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Abstract

Non-impeding noisy-AND (NIN-AND) tree models were developed to improve efficiency
and expressiveness in acquisition of conditional probability tables (CPTs) when construct-
ing Bayesian networks (BNs). To take advantage of these models in the BN inference,
we propose a multiplicative factorization of these models and a compilation of NIN-AND
tree modeled BNs for lazy propagation (LP). Soundness of the method and its efficiency
improvement are shown.

1 Introduction

BNs allow uncertain knowledge to be expressed
with a linear number of CPTs. Each CPT, of-
ten about an effect conditioned on its n causes,
is exponential in size in terms of n. Noisy-
OR (Pearl, 1988) and several causal indepen-
dence models (CIMs), e.g., (Heckerman and
Breese, 1996; Galan and Diez, 2000; Lemmer
and Gossink, 2004), reduce the number of pa-
rameters to linear, but are limited to reinforc-
ing interactions (Xiang and Jia, 2007). This is
overcome in NIN-AND tree models that allow
undermining and recursive mixture of both.

Besides making acquisition easier, CIMS are
explored for the inference efficiency by differ-
ent approaches. These include parent divorc-
ing (Olesen et al., 1989), temporal belief nets
(Heckerman, 1993), heterogeneous factorization
(Zhang and Poole, 1996), multiplicative fac-
torization (MF) (Takikawa and D’Ambrosio,
1999), tensor rank-one decomposition (Savicky
and Vomlel, 2007), among others. Most explore
reinforcing CIM noisy-OR and noisy-MAX.

This work takes the approach by (Madsen
and D’Ambrosio, 2000), who apply a MF to
noisy-MAX for LP in junction trees (JTs). We
propose a MF of binary NIN-AND tree models
and a compilation of NIN-AND tree modeled
BNs into JTs for LP. This approach has the fol-
lowing properties: (a) It is based on NIN-AND
tree CIMs, and expresses mixture of reinforcing
and undermining interactions. (b) It is based
on MFs, and does not impose constraints to

variable elimination ordering (as, e.g., hetero-
geneous factorization does (Zhang and Poole,
1996)). (c) It is based on LP in JTs, uses the
smallest runtime factors (unlike standard belief
propagation in JTs, e.g., (Jensen et al., 1990),
where each runtime factor is a product of several
CPTs), and provides exact posterior marginals
for all variables. (d) Moralization, as commonly
performed, is not needed, which is similar to
rank-one decomposition (Savicky and Vomlel,
2007).

Sec. 2 reviews NIN-AND tree models. MFs of
single NIN-AND gate models and their sound-
ness are presented in Secs. 3 and 4. The MF of
multi-gate NIN-AND tree models is covered in
Sec. 5, with soundness proven in Sec. 6. How to
compile factorized models for LP is described in
Sec. 7. Sec. 8 demonstrates the efficiency gain.

2 NIN-AND Tree Causal Models

This section introduces briefly binary NIN-AND
tree models, which this work focuses on. More
details on these models can be found in (Xiang
and Jia, 2007). An uncertain cause can pro-
duce an effect but does not always do so. De-
note the effect by e with domain De = {e0, e1},
where e1 denotes e = true, and the set of all
causes (including a leaky variable if any) of e
by C = {c1, ..., cn}, where each cause has do-
main Dci = {c0

i , c
1
i}. At times, we write these

domains exchangeably as De = Dci = {0, 1}.
A single-causal success is an event where ci

causes e to occur when other causes are false.



Denote the event by e1 ← c1
i and its probability

by P (e1 ← c1
i ). Smoking causing lung cancer

is denoted lc1 ← smk1. A single-causal failure,
where e is false when ci is true and other causes
are false, is denoted by e0 ← c1

i . A multi-causal
success is an event where a set X = {c1, ..., ck}
of causes (k ≤ n) cause e, and is denoted by
e1 ← c1

1, ..., c
1
k or e1 ← x1.

A CPT P (e|C) relates to causal probabil-
ities as follows: If C = {c1, c2, c3}, then
P (e1|c1

1, c
0
2, c

1
3) = P (e1 ← c1

1, c
1
3).

Causal probabilities satisfy the following:

P (e1 ← ∅) = 0 (1)
P (e0 ← x1) = 1− P (e1 ← x1) (2)

Eqn. (1) denotes that the effect never occurs
if all causes are false. Eqn. (2) relates causal
success to failure.

Causes reinforce each other if collectively they
are at least as effective as when some are active.
Radiotherapy and chemotherapy are reinforcing
causes for curing cancer. If collectively causes
are less effective, they undermine each other.
Taking either one of two desirable jobs leads to
happiness for Dave. When taking both, chance
of his happiness is reduced due to overstress.
For C = {c1, c2}, if c1, c2 undermine each other,
we have P (e1|c1

1, c
0
2) > 0, P (e1|c0

1, c
1
2) > 0, and

P (e1|c1
1, c

1
2) < min(P (e1|c1

1, c
0
2), P (e1|c0

1, c
1
2)).

Def. 1 defines both causal interactions.
Definition 1 Let R = {W1, W2, ...} be a parti-
tion of a set X of causes, R′ ⊂ R be any proper
subset of R, and Y = ∪Wi∈R′Wi. Sets of causes
in R reinforce each other, iff

∀R′ P (e1 ← y1) ≤ P (e1 ← x1).

Sets of causes in R undermine each other, iff
∀R′ P (e1 ← y1) > P (e1 ← x1).

Reinforcement and undermining occur be-
tween individual causes as well as sets of them.
When it is between individuals, each Wi is a
singleton. Otherwise, Wi can be a generic set.
Consider X = {c1, c2, c3, c4}, W1 = {c1, c2},
W2 = {c3, c4}, R = {W1, W2}, where c1, c2 re-
inforce each other, and so do c3 and c4. But W1

and W2 can undermine each other.

Disjoint sets of causes W1, ..., Wm satisfy fail-
ure conjunction iff

(e0 ← w1
1, ..., w

1
m) = (e0 ← w1

1)∧...∧(e0 ← w1
m).

That is, when causes collectively fail to produce
the effect, each must have failed to do so. They
also satisfy failure independence iff

P ((e0 ← w1
1) ∧ ...∧ (e0 ← w1

m))
= P (e0 ← w1

1)× ... × P (e0 ← w1
m). (3)

Disjoint sets of causes W1, ..., Wm satisfy success
conjunction iff

(e1 ← w1
1, ..., w

1
m) = (e1 ← w1

1)∧...∧(e1 ← w1
m).

That is, collective success requires individual ef-
fectiveness. They also satisfy success indepen-
dence iff

P ((e1 ← w1
1) ∧ ...∧ (e1 ← w1

m))
= P (e1 ← w1

1)× ... × P (e1 ← w1
m). (4)

Causes are undermining when they satisfy
success conjunction and independence. Hence,
undermining can be modeled by a direct NIN-
AND gate (Fig. 1 (a)). Its root nodes (top) are

...

(a)

e     c1
1        1 e     c1        1

k

e     c , ..., c1            k
1        1            1

...

(b)

e     c1
0        1 e     c0        1

k

e     c , ..., c1            k
0        1            1

Figure 1: (a) A direct NIN-AND gate. (b) A
dual NIN-AND gate.

single-causal successes, and its leaf (bottom) is
the multi-causal success in question. Success
conjunction is expressed by NIN-AND gate, and
success independence by disconnection of roots
other than through the gate. Probability of leaf
event is computed by Eqn. (4). Similarly, causes
are reinforcing when they satisfy failure con-
junction and independence. Hence, reinforce-
ment can be modeled by a dual gate (Fig. 1 (b)).
Leaf event probability is obtained by Eqn. (3).



By organizing multiple direct and dual NIN-
AND gates in a tree, mixture of reinforcement
and undermining at multiple levels can be ex-
pressed in an NIN-AND tree model. Consider
C = {c1, c2, c3}, where c1 and c3 undermine
each other, but collectively they reinforce c2.
Assuming event conjunction and independence,
their interaction relative to event e1 ← c1

1, c
1
2, c

1
3

can be expressed by NIN-AND tree in Fig. 2.
Top gate is direct and bottom gate (leaf gate) is

e     c0        1
21        1    1

1     3    e     c , c 

e     c1
1        1 e     c1        1

3

e     c , c , c1     2     3
0        1     1     1

Figure 2: An NIN-AND tree

dual. Link downward from node e1 ← c1
1, c

1
3 has

a white oval end (a negation link) and negates
the event into e0 ← c1

1, c
1
3. All other links

are forward links. Probability of leaf event is
computed by Eqns. (3) and (4). For instance,
from single-causal probabilities for root events,
P (e1 ← c1

1) = 0.85, P (e1 ← c1
2) = 0.8, P (e1 ←

c1
3) = 0.7, derive P (e0 ← c1

1, c
1
2, c

1
3) as follows:

P (e1 ← c1
1, c

1
3) = 0.85× 0.7 = 0.595

P (e0 ← c1
1, c

1
2, c

1
3) = P (e0 ← c1

1, c
1
3)P (e0 ← c1

2)
= 0.405× 0.2 = 0.081

Hence, P (e1 ← c1
1, c

1
2, c

1
3) = 0.919 by Eqn. (2).

An NIN-AND tree is minimal if consecutive
gates are opposite in type, e.g., Fig. 2. Every
NIN-AND tree model is equivalent to a unique
minimal NIN-AND tree model (Xiang et al.,
2009). In this work, we assume minimal models.

3 MF of Direct Gate Local Models

Consider the BN family in Fig. 3 (a), where
causal interaction is modeled by direct NIN-
AND gate in Fig. 1 (a) with k = n and with
single-causal probabilities P (e1 ← c1

i ) (i =
1, ..., n) specified.

A MF of a direct NIN-AND gate model con-
sists of a Markov network (MN) (Pearl, 1988)

c1 cn... c1 cn...

e(a) (b)
e

a

Figure 3: (a) A BN family. (b) A MN segment.

segment and a set of generalized potentials. The
MN segment contains the BN family variables
plus auxiliary variable a of domain {a0, a1, a2}
or simply {0, 1, 2}. They are connected into an
undirected graph as Fig. 3 (b).

For each link < x, y > in the MN segment,
a generalized potential made of reals, possibly
negative, is assigned. Table 1 shows potentials
f(x, y) for links < ci, a > and < a, e >. Let

Table 1: f(a, ci) (left) and f(e, a) (right) of a
direct NIN-AND gate model

a ci f(a, ci)
0 0 1
0 1 P (e1 ← c1

i )
1 0 1
1 1 1
2 0 1
2 1 0

e a f(e, a)
0 0 -1
0 1 1
0 2 1
1 0 1
1 1 0
1 2 -1

g(e, c1, ..., cn) denote product of link potentials
with variable a marginalized out,

g(e, c1, ..., cn) =
∑

a

f(e, a)
n∏

i=1

f(a, ci).

We refer to g(e, c1, ..., cn) as marginalized prod-
uct. Theorem 1 shows g(e, c1, ..., cn) to be
the CPT defined by the direct NIN-AND gate
model.
Theorem 1 Given a MF of a direct NIN-AND
gate model over e and C = {c1, ..., cn}, then the
marginalized product g(e, c1, ..., cn) is the CPT
of the direct gate model, i.e., g(e, c1, ..., cn) =
P (e|c1, ..., cn).
Proof: Start from Fig. 4, and then consider
Eqn. (5) for e = e1,

n∏

i=1

f(a0, ci)−
n∏

i=1

f(a2, ci).



g(e, c1, ..., cn) = f(e, a0)
n∏

i=1

f(a0, ci) + f(e, a1)
n∏

i=1

f(a1, ci) + f(e, a2)
n∏

i=1

f(a2, ci)

=

{
f(e0, a0)

∏n
i=1 f(a0, ci) + f(e0, a1)

∏n
i=1 f(a1, ci) + f(e0, a2)

∏n
i=1 f(a2, ci) if e = e0

f(e1, a0)
∏n

i=1 f(a0, ci) + f(e1, a1)
∏n

i=1 f(a1, ci) + f(e1, a2)
∏n

i=1 f(a2, ci) if e = e1

=

{
−

∏n
i=1 f(a0, ci) +

∏n
i=1 f(a1, ci) +

∏n
i=1 f(a2, ci) if e = e0

∏n
i=1 f(a0, ci)−

∏n
i=1 f(a2, ci) if e = e1

=

{
1− (

∏n
i=1 f(a0, ci)−

∏n
i=1 f(a2, ci)) if e = e0

∏n
i=1 f(a0, ci)−

∏n
i=1 f(a2, ci) if e = e1 (5)

Figure 4: Proof of Prop. 1 (see Table 1 for definition of factors)

If for one or more i, ci = c1
i , it becomes∏

ci=c1i
P (e1 ← c1

i ), and satisfies P (e1 ←
c1, ..., cn) from Eqn. (4). If for every i,
ci = c0

i , it becomes 1 − 1 = 0, and satis-
fies Eqn. (1). Therefore, g(e1, c1, ..., cn) corre-
sponds to P (e1|c1, ..., cn) as defined by direct
gate model.

From Eqn. (5) for e = e0, it follows that
g(e, c1, ..., cn) defines the CPT P (e|c1, ..., cn) (cf.
Eqn. (2)) and the theorem follows. 2

4 MF of Dual Gate Local Models

Next, consider the BN family in Fig. 3 (a), mod-
eled by the dual NIN-AND gate in Fig. 1 (b)
with k = n and with single-causal probabilities
specified.

A MF of a dual NIN-AND gate model consists
of a MN segment (Fig. 3 (b)), and a set of gen-
eralized potentials, one per link. Table 2 shows
potentials for links < ci, a > and < a, e >.

Table 2: f(a, ci) (left) and f(e, a) (right) of a
dual NIN-AND gate model

a ci f(a, ci)
0 0 1
0 1 P (e0 ← c1

i )
1 0 1
1 1 1
2 0 1
2 1 0

e a f(e, a)
0 0 1
0 1 0
0 2 0
1 0 -1
1 1 1
1 2 0

Theorem 2 shows that the marginalized prod-
uct of link potentials is the CPT defined by the
dual NIN-AND gate model. Its proof is omitted
due to space.

Theorem 2 Given a MF of a dual NIN-AND
gate model over e and C = {c1, ..., cn}, the
marginalized product is the CPT of dual gate
model, i.e., g(e, c1, ..., cn) = P (e|c1, ..., cn).

5 MF of Tree Local Models

Secs. 3 and 4 deal with MFs of single-gate
NIN-AND tree models. We now consider gen-
eral tree models. Let a BN family over e and
C = {c1, ..., cn} be modeled by an NIN-AND
tree T and single-causal probabilities.

A MF of an NIN-AND tree model consists of a
MN segment and a set of generalized potentials,
one per link. The MN segment G is obtained
from T as follows:

1. For each root in T , labeled e← c1
i , relabel

it by the cause variable ci.

2. For each gate, relabel its output node with
an auxiliary variable, a ∈ {a0, a1, a2}, con-
nect its input nodes to a, and delete the
gate. If the gate deleted is direct or dual,
refer to variable a as direct or dual.

3. For leaf gate and corresponding auxiliary
variable a, create a new node, label it by
variable e, and connect a to e.



Consider the BN family in Fig. 5 (a), modeled
by NIN-AND tree in Fig. 2. The MN segment
is shown in Fig. 5 (b), where a, b are auxiliary.

c3c1

c2

c1 c2 c3

b

e

a

(b)(a)
e

Figure 5: (a) A BN family. (b) A MN segment.

Link potentials are assigned as follows, where
a, b are auxiliary variables.

1. For each link < ci, a >, where a is direct,
assign the potential as Table 1 (left).

2. For each link < ci, a >, where a is dual,
assign the potential as Table 2 (left).

3. For each link < a, b >, where b is closer to
e than a, assign the potential as Table 3.

Table 3: f(a, b) for an NIN-AND tree model

b a f(a, b)
0 0 -1
0 1 1
0 2 1

b a f()
1 0 0
1 1 1
1 2 0

b a f()
2 0 0
2 1 0
2 2 1

4. For each link < a, e >, where a is direct,
assign the potential as Table 1 (right).

5. For each link < a, e >, where a is dual,
assign the potential as Table 2 (right).

We denote an NIN-AND tree model as TM =
(e, C, T, SP ), where T is the NIN-AND tree and
SP is the set of single-causal probabilities one
per cause in C. We denote the MF of TM as
φ = (e, C, G, F ), where G is the MN segment
and F is the set of potentials over links of G.
Prop. 1 characterizes the MN segment, whose
proof is straightforward.

Proposition 1 Let TM = (e, C, T, SP ) be an
NIN-AND tree model, where T contains m ≥ 1
gates. Let φ = (e, C, G, F ) be the MF of TM .
The following hold for G:

1. G is a tree of m internal nodes, all of which
are auxiliary variables, one per gate of T .

2. Terminal nodes (degree = 1) are c1, ..., cn

and e only.

Although G is undirected, we refer to groups
of nodes through their causal relation. For each
internal node, nodes along causal direction to e
are downstream and nodes against the direction
to a ci are upstream. Links of G and link po-
tentials are referred to accordingly as upstream
or downstream. In Fig. 5 (b), node c1, link
< c1, a >, and potential f(a, c1) are upstream
to a, while b is downstream to a.

6 Soundness of MF of Tree Models

We show that φ represents the CPT of TM

exactly. As it has been shown in Theorems 1
and 2 for single-gate TMs, we focus on multi-
gate TMs below. First, we define a condition
on potentials of φ in a subtree rooted at a link
< x, y >.

Definition 2 Let φ = (e, C, G, F ) be the MF
of an NIN-AND tree model TM = (e, C, T, SP )
of two or more gates. Let y be an internal
node of G, x be an upstream neighbor of y,
c1, ..., ck (k ≥ 1) be upstream causes of y via
link < x, y >, and R be the set of internal
nodes upstream of y via link < x, y >. Let
g(b, R, c1, ..., ck) be the product of potentials as-
signed to links upstream of y. Then

g(y, c1, ..., ck) =
∑

R

g(y, R, c1, ..., ck)

is a valid marginalized product (VMP) iff the
following hold:

g(y0, c0
1, ..., c

0
k) = 1; (6)

g(y0, c1, ..., ck) = P (e← c1
u, ..., c1

v), (7)

where one or more ci = c1
i , denoted cu, ..., cv,

and e = e1 (e0) if y is direct (dual);

g(y1, c1, ..., ck) = 1; (8)
g(y2, c0

1, ..., c
0
k) = 1; (9)

g(y2, c1, ..., ck) = 0, (10)

where one or more ci = c1
i .



Lemma 1 shows that the VMP condition
holds when x is a root.

Lemma 1 If x is a cause ci, then g(y, ci) is a
VMP.

Proof: Here, R = ∅, k = 1, and g(y, ci) =
f(y, ci). If y is direct, f(y, ci) is as Table 1 (left),
If y is dual, f(y, ci) is as Table 2 (left). In either
case, Eqns. (6) through (10) hold. 2

Prop. 2 shows that the VMP condition holds
for an arbitrary y node.

Proposition 2 For any y, g(y, c1, ..., ck) is a
VMP.

Proof: We prove by induction in the length L of
longest path from y to an upstream ci. Case for
L = 1 is shown in Lemma 1. We assume that
the statement holds for L ≤ w, where w ≥ 1,
and consider L = w + 1.

mx1x
mx1x

(b)

x

y

...
...

...(a)

... ...

x

e

...

... ...

Figure 6: Illustration for proofs of Prop. 2 (a)
and Theorem 3 (b)

Suppose x has upstream neighbors x1, ..., xm

(m ≥ 2), (see Fig. 6 (a)). Denote correspond-
ing upstream cause sets as S1, ..., Sm that form
a partition of c1, ..., ck. Denote marginalized
product of f(x, xi) and potentials upstream of
xi by gi(x, Si), where i = 1, ..., m. By inductive
assumption, each gi(x, Si) is a VMP. We have

g(y, c1, ..., ck) =
∑

x

f(y, x)
m∏

i=1

gi(x, Si).

From Table 3 for f(y, x), we have

g(y, c1, ..., ck)

=





−
∏m

i=1 gi(x0, Si)
+

∏m
i=1 gi(x1, Si)

+
∏m

i=1 gi(x2, Si) (y = y0)∏m
i=1 gi(x1, Si) (y = y1)∏m
i=1 gi(x2, Si) (y = y2).

From Eqns. (6), (8), (9) for gi(x, Si), we have

−
m∏

i=1

gi(x0, s0
i ) +

m∏

i=1

gi(x1, s0
i ) +

m∏

i=1

gi(x2, s0
i )

= −1 + 1 + 1.

Hence, Eqn. (6) holds for g(y, c1, ..., ck).
Next, consider Eqn. (7). Since T is minimal,

if y is direct, x is dual. From Eqns. (6), (7) for
gi(x, Si),

−
m∏

i=1

gi(x0, Si) = −
∏

ci∈Si,ci=c1i

P (e0 ← c1
i ).

From Eqn. (8),
∏m

i=1 gi(x1, Si) = 1. From
Eqn. (10),

∏m
i=1 gi(x2, Si) = 0. Hence, we have

−
m∏

i=1

gi(x0, Si) +
m∏

i=1

gi(x1, Si) +
m∏

i=1

gi(x2, Si)

= 1−
∏

ci∈Si,ci=c1i

P (e0 ← c1
i ) = P (e1 ← c1

u, ..., c1
v),

by Eqn. (3), where cu, ..., cv are those in c1, ..., ck

with ci = c1
i .

Similarly, if y is dual, we have

g(y0, c1, ..., ck) = P (e0 ← c1
u, ..., c1

v).

Hence, Eqn. (7) holds for g(y, c1, ..., ck).
From Eqn. (8) for gi(x, Si), we have Eqn. (8)

for g(y, c1, ..., ck). From Eqn. (9) for gi(x, Si),
it holds for g(y, c1, ..., ck). Finally, from
Eqn. (10) for gi(x, Si), we have Eqn. (10) for
g(y, c1, ..., ck). 2

Theorem 3 concludes soundness of φ.

Theorem 3 Let φ = (e, C, G, F ) be the MF of
an NIN-AND tree model TM = (e, C, T, SP ) of
two or more gates. Then the marginalized prod-
uct of all potentials satisfies g(e, c1, ..., cn) =
P (e|c1, ..., cn).



Proof sketch: Due to space limit, a proof sketch
is given below. Let x be the (only) neighbor of
e in G, shown in Fig. 6 (b), upstream neigh-
bors of x be x1, ..., xm (m ≥ 2), and corre-
sponding upstream cause sets be S1, ..., Sm that
partition c1, ..., cn. Denote marginalized prod-
uct of f(x, xi) and potentials upstream of xi by
gi(x, Si), where i = 1, ..., m.

Consider the case where x is direct. From
Table 1, Prop. 2, and Eqn. (8), it can be shown
that

g(e0, c1, ..., cn) = 1− g(e1, c1, ..., cn).

Applying Eqns. (1), (4), (6), (7), (9) and
(10) to g(e1, c1, ..., cn), it can be shown that
g(e, c1, ..., cn) corresponds to P (e|c1, ..., cn) de-
fined by TM.

The case for dual x can be similarly shown,
and the theorem follows. 2

7 Compiling NIN-AND Tree
Modeled BNs for LP

Consider a binary BN over variable set V with
DAG D. Each root of D is assigned a prior, col-
lected in set PR. Each single-parent non-root
is assigned a CPT, collected in set PS. Fam-
ily of each multi-parent non-root is expressed
as an NIN-AND tree model, collected in set Ψ.
Then, Γ = (V, D, PR, PS, Ψ) is an NIN-AND
tree modeled BN (NATBN).

For effective inference, we first convert Γ into
a Markov network as follows:

1. Each root x of D retains prior P (x) ∈ PR.

2. For each non-root x with a single parent y,
drop direction in link y → x, and assign
P (x|y) ∈ PS to link < y, x >.

3. For each multi-parent non-root x in D with
parent set π(x), and the NIN-AND tree
model TM ∈ Ψ over family {x} ∪ π(x),
derive the MF φ of TM .

Replace subgraph of D over {x}∪π(x) (e.g.,
Fig. 5 (a)) by the MN segment of φ (e.g.,
Fig. 5 (b)). Assign each link of the MN
segment a potential according to φ.

We denote the result ∆ = (V +, D+, PR, LT ),
where V + is the set V of variables plus all aux-
iliary variables, D+ is the resultant undirected
graph over node set V +, PR is the set of poten-
tials associated with nodes in a subset of V +,
and LT is the set of link potentials. We re-
fer to ∆ as the multiplicatively factorized MN
(MFMN) of Γ.

Next, we compile ∆ for LP as follows:

1. Triangulate D+ and construct a JT T+.

2. For each potential in PR and LT , assign to
a cluster in T+ that contains corresponding
variables.

T+ can then be used for LP. The above does
not involve moralization. Note that each poten-
tial in T+ is over at most two variables.

8 Efficiency Improvement

A collection of 120 NATBNs are simulated, di-
vided into 4 sets of 30 each. Each NATBN
contains 100 variables. For NATBNs in the
same set, the number of causes per NIN-AND
tree model, i.e., n, is identically upper-bounded.
The bounds are 5, 7, 9 and 11, respectively. All
NATBNs have the same density (5% more links
than singly-connected). Each is compiled into a
MFMN for LP.

For comparison, from each NATBN, a peer
BN is derived by assigning each multi-parent
variable the CPT determined from its NIN-
AND tree model. Peer BNs are compiled for
LP normally.

For each NATBN and its peer BN, random
observations over 5 variables are used in infer-
ence by LP. Table 4 summarizes results. Each
row, indexed by n, contains results from one set
of NATBNs. Each column shows sample mean
(left) and standard deviation (right) of a given
measure. Col. 2, pjts, indicates state space sizes
of JTs compiled from peer BNs. Col. 3, mjts,
shows state space sizes of JTs from NATBNs.
Last two columns, pinf and minf , show LP
time to compute posterior marginals for all vari-
ables using peer BNs and NATBNs.

As n grows, JT state space sizes for peer BNs
grow rapidly, but only slightly for NATBNs.



Table 4: Experimental Results

n pjts mjts pinf (ms) minf (ms)
5 1232.8 78.4 1796.8 150.6 53.0 28.7 41.1 11.2
7 1810.0 164.5 1899.8 189.0 68.0 13.5 44.9 15.0
9 2784.5 444.9 1916.5 205.6 146.8 43.4 53.3 18.4

11 5919.3 815.8 1846.5 166.0 566.4 269.4 49.9 20.0

Accordingly, computational savings of NATBNs
grows with n. When n = 5, NATBNs use
about 80% of inference time as peer BNs. When
n = 11, inference time of NATBNs is one-order
of magnitude less than peer BNs.

9 Conclusion

This contribution proposes a multiplicative fac-
torization of NIN-AND tree modeled BNs and
compilation of the resultant graphical model for
LP. We have shown that the method allows ex-
act inference for posterior marginals of all vari-
ables. Our experiments demonstrate a signifi-
cant efficiency gain for sparse BNs with large
family sizes. Research extending the method to
multi-valued variables is ongoing.
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