
Inference in Multiply Sectioned Bayesian Networks
with Lazy Propagation and Linked Junction Forests

Y. Xiang and X. Chen, University of Guelph, Canada

Abstract

Lazy propagation reduces the space complexity. MSBNs extend BNs to multiagent. To combine
the benefits of the two, a framework was proposed earlier to apply lazy propagation to inference
in MSBNs. We propose an alternative framework with a simpler compiled structure.

1 Introduction

Multiply Sectioned Bayesian Networks (MSBNs)
(Xiang, 2002) extend BNs (Pearl, 1988) to the mul-
tiagent paradigm. The inference method is an exten-
sion of HUGIN method for BNs using the junction
tree (JT) representation. Lazy propagation (Mad-
sen and Jensen, 1998) extends the applicability of
HUGIN inference method to larger domains. It
uses a factorized representation for belief, performs
only the necessary multiplication and marginaliza-
tion, and results in reduced space complexity.

A framework was proposed earlier (Xiang and
Jensen, 1999) to apply lazy propagation to inference
in MSBNs. The compiled runtime representation
requires the maintenance of multiple local graphi-
cal structures for each subnet. In this work, we pro-
pose an alternative framework for multiagent sys-
tems where only a single local structure is needed.
We propose a set of algorithms for local lazy infer-
ence at each agent, for lazy communication among
agents, and for entering observations. We prove that
the lazy inference is autonomous and exact.

The alternative framework has the following ad-
vantages: Its local structure is isomorphic to that for
standard inference in MSBNs. Hence, the same set
of structure compilation algorithms (Xiang, 2002)
are applicable and the same compilation software
components (such as those in WEBWEAVR) can be
reused for lazy inference. It can also lead to space
savings (one local structure versus several) and re-
sultant similified control. Experimental evidence is
expected from our ongoing research.

We briefly overview the framework of MSBNs
and lazy propagation in Sections 2 and 3. Our
overview assumes the knowledge on HUGIN and

Shafer-Shenoy inference methods in JT represen-
tations of BNs. Readers unfamiliar with these are
directed to (Jensen, 1996; Shafer, 1996). Read-
ers who desire in-depth understanding of MSBNs
are directed to (Xiang, 2002). The remaining sec-
tions develop the lazy propagation based new infer-
ence scheme for MSBNs. MSBNs are intended for
large and complex domains. However, many rel-
evant concepts can and should be illustrated with
simple examples. Readers are reminded of the dis-
crepancy between the complexity of the examples
in the paper and that of intended applications.

2 Overview of MSBNs

A BN (Pearl, 1988) can be used to structure the
knowledge of a single agent. What is its counterpart
for a cooperative multiagent system? From a small
set of assumptions: (1) exact probability measure
of belief, (2) communication by belief over small
sets of shared variables, (3) a simpler organization
of agents, (4) DAG domain structuring, and (5) joint
belief admitting agents’ beliefs on internal variables
and combining their beliefs on shared variables, it
has been shown (Xiang and Lesser, 2003) that the
resultant representation of a cooperative multiagent
system is an MSBN. Although an MSBN can be ap-
plied under the single agent paradigm, our presen-
tation follows the multiagent paradigm.

An MSBNM is a collection of Bayesian subnets,
one from each agent, that together defines a BN. M
represents probabilistic dependence of a total uni-
verse partitioned into multiple subdomains each of
which is represented by a subnet. Agents cooper-
ate to reason about what is going on (Xiang, 2002).
Without confusion, we refer to an agent, its subdo-

0

main, and its subnet interchangeably from time to
time. To ensure correct, distributed inference, sub-
nets are required to satisfy certain conditions (Xiang
and Lesser, 2003) described below:

Let Gi = (Ni, Ei) (i = 0, 1) be two graphs
(directed or undirected). G0 and G1 are said to
be graph-consistent if the subgraphs of G0 and G1

spanned byN0∩N1 are identical. Given two graph-
consistent graphs Gi = (Ni, Ei) (i = 0, 1), the
graph G = (N0 ∪ N1, E0 ∪ E1) is referred to as
the union of G0 and G1, denoted by G = G0 t G1.
Given a graphG = (N,E), a partition ofN intoN0

and N1 such that N0 ∪N1 = N and N0 ∩N1 6= ∅,
and subgraphsGi of G spanned byNi (i = 0, 1),G
is said to be sectioned intoG0 andG1. Sectioning is
useful in defining the dependence between variables
shared by subdomains in a graphical model:

Definition 1 LetG = (N,E) be a connected graph
sectioned into subgraphs {Gi = (Ni, Ei)}. Let the
subgraphs be organized into an undirected tree Ψ

where each node is uniquely labeled by a Gi and
each link betweenGk andGm is labeled by the non-
empty interface Nk ∩ Nm such that for each i
and j,Ni∩Nj is contained in each subgraph on the
path betweenGi andGj in Ψ. Then Ψ is a hyper-
tree overG. Each Gi is a hypernode and each
interface is a hyperlink. A pair of hypernodes
connected by a hyperlink is said to be adjacent.

Each hyperlink serves as the information channel
between subnets connected and is referred to as an
agent interface. Agents communicate by exchang-
ing beliefs over their interfaces. An interface must
be a d-sepset, as defined below:

Definition 2 Let G be a directed graph such that
a hypertree over G exists. A node x contained in
more than one subgraph with its parents π(x) in G
is a d−sepnode if there exists at least one subgraph
that contains π(x). An interface I is a d−sepset if
every x ∈ I is a d-sepnode.

The overall structure of an MSBN is a hypertree
MSDAG:

Definition 3 A hypertree MSDAG G =
⊔

iGi,
where each Gi is a DAG, is a connected DAG such
that (1) there exists a hypertree ψ over G, and (2)
each hyperlink in ψ is a d-sepset.

Graphically, a hyperlink separates the hypertree
MSDAG into two subtrees. Semantically, this cor-
responds to conditional independence given the d-
sepset. An MSBN is then defined as follows:

Definition 4 An MSBN M is a triplet M =

(N ,G,P). N =
⋃

iNi is the total universe
where each Ni is a set of variables. G =

⊔
iGi

(a hypertree MSDAG) is the structure where
nodes of each DAG Gi are labeled by elements of
Ni. Let x be a variable and π(x) be all the par-
ents of x in G. For each x, exactly one of its occur-
rences (in a Gi containing {x} ∪ π(x)) is assigned
P (x|π(x)), and each occurrence in other DAGs is
assigned a constant table. P =

∏
i Pi(Ni) is the

jpd, where each Pi(Ni) is the product of probabil-
ity tables associated with nodes in Gi. Each triplet
Si = (Ni, Gi, Pi) is called a subnet of M . Two
subnets Si and Sj are said to be adjacent if Gi

andGj are adjacent on the hypertree MSDAG.

An example MSBN is shown in Figure 1.
Inference in an MSBN is performed based on

message passing. Local inference within each agent
passes intra-subnet messages which bring a sub-
net into consistency. Communication among agents
passes inter-subnet messages which brings the sys-
tem into global consistency. These messages are
marginal probability distributions. The key issue is
to use messages over small subsets of variables so
that inference is efficient.

To compute intra-subnet messages and propagate
them effectively, each agent compiles its subnet into
a junction tree (JT), where variables are grouped
into clusters with intersection of adjacent clusters
referred to as separators. Note that the hypertree of
a MSDAG is a JT if each hypernode is labeled by
the corresponding subdomain Ni. Without confu-
sion, we simply refer to this JT as hypertree.

Similarly, to facilitate computation of inter-
subnet messages, agents compile each d-sepset into
a JT, called a linkage tree. With local JTs and link-
age trees combined, the resultant representation is
called a linked junction forest (LJF). For details on
compilation, see (Xiang, 2002). See Figure 2 for
linkage trees L1 between T0 and T1 and L2 be-
tween T0 and T2. Each cluster in a linkage tree
is called a linkage. Linkage {b, c} is an infor-
mation channel between cluster {b, c, f} in T1 and

1

P(c|h)

P(f|c)

a

P(e|b)P(d|a)

P(b|g,h)P(a)

f

c

e

P(h)P(g)

hg

d

a b
l

1G 2Gc

P(k|b,c)P(j|a,b)P(i|a)
kj

i

a b

o

b

P(o|c)P(n|b,c)P(m|b)P(l|a,b)

0G

n

c

m

Figure 1: A trivial MSBN where each d-sepnode is shown with a dashed circle. The hypertree has the
structureG1 −G0 −G2 and each d-sepset is {a, b, c}.

*

* *

* *

*

P(k|b,c)

P(b|g,h),P(g),P(h)

P(c|h)

P(f|c)

P(o|c)

P(e|b)P(d|a),P(a)

P(n|b,c)
P(m|b)

P(l|a,b) P(j|a,b)

a,b,ea,d

P(i|a)

1 2L L

1

a,b,j a,i

b,c,k

a,b

b,cb,c,f

a,b

b,c

a,b,l

b,c,n

c,o b,m T2T0

b,g,h

T

b,c,h

Figure 2: JTs and linkage trees obtained from Figure 1. Each linkage host is labeled by *. The thick links
show the relation between each linkage and its hosts.

cluster {b, c, n} in T0. They are referred to as the
linkage hosts of {b, c}.

Parallel to the structure compilation, probabil-
ity tables in MSBN are converted to potentials
(non-normalized probability distributions) associ-
ated with clusters, separators and linkages. From
them, the joint system potential of LJF is defined
that is equivalent to the jpd P of the MSBN. When
observations are available, each agent performs lo-
cal inference in its local JT using the HUGIN
method. Communication among agents is per-
formed by propagation on hypertree along hyper-
links (technically along linkages). After the com-
munication, probabilistic queries posed to any agent
can be answered exactly relative to observations en-
tered in the entire LJF. We refer to the inference
method as HUGIN-like inference with LJFs.

3 Overview of Lazy Propagation

Lazy propagation (Madsen and Jensen, 1998) is per-
formed using the JT structure of a BN. Each cluster
is associated with a set of potentials from the BN.
We refer to the cluster of current focus by C and its
set of potentials by β. When no potential is assigned
to a cluster, β = ∅. The joint system potential of the
JT is then the product of all potentials in all clusters,

denoted as B(N).
Each separator S between two adjacent clusters

C and C ′ is associated with two buffers. One buffer
is used to store the message from C to C ′ and the
other from C ′ to C. We formalize lazy propagation
below as pseudo-code algorithms so that we can re-
fer to them in the new inference algorithms for MS-
BNs. Given a cluster C, for each separator S, we
shall refer to the two buffers locally as the in-buffer
and the out-buffer relative to C.

A cluster executes the following algorithm to
compute and send a message to an adjacent cluster,
where \ is the set difference operator.

Algorithm 1 (SendPotential) Let C be a cluster
with β. Let adjacent clusters be C1, ..., Cm. Let
βi be the set of potentials in the in-buffer from Ci.
When SendPotential relative to Ck is called in C,
C does the following: (1) β′ = β ∪i6=k βi. (2)
Marginalize out variables C \ Ck from β′ . (To
marginalize out variable x, multiply potentials with
x in the domain and apply marginalization to the
product.) (3) Send the resultant set of potentials to
the out-buffer to Ck.

In the following two algorithms, C is a cluster
and caller is an adjacent cluster or the JT. The
following algorithm is executed recursively by each

2

cluster for inward message passing.

Algorithm 2 (CollectPotential) When caller calls
CollectPotential in cluster C, C does the following:
(1) If caller is the only adjacent cluster, perform
SendPotential relative to caller.
(2) Otherwise, for each adjacent cluster Q except
caller, call CollectPotential in Q. After all calls are
completed, perform SendPotential relative to caller
if it is an adjacent cluster.

The following algorithm is executed recursively
by each cluster for outward message passing.

Algorithm 3 (DistributePotential) When caller
calls DistributePotential in C, for each adjacent
cluster Q except caller, C performs SendPotential
relative to Q followed by a call of DistributePoten-
tial in Q.

The following algorithm is executed by a JT for a
full round of message passing.

Algorithm 4 (UnifyPotential) Select a cluster C
arbitrarily. Call CollectPotential in C. Call Dis-
tributePotential in C.

The following proposition establishes the effect
of UnifyPotential, where const denotes a constant:

Proposition 5 (Proposition 3.4 in (Shafer, 1996))
Let UnifyPotential be performed in a JT. For any
cluster C with β and in-buffer messages βi

(i = 1, ..., m) from separators Ri with adjacent
clusters, denote the product of potentials in β as
β(C) and the product of potentials in βi as βi(Ri).
Then β(C)

∏m
i=1

βi(Ri) = const
∑

N\C B(N).

When observations are available, for each clus-
ter, update each potential whose domain contains
observed variables and remove the observed vari-
ables from the domain. Store the observed values
for subsequent queries. The following algorithm is
used to enter the observation on a variable to the JT.

Algorithm 5 (EnterObservation) When a vari-
able x is observed at value x0, for each cluster C
(with β) containing x, do the following:
(1) Remove each potential f(x) from β.
(2) For each potential f(x, Y) in β, where Y 6= ∅,
replace it by g(Y) = f(x = x0, Y).

4 Lazy Inference With LJFs

We apply lazy propagation to inference in MSBNs.
The on-line message computation will be guided by
LJFs, but factorized beliefs and messages will be
used as in lazy propagation. Each agent Ai is asso-
ciated with the subnet Si and local JT Ti.

4.1 Potential Assignment

Conditional probability tables (CPTs) in an MSBN
are assigned to clusters in its LJF as potentials: For
each node x in each subnetSi, if it is assigned with a
non-constant CPT (see Def 4), then assign the CPT
to a cluster in local JT Ti that contains x and its
parents in Si. The potential associated with a lo-
cal JT Ti is then BTi

(Ni) =
∏

j

∏
k βi,j,k, where

j indexes clusters, βi,j denotes the set of potentials
assigned to the jth cluster, and βi,j,k is the kth po-
tential in the set. The joint system potential of the
LJF is BF (N) =

∏
iBTi

(Ni). BF (N) is identical
to jpd of the MSBN.

4.2 Lazy Inference: An Example

Lazy inference consists of lazy communication
among agents followed by local lazy propagation.
During lazy communication, inter-subnet messages
are sent through linkage trees. Messages are passed
through a linkage tree in both directions. Hence, a
linkage between subnets S and R is associated with
two message buffers, one for each direction.

Figure 3 illustrates inward propagation with
root agent A0. First, UnifyPotential is per-
formed by A1 and A2. At T1, it causes mes-
sage B(b, c) =

∑
h P (c|h)B(b, h) to be sent from

cluster {b, c, h} to {b, c, f}, where B(b, h) =

P (h)
∑

g P (b|g, h)P (g). Similarly, messages P (a)
and B(b) =

∑
hB(b, h) are sent from clusters

{a, d} and {b, c, h} to cluster {a, b, e}, respectively.
At linkage host {b, c, f}, message to linkage {b, c}
is computed based on local potentials plus the mes-
sage from cluster {b, c, h}. The resultant mes-
sage is B(b, c). At linkage host {a, b, e}, message
P (a)B(b) to linkage {a, b} is computed. As a con-
sequence, both linkages in L0,1 contain information
on variable b: a duplication. To remove the du-
plication, A1 examines potentials at linkage {a, b}
and identify B(b) as the duplicated information on
b. After B(b) is deleted, messages from L0,1 to

3

P(a)
φ

φ

P(m|b)

P(l|a,b)

P(n|b,c)

P(i|a)

P(j|a,b)

P(a)P(d|a)

B(b,c)

P(a)B(b)

B(b,c)

P(a)

φ

φ

φ

φ

P(o|c)

φ φ

φφ

P(f|c)

P(e|b)

P(g)P(h)P(b|g,h)
P(k|b,c)

B(b,h)

P(c|h)

φ φ

B(b,c)
B(b)

*
*

*

*

*

*

1T

b,c

b,g,h c,o

a,b

b,c

a,b

0,1L 0,2

b,m

2Ta,d

b,c,h

a,b,e

b,c,f b,c,n

b,c,k

a,b,l
a,i

T0

a,b,j

L

Figure 3: Inward propagation in LJF.

T0 become B(b, c) through linkage {b, c} and P (a)

through linkage {a, b}.

AtA2, UnifyPotential generates only empty mes-
sages among clusters. Messages from linkage hosts
{b, c, k} and {a, b, j} to linkages are also empty.
This concludes inward propagation.

Outward propagation follows, during which A0

sends messages to A1 and A2. To calculate mes-
sages toA1, A0 performs UnifyPotential using link-
age messages (empty) from A2 but not those from
A1. All messages (intra as well as inter-subnet) are
empty in this case.

Figure 4 shows outward propagation from A0 to
A2. A0 performs UnifyPotential using linkage mes-
sages fromA1 but not those fromA2. Message from
cluster {b, c, n} to {a, b, l} is B′(b) =

∑
cB(b, c)

and all other intra-subnet messages are empty. Mes-
sage from linkage host {b, c, n} through linkage
{b, c} to A2 is B(b, c). The message through link-
age {a, b} to A2 is P (a)B′(b). Again, information
on variable b is duplicated in the two linkage mes-
sages. After duplication B′(b) is deleted from the
message to linkage {a, b}, the resultant messages
from A0 to A2 are B(b, c) through linkage {b, c}
and P (a) through {a, b}. Lazy communication is
now complete.

After communication, each agent performs infer-
ence in its JT, which allows the prior probability of
each variable x to be obtained from any cluster con-
taining x in any subnet. The local inference extends
UnifyPotential by including messages from link-
ages. For instance, to perform UnifyPotential in T2,
cluster {b, c, k} includes linkage messageB(b, c) in

computing the message to cluster {a, b, j}. To an-
swer a query on P (b), A2 picks a cluster that con-
tains b, say, {b, c, k}, and marginalizes the product
of local potential P (k|b, c), message from cluster
{a, b, j} (empty in this case) and linkage message
B(b, c). Below, we present inference algorithms of
which the above example is a trace.

4.3 Local Lazy Propagation

The most primitive operation is SendPotential. To
take into account message passing over linkages,
we extend SendPotential (Algorithm 1) by extend-
ing the notion of adjacency: Two clusters are ad-
jacent if (1) they are directly connected in a JT, or
(2) they are hosts of a linkage between two JTs. We
refer to the extended Algorithm 1 as SendPotential∗.

We redefine CollectPotential (Algorithm 2) and
DistributePotential (Algorithm 3) to process mes-
sages over linkages. They use extended adjacency.
In the algorithms,C is a cluster in a JT andcaller
is the local agent or an adjacent cluster not con-
nected through a linkage.

Algorithm 6 (CollectPotential∗) When caller
calls CollectPotential∗ in cluster C, C does the
following:
(1) If caller is the only adjacent cluster, perform
SendPotential∗ relative to caller.
(2) Otherwise, for each adjacent cluster Q not
connected through a linkage except caller, call
CollectPotential∗ in Q. After all calls are com-
pleted, perform SendPotential∗ relative to caller if
it is an adjacent cluster.

Note that CollectPotential∗ only receives

4

P(l|a,b) P(a)B’(b)

P(a)

B(b,c)B(b,c)

B’(b)
φ

P(n|b,c)

φφ
φ φ

P(a)

B(b,c)

P(m|b)P(o|c)

**

* *

T

b,c

a,b

b,m

b,c

2

a,b

0,1L L0,2

b,c,n

T
c,o

a,b,ja,b,l

T0

b,c,k

1

a,i

Figure 4: Outward propagation from T0 to T2.

messages from linkage in-buffers and does not
send to linkage out-buffers because calling
CollectPotential∗ across linkages is disallowed.
Under the multiagent paradigm, CollectPotential∗

is a local operation of an agent, while sending
messages across linkages involves a remote agent.
CollectPotential∗ can be executed autonomously
to answer local queries, while message pass-
ing across linkages requires coordination and
incurs communication cost. Next, we redefine
DistributePotential.

Algorithm 7 (DistributePotential∗) When caller
calls DistributePotential∗ in cluster C, for each ad-
jacent cluster Q not connected through a linkage
except caller, C performs SendPotential∗ relative to
Q followed by a call of DistributePotential∗ in Q.

Local lazy propagation uses Algorithm 4, with
CollectPotential∗ and DistributePotential∗, which
we refer to as UnifyPotential∗.

4.4 Lazy Communication

During communication, messages are sent from one
agent with JT T to an adjacent agent with JT T ′

through their linkage tree. The messages are orig-
inated from linkage hosts in T . To ensure that
each linkage host has the necessary information,
UnifyPotential∗ must be performed before these
messages are computed. This renders T locally con-
sistent. As a result, for every two linkages adjacent
in the linkage tree, the same information on their
shared variables will be sent by their hosts. If such
messages are directly passed to T ′, the new belief in
T ′ will be incorrect due to information duplication.

We consider below how to compute cross-linkage
messages without information duplication.

To compute messages going from a source JT T

to a destination JT T ′, the linkage tree L can be di-
rected. For each linkageQ in L, the following mes-
sage buffers are then allocated.
in-buffer1: in-buffer from the host cluster in T .
in-buffer2: in-buffer from the parent linkage in L. If
Q has no parent linkage, its in-buffer2 is null.
out-buffer1: out-buffer to the host cluster in T ′.
out-buffer2, out-buffer3, ...: out-buffers to child
linkages in L.
The message from Q to T ′ is computed as follows:

Algorithm 8 (SendLinkageMsg)
For each linkage Q, Q requests its linkage host to
fill in-buffer1 by SendPotential∗ relative to Q. After
both in-buffers are filled, Q does the following:

(1) For each child linkage Q′, marginalize out
variables Q \ Q′ from potentials in in-buffer1, and
send resultant potentials to the out-buffer to Q′.

(2) Divide the set α of potentials in in-buffer1 by
the set γ of potentials in in-buffer2 as follows and
sends the resultant α to out-buffer1:

(2.1) If a potential appears in bothα and γ, delete
it from both.

(2.2) For each potential f in γ, delete f from γ,
multiply the set θ of potentials in α whose domains
overlop with that of f , and divide the product by f .
Replace θ in α by the result of the division.

Note that sending to out-buffer1 involves inter-
agent message transmission. Using SendLink-
ageMsg, algorithms below perform lazy communi-
cation in LJFs. In the algorithms, A is an agent and

5

caller is the MSBN or an adjacent agent of A.
CollectBeliefLLJF defines inward lazy communica-
tion along hypertree.

Algorithm 9 (CollectBeliefLLJF) When caller
calls CollectBeliefLLJF in agent A, A does the
following:
(1) If caller is not the only adjacent agent, call
CollectBeliefLLJF in each adjacent agent except
caller. After all calls are completed, receive linkage
messages from each adjacent agent except caller.
(2) If caller is an adjacent agent, do UnifyPotential∗

using linkage messages from each adjacent agent
except caller, followed by SendLinkageMsg relative
to caller.

The inward propagation described in Section 4.2
is a trace of a call of CollectBeliefLLJF in A0. A0

then calls in A1 and A2. DistributeBeliefLLJF be-
low defines outward lazy communication along hy-
pertree.

Algorithm 10 (DistributeBeliefLLJF) When
caller calls DistributeBeliefLLJF in A, for
each adjacent agent A′ except caller, A does
UnifyPotential∗ using linkage messages from
each adjacent agent except A′, followed by
SendLinkageMsg relative to A′ and a call of
DistributeBeliefLLJF in A′.

The outward propagation described in Section 4.2
is a trace of a call of DistributeBeliefLLJF inA0. A0

then calls it in A1 and A2. Since A1 and A2 have
no adjacent agents except A0, recursive calls ter-
minate. CommunicateBeliefLLJF below combines
above algorithms to accomplish lazy inference.

Algorithm 11 (CommunicateBeliefLLJF) Select
an agent A arbitrarily. Call CollectBeliefLLJF in
A. Call DistributeBeliefLLJF in A. Each agent
performs UnifyPotential∗ using linkage messages
from all adjacent agents.

An agent A calls UnifyPotential∗ before sending
messages to each adjacent agent. If A has k adja-
cent agents, then one call is made during CollectBe-
liefLLJF, k− 1 calls are made during DistributeBe-
liefLLJF, and a final call is made at the end of Com-
municateBeliefLLJF. Hence, a total of k+ 1 rounds
of local lazy propagations are needed to complete
CommunicateBeliefLLJF.

5 Soundness

Due to space, we omit all proofs. Proposition 6
says that messages sent over a linkage tree define
the marginal potential over the d-sepset.

Proposition 6 Let T over N be a local JT, T ′ be a
local JT adjacent of T , I be their d-sepset, and L
be the linkage tree over I . Let UnifyPotential∗ be
performed in T followed by SendLinkageMsg rel-
ative to T ′. Let B(N) be the potential B(N) =∏

C∈T β(C)
∏

Q′ 6∈L β(Q′), where β(C) is the
product of potentials assigned to a clusterC, β(Q′)
is the product of potentials received from a link-
age Q′, and only linkages other than those in
L are included. For each linkage Q ∈ L, let
α(Q) be the product of potentials that Q sends
to T ′ by SendLinkageMsg. Then

∏
Q∈L α(Q) =

const
∑

N\I B(N).

The following theorem says that the local poten-
tial of an agent and linkage tree messages it receives
define the marginal of the joint system potential:

Theorem 7 Let F over N be the LJF of an MSBN
with the joint system potentialBF (N) and let Com-
municateBeliefLLJF be performed in F . Let T be
any local JT over N and B(N) be the potential
B(N) =

∏
C∈T β(C)

∏
Q→T β(Q), where β(C)

is the product of potentials assigned to a cluster
C, β(Q) is the product of potentials received from
a linkage Q into T (denoted by Q → T). Then,
B(N) = const

∑
N\N BF (N).

The following corollary states that the local po-
tentials in a cluster and its in-buffer messages de-
fine the marginal of the joint system potential. In
the corollary, in-buffers include both those from ad-
jacent clusters in the same local JT and those from
linkages.

Corollary 8 Let F over N be the LJF of an MSBN
with the joint system potentialBF (N) and let Com-
municateBeliefLLJF be performed in F . Let C be
any cluster in any local JT and B(C) be the po-
tentialB(C) = β(C)

∏
R→C β(R)

∏
Q→C β(Q),

where β(C) is the product of potentials assigned to
C, β(R) is the product of potentials received from
the in-buffer associated with a separatorR with an
adjacent cluster of C, and β(Q) is the product of
potentials received from a linkage Q into C. Then,
B(C) = const

∑
N\C BF (N).

6

6 Enter Observations

When observation is obtained on a private vari-
able, it can be entered using EnterObservation (Al-
gorithm 5). The effect is that the new joint sys-
tem potential corresponds to the posterior distribu-
tion given the observation. Consider a variable x
with its value x0 observed. If x is a root variable,
EnterObservation does two things: (a) It removes
P (x). (b) For each child variable y of x, it replaces
P (y|x, π(y) \ {x}) by P (y|x = x0, π(y) \ {x}).
Hence, the new joint system potential corresponds
to P (N \ {x}|x = x0).

If x is not a root variable, (a) is not applicable.
EnterObservation will, in addition to (b), replace
P (x|π(x)) by P (x = x0|π(x)). This is equivalent
to an operation∑

x P (N \ {x}, x = x0) = P (N \ {x}|x = x0).

When observation is obtained by an agent A on
a public variable, however, the above is not suffi-
cient. By performing EnterObservation in A, the
local belief of A is updated. However, x may have
parents or children in other agents.1 Unless they
take corresponding actions, the joint system poten-
tial has not been updated correctly. We do not re-
quire other agents to do so immediately following
A’s observation as agent communication is costly.
Instead, it’s desirable that the coordinated observa-
tion entering is delayed until the next communica-
tion. We therefore modify CollectBeliefLLJF into
CollectBeliefLLJF∗ below.

• For (1), receive observations on d-sepnodes as
well as linkage messages.

• For (2), EnterObservation before
UnifyPotential∗, and send observations on
d-sepnodes to caller before SendLinkageMsg.

Similarly, DistributeBeliefLLJF is modified into
DistributeBeliefLLJF∗ by performing EnterObser-
vation before UnifyPotential∗.

We refer to Algorithm 11, modified with
CollectBeliefLLJF∗ and DistributeBeliefLLJF∗, as
CommunicateBeliefLLJF∗. The following theorem
establishes its effect whose proof is straightforward
given Corollary 8 and the above discussion.

1See (Xiang, 2002) for reasons why x may not be observed
by all relevant agents.

Theorem 9 Let F over N be the LJF of an MSBN
with jpd P (N). Let Obs be the set of variables ob-
served at value obs. Let CommunicateBeliefLLJF∗

be performed in F after observations on Obs have
been entered by the corresponding agents through
EnterObservation. Let C be any cluster in any lo-
cal JT and BC be the potential
BC = β(C)

∏
R→C β(R)

∏
Q→C β(Q), where

β(C) is the product of potentials associated with
C, β(R) is the product of those received from the
in-buffer associated with a separatorR with an ad-
jacent cluster of C, and β(Q) is the product of po-
tentials received from a linkageQ into C. Then,
BC = const

∑
C∩Obs

∑
N\C P (N|obs).

Note that we have used word ‘associated’ instead
of ’assigned’ regarding potentials in C to empha-
size the possible change of these potentials due to
EnterObservation. We have also used notation BC

instead of B(C) to emphasize that the product does
not include observed variables in its domain. The
inner summation above marginalizes P (N|obs) to
variables in C and the outer summation marginal-
izes out any variable in C that has been observed.

The following theorem establishes inference au-
tonomy for each agent. Its proof is trivial given The-
orem 9 and Proposition 5.

Theorem 10 Let observations Obs′ = obs′ be ob-
tained by agentA after global observationsObs =

obs followed by CommunicateBeliefLLJF∗. Let A
perform EnterObservation relative to obs′ followed
by UnifyPotential∗. Then, for each cluster C in A’s
local JT,
BC = const

∑
C∩Obs∩Obs′

∑
N\C P (N|obs, obs′).

References
F.V. Jensen. 1996. An Introduction To Bayesian Networks. UCL Press.

A.L. Madsen and F.V. Jensen. 1998. Lazy propagation in junction trees. In Proc. 14th Conf.
on Uncertainty in Artificial Intelligence.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann.

G. Shafer. 1996. Probabilistic Expert Systems. Society for Industrial and Applied Mathemat-
ics, Philadelphia.

Y. Xiang and F.V. Jensen. 1999. Inference in multiply sectioned Bayesian networks with
extended Shafer-Shenoy and lazy propagation. In Proc. 15th Conf. on Uncertainty in
Artificial Intelligence, pages 680–687, Stockholm.

Y. Xiang and V. Lesser. 2003. On the role of multiply sectioned Bayesian networks to cooper-
ative multiagent systems. IEEE Trans. Systems, Man, and Cybernetics-Part A, 33(4):489–
501.

Y. Xiang. 2002. Probabilistic Reasoning in Multi-Agent Systems: A Graphical Models Ap-
proach. Cambridge University Press.

7

