Cooperative Verification of Agent Interface

Y. Xiang and X. Chen
Dept. Computing and Information Science, University of Guelph, Canada

Abstract

MSBNs support representation of probabilistic knowledge in multiagent systems (MAS). To ensure

exact, distributed reasoning, agent interfaces must satisfy the d-sepset condition. Otherwise, the
system will behave incorrectly. We present a method that allows agents to verify cooperatively the
d-sepset condition through message passing. Each message reveals only partial information on the
adjacency of a shared node in an agent’s local network. Hence, the method respects agent’s privacy,
protects agent vendors’ know-how, and promotes integration of MAS from independently developed
agents. keywords: Bayesian network, MSBN, multiagent, verification, distributed computation.

1 Introduction

As the cost of computers and networking continues
to drop and distributed systems are widely deployed,
users are expecting more intelligent behaviors from
such systems — multiagent systems (MAS) (Sycara,
1998). Agents in an MAS perform a set of tasks
depending on the particular application domain. A
common task is for a set of cooperative agents to
determine what is the current state of the domain
so that they can act accordingly. Agents monitoring
a piece of equipment need to determine whether the
equipment is functioning normally and, if not, which
components have failed. Agents populating a smart
house should recognize the current need of inhabi-
tants and adjust the appliances accordingly. Similar
situations arise in other domains such as cooperative
design, battle field assessment, and surveillance. Of-
ten agents have only uncertain knowledge about the
domain and must perform the task based on par-
tial observations. Such a task has been termed dis-
tributed interpretation (Lesser and Erman, 1980) by
some authors. We shall refer to it as multiagent sit-
uation assessment.

Different approaches have been proposed to tackle
multiagent situation assessment. Blackboard (Nii,
1986) offers a framework for multiagent inference
and cooperation. It does not dictate how uncer-
tain knowledge should be represented nor offers any
guarantee of inference coherence. DATMS (Ma-
son and Johnson, 1989) and DTMS (Huhns and
Bridgeland, 1991) offer inference frameworks based
on default reasoning. Relation between BDI model
and decision-tree is studies in (Rao and Georgeff,
1991). Reasoning about the mental state of an
agent from the received communication is consid-
ered by (Dragoni et al., 2001). Monitoring whether
a multiagent system is functioning normally by fo-

cusing on agent-relation is investigated in (Kaminka
and Tambe, 1999). Emotions of agents are stud-
ied using decision theory in (Gmytrasiewicz and
Lisetti, 2000). Proving hypotheses by agents with
distributed knowledge using dialectical argumenta-
tion is proposed in (McBurney and Parsons, 2001).
Multiply sectioned Bayesian networks (MSBNs) (Xi-
ang and Lesser, 2000) provide a framework where
agents’ knowledge can be encoded with graphical
models and agent’s belief can be updated by dis-
tributed, exact probabilistic reasoning. Multiagent
MSBNs (MAMSBNSs) are the focus of this work.

Distributed and exact inference requires that an
MAMSBN observes a set of constraints (Xiang and
Lesser, 2000). When building an MAMSBN, these
constraints on the knowledge representation need to
be verified before inference for situation assessment
takes place. Otherwise, garbage-in-garbage-out may
occur and the resultant MAS will not reason cor-
rectly. When agents are autonomous and may be
constructed by independent vendors (hence privacy
of agents becomes an issue), verification of these con-
straints raises a challenge. In this work, we study
verification of agent interface. We present a method
that verifies the correctness of agent interfaces in an
MAMSBN without compromising agent autonomy
and privacy.

Section 2 briefly overviews MAMSBNs and intro-
duces formal background necessary for the remain-
der of the paper.

2 Overview of MAMSBNSs

A BN (Pearl, 1988) S is a triplet (N, G, P), where N
is a set of domain variables, D is a DAG whose nodes
are labeled by elements of N, and P is a joint prob-
ability distribution (jpd) over N. In an MAMSBN,
a set of n > 1 agents Ay, ..., A,_1 populates a to-

tal universe V of variables. Each A; has knowledge
over a subdomain V; C V encoded as a Bayesian sub-
net (V;,G;, P;). The collection of local DAGs {G;}
encodes agents’ knowledge of domain dependency.
Distributed and exact reasoning require these local
DAGs to satisfy some constraints (Xiang and Lesser,
2000) described below:

Let G; = (V;, E;) (i = 0,1) be two graphs. The
graph G = (Vo U V4, Eg U Ey) is referred to as the
union of Gy and Gy, denoted by G = Go U G;y. If
each G; is the subgraph of G spanned by V;, we say
that G is sectioned into G; (i = 0,1). Local DAGs of
an MAMSBN should overlap and be organized into
a hypertree.

Definition 1 Let G = (V, E) be a connected graph
sectioned into subgraphs {G; = (Vi, E;)}. Let the
G;s be organized as a connected tree ¥, where each
node is labeled by a G; and each link between Gy, and
G, is labeled by the interface Vi, NV, such that for
each i and j, V; N'V; is contained in each subgraph
on the path between G; and G in ¥. Then ¥ is a
hypertree over G. Each G; is a hypernode and
each interface is a hyperlink.

Each hyperlink serves as the information chan-
nel between agents connected and is referred to as
an agent interface. To allow efficient and exact in-
ference, each hyperlink should render the subdo-
mains connected conditionally independent. It can
be shown (by extending results in (Xiang and Lesser,
2000)) that this implies the following structural con-
dition.

Definition 2 Let G be a directed graph such that a
hypertree over G exists. A node x contained in more
than one subgraph with its parents w(z) in G is a
d—sepnode if there exists one subgraph that con-
tains w(zx). An interface I is a d—sepset if every
x €I is a d-sepnode.

The overall structure of an MAMSBN is a hypertree
MSDAG:

Definition 3 A

hypertree MSDAG D = | |, D;, where each D;
is a DAG, is a connected DAG such that (1) there
exists a hypertree 1 over D, and (2) each hyperlink
in Y is a d-sepset.

Table 1: Agent communication interfaces.

Io,1 | {ao,bo, co, €0, fo, 91,92, T3, 22}

Il,2 {97,gs,gg,i0, kOJnOa007p07q07r07t2ay27‘z4}
L3 | {as,b2,d1,ds,ds, 50,0, W0, %o, Yo, 20}

-[2,4 {62;h27i27j2;t47t57t77w27$4,y47z5}

Figure 1: (a) A digital system of five components.
(b) The hypertree modeling.

As a small example, Figure 1 (a) shows a digital
system five components U; (i = 0,...,4). Although
how components are interfaced, as shown in (a), and
the set of interface variables, as shown in Table 1,
are known to the system integrator, internal details
of each component are proprietary. To give readers a
concrete idea on the scenario, a centralized perspec-
tive of the digital system is shown in Figure 2. The

Figure 2: A digital system.

subnets for agents A; and A, are shown in Figures 3
and 4, where each node is labeled by the variable
name and an index. The agent interface I; o be-
tween them contains 13 variables and is a d-sepset.
For instance, the parents of z, are all contained in
D5, while those of ng are contained in both D; and
Ds.

Figure 3: The subnet D for U;.

97,38 io,18 939 0,20

8,3

Figure 4: The subnet D5 for Us.

In an MAMSBN integrated from agents from dif-
ferent vendors, no agent has the perspective of Fig-
ure 2, nor the simultaneous knowledge of D; and
Ds,. Only the nodes in an agent interface are public.
All other nodes in a subnet are private and known to
the corresponding agent only. This forms the con-
straint of many operations in an MAMSBN, e.g.,
triangulation (Xiang, 2001) and communication (Xi-
ang, 2000). Using these operations, agents can rea-
son about their environment probabilistically based
on local observations and limited communication.
More formal details on MAMSBNs can be found in
references noted above.

3 The issue of cooperative
verification

Each agent interface in an MAMSBN should be a d-
sepset (Def. 2). When an MAS is integrated from in-
dependently developed agents, there is no guarantee
that this is the case. Blindly performing MAMSBN
operations on the MAS would result in incorrect in-
ference. Hence, agent interfaces need to be verified.

An agent interface is a d-sepset if every pub-
lic node in the interface is a d-sepnode. However,
whether a public node z in an interface I is a d-
sepnode cannot be determined by the pair of local
graphs interfaced with I. It depends on whether
there exists a local DAG that contains all parents
mw(z) of z in G. Any local DAG that shares z may
potentially contain some parent nodes of z. Some
parent nodes of = are public, but others are private.
For agent privacy, it is desirable not to disclose par-
entship. Hence, we cannot send the parents of z in
each agent to a single agent for d-sepnode verifica-
tion. Cooperation among all agents whose subdo-
mains contain x or parents of x is required to verify
whether z is a d-sepnode. We refer to the unverified
structure of an MAS as a hypertree DAG union.

In presenting our method, we will illustrate us-
ing examples. Although MAMSBNs are intended

for large problem domains, many issues in this pa-
per can be demonstrated using examples of much
smaller scale. Hence, we will do so for both compre-
hensibility as well as space. Readers should keep in
mind that these examples do not reflect the scales
to which MAMSBNSs are applicable.

A formal treatment of our method with proofs
of properties has been worked out. However, full
presentation of the formal treatment is beyond the
space limit. Therefore, we only mention some for-
mal results as necessary but reserve the details for
an extended version.

4 Checking private parents

A public node z in a hypertree DAG union G may
have public or private parents or both. Three cases
regarding its private parents are possible: more than
one local DAG (Case 1), exact one local DAG (Case
2), or no local DAG (Case 3) contains private parents
of .

The following proposition shows that the d-sepset
condition is violated in Case (1).

Proposition 4 Let a public node x in a hypertree
DAG union G be a d-sepnode. Then no more than
one local DAG of G contains private parent nodes of
z.

Proof: Assume that two or more local DAGs contain
private parent nodes of z. Let y be a private parent
of x contained in a local DAG G; and z be a private
parent of z contained in G;(i # j). Then there
cannot be any one local DAG that contains both y
and z. Hence no local DAG contains all parents of
xz, and z is not a d-sepnode by Def. 2, which is a
contradiction. m|

Figure 5 shows how this result can be used to de-
tect non-d-sepnodes. We refer to the corresponding
operation as CollectPrivateParentInfo. To ver-
ify if the public node j is a d-sepnode, suppose that
agents perform a rooted message passing (shown by
arrows in (a)). Agent A4 sends a count 1 to Aj, sig-
nifying that it has private parents of j. Az has no
private parents of j. It forms its own count 0, adds
the count from A4 to its own, and sends the result
1 to As. Because A; does not contain j, it does not
participate in this operation. Hence, Ao receives a
message only from Aj. Because A, has only a pub-
lic parent i of j, it forms its own count 0, adds the
count from Az to its own, and sends the result 1 to
Ap. Upon receiving the message, Ay forms its own
count 1, for it has a private parent p of j. It adds the
count from A, to obtain 2 and the message passing
halts. The final count signifies that there are two

Figure 5: A hypertree DAG union with the hyper-
tree in (a) and local DAGs in (b).

agents which contain private parents of j. Hence,
j is a non-d-sepnode and the hypertree DAG union
has violated the d-sepset condition.

5 Processing public parents

If CollectPrivateParentInfo on a public node z
results in a final count less than or equal to 1, then
no more than one agent contains private parents of
x (Cases (2) and (3) above). The hypertree DAG
union G, however, may still violate the d-sepset con-
dition. Consider the example in Figure 6. The pub-

{x,y,2} {x}
Go— 61
(a)
P B i
b bt e
Gy xe iex G
1 Y R
e te Sl

Figure 6: A hypertree DAG union G with the hy-
pertree in (a) and local DAGs in (b).

lic nodes are w, z, y, 2. No local DAG has any private
parent of z or z. Only Gg has a private parent of y,
and only G2 has a private parent of w. Hence, Col-
lectPrivateParentInfo will produce a final count
< 1 for each of w,z,y,2z. However, no single lo-
cal DAG contains all parents of z: w(z) = {w,y}.
Therefore, z is not a d-sepnode according to Def. 2
and none of the agent interfaces is a d-sepset.

The example illustrates that final counts from
CollectPrivateParentInfo only provide a neces-
sary condition for d-sepset verification. To deter-
mine if G satisfies the d-sepset condition conclu-
sively, agents still need to further process the public
parents of public nodes.

First, we consider Case 3, where no local DAG
contains private parents of z. Case 2 will be consid-
ered in Section 6.

5.1 Public parent sequence

We propose the following concept called public par-
ent sequence to describe the distribution of public
parents m(z) of a public node z on a hyperchain
DAG union denoted as (Go,G1,-.-,Gm). We use
X < Y to denote that sets X and Y are incom-
parable (neither is the subset of the other).

Definition 5 Let {Go,G1,...,Gm) (m > 2) be a hy-
perchain of local DAGs, where x is a public node,
each G; contains either x or some parents of x, and
all parents of x are public. Denote the parents of
that G; (0 < i < m) shares with G;—; and G;y1 by
7 (z) and 7} (z), respectively. Denote the parents
of x that G, shares with Gp,—1 by m,,,(x). Then the
sequence

(my (2), 75 (@), s 1, (2))
is the public parent sequence of x on the hyper-

chain. The sequence is classified into the following
types, where 0 < i < m:

Identical For each i, 7} (z) = 7] (z).

Increasing For each i,] (z) C 7} (z), and there
exists i such that m; (z) C ;} (z).

Decreasing For each i, 7 (z) D 7/ (z), and there
exists i such that m; (z) D m; (z).

Concave One of the following holds:

1. For m > 3, there exists i such that the
subsequence (m; (x),...,m; (x)) is increas-
ing and the subsequence (7} (), ..., 7, (x))
is decreasing.

2. There exists i such that 77 (x) > m;, (x);
the preced-
ing subsequence (m; (z),...,m; (x)) is triv-
ial (i = 1), increasing, or identical; and the

trailing subsequence (m; (), ..., (x)) is
trivial (i = m—1), decreasing, or identical.

Wave One of the following holds:

1. There ezists i such that ; (z) D m; (z) and
j > i such that either
i () C) (x) or w; (x) a7} ().

2. There exists i such that 7; (x) = 7, ()

G5 and G3 but disappears in Gg, G1, and G4. Two
local DAGs (G2 and G3) in the middle of the hyper-
chain contain 7(z) , and hence z is a d-sepnode. In
(b), an increasing subsequence ends at 75 (z), and a
decreasing subsequence starts at 73 () with 75 (x)
and 73 (z) incomparable. Because G, contains 7(z),
z is a d-sepnode.

i i {x,ab,...} {x,a,b,c,...}
and j > i such that either G G
_ _ 0 1 Gy & Gy
mj (2) Cwf (2) or mj (2) b (2). [va.bd...) [xab,..) @
{x,ab,...} {x,a,cd..}
(G (]
{x,ab,...} [x,a,b,...} @ b Lﬂ) % i) 163 [E?b)
@ @ @ @ @ ,a,D... ,a,d,...
x,a,b,...
(x.a.b...] [xab,.] £ / Ixabc..) (2) Figure 9: Wave parent sequences.
Go G1 G2 93 [G4] Figure 9 illustrates two possible cases of Wave
{xa,../ {xab,../ (b) sequence. In (a), a parent d of & appears at one end
{xab,..} {xa,..} of the hyperchain, another parent ¢ appears at the
Go G Gy G3 Gy other end, and they disappear in the middle of the
[l (=2 (3
(xab,.c,...} {xab,..} (c) | hyperchain. In other words, we have 7, (z) D 7 (z)

Figure 7: Public parent sequences. (a) An identi-
cal sequence. (b) An increasing sequence. (c) A
decreasing sequence.

Figure 7 illustrates the first three sequence types,
where only x and its parents are shown explicitly
in each agent interface. Identical sequence is illus-
trated in (a). Each G; contains m(z) = {a, b}, and
hence z is a d-sepnode. Increasing sequence is ex-
emplified in (b). From i = 1 to m, each G; contains
either the identical public parents of 2 or more. Be-
cause G, contains 7(z), z is a d-sepnode. Decreas-
ing sequence is exemplified in (c). It is symmetric
to the increasing sequence; G contains 7(z) and z
is a d-sepnode.

{x,a,b,...} {x,a,..}
[xa,..} [x,a,bc,...} (a)

{x,a,bd,...} {x,a,b,.c...}
[xa,..} [x,a,bc,...} (b)

Figure 8: Concave parent sequences.

For Concave sequence, some parents of z appear
in the middle of the hyperchain but not on either
end. Figure 8 illustrates two possible cases. In (a),
the parent b of x is contained in G, G2, and G35
but disappears in Gy and G4 and ¢ is contained in

and 75 (r) C 73 (z). No local DAG contains all
parents of z, and hence z is not a d-sepnode. In (b),
we have 7; (z) and 75 () being incomparable and
my (z) C 73 ().

The following theorem states that the five parent
sequences are exhaustive. They are also necessary
and sufficient to identify d-sepnode.

Theorem 6 Let x be a public node in a hyperchain
(Go,G1,...;Gr) of local DAGs with ©w(x) being the
parents of x in all DAGSs, where no parent of x is pri-
vate and each local DAG contains either x or some
parents of x.

1. There exists one local DAG that contains w(x) if
and only if the public parent sequence of x on the
hyperchain is identical, increasing, decreasing,
or concave.

2. There exists no local DAG that contains w(z) if
and only if the public parent sequence of x on
the hyperchain is of the wave type.

5.2 Cooperative verification in hyperchain

To identify the sequence type by cooperation, agents
on the hyperchain pass messages from one end to the
other, say, from G, to Gy. Each agent A; passes a
message to A;_; formulated based on the message
that A; receives from A;; as well as on the result
of comparison between 7 (z) and 7 (z). Note that
A;y1 is undefined for A,,.

We partition the five public parent sequence types
into three groups and associate each group with a
message coded using an integer, as shown below:

type group code
decreasing or identical | -1
increasing or concave 1
wave 0

Agents pass messages according to the algo-
rithm CollectPublicParentInfoOnChain as de-
fined below:

parents it shares with the adjacent agents. The mes-
sage passing starts from one end of the hyperchain
and the type of the public parent sequence can be
determined by the agent in the other end. In this
cooperation, no agent needs to disclose its internal
structure.

5.3 Cooperative verification in hypertree

Algorithm 1 (CollectPublicParentInfoOnChain) We investigate the issue in a general hypertree, and

If A;jy1 is undefined, agent A; passes -1 to A; 1.
Otherwise, A; receives a message from A;y1, com-
pares m; (z) with 7 (z), and sends its own message
according to one of the following cases:

1. The message received is -1:
If n; (z) D} (x), A; passes -1to A;_y.
Otherwise, A; passes 1 to A;_1.

2. The message received is 1:
If n] (z) C wf (x), A; passes 1 to A;_.
Otherwise, A; passes 0 to A; 1.

3. The message received is 0: A; passes 0 to A; 1.

We demonstrate how agents cooperate using ex-
amples in Figures 7 through 9. In Figure 7 (a), -1
is sent from A4 to Az and is passed along by each
agent until Ay receives it. Interpreting the message
code, Ay concludes that the parent sequence is ei-
ther identical or decreasing. Because the actual
sequence is identical, the conclusion is correct.

In (b), Az receives -1 from A4 and sends 1 to As.
Afterwards, 1 is passed all the way to Ag, which
determines that the sequence is either increasing
(actual type) or concave.

In (c), -1 is sent by each agent. The conclusion
drawn by Ag is to classify the type of sequence as
either identical or decreasing (actual type).

In Figure 8 (a), Az receives -1 from A, and sends
-1 to As. Agent As sends 1 to A;, which passes it to
Ag. Agent Ag then concludes that the sequence type
is either increasing or concave, where concave is
the actual type. In (b), -1 is sent from A4 to A3 and
then to A;. Agent A, sends 1 to Ay, which is passed
to Ao.

In Figure 9 (a), Aj receives -1 from A4 and sends 1
to As. Agent A, passes 1 to A;, which in turn sends
0 to Ag. Agent Aj then interprets the sequence type
as a wave, which matches the actual type. In (b),
A3 receives -1 from A4 and sends 1 to As. Agent As
sends 0 to A;, which passes 0 to Ap.

In summary, each agent on the hyperchain can
pass a code message formulated based on the mes-
sage it receives and the comparison of the public

let agents to cooperate in a similar way as in a hy-
perchain. However, the message passing is directed
towards an agent acting as the root of the hypertree.

Consider first the case in which the root agent
A; has exactly two adjacent agents A; and A,. If
an agent A; has a downstream adjacent agent Ay,
we denote the parents of x that A; shares with Ay
by 7k (z). In Section 5.2, the only information that
agent Ay needs to process is the message received
from A;. Here, A; has three pieces of informa-
tion: two messages received from adjacent agents
and a comparison between i (x) and ma(x). The
key to determine whether z is a d-sepnode is to de-
tect whether its public parent sequence along any
hyperchain, on the hypertree, is the wave type. A
wave sequence can be detected based on one mes-
sage received by A; only (when the hyperchain from
A; to a terminal agent is a wave), or if not sufficient
based on both messages received, or if still not suf-
ficient based in addition on the comparison between
m (z) and mwa(x).

The idea can be applied to a general hypertree
where A; has any finite number of adjacent agents.
Now A; must take into account the three pieces of in-
formation for each pair of adjacent agents. Consider

{x,ab,..}

(@f—{al/

{xa,..}

{x.c,..}

(xd...}

Figure 10: Parents 7(z) of a d-sepnode z shared by
local DAGs in a hypertree.

the hypertree in Figure 10. If A is the root, then
messages will be passed towards Ay from terminal
agents Ay, Ay, and A;. After agents send messages
according to CollectPublicParentInfoOnChain,
Ag receives -1 from each of A;, Az, and As. This
implies that the parent sequence type of each hyper-
chain from Ay to a terminal agent is either identical

or decreasing. Hence agent Ay can conclude that
itself contains 7(z) and z is a d-sepnode.

{x,ab,..} {xd,...}

{x.de,..}

Figure 11: Parents 7(z) of a non-d-sepnode z shared
by local DAGs in a hyperstar.

In Figure 11, suppose that Ay is the root. Mes-
sages will be passed towards A; from terminal agents
As, A4, and Ay, Agent Ay will receives -1 from
A; and 1 from Aj. It realizes that each hyperchain
from Ag downstream through A; is either identical
or decreasing and the hyperchain from A4y down-
stream through Aj is either increasing or concave.
Because the messages are not sufficient to conclude,
Ap compares 71 (z) with 73(z). It discovers that they
are incomparable. This implies that there exist a hy-
perchain H; from Ay downstream through A4; and
a hyperchain Hj from Ay downstream through Aj
such that when H; is joined with H3 the resultant
hyperchain has a wave parent sequence. Hence, Ag
will pass the code message 0 to As. Based on this
message, the root agent As concludes that z is not
a d-sepnode. The conclusion is correct because no
local DAG contains both a and e.

The following algorithm describes the actions a
typical agent Ay performs.

Algorithm 2 (CollectPublicParentInfo(x))
1. Receive a message m; from each downstream
adjacent agent A;.

2. (a) If any message is 0, Ag sends 0 to the up-
stream agent A..

(b) Otherwise, if any two messages are 1, Ag
sends 0 to A..

(c) Otherwise, if a message m; is 1, then Ag
compares m;(x) with wj(x) for each down-
stream adjacent agent A;. If j is found
such that m;(z) 2 mj(x), Ao sends 0. If
not found, Ay sends 1.

(d) Otherwise, continue.

3. Ao compares each mw;(x) with the parents m.(x)
shared with A.. If there exists i such that
7w.(xz) P 7wi(x), then Ay sends 1 to A.. Oth-
erwise, Ag sends -1.

The following theorem establishes that d-sepnode
condition can be verified correctly by agent cooper-
ation through CollectPublicParentInfo.

Theorem 7 Let o hypertree of local DAGs {G;}
be populated by a set of agents. Let x be a
public node with only public parents in the hy-
pertree. Let agents pass messages according to
CollectPublicParentInfo(x).

Then x is a non-d-sepnode if and only if the root
agent returns 0.

6 Cooperative verification in a
general hypertree

We consider cooperative verification of the d-
sepnode condition when both public and private par-
ents of a public nodes are present. Agents who pop-
ulate such a hypertree can first perform Collectpri-
vateParentInfo to find out whether more than one
local DAG contains private parents of z. If two or
more agents are found to contain private parents of
z, then agents can conclude, by Proposition 4, z is a
non-d-sepnode. If no agent is found to contain pri-
vate parents of z, then agents can perform Collect-
PublicParentInfo with any agent being the root
to determine if z is a d-sepnode.

On the other hand, if one agent Ag is found to
contain private parents of x, then agents can per-
form CollectPublicParentInfo with Ay being the
root to determine if = is a d-sepnode. Note that
it is necessary for Ag to be the root. For instance,
in Figure 10, if As is the only agent that contains
the private parents of x, when CollectPublicPar-
entInfo is performed with the root Ag, agent Ag
cannot conclude as in Section 5.3. Clearly, although
Ag contains all public parents of z, it does not con-
tain the private parents of z. Hence, it is unknown
to Ag whether there is an agent containing all par-
ents of z. In this case, it depends on whether A, is
such an agent.

The following algorithm summarizes the method.

Algorithm 3 (VerifyDsepset)

Let a hypertree DAG union G be populated by mul-
tiple agents with one at each hypernode. For each
public node xz, agents cooperate as follows:

1. Agents per-
form CollectprivateParentInfo. If more
than one agent is found to contain private par-
ents of z, conclude that G violates the d-sepset
condition.

2. If no agent is found to contain private parents
of x, agents perform

CollectPublicParentInfo with any agent
Ao as the root. If Ay generates the message
0, conclude that G wviolates the d-sepset condi-
tion. Otherwise, conclude that G satisfies the
d-sepset condition.

3. If a single agent Ay is found to contain
private parents of x, then agents perform
CollectPublicParentInfo with Ay as the
root. If Ay generates the message -1, conclude
that G satisfies the d-sepset condition. Other-
wise, conclude that G violates the d-sepset con-
dition.

It can be proven that VerifyDsepset accom-
plishes the intended task correctly:

Theorem 8 Let a hypertree DAG union G be pop-
ulated by multiple agents. After VerifyDsepset is ex-
ecuted in G, it concludes correctly with respect to
whether G satisfies the d-sepset condition.

7 Complexity

We show that multiagent cooperative verification by
VerifyDsepset is efficient. We denote the maximum
cardinality of a node adjacency in a local DAG by t;
the maximum number of nodes in an agent interface
by k; the maximum number of agents adjacent to
any given agent on the hypertree by s; and the total
number of agents by n.

Each agent may call CollectPrivateParentInfo
O(k s) times — one for each shared node. Each
call may propagate to O(n) agents. Examination of
whether a shared node has private parents in a local
DAG takes O(t) time. Hence, the total time com-
plexity for checking private parents is O(n? k s t).

Next, we consider processing of public parents af-
ter checking private parents succeeds positively. The
computation time is dominated by CollectPublic-
ParentInfo. Each agent may call CollectPublic-
ParentInfo O(k s) times. Each call may propa-
gate to O(n) agents. When processing public parent
sequence information, an agent may compare O(s)
pairs of agent interfaces. Fach comparison exam-
ines O(k?) pairs of shared nodes. Hence, the to-
tal time complexity for processing public parents is
O(n? k* s%). The overall complexity of VerifyD-
sepset is O(n? (k® s> + k s t)) and the computation
is efficient.

8 Conclusion

We present a method to verify agent interface in a
MAS whose knowledge representation is based on
MSBNs. To ensure exact, distributed probabilistic

inference, agent interfaces must be d-sepsets. Us-
ing our verification method, agents only pass concise
messages among them without centralized control.
A message reveals only partial information about the
parenthood of a public node without disclosing ad-
ditional details on the agent’s local DAG. Hence, the
method respects agent’s privacy, protects agent ven-
dors’ know-how, and promotes integration of MAS
from independently developed agents.

MSBNs support both modular, exact probabilis-
tic inference in single agent systems and exact, dis-
tributed probabilistic inference in MAS. The con-
nection between MSBNs and OOBNs was explored
by Koller and Pfeffer (Koller and Pfeffer, 1997). Al-
though OOBNs are intended for single agent sys-
tems, the object interfaces also have to satisfy the
d-sepset condition. The approach taken was to re-
quire all arcs from one network segment to another
to follow the same direction. Owing to this require-
ment, the d-sepset condition is automatically satis-
fied in a hypertree DAG union. No verification is
required. On the other hand, the requirement does
restrict the dependency structures to a proper sub-
set of general MSBNs. For instance, in the MSBN
for monitoring the digital system (Figure 2), arcs
may go either way between a pair of adjacent local
DAGs. The method presented in this paper allows
agent interfaces to be verified efficiently in a general
MSBN.

References

A'F. Dragoni, P. Giorgini, and L. Serafini. 2001.
Updating mental states from communication. In
Intelligent Agents VII: Agent Theories, Architec-
tures and Languages. Springer-Verlag.

P.J. Gmytrasiewicz and C.L. Lisetti. 2000. Using
decision theory to formalize emotions for multi-
agent systems. In Second ICMAS-2000 Work-
shop on Game Theoretic and Decision Theoretic
Agents, Boston.

M.N. Huhns and D.M. Bridgeland. 1991. Multia-
gent truth maintenance. IEEE Trans. Sys., Man,
and Cybernetics, 21(6):1437-1445.

G. Kaminka and M. Tambe. 1999. I’'m ok, you’re
ok, we’re ok: experiments in centralized and dis-
tributed socially attentive monitoring. In Proc.
Inter. Conference on Automonomous Agents.

D. Koller and A. Pfeffer. 1997. Object-oriented
Bayesian networks. In D. Geiger and P.P. Shenoy,
editors, Proc. 18th Conf. on Uncertainty in Ar-
tificial Intelligence, pages 302-313, Providence,
Rhode Island.

V.R. Lesser and L.D. Erman. 1980. Distributed
interpretation: a model and experiment. IEEE
Trans. on Computers, C-29(12):1144-1163.

C.L. Mason and R.R. Johnson. 1989. DATMS: a
framework for distributed assumption based rea-
soning. In L. Gasser and M.N. Huhns, editors,
Distributed Artificial Intelligence II, pages 293—
317. Pitman.

P. McBurney and S. Parsons. 2001. Chance discov-
ery using dialectical argumentation. In T. Terano,
T. Nishida, A. Namatame, S. Tsumoto, Y. Oh-
sawa, and T. Washio, editors, New Frontiers in
Artificial Intelligence, Lecture Notes in Artificial
Intelligence Vol. 2253, pages 414-424. Springer-
Verlag.

H.P. Nii. 1986. Blackboard systems: the black-
board model of problem solving and the evolu-
tion of blackboard architectures. AI Magazine,
7(2):38-53.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann.

A. Rao and M. Georgeff. 1991. Deliberation
and its role in the formation of intentions. In
B. D’Ambrosio, P. Smets, and P.P. Bonissone, ed-
itors, Proc. 7Tth Conf. on Uncertainty in Artificial
Intelligence, pages 300-307. Morgan Kaufmann.

K.P. Sycara. 1998. Multiagent systems. Al Maga-
zine, 19(2):79-92.

Y. Xiang and V. Lesser. 2000. Justifying multi-
ply sectioned Bayesian networks. In Proc. 6th In-
ter. Conf. on Multi-agent Systems, pages 349-356,
Boston.

Y. Xiang. 2000. Belief updating in multiply sec-
tioned Bayesian networks without repeated local
propagations. Inter. J. Approximate Reasoning,
23:1-21.

Y. Xiang. 2001. Cooperative triangulation in MS-
BNs without revealing subnet structures. Net-
works, 37(1):53-65.

