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Abstract

Frameworks for multiagent decision making may be divided into those where each agent
is assigned a single variable (SVFs) and those where each agent carries an internal model,
which can be further divided into loosely coupled frameworks (LCFs) and tightly coupled
frameworks (TCFs). In TCFs, agent communication interfaces render their subdomains
conditionally independent. In LCFs, either agents do not communicate or their messages
are semantically less restricted. SVFs do not address the privacy issue well. LCF agents
cannot draw from collective knowledge as well as TCF agents. However, disproportional
effort has been dedicated to SVFs and LCFs, which can be attributed partially to unaware-
ness of the computational advantages of TCFs over performance, efficiency and privacy.
This work aims to provide empirical evidence of such advantages by comparing recursive
modeling method (RMM) from LCFs and collaborative design network (CDN) from TCFs,
both of which are decision-theoretic and the latter of which is a graphical model. We apply
both to multiagent expedition (MAE), resolve technical issues encountered, and report our
experimental evaluation.

1 Introduction

We consider frameworks for online decision
making (rather than offline policy making, e.g.,
(Becker et al., 2004)) in cooperative multiagent
systems. They may be divided into SVFs where
each agent is assigned a single variable in the do-
main and those where each agent carries an in-
ternal model over a subdomain. Frameworks us-
ing internal models can be further divided into
LCFs and TCFs. In TCFs, agents communicate
through messages over agent interfaces that are
semantically rigorously defined to render sub-
domains conditionally independent. In LCFs,
either agents do not communicate but rely on
observing other agents’ actions to coordinate, or
their messages are semantically less restricted.

SVFs do not address the issue of private ver-
sus public variables well, as they do not have
infrastructure to differentiate variables as such.
LCFs are often motivated by tasks where agents
cannot communicate. Given the proliferation of
distributed and wireless computing, it is hard
to find task domains where cooperative agents

cannot communicate (except a few of military
nature). Due to tightly controlled agent inter-
face, joint belief of team agents is well defined
and a TCF agent’s belief is consistent with the
joint belief. This is generally not true in LCFs
even when agents do communicate (see Proposi-
tion 4.5 and Theorem 8.10 in (Xiang, 2002) for a
formal treatment). In other words, a TCF agent
draws from collective knowledge better than a
LCF agent in general. However, significant re-
search efforts have been dedicated to SVFs, e.g.,
(Modi et al., 2005; Petcu and Faltings, 2005),
and LCFs, e.g., (Gmytrasiewicz et al., 1998;
Gmytrasiewicz and Durfee, 2001; Maes et al.,
2001; Shen and Lesser, 2006), in comparison
with those to TCFs (Xiang, 2002; Xiang et al.,
2005). This can be attributed at least partly to
unawareness of the computational advantages of
TCFs over performance, efficiency and privacy.
Hence, empirical evidence of such advantages
will contribute to the due adoption of TCFs. In
this work, we select one representative, RMM
(Gmytrasiewicz et al., 1998), from LCFs and



one, CDN (Xiang et al., 2005), from TCFs, both
of which are decision-theoretic and the latter
of which is a graphical model. We apply both
to the same multiagent decision problem, MAE
(Xiang and Hanshar, 2007), resolve technical
issues encountered, especially those related to
RMM, and compare them experimentally.

Sec. 2 reviews background on MAE, CDN and
RMM. Sec. 3 presents technical issues on apply-
ing RMM to MAE. Sec. 4 reports experimental
results. We discuss the generality issues of this
research in Sec. 5.

2 Background

2.1 Multiagent Expedition

We consider MAE in an area represented as a
grid of cells. At any cell, an agent can move to
an adjacent cell by actions north, south, east,
west or remain there (halt). The effect of an ac-
tion is uncertain. The desirability of an object
(located at a cell) is indicated by a numerical
reward. A cell that is neither interesting nor
harmful has a reward of a base value. The re-
ward at a harmful cell is lower than the base
value. The reward at an interesting cell is higher
than the base value and can be further increased
through agent cooperation.

When a physical object at a given location is
to be manipulated (e.g., digging), cooperation
is often most effective when a certain number
of agents are involved, and the per-agent pro-
ductivity is reduced with more or less agents.
Suppose that the most effective level is 2. The
reward that can be collected by a single agent
from a given cell may be 0.3, and we denote this
as a unilateral reward. If two agents cooperate
at the cell, each receives 0.4, and we denote this
as a bilateral reward. If three or more agents
meet at the cell, two of them each receives 0.4
reward and others receive the base value. This
feature promotes effective cooperations and dis-
courages unproductive ones.

After a cell has been visited by any agent, its
reward is decreased to the base value. As a re-
sult, wandering within a neighborhood is unpro-
ductive. Agents have no prior knowledge how
rewards are distributed in the area. Instead, at
any cell, an agent can reliably perceive the cell’s

absolute location (e.g., through GPS or triangu-
lation) and reward distribution within a small
radius. An agent can perceive the location and
communicate with another agent if the latter is
within a small radius.

The objective of the agents is to move around
the area, cooperate as needed, and maximize
the team reward over a finite horizon. They
must do so based on local observations and lim-
ited communication.

2.2 Collaborative Design Networks

CDN is motivated by collaborative industrial
design in supply chains. An agent respon-
sible for a component encodes design knowl-
edge and preference into a design network (DN)
S = (V, G, P ). The domain is a set of discrete
variables V = D ∪ T ∪ M ∪ U . D is a set of
design parameters. T is a set of environmental
factors of the product under design. M is a set
of objective performance measures and U is a
set of subjective utility functions of the agent.

The dependence structure G = (V, E) is a di-
rected acyclic graph whose nodes are mapped to
elements of V and whose set E of arcs encode
design constraints, dependency of performance
on design and environment, and dependency of
utility on performance.

P is a set of potentials, one for each node
x, formulated as a probability distribution
P (x|π(x)), where π(x) are parent nodes of x.
P (d|π(d)), where d ∈ D, encodes a design
constraint. P (t|π(t)) and P (m|π(m)), where
t ∈ T, m ∈ M , are typical probability dis-
tributions. Each utility variable has a space
{y, n}. P (u = y|π(u)) is a utility function
u(π(u)) ∈ [0, 1]. Each node u is assigned a
weight k ∈ [0, 1] where

∑
U k = 1. With P thus

defined,
∏

x∈V \U P (x|π(x)) is a joint probabil-
ity distribution (JPD) over D ∪ T ∪ M . With
the assumption of additive independence among
utility variables, the expected utility of a design
d is EU(d) =

∑
i ki(

∑
m ui(m)P (m|d)), where

d (bold) is a configuration of D, i indexes util-
ity nodes in U , m (bold) is a configuration of
parents of ui, and ki is the weight of ui.

Each supplier is a designer of the supplied
component. Agents, one per supplier, form a



collaborative design system. Each agent em-
bodies a design network called a design sub-
net and agents are organized into a hypertree:
Each hypernode corresponds to an agent and
its subnet. Each hyperlink (called agent inter-
face) corresponds to design parameters shared
by the two subnets, which renders them condi-
tionally independent. They are public variables
and remaining variables in each subnet are pri-
vate. The hypertree specifies whom an agent
can communicate directly. Each subnet is as-
signed a weight wi, representing a compromise
of preferences among agents, where

∑
i wi = 1.

The collection of subnets {Si = (Vi, Gi, Pi)}
forms a CDN.

The product
∏

x∈V \∪iUi
P (x|π(x)) is a JPD

over ∪i(Di ∪ Ti ∪ Mi), where P (x|π(x)) is
associated with node x in a subnet. The
expected utility of a design d is EU(d) =∑

i wi (
∑

j kij (
∑

m uij(m) P (m|d))), where d
is a configuration of ∪iDi, i indexes subnets,
j indexes utility nodes {uij} in ith subnet, m
is a configuration of parents of uij , and kij is
the weight associated with uij . Hence, given
a CDN, a decision-theoretical optimal design
is well defined. Optimal design (Xiang et al.,
2005) is obtained by communicating messages
over agent interfaces along the hypertree. Af-
ter communication, all agents have local designs
that are globally optimal (collectively maximiz-
ing EU(d)). Computation (incl. communica-
tion) is linear on the number of agents (Xiang
et al., 2005) and is efficient for a non-trivial class
of CDNs (Xiang, 2007).

The general problem of MAE is exponentially
complex on the number of agents and the length
of horizon. A more efficient solution of MAE for
limited horizon can be devised based on CDN
(Xiang and Hanshar, 2007) (see Fig. 2 in Sec 4).
An agent team is divided into groups. It allows
group members to cooperate at the most effec-
tive level. At the same time, different groups
can stay apart so that the area is explored more
effectively and planning computation is made
more efficient with less group interaction.

Within group, a hypertree organization is im-
posed to support tightly-coupled communica-
tion and reduce agent interaction. For instance,

if the most productive level of cooperation is
two, a group size of three and an organization
A−B −C for agents A, B and C can be used.
In each agent subnet, movement actions form
design nodes, agent locations form performance
nodes, and rewards form utility nodes.

As mentioned above, planning is made more
efficient by ignoring inter-group interaction and
some inner-group interaction. The computation
is sound only if unconsidered interactions do
not exist. Such desirable behavior of agents is
promoted through modifying the distribution of
each utility node. The reward of a location is
initialized to the perceived value. If the location
is part of a group configuration where intended
agent interactions are negatively affected (e.g.,
group members are too far apart) or unintended
interactions are possible (e.g., members of dif-
ferent groups are too close), the reward value
will be reduced. With grouping, planning com-
plexity is unchanged as the team size grows.
2.3 Recursive Modeling Method
RMM (Gmytrasiewicz et al., 1998) uses a pay-
off matrix to encode an agent’s preference over
consequences of joint actions of team agents.
With a total of n agents, a payoff matrix for an
agent A has n dimensions, with one correspond-
ing to each agent. The width of each dimension
is equal to the number of alternative actions of
the agent. Each cell of the matrix corresponds
to the outcome of a joint action by all agents
and is filled with the sum of rewards.

Agents do not communicate and reason about
each other through a hierarchy of models (see
Fig. 1 in Sec. 3.2). For instance, in a system
with agents A and B, the top level model in A is
its own payoff matrix. Each model in the second
level represents what A believes to be the payoff
matrix of B, assuming a specific state of B. The
state is associated with a prior probability of
A, and is updated through Bayesian learning
(Gmytrasiewicz et al., 1998) based on observed
actions of B.
3 Recursive Modeling for MAE
3.1 Payoff Matrix

Grouping, as proposed in CDN-based solution
of MAE, was not a component in the original
RMM. To allow a fair comparison, we apply



grouping to RMM as well (otherwise, its com-
putational cost would be much worse). This
implies that additional measures in the CDN-
based solution should also be applied to ensure
soundness of group-based planning, e.g., reward
adjustment. Let the group size be g and the
length of planning horizon be k. The payoff
matrix for each RMM agent has a dimension g,
the width of each dimension is 5k, and the total
number of cells in the matrix is 5kg.

Each cell is the payoff of the corresponding
joint plan mv with k actions for each agent
in the group G. Let the sequence of joint ac-
tions of agents in G be mv = (mv1,...,mvk).
Notation mvi denotes the joint action at the
ith step and consists of the ith action of each
agent, i.e., mvi = {mvi

x|x ∈ G}. Let a re-
sultant group trajectory be t = (c1, ..., ck),
where ci is the group configuration after joint
action mvi. Configuration ci consists of the
position of each agent, i.e., ci = {psi

x|x ∈
G}. The payoff can be computed as the ex-
pected group accumulative reward erwG(mv) =∑

y∈G(
∑

t(P (t|mv)
∑k

i=1 rwy(ci))), where the
second summation is over all possible group tra-
jectories, and rwy(ci) is the reward y receives
at the group configuration ci. Since the group
configuration ci is dependent only on the pre-
vious configuration ci−1 and joint action mvi,
we have P (t|mv) =

∏k
i=1 P (ci|ci−1,mvi), where

c0 = null. Furthermore, since the position of
each agent x in group configuration ci is depen-
dent only on its own action mvi

x and its own pre-
vious position psi−1

x , we have P (ci|ci−1,mvi) =∏
x∈G P (psi

x|psi−1
x ,mvi

x). Combining the above,
we have erwG(mv) =

∑

y∈G

[
∑

t

((
k∏

i=1

∏

x∈G

P (psi
x|psi−1

x ,mvi
x)) ·

k∑

i=1

rwy(ci))].

3.2 Recursive Model Structure

For an agent to use a payoff matrix to plan
its actions, it needs the probability of each
joint plan, determined by the likelihood of other
agents’ taking corresponding actions. We iden-
tify the key issue for agent B to predict actions
of agent A as whether A will move closer to
B for cooperation, which is determined by re-

ward distribution around A. Since the reward
distribution in the other side of A may be un-
observable to B, and RMM agents do not com-
municate, the above probability must be com-
puted by considering all possible cases of A’s
neighbourhood. We use recursive modeling as
follows:

We characterize the unobservable neighbor-
hood of A by whether it contains high unilateral
reward cells. If so, A is more likely to move away
from B. Otherwise, A is more likely to move to-
wards B for the benefit of a cooperation. In par-
ticular, let nbpy

x summarize unilateral rewards
in neighborhood of agent y that is unobservable
to agent x, where nbpy

x ∈ {allLow,¬allLow}.
If the unobservable area has at least one high
reward, it is labeled ¬allLow. In general, there
are g − 1 unobservable neighborhoods one per
group member, and they form 2g−1 possible
cases. Each case forms a model at the second
level of RMM tree, and is associated with x’s be-
lief P (nbp1

x, nbp2
x, ..., nbpg−1

x ). A two-level RMM
tree is used in this work as knowledge at deeper
levels cannot be reasonably assumed and deeper
models have little effect on performance (Gmy-
trasiewicz et al., 1998). Fig. 1 shows a RMM
tree with g = 3 and k = 2.
3.3 Bayesian Belief Update

As agents move around, agent x’s belief
P (nbp1

x, nbp2
x, ..., nbpg−1

x ) needs to be updated
based on observations of other agents’ last ac-
tions. Let lmvy

x be the last move of agent
y observed by x, where lmvy

x ∈ {towards,
¬towards} and towards means that y moved
closer to x. To simplify discussion, we assume
that g = 3, the group consists of agents A, B
and C, and x = B. Hence, B needs

P (nbpA, nbpC |lmvA, lmvC), (1)

we have omitted subscript B to aid readability.
It is difficult, if not impossible, to specify (1)

directly as a joint probability of unobserved ar-
eas. What can be practically specified is the
following as it refers to local dependencies:

P (nbpA|lmvA) · P (nbpC |lmvC). (2)

In general, (1) is not equivalent to (2). We
show below assumptions needed to obtain (1)



A B C u

(N,N) (N,N) (N,N) 0.85
(N,N) (N,N) (N,S) 0.50

...
...

(H,H) (H,H) (H,W) 0.41
(H,H) (H,H) (H,H) 0.72

A B C u

(N,N) (N,N) (N,N) 0.85
(N,N) (N,N) (N,S) 0.50

...
...

(H,H) (H,H) (H,W) 0.41
(H,H) (H,H) (H,H) 0.72

A B C u

(N,N) (N,N) (N,N) 0.85
(N,N) (N,N) (N,S) 0.40

...
...

(H,H) (H,H) (H,W) 0.41
(H,H) (H,H) (H,H) 0.72

A B C u

(N,N) (N,N) (N,N) 0.85
(N,N) (N,N) (N,S) 0.40

...
...

(H,H) (H,H) (H,W) 0.41
(H,H) (H,H) (H,H) 0.72

A B C u

(N,N) (N,N) (N,N) 0.85
(N,N) (N,N) (N,S) 0.70

...
...

(H,H) (H,H) (H,W) 0.41
(H,H) (H,H) (H,H) 0.72

P (nbpA

B = ¬allLow, nbpC

B = ¬allLow)P (nbpA

B = allLow, nbpC

B = allLow)

P (nbpA

B = allLow, nbpC

B = ¬allLow) P (nbpA

B = ¬allLow, nbpC

B = allLow)

Figure 1: RMM tree of agent B. Payoff matrices shown in table format.

by computing (2). (1) can be rewritten as
P (nbpA|nbpC , lmvA, lmvC)P (nbpC |lmvA, lmvC).
If we assume that unobservable neigh-
borhoods of A and C are conditionally
independent given their movements, de-
noted I(nbpC , {lmvA, lmvC}, nbpA), the
above probability can be expressed as
P (nbpA|lmvA, lmvC) · P (nbpC |lmvA, lmvC).
With the additional assumptions
I(nbpC , lmvC , lmvA) and I(nbpA, lmvA, lmvC),
we obtain (2). Each factor in (2), say,
P (nbpA|lmvA), can be computed as
P (lmvA|nbpA)P (nbpA)

P (lmvA),
where P (nbpA) is from

the last belief update and P (lmvA) is a
normalizing constant. P (lmvA|nbpA) can be
obtained by reasoning by case based on how
rewards in the area between A and B are
distributed. Let mA

B ∈ {allLow,¬allLow}
summarize rewards in this area. We have
P (lmvA|nbpA) =

∑
mA P (lmvA,mA|nbpA) =∑

mA P (lmvA|mA, nbpA)P (mA|nbpA), where
the first factor can be directly specified and
the second factor can be estimated based on
observed dependence between nearby rewards.

The above relies on the assumptions:
• I(nbpA, {lmvA, lmvC}, nbpC),

• I(nbpA, lmvA, lmvC) and I(nbpC , lmvC , lmvA).

They often do not hold. For the first, when un-
observable neighborhoods of A and C overlap,
we have nbpA = nbpC and the independence
no longer holds. The second also fails in this
situation since lmvC is directly dependent on
nbpA. Requirement of these strong assumptions
to make (1) computable in practice appears to
be a limitation of the RMM framework.

4 Experimental Evaluation

We setup the environment such that the most
productive level of cooperation is at two agents.

The radius of agent perception and communi-
cation is 10 cells. Three types of environments
of distinctive natures are simulated. In Barren
type, each high reward cluster is less than 6× 6
in size and is at least 20 cells away from any
other high reward cluster. This type is useful
to evaluate how well agents can avoid wander-
ing in a low reward area and can migrate to
locations with high reward. In Dense type, at
least every 10× 10 square of cells has a high re-
ward cell. In Path type, high reward cells form
a path and each high reward cell on the path
has at least one other high reward cell within a
distance of 2 cells.

We set up the CDN-based agent team with
group size three, two groups per team, and plan-
ning horizon two. Agents, A, B and C, in a
group are organized into a chain A − B − C.
Subnets for A and B are shown in Fig. 2, where
design, performance and utility nodes are shown
as squares, ovals and diamonds, respectively.
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Figure 2: Subnets for group members A and B.

Each movement variable mvi
x or mvy,i

x gener-
ally has 5 possible values denoting the five ac-
tions. Each position variable ps1

x or psy,1
x has

5 possible values and each position variable ps2
x

or psy,2
x has 13 possible values. The conditional

probability table (CPT) associated with a posi-
tion node encodes uncertain dependency of the
position on movement action. The node ps2

x

is also dependent on the previous location ps1
x.

Utility node rwA,i
B represents rewards that agent



Table 1: Experimental results. Highest means
bolded.

Barren Dense Path
µ σ µ σ µ σ

CDN 55.84 4.21 25.14 3.27 20.41 3.39
GRDU 48.56 0.56 12.32 0.20 12.20 0.15
GRDB 48.64 0.62 18.57 1.10 16.80 2.39
RMM 50.35 5.95 18.50 3.39 18.71 2.79

B receives due to cooperation (or lack of) with
A. Its associated CPT encodes the reward as
a utility distribution. We set up the RMM-
based agent team with the same group size,
team size and horizon. Both CDN and RMM
teams use sophisticated reasoning. To evaluate
its benefit, we also implemented two versions of
simple greedy agents. One version (GRDU) is
based on unilateral reward rwu and selects ac-
tions for agent x that maximize

∑k
i=1 rwu(psi

x),
where rwu(psi

x) is the unilateral reward at the
intended position of i’th action. Another ver-
sion (GRDB) considers bilateral reward rwb as
well and maximizes

∑k
i=1(rwu(psi

x)+rwb(psi
x)).

Each agent acts independently without commu-
nication. No group formation is applied as in
RMM and CDN. For each version, we set the
team size to six.

4.1 Performance Comparison

Tbl. 1 shows experimental performance of each
agent team in different environments. For Bar-
ren type (base value 0.1), each team executes
40 time-steps (80 actions planned) in each run.
For Dense (Fig. 3(a)) and Path (Fig. 3(b)) types
(base value 0.05), each team executes 20 time-
steps (40 actions planned) in each run. Each
team performs 30 runs in each type of environ-
ment. The table gives the mean µ and standard
deviation σ of the accumulative team reward.

CDN agents outperform other agents. The
difference is significant at the 1% significance
level when two-tailed t-test is used for all in-
stances except Path, where CDN is better than
RMM at the 5% significance level.

The Path type represents environments where
all agents can perform well easily due to an
abundance of clues. The Barren type rep-
resents those where all agents would perform
poorly because of the lack of opportunities. The

Dense type represents those where sound plan-
ning would best utilize the existing opportuni-
ties. Here the CDN shows the most gain in per-
formance compared with alternatives.

(b)(a)

Figure 3: Environment types. High rewards are
shown as taller peaks.

CDN agents outperform greedy agents since
they coordinate actions to meet at high bilateral
reward cells, whereas greedy agents have no co-
ordination. CDN agents also outperform RMM
agents, which can be attributed to two limita-
tions of the latter. Firstly, estimation of neigh-
borhood rewards of other agents through behav-
ior observation and Bayesian update is inaccu-
rate, which hinders effective cooperation. The
second limitation is due to existence of multiple
optimal joint plans. These joint plans promise
the same maximal expected reward, but each
agent must choose one in the plan. Without
communication, each agent may commit to a
different plan such that the resultant joint plan
is sub-optimal. Note that this problem can-
not be solved by social convention in a LCF as
we show in the next section. CDN agents do
not suffer from this problem as the interface be-
tween agents is composed of movement nodes,
which explicitly communicates agent actions.

4.2 On Social Convention

A social convention defines, for each agent,
without resorting to communication, the action
to take when multiple optimal actions exist.
We show that no such convention exists that
guarantees collectively optimal actions in MAE.
Consider S1 in Fig. 4, where each cell is la-
belled with its coordinates, the occupying agent
A, B or C, the cooperative per-agent reward b
and unilateral reward u < b, and no agent can
perceive beyond two cells. Let the convention
be lexicographical, i.e., goto(v, z) Â goto(w, z)



(Â reads is-preferred-over) whenever rewards in
cells (v, z) and (w, z) are identical but v < w.
Hence, B would prefer goto(2, 0) to meet A over
goto(4, 0) to meet C, because both actions have
the same reward. A would prefer goto(2, 0) to
meet B and C would prefer goto(4, 0) to meet
B, since b > u. The joint action is optimal,
though C is unable to meet B.

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0)

A B Cu b, u b, u uS1 :

S2 : A B Cu b, u b, u
b + u

2

Figure 4: Two scenarios S1 and S2 for planning

Next consider S2 in Fig. 4, where reward for
(6, 0) is slightly increased. Preferences of A and
B do not change. C still prefers goto(4, 0) to
meet B since b > b+u

2 . The joint action is sub-
optimal, as C would be better off with goto(6, 0)
as shown by the hollow arrow. Without commu-
nication, C has no way of knowing the reward at
(2, 0) and predicting B’s action. Hence, social
convention is incapable of coordinating agents
with partial observations.
4.3 Efficiency Comparison

CDN, RMM and GRD teams (team size six)
use 57, 16, and 0.8 seconds, respectively, for
each round of planning. Below, we consider
their scalability. Since greedy agents act inde-
pendently, their efficiency is unaffected by the
team size.

With grouping, each payoff matrix in a RMM
agent has the size 5kg, where g is the group size
and k is the length of horizon. Hence, the space
and time complexity of RMM planning grows
exponentially with group size.

In comparison, each CDN-based agent group
is organized into a hypertree. The necessity of
the hypertree organization for exact multiagent
probabilistic reasoning is formally established in
(Xiang, 2002). The hypertree, together with
required agent interfaces, are essential compo-
nents of tight coupling and ensure optimal de-
cision making in CDN. Hypertree organization
also contributes to efficiency. It guarantees that
the computational complexity of a CDN-based

group is no worse than that of a RMM-based
group in the worst case, and is more efficient
when the CDN dependency structure is sparse.
Fig. 5 shows a possible hypertree organization
for MAE with g agents, where the subnet for
agent A2 is similar to that in Fig. 2 (b). The
degree of any agent on the hypertree determines
the number of agents whose interaction must
be modeled and critically determines planning
complexity of the agent. As long as this degree
is bounded, complexity of computation at each
group member does not increase with group size
and complexity of planning only grows linearly
with group size.

1

2 4 6 g−1

g−253

gA

A

A

A

A

A

A

A

A
...

Figure 5: Possible hypertree structure for MAE

5 Discussion

This work is motivated by the disproportional
research effort allocated among SVFs, LCFs
and TCFs, which forms an odd contrast with
the proliferation of distributed/wireless com-
puting, societal emphasis on privacy, and the-
oretically established advantage of TCFs in uti-
lizing collective knowledge. To improve aware-
ness, we implemented CDN and RMM as rep-
resentatives of TCFs and LCFs, respectively, in
MAE, to allow experimental comparison. The
application of RMM to MAE is a novel and non-
trivial attempt. The study provided empirical
evidence of advantages of CDN over RMM on
performance and efficiency. Below we general-
ize this comparison to other domains and the
advantage of CDN over SVFs on privacy.

At the modeling level, RMM and LCFs are
limited by the need to model agent interac-
tions without sufficient information. This is ev-
idenced by the need for strong and often invalid
assumptions in order to update belief on possi-
ble states of team agents (Sec. 3.3). This limita-
tion also applies to communicative LCFs, e.g.,
(Gmytrasiewicz and Durfee, 2001). Agents in
noncommunicative LCFs coordinate by observ-
ing other agents’ actions. Since messages are
speech acts, communicative LCFs are not fun-



damentally different. In contrast, CDN-based
agents and TCFs in general do not suffer from
this problem as agent interfaces are required to
render agent subdomains conditionally indepen-
dent. RMM is also limited by its matrix-based
representation of exponential complexity. This
can be remedied by adopting a graphical model
in each agent as in MAID (Koller and Milch,
2001), although the above limitation stands.

At the decision making level, RMM and LCFs
are limited by having to guess about the states
and decisions of other agents based on observa-
tions. The inaccuracy in estimation can degrade
agent performance through two distinct mech-
anisms: Firstly through misjudgement of other
agents’ states, which in turn leads to misjudge-
ment of the optimal joint plan. Secondly, mul-
tiple optimal joint plans can degrade agent per-
formance due to independent choice of agents.
Social conventions cannot solve this problem as
we have shown through a counterexample.

On the other hand, conditional independence
rendering interfaces in TCFs convey sufficient
states and decisions, resulting in improved coor-
dination and superior performance. Compared
to SVFs, an infra-structure exists within each
CDN agent to differentiate variables into public
and private. Only information on public vari-
ables are communicated through an agent inter-
face. Private internal representations and pref-
erences are not disclosed. Therefore, TCFs such
as CDN provide superior performance, more ef-
ficient computation and a higher degree of pri-
vacy. Although a cost of communication must
be paid (relative to non-communicative LCFs),
since the communication is efficient (when the
CDN is sparse), the price will be worthwhile
for many applications. If communication is
noisy/lost the performance degrades gracefully
as agents can continue to work in smaller groups
(see Sec. 8.9 in (Xiang, 2002)).

Regarding the generality of this work, we
draw attention to key features of CDN and
RMM. Both are decision-theoretic. RMM is
proposed as a general framework for cooperative
multiagent decision making. CDN is proposed
in the context of collaborative design, but is in
fact a general framework, whose applicability

to MAE, a domain very different from design,
is a clear indication. The generality of CDN
and RMM and their common decision-theoretic
foundation point to the source of difference in
their experimental evaluation, i.e., their differ-
ence in agent coupling, and promise that our
empirical results in MAE are generalizable.
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