
Optimal Design with Design Networks

Y. Xiang
University of Guelph, Canada

Abstract

As part of decision-theoretic collaborative design, this work addresses representation
and computation issues for a set-based design agent. We refine the definition of design
networks to be more expressive for design knowledge and more effective for guiding model
construction and verification. We propose a compiled structure of design networks and
a suite of algorithms that computes optimal designs efficiently. The result provides a
mechanism that combines probabilistic, constraint-based, and decision-theoretic reasoning
for single-agent optimal design, and fills in a gap in optimal collaborative design.

1 Introduction

This work concerns optimal decision in cen-
tralized and collaborative design. At the cen-
tralized front, it deals with set-based design
(Ward, 1989; Sobek et al., 1999) which, un-
like point-based design often confined to local
optimals, evaluates all alternative designs to
seek the global optimal. Primary challenges for
product lifecycle management include how to ef-
ficiently propagate constraints and search in a
design space (Paredis et al., 2006). This work
contributes to meeting these challenges with an
algorithm suite that designs optimally decision-
theoretically and efficiently.

At the collaborative front, it solves a sub-
problem in decision-theoretic design: Most re-
search on collaborative design, e.g. (Konduri
and Chandrakasan, 1999), focuses on designer
information sharing but not on making design
choices. Exceptions, such as Collaborative op-
timization (Braun et al., 1996) are essentially
point-based and only produce locally optimal
designs. A decision-theoretic graphical model,
termed collaborative design network (CDN), is
proposed in (Xiang et al., 2004). Component-
centered design is considered in the context of
product lifecycle management (PLM) with the
objective of overall optimal performance count-
ing diverse uncertainty from materials, manu-
facturing and operating, as well as preference
of vendors and users. A scheme for multia-

gent collaboration is developed (Xiang et al.,
2005) which reduces complexity exponentially
from that of a centralized design by exhaustive
evaluation. This contribution goes further to
enable efficient local design at each agent. Ad-
ditional constraints for CDN are also proposed
to facilitate model construction and verification.

2 Design Networks

As introduced above, this work is an essential
part of the research towards multiagent collab-
orative design. Since the focus here is the deci-
sion process at a single agent, multiagent issues
can be set aside without affecting the integrity
of the result presented. In this section, we de-
fine a design network (DN) as the key graphical
model associated with such an agent. The defi-
nition here extends that in (Xiang et al., 2004)
so that it is not only more expressive in rep-
resenting design knowledge, but also more re-
strictive to better guide model construction and
verification. Aspects in (Xiang et al., 2004) are
outlined here briefly for completeness. Readers
are referred to reference for more details.

A design network is a triple S = (V, E,P)
whose structure is a connected DAG G =
(V, E). The set of nodes, each corresponds to
a variable, is V = D ∪ T ∪ M ∪ U . D is an
non-empty set of design parameter. T is a set
of environmental factors representing the uncer-
tain manufacturing and operating environment
for the product under design. M is an non-

empty set of objective performance measures of
the product. U is an non-empty set of subjec-
tive utility functions of the designer.

E is an non-empty set of legal arcs. We refer
to distinct endpoints from D as d and d′, from
T as t and t′, from M as m and m′, from U as u
and u′, respectively. There are six types of legal
arcs:

1. Arc (d, d′) signifies that the two parameters
are involved in a design constraint.

2. Arc (d, m) represents that performance m
depends on design parameter d.

3. Arc (t, t′) represents dependency between
environmental factors. This type of arcs
is added to legal arcs in (Xiang et al.,
2004) to encode complex dependence rela-
tions among environmental factors.

4. Arc (t, m) signifies that performance m de-
pends on environment factor t.

5. Arc (m, m′) defines m′ as a composite per-
formance measure.

6. Arc (m, u) signifies that utility u depends
on performance m.

P is a set of potentials one associated with
each node x in the form of a conditional proba-
bility distribution P (x|π(x)), where π(x) is the
set of parent nodes of x. According to legal
arcs, a design parameter d can have only design
parameters as parents. If d is a root, P (d) is
a constant distribution. Otherwise, P (d|π(d))
must contain the value 0 (i.e., not strictly posi-
tive). The non-strictly-positive requirement can
be understood as follows: When π(d) is non-
empty, P (d|π(d)) represents design constraints.
It specifies under what configurations of π(d),
certain values of d are illegal, and the value 0
signifies violation of design constraints.

Potential P (t|π(t)) is a typical probability
distribution. According to legal arcs, π(t) con-
sists of environmental factors only. P (m|π(m))
is also a typical probability distribution, repre-
senting the uncertain dependence of the perfor-
mance on design, environment, as well as other
performance measures.

All utility variables are binary with domain
{y, n}. The potential P (u = y|π(u)) is assigned
a utility function u(π(u)) whose values range
in [0, 1] and include the two bounds. Accord-
ing to legal arcs, π(u) consists of performance
measures only. The potential P (u = n|π(u)) is
assigned 1 − P (u = y|π(u)). Each node u is
also assigned a weight k ∈ [0, 1] such that the
weights of all utility nodes sum to one.

With P thus defined, S is syntactically a
Bayesian network. Assuming additive indepen-
dence (Keeney and Raiffa, 1976) among utility
variables, the expected utility of a design d

EU(d) =
∑

i

ki (
∑

m

ui(m) P (m|d)) (1)

can be computed by standard probabilistic in-
ference in S (Xiang et al., 2004), where d (bold)
is a configuration of D, i indexes utility nodes
in U , m (bold) is a configuration of the parents
of ui, and ki is the weight associated with ui.
Figure 1 shows a trivial example DN.

u_cost

u_perf

d_memory

u_stability

t_humidity
t_temperatured_12v

d_c_voltage

d_c_chipset

m_io_perf m_costu_io_perf

d_b_chipset
d_io_controler

m_perf

m_stability

Figure 1: A trivial DN for PC motherboard.

Restriction of legal arcs does not constrain
S sufficiently so that every component is rel-
evant to the design task, as will become clear
below. We impose the following essentiality re-
quirement to provide further guidance to model
construction and to facilitate model verification.

For any design parameter d, if there exists
a directed path in S from d to a utility node
u, then d is essential. Otherwise, d is non-
essential. If d is non-essential, then the ex-
pected utility of any given design is independent
of the value that d takes. In other words, the
optimal design over the remaining design pa-
rameters is independent of d, and the optimal

value for d is undefined. Hence, d can be re-
moved from S without affecting the optimal de-
sign over remaining design parameters and the
maximum expected utility.

For any performance measure m, if there ex-
ists a directed path in S from a design parame-
ter d to m, as well as a directed path from m to
a utility node u, then m is essential. Without
the path from d to m, m will not depend on any
design. Without the path from m to u, m will
not influence the optimal design. In either case,
m is deemed non-essential and can be removed
without affecting the optimal design.

The case for environmental factors differs
from the above. Consider a path m ← t → t′,
where m is essential and t′ is a leaf. Suppose
that the value of t′ is known at the time of de-
sign (an extension to the context for Eqn. (1)).
Depending on the known value of t′, the impact
of t on m may differ. If a directed path from
each environmental factor to a utility node is
required, the node t′ above will be disallowed.
Therefore, an environmental factor t is deemed
essential if there exists an undirected path in S

from t to a performance measure m. Otherwise,
t is non-essential.

We require that all design parameters, per-
formance measures, and environmental factors
in a design network to be essential.

3 Detecting Illegal Designs

An agent equipped with a DN can compute ex-
pected utility EU(d) (Eqn. (1)) for each alter-
native design using standard probabilistic rea-
soning. However, finding the optimal design
by exhaustively evaluating each design has the
complexity O(κ|D|), where κ is the maximum
number of values that a design parameter can
take. We present a much more efficient method
below.

An illegal design violates at least one design
constraint. The sooner it can be detected, the
sooner the evaluation computation can be di-
rected to alternative designs and the more ef-
ficient the overall design computation. Sup-
pose that a constraint involves a subset X ⊂ D
of binary design parameters d0, ..., dj, where

d1, ..., dj are the parents of d0 in the DN, such
that d0, ..., dj cannot take value 0 all at the
same time. This is specified in the DN by
P (d0 = 0|d1 = 0, ..., dj = 0) = 0. Any de-
sign that are consistent with the configuration
(d0 = 0, ..., dj = 0) is an illegal design. Note
that the number of such illegal designs are in
the order of O(k|D\X |).

A DN is syntactically a Bayesian network
and hence can be compiled into a junction tree
(JT) T . Due to the moralization step in com-
pilation, there exists a cluster C ⊇ X in T .
After compilation, each cluster Q in T is as-
signed a potential B(Q) over the set Q of mem-
ber variables. The assignment to C satisfies
B(d0 = 0, ..., dj = 0) = 0.

First, we assume that C = X . Consider
a different configuration of C whose potential
value is non-zero, for instance, the configura-
tion (d0 = 0, d1 = 1, d2 = 0,, dj = 0)
such that B(d0 = 0, d1 = 1, d2 = 0, ..., dj =
0) > 0. To evaluate any design consistent with
(d0 = 0, ..., dj = 0), values d0 = 0, ..., dj = 0
are entered into C. When d1 = 0 is entered
into C, the potential value B(d0 = 0, d1 =
1, d2 = 0, ..., dj = 0) is multiplied by 0 because
the configuration is inconsistent with d1 = 0.
As the result, the updated potential value is
B(d0 = 0, d1 = 1, d2 = 0, ..., dj = 0) = 0. To
summarize, before entering values d1 = 0, the
potential value B(d0 = 0, ..., dj = 0) is 0, and
after entering d1 = 0, the potential value for
every other configuration is 0. Hence, after en-
tering d0 = 0, ..., dj = 0, every potential value
in B(C) becomes 0.

Next, assume that C = X ∪ Y , where
Y 6= ∅ and Y ∩ X = ∅. Since any po-
tential B(Y, d0, ..., dj) can be factorized into
B(Y, d0, ..., dj)B(d0, ..., dj), we conclude from
the above that after entering d0 = 0, ..., dj = 0,
every potential value in B(C) becomes 0.

This analysis suggests a method to detect ille-
gal designs. When a particular design (possibly
illegal) is evaluated, for each cluster C that has
been assigned P (d|π(d)) relative to a design pa-
rameter d, enter the value of d and the value
of each design parameter in π(d) into C. After
entering, check if the sum of potential values of

B(C) is 0. As soon as a positive test occurs, con-
clude that all designs that are consistent with
this configuration of (d, π(d)) are illegal. There
will be no need to evaluate any one of them.

4 Domain Division

In addition to early detection of illegal designs,
we seek to evaluate legal designs more efficiently
as follows. We assume that some separators in
T consist of design parameters only. The struc-
ture of an example DN is shown in Figure 2.
It is converted into the JT in Figure 3. In the
JT, three separators {d a, d c}, {d b, d c} and
{d a, d d} consist of design parameters only.

u_w

u_v

d_a

m_g

m_h

t_p

m_j

d_d

t_q
d_b

m_i

d_c

Figure 2: The structure of a design network.

Using these separators as boundaries, we
compile the JT T into a representation, called
division tree that is more effective for design
computation.
Definition 1. Let S be a design network over an
nonempty set of essential variables V = D∪T ∪
M ∪ U . A division tree for S is a tuple Γ =
(V, ∆, Θ, Υ). V is the generating set of Γ. ∆
is a subset of the powerset POW (V) of V such
that ∪Q∈∆ = V . Each element of ∆ is called a
division. Θ is composed of the following:

Θ = {< Q, Q′ > |Q, Q′ ∈ ∆, Q 6= Q′,

Q ∩Q′ 6= ∅, Q ∩ Q′ ⊂ D}.

Each unordered pair < Q, Q′ > is called a
separator between the two divisions and is la-
beled by the intersection Q∩Q′. ∆ and Θ are so
composed that (V, ∆, Θ) forms a junction tree.
Υ is a set of division junction trees. Its
elements map one-to-one to elements of ∆ such
that each division junction tree has the corre-
sponding division as its generating set.

m_j, d_b

d_a, d_dd_d, m_g, m_h

d_d, m_g

u_w, m_h

d_a, t_p, m_g

d_a, m_g

m_h

m_i, m_j, d_b

t_q, m_i, d_b

m_i, m_j, u_v

m_i, d_b

m_i, m_j

m_j, d_b, d_c

d_a, d_b, d_c

d_a, d_c, d_d

d_a, d_c

d_b, d_c

d_a, d_d, m_g

Figure 3: A junction tree representation of de-
sign network in Figure 2.

As an example, consider a division tree for
the DN S in Figure 2. The set V of variables
in S is the generating set. The set of divisions
is ∆ = {V0, V1, V2, V3} as shown in Figure 4.
The set Θ of division separators is also shown
in the figure. It can be easily verified that the
graph depicted is a JT. The set of division JTs is
Υ = {ST0, ST1, ST2, ST3} as shown in Figure 5,
where the generating set of division JT STi is
division Vi.

d_a, d_c

d_a, d_d, m_g, m_h, t_p, u_w

V3

d_b, d_c, m_i, m_j, t_q, u_v

d_a, d_b, d_c

d_a, d_c, d_d

d_b, d_c

V0

V1

d_a, d_d

V2

Figure 4: The division tree for design network
in Figure 2. Each double-oval represents a divi-
sion. Each box represents a separator.

Once DN S has been compiled into JT T ,
construction of a division tree Γ is straightfor-
ward: The set of division JTs are obtained from
T by removing its separators that are composed
of design parameters only. For instance, after
removing separators {d a, d c}, {d b, d c} and

d_a, m_g

d_d, m_g
m_h

m_i, m_j, d_b

t_q, m_i, d_b

m_i, m_j, u_v

m_i, d_b

m_i, m_j

m_j, d_b, d_c

d_a, d_b, d_c

u_w, m_h

m_j, d_b

ST0

ST2

ST1

d_a, d_c, d_d

ST3

d_d, m_g, m_h

d_a, t_p, m_g

d_a, d_d, m_g

Figure 5: Division JTs for division tree in Fig-
ure 4. STi corresponds to division Vi.

{d a, d d}, T is split into division JTs in Fig-
ure 5. The generating sets of these division JTs
become divisions in ∆. The removed separators
become division separators in Θ. It is a simple
matter to show that (V, ∆, Θ) thus constructed
forms a junction tree.

5 Design Evaluation within Division

Each division Vi contains an nonempty subset
Di of design parameters, where i indexes the di-
vision. This is true since the division contains at
least the design parameters that form the sepa-
rator between itself and another division.

First, for each configuration of Di, whether it
is a legal partial design needs to be determined,
to the extent allowed by information available
in the division. This can be achieved as out-
lined in Section 3. A division may or may not
contain utility variables. If it does not contain
utility variables, then the evaluation within the
division is complete. For the division tree in
Figure 4, V1 and V2 are such divisions.

If the division contains utility variables, then
for each legal configuration of Di, further eval-
uation needs to be performed. This can be
done by belief propagation within the division
JT. The expected utility for each utility func-

tion can then be retrieved from the correspond-
ing utility variable. The expected utility con-
tribution of the partial design can be obtained
by combining the result from individual utility
variables.

More precisely, in division Vi, the following is
obtained for each configuration di of Di,

EU(di) =
∑

j

kj (
∑

m

uj(m) P (m|di))

where j indexes utility nodes in Vi, m is a con-
figuration of the parents of uj , and kj is the
weight associated with uj .

We extend the definition of EU(di) to divi-
sions without utility variables and to illegal par-
tial design di as follows: We set EU(di) = 0 if
division Vi contains no utility variables. We set
EU(di) = null if di is illegal.

After the above evaluation on each configu-
ration of Di, the design evaluation within the
division is complete.

6 Message Passing in Division Tree

To combine design evaluations at individual di-
visions and determine the optimal design, mes-
sages are passed between divisions, along the
separators of the division tree (e.g., Figure 4).
The message passing is organized into three
rounds along the division tree. The syntax and
semantics of messages in each round differ.

The algorithms that we present below are
mostly executed by individual divisions, except
one by the agent A. Without losing generality,
we denote the division object executing the al-
gorithm by V0. The execution is activated by a
caller, denoted by Vc, which is either an adja-
cent division of V0 in Γ or agent A. The separa-
tor between caller division Vc and V0 is denoted
as Rc. If V0 has additional adjacent divisions,
they are denoted as V1, V2, ..., Vz and their sep-
arators with V0 are denoted as R1, R2, ..., Rz,
respectively.

7 Collecting Utility Contribution

In the first round of message passing, division V0

receives a vector message from each adjacent di-
vision Vi. Elements of the vector are indexed by

partial designs over Ri. The kth element of the
vector, indexed by partial design ek

i , is denoted
as MEV k

i . The corresponding components for
the vector message that V0 sends to division Vc

are ek
c (over Rc) and MEV k

c , respectively.
If Vi is a leaf on the division tree (whose only

adjacent division is V0), MEV k
i corresponds to

the maximum expected utility

MEV k
i = maxdj

EU(di)

over all partial design di that are consistent with
ek
i . Otherwise, its interpretation becomes clear

below.
The following algorithm, when executed by

each division, propagates utility contributions
of partial designs at individual divisions inwards
along division tree. The vector message sent
from Vi to V0 is denoted as MEVi and that sent
from V0 to Vc is denoted as MEVc.
Algorithm 1 (CollectDivisionUtility). When di-
vision V0 is called by Vc to CollectDivisionUtil-
ity, it does the following:

1. For each adjacent division Vi, V0 calls Col-
lectDivisionUtility in Vi and receives MEVi

from Vi.

2. For each partial design d0, update

EU(d0) = EU(d0) +
∑

i

MEV k
i ,

where MEV k
i is indexed by partial design

ek
i and ek

i is consistent with d0.

3. If Vc is an adjacent division, for each partial
design ek

c , V0 computes

MEV k
c = maxd0EU(d0)

over all partial design d0 that are con-
sistent with ek

c , labels one such partial
design that reaches the value MEV k

c by
dk∗

c (breaking ties arbitrarily), and sends
MEVc to Vc.

Note that EU(d0) may be equal to null.
When null participates in an addition, we re-
quire that the sum is null. When null partic-
ipates in a max operation, we require that the
result is null if and only if all operants are null.

8 Distributing Optimal Design

In the second round of message passing, division
V0 receives from division Vc a partial design ek

c

that is consistent with the optimal design. Com-
bining it with the design evaluation performed
earlier within the division, V0 identifies the op-
timal partial design within the division. It then
sends the optimal partial design relative to the
separator of each adjacent division to the cor-
responding Vi. As message passing progresses,
each division identifies the optimal partial de-
sign within the division. This is achieved by
the following algorithm.

Algorithm 2 (DistributeOptimalDivisionDe-
sign). When division V0 is called by Vc to
DistributeOptimalDivisionDesign, it does the
following:

1. If Vc is an adjacent division, V0 receives a
partial design ek

c over Rc from Vc. Then,
among partial designs over D0 that are con-
sistent with ek

c , it identifies the one with
the highest EU value (breaking ties arbi-
trarily) and label it as d∗

0.

2. Otherwise, among all partial designs over
D0, it identifies the one with the highest
EU value (breaking ties arbitrarily) and la-
bel it as d∗

0.

3. For each adjacent division Vi, call Distribu-
teOptimalDivisionDesign in Vi and send
the partial design ek

i that is consistent with
d∗

0 to Vi.

9 Collecting Optimal Design

In the last round of message passing, division
V0 receives the optimal partial design over Di

from each adjacent division Vi. It combines
them with its own optimal partial design over
D0 and sends the result to division Vc. At the
end of this round, the optimal design over D is
obtained.

Algorithm 3 (CollectOptimalDesign). When di-
vision V0 is called by Vc to CollectOptimalDe-
sign, it does the following:

1. For each adjacent division Vi, V0 calls Col-
lectOptimalDesign in Vi and receives d∗

i

from Vi.

2. Combine d∗
0 with all d∗

i received and send
result to Vc.

The following algorithm activates the three
rounds of message passing in turn and is exe-
cuted by the agent A.
Algorithm 4 (OptimalDesignByDivisionTree).

1. Select a division Vx arbitrarily.

2. Call CollectDivisionUtility in Vx.

3. Call DistributeOptimalDivisionDesign in Vx.

4. Call CollectOptimalDesign in Vx.

5. When Vx finishes, receive from it design d over D.

Soundness of OptimalDesignByDivisionTree
is established below. Proposition 2 asserts that
d produced in the algorithm is a legal design.
Only a proof sketch is given due to space limit.
Proposition 2. The design d produced by Op-
timalDesignByDivisionTree is legal.

Proof sketch: View the division tree as rooted
at Vx and use induction on its depth dep. The
base case is dep = 0. There is a single division
and the proposition can be easily shown. As-
sume the proposition for dep ≤ m and consider
dep = m+1. Let the root division be V0 and its
adjacent divisions be Vi (i = 1, ..., z). The sub-
tree rooted at each Vi has a depth ≤ m. By as-
sumption, if CollectDivisionUtility is called on
each Vi by the agent, followed by a call of Dis-
tributeOptimalDivisionDesign on Vi, followed
by a call of CollectOptimalDesign on Vi, then
the (partial) design returned by Vi is legal rela-
tive to the subtree.

The actual execution differs from the above as
follows: CollectDivisionUtility is called on each
Vi by V0 which receives MEVi from Vi. For each
element MEV k

i in MEVi, it is null if there ex-
ists no legal (partial) design consistent with ek

i

in the subtree rooted at Vi. By null addition,
any partial design d0 in V0 consistent with ek

i

will be evaluated to EU(d0) = null. Hence, d0

cannot be selected as d∗
0 by V0 during Distribu-

teOptimalDivisionDesign and cannot be part of

the design returned through CollectOptimalDe-
sign. [end of sketch]

Theorem 3 shows that d is an optimal design.

Theorem 3. The design d produced by Op-
timalDesignByDivisionTree is optimal.

Proof sketch: It suffices to show that EU(d∗
0)

obtained by the root division V0 in step 2 of
DistributeOptimalDivisionDesign is the maxi-
mum expected utility over all legal designs.
Once this is established, it follows that a de-
sign, that attains this maximum expected util-
ity and is restricted to each division, is d∗

0

labeled by the corresponding division during
DistributeOptimalDivisionDesign. CollectOp-
timalDesign simply assembles them together.
The body of the proof uses induction with a
structure similar to the proof above. [end of
sketch]

10 Complexity

Denote the total number of design parameters
by |D| and the maximum number of possible
values of a design parameter by κ. A central-
ized optimal design that evaluates all designs
exhaustively has the complexity O(κ|D|).

For OptimalDesignByDivisionTree, let the
number of divisions be |∆|, the maximum num-
ber of design parameters per division be δ, and
the maximum cardinality of division separators
be q. During CollectDivisionUtility, each divi-
sion evaluates O(κδ) partial designs and sends a
message of size O(κq) to the caller. Hence, the
complexity of OptimalDesignByDivisionTree is
O(|∆| κδ + (|∆| − 1) κq). Normally, q is much
smaller than δ and the complexity becomes
O(|∆| κδ). When δ is upper-bounded, Op-
timalDesignByDivisionTree is efficient.

11 Other Related Work

In addition to previous work reviewed in Sec-
tion 1, we discuss relations of this contribution
to other related work below:

In the literature on graphical models, a re-
lated work is strong junction tree (Jensen et
al., 1994) which addresses the issue of sequen-
tial decision making. As indicated by Paredis

et al. (Paredis et al., 2006), point-based de-
sign corresponds to sequential decision making.
Instead, the optimal design addressed in this
contribution takes the approach of set-based de-
sign, which involves simultaneous evaluation of
a much large number of design parameters than
what is considered in a typical sequential de-
cision problem. The issue of design constraint
violation is also dealt with in this contribution.

Another related work is nested junction trees
(Kjaerulff, 1997), where a JT is nested in a clus-
ter of a higher level JT to reduce space complex-
ity and to allow more efficient belief propaga-
tion. The division tree, proposed in this contri-
bution, is also a nested JT structure. The com-
putation conducted within a division, however,
goes beyond probabilistic reasoning. It reasons
about design decisions, constraints and utilities,
and is decision-theoretic in nature.

In the literature on constraint satisfaction
problem (CSP), constraint graphs are converted
to JTs to solve CSPs (Dechter and Pearl, 1989).
The current contribution essentially extends
that approach to constraint optimization and
with a decision-theoretic objective function.

12 Conclusion

We refined the definition for design networks re-
garding legal arcs and essentiality. The new def-
inition improves expressiveness and guidance to
model construction and verification. We com-
piled a design network into a division tree and
presented algorithms that combine probabilis-
tic, constraint-based and decision-theoretic rea-
soning for optimal design in the compiled struc-
ture. This result not only provides a compu-
tational mechanism for single-agent optimal de-
sign, but also fills in a gap in optimal collabo-
rative design.

The presented algorithm suite solves the
problem of decision-theoretic optimal design in
the context of catalog design where discrete de-
sign options are configured. The algorithm suite
derives its efficiency by decomposing the design
domain according to design separators in divi-
sion trees. When multiple optimal designs exist,
the algorithm suite returns one of them arbitrar-

ily, but can be extended to return all.

Acknowledgments

Financial support to this research is provided
by NSERC of Canada.

References

R.D. Braun, I.M. Kroo, and A.A. Moore. 1996.
Use of the collaborative optimization archi-
tecture for launch vehicle design. In Proc.
6th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization,
pages 306–318.

R. Dechter and J. Pearl. 1989. Tree clustering
for constraint networks. Artificial Intelligence,
38(3):353–366.

F. Jensen, F.V. Jensen, and S.L. Dittmer. 1994.
From influence diagrams to junction trees. In
Proc. 10th Conf. on Uncertainty in Artificial In-
telligence, pages 367–373.

R.L. Keeney and H. Raiffa. 1976. Decisions with
Multiple Objectives. Cambridge.

U. Kjaerulff. 1997. Nested junction trees. In Proc.
13th Conf. on Uncertainty in Artificial Intelli-
gence, pages 294–301, Providence, Rhode Island.

G. Konduri and A. Chandrakasan. 1999. A frame-
work for collaborative and distributed web-based
design. In Proc. 36th Design Automation Confer-
ence, pages 898–903.

C. Paredis, J. Aughenbaugh, R. Malak, and
S. Rekuc. 2006. Set-based design: a decision-
theoretic perspective. In Proc. Frontiers in
Design & Simulation Research 2006 Workshop,
pages 1–25.

D.K. Sobek, A.C. Ward, and J.K. Liker. 1999. Toy-
ota’s principles of set-based concurrent engineer-
ing. Sloan Management Review, 40(2):67–84.

A.C. Ward. 1989. A Theory of Quantitative Infer-
ence Applied to A Mechanical Design Compiler.
Ph.D. thesis, MIT, Department of Mechanical En-
gineering.

Y. Xiang, J. Chen, and A. Deshmukh. 2004. A
decision-theoretic graphical model for collabora-
tive design on supply chains. In A.Y. Tawfik and
S.D. Goodwin, editors, Advances in Artificial In-
telligence, LNAI 3060, pages 355–369. Springer.

Y. Xiang, J. Chen, and W.S. Havens. 2005. Optimal
design in collaborative design network. In Proc.
4th Inter. Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS’05), pages 241–248.

