Suppose G is eliminable in (N n I; I). Consider a node x 2 N n I that can be

eliminated �rst without �ll-ins. Then x must appear in a single clique C in T since otherwise
adj(x) is incomplete. Hence x can be removed from C.

Repeating this argument for each node in N n I, we will be able to eliminate N n I from
T and the resultant graph is the linkage tree.

[Necessity] Suppose G is not eliminable in (N n I; I). That is, N n I cannot be eliminated
without �ll-ins in any particular order that is consistent with (N n I; I). This means that no
matter what order we use, there exists a non-empty subset of N n I (the subset may di�er
for di�erent orders) such that each node in the subset appears in at least two cliques of T .
Hence the linkage tree does not exist. 2

For each JT T in the hypertree, belief propagation needs to be performed relative to
each adjacent JT. To ensure the existence of linkage tree for each adjacent JT, we have the
following requirement for triangulation:

Requirement 1 For each hypernode in the hypertree of a MSBN, the triangulated moral
graph G over N for the hypernode must be such that for every hyperlink I incident to the
hypernode, G is eliminable in the order (N n I; I).

For each hyperlink in the hypertree, the two endpoints (hypernodes) may potentially
connect the d-sepset di�erently during triangulation. The following example shows that
such triangulation should be prevented.

1This condition can be shown to be equivalent to the host composition condition in [9]. However, the
host composition condition is descriptive while the condition presented here is procedural and hence provides
direct guideline to triangulation.
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Figure 4: Illustration of Requirement 2. The d-sepset is shown by double ovals.

Consider the two moral graphs G and Q (ignore the dashed link) in Figure 4 (left). Using
the order in Theorem 7, G is eliminated without any �ll-ins and Q is eliminated with the
�ll-in fa; cg (dashed). The two corresponding JTs are shown in the right. Note however,
that the JT from G expresses a false conditional independence relation, i.e., that fa; dg is
independent of fc; eg given b. To avoid this problem, the d-sepset I = fa; b; cg should be
identically connected in G and Q (by adding the �ll-in fa; cg to G). Hence, we have the
following requirement for triangulation:

Requirement 2 For each pair of adjacent hypernodes in the hypertree of a MSBN, the
corresponding d-sepset must be connected identically in the two triangulated moral graphs.
That is, the two triangulated graphs must be graph-consistent.

The semantics of Requirement 2 is that assumptions on the conditional independence
within a d-sepset expressed in di�erent JTs must be consistent.

Under the multiagent paradigm, a MSBN may be integrated from a set of agents, say, for
trouble-shooting a complex system. The MSBN designer may know only the interface (d-
sepset) between subdomains (subnets internal to agents) but not the details of each subnet.
Each agent may be constructed by an independent vendor who embeds the know-hows about
a subdomain into the agent. For example, the vendor of a component in a complex system
can build an agent with the know-hows of the component embedded. The vendor may not
be willing to reveal the know-hows when the agent is integrated into a multiagent MSBN.
To protect the know-hows of such vendors, it is desirable not to force each agent to reveal
its internal structure during compilation. An agent will be given, by the MSBN designer,
the information which other agents it interfaces to and what are the d-sepsets, but not much
more than that regarding the internal of other agents. This privacy requirement eliminates
the option to assemble DAGs in the MSDAG at a central location for compilation. In other
words, it is desirable to distribute all steps of compilation.

The �rst step (moralization) can be distributed easily. First, each agent performs mor-
alization locally. Then adjacent agents in the hypertree exchange links among d-sepnodes
so that each pair of d-sepnodes are connected identically at di�erent local graphs. Hence
privacy of agents is not compromised in this step. Once the triangulation (second step) is
completed, the third and fourth steps (construction of JT from the chordal graph and con-
struction of the linkage tree from JT) are local and they do not threaten privacy of agents.
We state the privacy requirement for the second step as follows:

Requirement 3 For each hypernode H in the hypertree of a MSBN and each of its adjacent
hypernode H 0, the internal dependency structure of H beyond the subgraph spanned by their
d-sepset should not be revealed to H 0.
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The focus of this work is the distribution of the second step: triangulation. The problem
can be abstracted as follows: A set of agents is organized into a hypertree where each
hypernode is labeled by an agent. Each agent has an undirected graph embedded in it. Each
pair of graphs embedded in adjacent agents on the hypertree share a set of common nodes
and are graph-consistent2. We shall refer to agents and graphs interchangeably. The graphs
are so located on the hypertree that whenever two graphs have a set S of shared nodes with
a third graph on the hyperpath between them, S is also shared by the third graph3. The
problem is to �nd an e�ective way in which each agent triangulates its local graph subject
to Requirements 1 through 3 such that the union of all local chordal graphs is triangulated.
We shall refer to this problem as the problem of cooperative triangulation.

An algorithm to solve the problem in a hyperstar (a degenerated hypertree) was presented
in [9]. The method is conceptually complex (e.g., six types of links and a concept d-path
are de�ned, and the search of such d-paths is necessary) and its correctness in the general
hypertree case is di�cult to justify formally. In this paper, we present a conceptually simple
method based on node elimination [1] and we prove its correctness in the general case.

We present the method stepwise and address only Requirements 2 and 3 in Sections 5
through 7. Requirement 1 is addressed in Section 8.

5 Cooperative triangulation of two agents

In this section, we consider the simplest case of the problem of cooperative triangulation,
where only two agents/graphs are involved. Algorithm 1 does the cooperative triangulation.
Given a set F of links over a set N of nodes, we shall call a subset E � F a restriction of F
to S � N if

E = f(x; y)jx 2 S; y 2 S; (x; y) 2 Fg:

Algorithm 1

Description: Let N , V and S be disjoint nonempty sets of nodes. Let G be a graph over
N [ S and Q be a graph over V [ S such that G and Q are graph-consistent. Let A and B
be two agents such that G is embedded in A and Q is embedded in B.
begin

1 A eliminates nodes in G in the order (N;S); denote the �ll-ins by F ;
2 A adds F to G; denote the resultant graph by G0;
3 A sends B the restriction of F to S;
4 B adds to Q the restriction of F to S received; denote the resultant graph by Q0;
5 B eliminates nodes in Q0 in the order (V; S); denote the �ll-ins by F 0;
6 B adds F 0 to Q0; denote the resultant graph by Q00;
7 A sends A the restriction of F 0 to S;
8 B adds to G0 the restriction of F 0 to S received; denote the resultant graph by G00;

end
2This condition can be ensured by distributed moralization.
3This is equivalent to the local covering condition.
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Algorithm 1 clearly satis�es the privacy requirement since each exchange between the
two agents reveals only the connection over S. Figure 5 illustrates the algorithm, where
graphs G and Q are shown in the left. The shared nodes S = fa; bg are shown as double
ovals. Elimination in G is performed in the order (fe; f; c; dg; fa; bg). Node e can be elim-
inated without �ll-in. No nodes in ff; c; dg can now be eliminated without �ll-ins. If f is
eliminated next, then a �ll-in fa; dg is required. Node c can then be eliminated without
�ll-in. To eliminate d next, another �ll-in fa; bg is needed. Hence elimination in G in the
order (e; f; c; d; a; b) produces G0 in Figure 5 (right), where the �ll-ins are shown as dashed
lines.
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Figure 5: Illustration of Algorithm 1.

The �ll-in fa; bg is then added to Q to obtain Q0 (not shown). Elimination in Q0 in the
order (k; o; j; l; q;m; n; a; b) produces �ll-in fa; qg and the resultant graph Q00 is shown in
Figure 5 (right). For this example, no �ll-ins from Q00 need to be added to G0, and hence
G00 = G0. However, this is not always the case.
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Figure 6: Illustration of last two steps of Algorithm 1.

To see the need of steps 7 and 8 in Algorithm 1, consider the example in Figure 6. The
graphs G and Q are shown in the left, where S = fa; b; c; dg. After elimination in G in the
order (e; f; a; b; c; d), the resultant G0 is shown in Figure 6 (right). After the restriction of
�ll-ins to S is added to Q, we obtain Q0 in Figure 6 (right). Elimination in Q0 should start
with k, which requires a �ll-in fa; bg. This is the only �ll-in added to obtain Q00 (not shown).
Since fa; bg is between nodes in S, it will be added to G0 to obtain G00 (not shown) in steps
7 and 8 of Algorithm 1.
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The following proposition shows that the resultant graphs from Algorithm 1 are graph-
consistent and their union is chordal:

Proposition 8 When Algorithm 1 halts, the following hold:
(1) G00 and Q00 are graph-consistent.
(2) The graph union G00 t Q00 is chordal.

Proof:
(1) It is true from steps 4 and 8.
(2) It su�ces to show that nodes in G00 t Q00 is eliminable in the order (V;N; S).
V can be eliminated �rst without �ll-ins since the subgraph of G00tQ00 spanned by V [S

is Q00 by steps 7 and 8, and Q00 is eliminable in the order (V; S) from steps 5 and 6. The
remaining graph is G00 by step 8.

N can be eliminated �rst from G00 without �ll-ins since subgraphs of G00 and G0 spanned
by N are identical by step 8, and G0 is eliminable in the order (N;S) by steps 1 and 2. The
remaining graph is spanned by S. It is eliminable since Q00 is eliminable in the order (V; S).
2

Proposition 8 not only serves to illustrate the basic idea of our method, it is also needed
in proving the more general case below.

6 Cooperation with hyperstar organization

Next, we consider cooperative triangulation where n > 2 agents are organized into a hyper-
star. We denote the agent at the center of the hyperstar by A0, and the agent at each leaf by
Ai (i = 1; :::; n� 1). We denote the graph embedded in agent Ai (i = 0; :::; n� 1) by Gi over
nodes Ni. We assume that these graphs satisfy the local covering condition: Ni \Nj � N0

for every i and j (i 6= j). We denote N0 \Ni by Si.

Algorithm 2

set LINK = �;
for each leaf agent Ai, do

eliminate N0 in the order (N0 n Si; Si) and denote the resultant �ll-ins by F ;
add F to G0 and LINK;
send Ai the restriction of F to Si;
receive a set F 0 of �ll-ins over Si from Ai;
add F 0 to G0 and LINK;

denote the resultant graph by G0

0
;

for each leaf agent Ai, do
send Ai the restriction of LINK to Si;

Algorithm 2 is executed by A0. It is organized into two stages indicated by a blink line
in-between.

Algorithm 3 is executed by each Ai (i = 1; :::; n� 1). It is also organized into two stages.
We assume that if an existing link is to be added to a graph, it has no e�ect.
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Algorithm 3

receive a set F of �ll-ins over Si from A0;
add F to Gi;
eliminate Ni in the order (Ni n Si; Si) and denote the resultant �ll-ins by F 0;
add F 0 to Gi;
send A0 the restriction of F 0 to Si;

receive a set LINK 0 of �ll-ins over Si from A0;
add LINK 0 to Gi and denote the resultant graph by G0

i;

The process starts byA0. In each iteration of the �rst for loop (Algorithm 2), it performs a
local elimination relative to a Si, adds �ll-ins locally and sends them to Ai. When Ai receives
the �ll-ins (Algorithm 3), it updates its graph, performs a local elimination relative to Si,
adds �ll-ins locally and sends them back to A0. After the above has been done with each
Ai, A0 �nalizes G

0

0
and starts the second for loop (Algorithm 2). It sends all relevant �ll-ins

obtained in the �rst loop to each Ai. In response, each Ai receives the �ll-ins and �nalizes
G0

i (Algorithm 3).
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Figure 7: Illustration of Algorithm 2 and 3.

Figure 7 illustrates Algorithms 2 and 3. The hyperstar with three agents is shown in
(a), and the three graphs are shown in (b). After A0 iterated once in the �rst for loop
(relative to A1) and A1 completed its �rst stage, the resultant graphs are shown in (c). The
corresponding elimination orders are (o; k; j; l; q;m; n; a; b) and (e; f; c; d; a; b), respectively.
After A0 iterated the second time in the �rst for loop (relative to A2) and A2 completed
its �rst stage, the resultant graphs are shown in (d). The corresponding elimination orders
are (o; l; b; a; q;m; n; j; k) and (i; h; g; j; k), respectively. For this example, no �ll-ins are to
be distributed in the second stage of Algorithms 2 for A0. This is not the case in the next
example.

Suppose the three agents on the hyperstar of Figure 7(a) are associated with the graphs
in Figure 8(a). After the �rst iteration of A0 in the �rst for loop and the �rst stage of A1,
the resultant graphs are shown in (b). The elimination orders are (k; d; c; b; a) and (i; d; b; a),

11
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Figure 8: Illustration of Algorithm 2 and 3.

respectively. After the second iteration of A0 in the �rst for loop and the �rst stage of A2, the
resultant graphs are shown in (c). The elimination orders are (k; d; c; b; a) and (f; e; d; c; b; a),
respectively. After the second stage of A0, the resultant graphs are shown in (d). Note that
without this stage, the �ll-in fa; dg cannot be added to G1.

Also note that in the second stage of A0, it is unnecessary to iterate through the leaf
agent involved in the last iteration of the �rst for loop (i.e., A2 in this example). We did not
exclude this iteration in Algorithm 2 in order to keep it simple.

Clearly, Algorithms 2 and 3 satisfy the privacy requirement. We show that the resultant
graphs is graph-consistent and their union is chordal:

Proposition 9 When Algorithms 2 and 3 halt at all corresponding agents, the following
hold:
(1) For i = 1; :::; n� 1, G0

0
and G0

i are graph-consistent.
(2) The graph union tn�1

i=0G
0

i is chordal.

Proof:
(1) For each i, G0 and Gi are graph-consistent by assumption (Section 4). All �ll-ins over

Si during the entire process are added to G0

0
, accumulated in LINK, and sent to Ai by A0.

They are added to G0

i by Ai. Hence, G0

0
and G0

i are graph-consistent.
(2) We prove the result through a modi�ed version of Algorithms 2 and 3:
Without losing generality, we shall assume that the �rst for loop in Algorithm 2 proceeds

in the order i = 1; 2; :::; n�1. For Algorithm 2, we add to the modi�ed version the following
as the last step of the �rst for loop:

send Aj (j = 1; :::; i� 1) the restriction of LINK to Sj;

For Algorithm 3, we embed its second stage (the last two lines) into a loop that iterates i
times, where the �rst i� 1 iterations corresponds to the additional sending by A0.
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The e�ect of the modi�cation is that as soon as A0 and Ai have each completed local
elimination relative to each other, the new �ll-ins are immediately communicated to A1

through Ai�1 and are included in their local graphs. Therefore, the modi�ed version will
produce exactly the same end result as the original algorithms.

Let G1

0
denote the modi�ed G0 after A0 has completed the �rst iteration of the �rst for

loop (i = 1). We shall use the value of i as the superscript to index the current graphs
in di�erent agents. Let G1

1
denote the modi�ed G1 after A1 has completed its �rst stage.

According to Proposition 8, the graph union Q1

1
= G1

0
tG1

1
is chordal.

After A0 has completed the second iteration of the �rst for loop (i = 2), it updates G1

0

into G2

0
. According to the modi�ed algorithm, A0 will communicate the new �ll-ins over S1

to A1 so that A1 can update G1

1
into G2

1
. This updating by A0 and A1 can be collectively

considered as equivalent to updating Q1

1
into Q2

1
= G2

0
t G2

1
. Note that G2

0
and G2

1
are

graph-consistent. The updating can also be considered as an elimination by A1 followed
by an elimination by A0 as described in Algorithm 1. Hence Q2

1
is chordal according to

Proposition 8.
On theA2 side, afterA2 has completed its �rst stage, it updates G2 intoG2

2
. The updating

byA0, A1 and A2 can be collectively considered as equivalent to an elimination on Q1

1
followed

by an elimination on G2 as described in Algorithm 1 because the local covering condition
holds. Applying Proposition 8, we conclude that the graph union Q2

2
= Q2

1
tG2

2
= G2

0
tG2

1
tG2

2

is chordal.
Using the above argument recursively on i (i = 3; :::; n � 1), the end result Qn�1

n�1 =
Gn�1
0

t ::: tGn�1
n�1 = tn�1

i=0 G
0

i is chordal. 2

Note the use of the local covering condition in the above proof. The chordality result
would not hold without the local covering condition.

Note also that just as the additional communication in the modi�ed version of Algo-
rithms 2 and 3 used in the proof does not a�ect the end result, the statement \add F 0 to
Gi" in Algorithm 3 does not a�ect the end result and can be removed.

7 Cooperation with hypertree organization

We now consider the most general case of the cooperative triangulation problem, where
n > 3 agents are organized into a hypertree.

We present recursive algorithms for each agent. The execution of each algorithm by an
agent is activated by a call from an entity known as caller. We denote the agent called to
execute the algorithm by A0. The caller is either an adjacent agent of A0 in the hypertree
or the system. If caller is an agent, we denote it by Ac (with graph Gc over Nc embedded).
If A0 has adjacent agents other than Ac, we denote them by A1; :::; An. We denote Nc \N0

by Sc and N0 \Ni by Si (i = 1; :::; n).
In algorithm DepthFirstEliminate, an agent A0 performs elimination and updating with

respect to all adjacent agents.
In algorithm DistributeDlink, an agent A0 receives �ll-ins from caller and then distributes

all �ll-ins among d-sepnodes added to G0 since the start of the cooperative triangulation to
each other adjacent agent.
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Algorithm CoTriangulate is executed by the system to activate the cooperative triangu-
lation by multiple agents.

Algorithm 4 (DepthFirstEliminate)

if caller is an agent Ac, do
receive a set Fc of �ll-ins over Sc from Ac;
add Fc to G0;

set LINK = �;
for each agent Ai (i = 1; :::; n), do

eliminate N0 in the order (N0 n Si; Si) and denote the resultant �ll-ins by F ;
add F to G0 and LINK;
send Ai the restriction of F to Si;
call Ai to run DepthFirstEliminate and receive �ll-ins F 0 over Si from Ai when �nished;
add F 0 to G0 and LINK;

if caller is an agent Ac, do
eliminate N0 in the order (N0 n Sc; Sc) and denote the resultant �ll-ins by F 0

c;
add F 0

c to G0 and LINK;
send Ac the restriction of LINK to Sc;

Algorithm 5 (DistributeDlink)

if caller is an agent Ac, do
receive a set Fc of �ll-ins over Sc from Ac;
add Fc to G0;

set LINK to the set of all �ll-ins added to G0 so far;
for each agent Ai (i = 1; :::; n), do

send Ai the restriction of LINK to Si;

Algorithm 6 (CoTriangulate)

choose an agent A� arbitrarily;
call A� to run DepthFirstEliminate;
after A� has �nished, call A� to run DistributeDlink;

Figure 9 illustrates CoTriangulate with a system of 11 agents. The hypertree is depicted
in the �gure with each node labeled by an agent. Suppose the agent A� chosen in the
algorithm is A5. For each arrow, an elimination (see DepthFirstEliminate) by the agent at
the tail on its local graph is performed and the relevant �ll-ins generated are then sent to
the agent at the head. For example, the arrow from A5 to A3 represents the elimination of
A5 on G5 in the order (N5 nN3; N5 \N3), followed by sending A5 the restriction of �ll-ins to
N5 \N3. The label of each arrow shows the order of the operation. It's easy to see that the
order is similar to a depth-�rst traversal and hence the name of the operation.
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After A5 has �nished DepthFirstEliminate, the 
ow of �ll-ins during execution of Dis-
tributeDlink is shown by only those arrows pointing away from A5.
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Figure 9: Illustration of CoTriangulate.

In Theorem 11, we show the properties of CoTriangulate. We de�ne the altitude of a
node in a hypertree to be used in the proof. Given a node A0 on the hypertree, �nd the
longest path from A� through A0 to a leaf, and denote the leaf by Af . The altitude of A0 is
then the length of the path between A0 and Af . In Figure 9, for example, if A� is A5, then
the altitudes of A2, A4 and A5 are 0, 1 and 2, respectively.

Lemma 10 establishes the depth-�rst property of DepthFirstEliminate to be used in
proving Theorem 11. We shall regard A� as the root of the hypertree.

Lemma 10 All eliminations on graphs located at the sub(hyper)tree rooted at A0 are per-
formed after A0 is called to run DepthFirstEliminate and before A0 returns from the call.

Proof:
We prove by induction on the altitude k of A0.
When k = 0, A0 is a leaf and exactly one elimination is performed on G0 (see Figure 9,

where the total number of eliminations on a graph located at a (hyper)node is shown by the
number of outgoing arrows of the node). Only the two if statements in DepthFirstEliminate
are executed in this case, where the second one contains the elimination. Hence the lemma
is true.

Assume that the lemma is true when k = m � 0. Now consider the case k = m+1. The
eliminations performed on graphs located at the subtree rooted at A0 are those performed
on G0 and those performed on graphs located at the subtree rooted at each Ai (i = 1; :::; n).
Exactly n+ 1 eliminations are to be performed on G0 (one relative to each Ai (i = 1; :::; n)
and one relative to Ac). The n eliminations relative to Ai (i = 1; :::; n) are contained in the
for loop. All eliminations on graphs located at the subtree rooted at each Ai (i = 1; :::; n)
are also performed in the for loop during the call to Ai by the inductive assumption. The
last elimination on G0 is performed in the if statement following the for loop. 2

We now prove the properties of CoTriangulate.

Theorem 11 When CoTriangulate halts, the following hold:
(1) Each pair of adjacent graphs on the hypertree are graph-consistent.
(2) The graph union of all graphs on the hypertree is chordal.
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Proof:
(1) This is true due to the execution of DistributeDlink by agent A�, which recursively

propagates �ll-ins outwards from A� to the entire hypertree.
(2) We prove using a modi�ed DepthFirstEliminate where the following statement is

added at the end:

for each agent Aj (j = 1; :::; n), do
send Aj the restriction of LINK to Sj and call Aj to run DistributeDlink;

Its e�ect is that as soon as all eliminations on graphs located in the subtree rooted at
A0 has completed (Lemma 10), adjacent graphs on the subtree are made graph-consistent.
Hence, the end result of CoTriangulate using the modi�ed DepthFirstEliminate is invariant.

Using the modi�ed algorithm, we prove by induction on the altitude k of agent A0.
When k = 1, A1 through An are leaves of the hypertree. By Lemma 10, all eliminations
on graphs located on the subtree rooted at A0 are performed when A0 is called to run
DepthFirstEliminate. The processing is identical to that of Algorithms 2 and 3, except the
additional elimination in G0 relative to Ac. Hence by Proposition 9, the graph union Q of
G0 through Gn is chordal before the additional elimination. Since the additional elimination
and the updating that follows change neither the chordality of G0 nor that of the remaining
subgraph of Q, the graph union of G0 through Gn is chordal after the additional elimination.

Now assume that when the altitude of A0 is k = m � 1, the graph union of G0 through
Gn is chordal after A0 is called to run the modi�ed DepthFirstEliminate.

Consider the case k = m + 1. When DepthFirstEliminate is called by A0 in each Ai

(i = 1; :::; n), it is equivalent to regard Ai as a (hyper)leaf with Qi embedded in it, where Qi

is the union of all graphs on the subtree rooted at Ai. It is equivalent since all eliminations on
graphs in the subtree rooted at Ai are performed during the call of DepthFirstEliminate on
Ai by Lemma 10, and since the local covering condition holds. By the inductive assumption,
when the call is completed, Qi is chordal. Due to the equivalence with the processing
of Algorithms 2 and 3, we conclude that the graph union of G0, Q1; :::; Qn is chordal by
Proposition 9. 2

Theorem 11 shows that when CoTriangulate halts, the union of all graphs on the hy-
pertree is chordal. Recall that each local graph needs to be chordal as well (Section 4).
Theorem 12 shows that this is automatically satis�ed due to the way in which a MSDAG is
de�ned.

Theorem 12 Let G be a chordal graph and g be a graph obtained by deleting some nodes
(and links incident to these nodes) from G. Then g is chordal.

Proof:
It su�ces to show that after the deletion of a single node x, the remaining graph g is

chordal. We prove by contradiction:
Suppose that g is nonchordal. Then there must be a chordless cycle c of length > 3 in

g. Since G is chordal, c should be produced by the deletion of x and links incident to x.
However, no matter what the adjacency of x is in G, we cannot make the chordless cycle
c to go away. Hence, c is in G before x is deleted. This implies that G is nonchordal: a
contradiction. 2
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8 Ensure elimination orders for multiple d-sepsets

In Section 7, we have presented CoTriangulate that solves the cooperative triangulation
problem subject to Requirements 2 and 3. Would Requirement 1 be satis�ed as well? The
following example shows that this is not the case in general.

a

b c

d

efb

d

c e

GG G01 2

g a d

e

h

Figure 10: Illustration of violation of Requirement 1.

Consider the three local graphs (ignore the dashed links) in Figure 10 with the hyper-
star G1 � G0 � G2. Following CoTriangulate, agent A0 �rst eliminates G0 in the order
(f; a; b; c; d; e) relative to A1. The elimination produces no �ll-ins. Then agent A1 eliminates
G1 in the order (g; b; c; d; e) relative to A0 also without �ll-ins.

Next, agent A0 eliminates G0 relative to A2 in the order (f; b; c; a; d; e), which produces
�ll-in fa; eg (the dashed line in G0). It will be sent to A2 and added to G2 (the dashed line in
G2). A2 then eliminates G2 in the order (h; a; d; e) relative to A0 without additional �ll-ins.
CoTriangulate now halts.

However, if we eliminate the new G0 again relative to A1 in the order (f; a; b; c; d; e),
another �ll-in fb; eg is now needed. Hence, CoTriangulate does not guarantee satisfaction
of Requirement 1 in general. On the other hand, situations like the above example do not
seem to arise often. In our experimental study (see Section 9) with three MSBNs, all of
them satis�ed Requirement 1 when CoTriangulate halted. Hence we suggest the following
algorithm to address Requirement 1:

Algorithm 7 (SafeCoTriangulate)

perform CoTriangulate;
each agent performs an elimination relative to the d-sepset with each adjacent agent;
if no agent added any �ll-ins, halt;
else restart this algorithm;

Note that the elimination performed in SafeCoTriangulate is strictly local to each agent.
See Section 10 for the complexity analysis and possible measures for improving the e�ciency.
We have the following theorem on the property of SafeCoTriangulate:

Theorem 13 SafeCoTriangulate will halt, and when it halts, Requirement 1 is satis�ed.

Proof:
Each round of SafeCoTriangulate will add some �ll-ins to some local graphs, since oth-

erwise it will halt. Since only a �nite number of �ll-ins can be added to each local graph
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before it becomes complete, and a complete graph is eliminable in any order, we conclude
that SafeCoTriangulate will halt.

When SafeCoTriangulate halts, Requirement 1 has been explicitly veri�ed. 2

By Theorems 11, 12 and 13, we conclude that the problem of cooperative triangulation
with Requirements 1 through 3 is solved by SafeCoTriangulate.

9 Experimental Study

So far, we have shown that SafeCoTriangulate correctly solves the problem of cooperative
triangulation. However, our analysis says nothing about how sparse the resultant triangula-
tion is. In fact, DepthFirstEliminate specifys only the (partial) order of elimination in terms
of subsets of nodes in a graph. The order of elimination within each subset is left unspeci�ed.
Depending on the (total) order used, di�erent �ll-ins can be produced.

In general, we prefer elimination orders that produce the minimum number of �ll-ins.
As it is NP hard [10] to �nd such orders, heuristics should be used. A simple and e�ective
heuristics for a centralized triangulation is eliminating the node with the smallest �ll-ins [2].
We have adopted the same heuristics to supplement the partial order speci�ed in Depth-
FirstEliminate. To evaluate how well SafeCoTriangulate (supplemented by the heuristics)
performs, we conducted the following experimental study:

We have implemented our algorithms inWEBWEAVR-III (the successor of WEBWEAVR-
II written in JAVA). To evaluate the sparseness of results from cooperative triangulation,
we compare with the results from the centralized triangulation using the same heuristics.

x

p

gt16

z

gt19

q

gt3

gt10

gt18

y
m

gt17

gt2

gt14

gt11

gt12
gt7

gt5

g

q

t

s

gt6

2

gt4

c

o p

gt15
f

i j k
g r

u

v

gt13

a

k

1
l

gt9

n
w

l

k

gt8

h

e

b

gt1 g

f

d

0

4

3

G

GG

G

4

A

A

0

G

A 3

2

1

A

A

Figure 11: CIRCS: an experimental problem for cooperative triangulation.

Tests were run using three generated MSBNs: 5PARTS (not shown), CIRCS (Figure 11)
and BIGB (Figure 12). The hypertree of CIRCS with �ve agents is shown in Figure 11
(left). Local graphs after moralization are shown in the right (without the dashed lines).
Fill-ins added during cooperative triangulation are drawn as dashed lines. The result for
BIGB is shown in Figure 12. For all three MSBNs, SafeCoTriangulate terminated with just
one execution of CoTriangulate.
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Figure 12: BIGB: an experimental problem for cooperative triangulation.

The experimental results are summarized in Table 1. The second column lists the total
variables (shared variables are counted once) in each MSBN. The number of �ll-ins produced
by each centralized triangulation is listed in the third column, and the corresponding result
for cooperative triangulation is listed in the last column.

For 5PARTS, a small MSBN, the same �ll-in was produced by both methods. For CIRCS,
each method produced eight �ll-ins but two �ll-ins were di�erent. For BIGB, results from
the two methods shared only two �ll-ins, and the cooperative triangulation produced two
more.

Total number Fill-ins Fill-ins
MSBN of variables (centralized) (cooperative)
5PARTS 21 1 1
CIRCS 45 8 8
BIGB 80 6 8

Table 1: Summary of experimental results

The results demonstrate that SafeCoTriangulate produces reasonably sparse triangula-
tions compared with the centralized triangulation.

19



10 Complexity analysis

First, we analyze the time complexity of CoTriangulate. We concentrate on DepthFirstE-
liminate and focus on its elimination processing only, as the amount of computation in com-
munication of �ll-ins to adjacent agents during DepthFirstEliminate and DistributeDlink is
minor.

Given a hypertree of n agents, from Figure 9, it's easy to see that 2n eliminations are
performed during DepthFirstEliminate.

Let k be the maximumnumber of nodes in a local graph, and i be the maximumdegree of
a node. To eliminate a node, the completeness of its adjacency is checked. The complexity of
the checking is O(i2). Using the heuristics, O(k) nodes are checked before one is eliminated.
Hence the time complexity of eliminating all nodes in a graph is O(k2 i2).

The complexity of CoTriangulate is then O(n k2 i2).
Next, we consider the complexity of SafeCoTriangulate. Clearly, the worst case complex-

ity of SafeCoTriangulate is much higher than CoTriangulate. However, our experimental
study provides evidence that the average case complexity of SafeCoTriangulate will be close
to that of CoTriangulate.

Furthermore, e�ciency of SafeCoTriangulate can be improved in several ways: For in-
stance, if a d-sepset becomes complete during triangulation, then the hyperlink it represents
is \blocked" and an entire sub(hyper)tree in one side of the hyperlink needs not be processed
in later iterations of CoTriangulate if no �ll-ins are produced in the subtree.

Another condition for early partial termination is the change of local topology. If an
agent neither produces any �ll-ins locally nor receives any from adjacent agents during one
round of CoTriangulate, it does not have to participate in the next round (although it may
have to participate in later rounds).

Based on these possible improvements and our empirical results, we believe that although
the worst case complexity of SafeCoTriangulate is quite expensive, only a very small number
of (often one) iterations of CoTriangulate need to be performed in many MSBNs. Most
agents need not participate in most of the iterations of CoTriangulate except the �rst one.
Therefore, the average case complexity of SafeCoTriangulate (with these improvements) will
be similar with that of CoTriangulate.

11 Conclusion

Inference with a multi-agent MSBN can be performed e�ectively in a compiled representa-
tion. The compilation without compromising agents' privacy requires cooperative triangula-
tion of a graph union without revealing each agent's local graph beyond the subgraph over
shared nodes. We have proposed a conceptually simple and e�cient algorithm (SafeCoTri-
angulate) for cooperative triangulation of a graph de�ned as the union of a set of graphs
organized into a hypertree. The algorithm has been implemented and a small scale test
demonstrated sparse triangulations compared with the centralized processing.
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Appendix: Other Graph-theoretical terminologies

A junction tree (JT) T over a set N is a tree where each node is labeled by a subset (called
a cluster) of N and each link is labeled by the intersection (called a sepset) of its incident
clusters, such that the intersection of any two clusters is contained in every sepset on the
path between them. Two simple JTs are shown in Figure 4 (right).

A maximal complete set of nodes in a graph is called a clique. Given a chordal graph G
over a set N of nodes, a JT T of G is created by labeling each node of T with a clique of G.
Such a JT exists i� G is chordal. The two JTs in Figure 4 (right) are JTs of G and Q in
Figure 4 (left), respectively.

For disjoint subsets X, Y and Z of nodes in a graph G, we use < XjZjY >G to denote
that nodes in Z graphically separate nodes in X and nodes in Y . Graphical separation may
be de�ned di�erently in di�erent types of graphs. If G is an undirected graph, then the
normal graphical separation applies. In Figure 4 (left), fa; dg and fc; eg are separated by
fbg in G. In a JT T over N , graphical separation is de�ned as follows: Let X, Y and Z be
disjoint subsets of N . Suppose that for each x 2 X and each cluster Cx such that x 2 Cx,
and for each y 2 Y and each cluster Cy such that y 2 Cy, there exists a sepset S on the path
between Cx and Cy such that S � Z. Then X and Y are said to be graphically separated
by Z in T . In Figure 4 (right), fa; dg and fc; eg are separated by fbg in the left JT.

Let N be the set of variables in a domain and P (N) be the probability distribution
over N . For three disjoint subsets X, Y and Z of variables, X and Y are conditionally
independent given Z if P (XjY;Z) = P (XjZ) whenever P (Y;Z) > 0: Denote the relation
by I(X;Z; Y ). A graph G is an I-map [4] of a PDM over N if there is an one-to-one
correspondence between nodes of G and variables in N such that for all disjoint subsets X,
Y and Z of N , < XjZjY >G =) I(X;Z; Y ).
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