
Compression of Bayesian Networks

with NIN-AND Tree Modeling

Yang Xiang and Qing Liu

School of Computer Science, University of Guelph, Canada

Abstract. We propose to compress Bayesian networks (BNs), reducing
the space complexity to being fully linear, in order to widely deploy in
low-resource platforms, such as smart mobile devices. We present a novel
method that compresses each conditional probability table (CPT) of an
arbitrary binary BN into a Non-impeding noisy-And Tree (NAT) model.
It achieves the above goal in the binary case. Experiments demonstrate
that the accuracy is reasonably high in the general case and higher in
tested real BNs. We show advantages of the method over alternatives on
expressiveness, generality, space reduction and online efficiency.

Keywords: Bayesian networks, causal models, local distributions, ap-
proximation of CPTs, NIN-AND tree models

1 Introduction

The space complexity of a discrete BN of µ variables, each with up to n parents
and up to κ possible values, is O(µ κn). Consider a BN that has at least 25
variables (among others) whose CPTs satisfy κ = 6 (perhaps due to discretizing
continuous variables) and n = 8. With 4 bytes per probability, this BN takes
a space of about 25 ∗ 68+1 ∗ 4 ≈ 1 gigabytes, more than the full memory of
iPhone 5s, making it undeployable in such a device. We propose to compress BNs
so that they can be widely deployed in low-resource platforms, such as smart
mobile devices and intelligent sensors. Specifically, the reported research has the
ultimate goal to reduce the BN space complexity from O(µ κn) to O(µ κ n)
(fully linear). An important contribution of this paper is the accomplishment of
this goal for the case κ = 2.

A compression method must maintain the expressiveness of the BN reason-
ably well and enable more efficient inference. The combination of space and time
reduction is the key to broader applications of BNs in low-resource platforms.
Many existing techniques aimed at reducing parameter complexity in BNs to
ease knowledge acquisition can be viewed from the perspective of space reduc-
tion. QPNs [1] represent qualitative influences by signs without using numerical
parameters. They are limited in expressiveness and cannot resolve parallel in-
fluences of opposite signs, although they have been extended to alleviate the
limitation, e.g., [2]. Coarsening [3] reduces κ to τ < κ, but the space complexity
is still exponential on n (i.e., O(µ τn)). Divorcing [4] cuts down the value of n,

2 Y. Xiang and Q. Liu

reducing the space exponentially, but is not always applicable. The noisy-OR
[5] and several causal independence models, e.g., [6, 7], reduce space complexity
to being linear on n. They capture only reinforcing causal interactions and are
limited in expressiveness. A NAT model [8] can also express undermining and is
more expressive. Assuming that a BN family (a child plus its parents) satisfies
a NAT model, it can be recovered by exhaustively evaluating alternative NATs
[9]. The space of the junction tree of a BN is reduced in lazy propagation [10].

We present a novel method, denoted TDPN (Tree-Directed, Pci-based Nat
search), to compress an arbitrary binary (κ = 2) BN CPT into a NAT model. It
overcomes limitations of several alternatives discussed above on expressiveness,
generality and efficiency. The compression process consists of an offline and an
online stage. A novel search tree is constructed offline and is used online to
reduce the search space of NAT structures. Numerical search for parameters is
performed over the subspace to yield a compressed model.

Section 2 reviews the background on NAT models. The main idea of TDPN is
described in Section 3. Its key components are elaborated in Sections 4 through
8. Section 9 reports empirical evaluations. We analyze the advantages of TDPN
over alternatives in Section 10.

2 Background on NIN-AND Tree Models

We briefly introduce terminologies on NAT models and more details are found in
[9]. A NAT model is defined over an effect variable e and a set C = {c1, ..., cn}
of uncertain causes, where e ∈ {e−, e+}, e+ denotes e = true, n ≥ 2, and
ci ∈ {c−i , c+

i }. The probability of a causal success, where ci caused e to occur
when other causes are false, is denoted P (e+ ← c+

i) and is referred to as a
single-causal (probability). Similarly,P (e+ ← c+

1 , c+
2) is a double-causal or multi-

causal. Causal and conditional probabilities are related. If C = {c1, c2, c3}, then
P (e+|c+

1 , c+
2 , c−3) = P (e+ ← c+

1 , c+
2). With X = {c1, c2} ⊂ C, the multi-causal is

also written as P (e+ ← x+). The probability of the corresponding causal failure
is P (e− ← x+) = 1− P (e+ ← x+). When all causes are false, the effect is false,
i.e., the leak probability is P (e+|c−1 , c−2 , c−3) = 0.

Causes reinforce each other if they are collectively at least as effective as when
only some act. They undermine each other if collectively they are less effective.
A NAT expresses reinforcing and undermining between individual causes as well
disjoint subsets. Fig. 1 (a) shows a NAT over C = {c1, ..., c4}, where black nodes
are labeled by causal events. Undermining between c1 and c2 is encoded by a
direct Non-Impeding Noisy-AND (NIN-AND) gate g1. The gate dictates P (e+ ←
c+
1 , c+

2) = P (e+ ← c+
1)P (e+ ← c+

2). Hence, P (e+ ← c+
1 , c+

2) < P (e+ ← c+
i) for

i = 1, 2 (undermining). The similar holds for c3 and c4. Subsets {c1, c2} and
{c3, c4} reinforce each other, encoded by a dual NIN-AND gate g3. The left input
event to g3 is causal failure e− ← c+

1 , c+
2 , where the white oval negates an event.

Gate g3 dictates P (e− ← c+
1 , c+

2 , c+
3 , c+

4) = P (e− ← c+
1 , c+

2)P (e− ← c+
3 , c+

4).
Hence, we have P (e+ ← c+

1 , c+
2 , c+

3 , c+
4) ≥ P (e+ ← c+

1 , c+
2) (reinforcing).

Compression of Bayesian Networks with NIN-AND Tree Modeling 3

Fig. 1. (a) A NAT of 4 root events, (b) its root-labeled tree of 4 roots, and (c) a NAT
of n = 7 causes with labels omitted.

A NAT model is a tuple M = (e, C, T, Sp), where |C| = n, T is a NAT over e
and C, and Sp is a set of n single-causals. M uniquely defines a CPT PM(e|C).
Hence, a NAT modeled-CPT has a space complexity linear on n.

A NAT can be concisely represented as a root-labeled tree by omitting gates
and non-root labels, and simplifying root labels, as shown in Fig. 1 (b). From
the root-labeled tree and the type of leaf gate g3, the NAT in (a) is uniquely
determined. Hence, each root-labeled tree encodes two distinct NATs.

A NAT defines a pairwise causal interaction (PCI) function from pairs of
causes to the set {u, r} (undermining or reinforcing). For instance, the NAT in
Fig. 1 (a) defines pci(c1, c2) = u and pci(c1, c4) = r. Given an order of cause pairs,
denoting {u, r} by {0, 1}, a PCI pattern (bit string) is derived from the function.
Using the order (〈c1, c2〉, 〈c1, c3〉, 〈c1, c4〉, ...), the PCI pattern from Fig. 1 (a) is
(u, r, r, ...) or (0, 1, 1, ...). Each NAT has a unique PCI pattern [11].

3 Tree-Directed, PCI-Based NAT Search

We consider how to compress a target CPT PT into a NAT model M . In other
words, we approximate PT by PM (the CPT defined by M). The accuracy of
approximation is measured by the average Euclidean distance (denoted by ED)
below, where K = 2n. The range of ED is [0, 1] and matches that of probability.

ED(PT , PM) =

√√√√ 1
K

K∑

i=1

(PT (e+|c+i)− PM(e+|c+
i))2

When ED(PT , PM) = 0, the approximation is perfect. This is not possible for
every PT in general. Hence, M∗ that minimizes ED is deemed optimal.

A related problem was solved [9] where e and C are assumed to observe an
underlying NAT model. Single-causals and double-causals are estimated from
observed frequencies, from which a PCI pattern is derived. The pattern is com-
pared with that of every alternative NAT, and a best matching NAT plus the
single-causals define the output model. Although the method works well, it does
not solve the current problem.

4 Y. Xiang and Q. Liu

First, PT does not always yield a well-defined PCI pattern. A bit pci(ci, cj) =
u in a PCI pattern is well-defined if P (e+ ← c+

i , c+
j) < P (e+ ← c+

k) (k = i, j),
and pci(ci, cj) = r is well-defined if P (e+ ← c+

i , c+
j) ≥ P (e+ ← c+

k). The PCI bit
pci(ci, cj) is not well-defined when PT yields P (e+ ← c+

i) < P (e+ ← c+
i , c+

j) <

P (e+ ← c+
j), and nor is the corresponding PCI pattern.

Assuming an underlying NAT model, the above case may still occur due to
sampling errors. It can be corrected by soft PCI identification [9]. That is, if ci

and cj are closer to undermining than reinforcing, treat them as undermining.
In particular, assign pci(c1, c2) = u if the following holds,

|P (e+ ← c+
1 , c+

2)−min(P (e+ ← c+
1), P (e+ ← c+

2))|

< |P (e+ ← c+
1 , c+

2)−max(P (e+ ← c+
1), P (e+ ← c+

2))|,

and assign pci(c1, c2) = r otherwise. This heuristics often recovers correct PCI
bits.

Given an arbitrary PT , interaction between a pair of its causes may be neither
undermining nor reinforcing. Hence, softly identified PCI bits do not always lead
to an accurate PM . On the other hand, requiring well-defined PCI bits leads to
a partial PCI pattern with missing bits.

Second, single-causals estimated from frequencies are directly used in the
output model. This works well when the underlying model is a NAT and the
NAT is recovered correctly. For an arbitrary PT (not a NAT model in general),
no matter which NAT is used, its combination with the single-causals directly
from PT is unlikely to yield an accurate PM . We demonstrate this in Section 9.

In additional to these fundamental limitations, the method evaluates NATs
exhaustively. The number of alternative NATs is O(n! 0.386−n n−3/2) [12]. Even
though n is not unbounded in BN CPTs, the exhaustive NAT evaluation can be
costly for larger n values.

To overcome these limitations, we propose a new method, TDPN, for ap-
proximating an arbitrary PT with a NAT model. The basic idea is to organize
seemingly incomparable NATs in a search tree based on their PCI patterns.
Through the search tree, a partial pattern retrieves a small number of promising
candidate NATs. Only these NATs are evaluated, which greatly improves effi-
ciency. Rather than using the single-causals directly from PT , they are searched
during evaluation of the candidate NATs.

TDPN consists of an offline and an online phase. The offline phase is con-
ducted before PT is given. It enumerates root-labeled trees of n roots and con-
structs a PCI pattern based search tree (PST). Each non-root node of PST is
assigned a value of a PCI bit. Each path from the root to a leaf is the PCI
pattern of a NAT. For each n value, a PST is constructed offline and is reused
online to process any PT of n causes. Sections 4 and 5 elaborate on PST and its
construction. The online phase below starts when a PT is given.

1. Identify a well-defined partial PCI pattern Pat from PT .
2. Use Pat to retrieve a set of candidate NATs from the PST.

Compression of Bayesian Networks with NIN-AND Tree Modeling 5

3. For each candidate, search for single-causals so that the resultant NAT model
M minimizes ED(PT , PM).

4. From the above candidate NAT models, select M∗ of the minimum ED as
the approximate NAT model of PT .

Steps 2 and 3 are elaborated in Sections 6 and 7.

4 PCI Pattern Based Search Trees

A PST is used to retrieve candidate NATs according to a given PCI pattern.
First, we specify the PST for retrieving a single NAT from a full PCI pattern.

A NAT of n roots defines a PCI pattern of N = C(n, 2) bits. A PST for a
given n has N + 1 levels, indexed from 0 to N , with the root t placed at level
0. Each level k > 0 is associated with a PCI bit, and each node at the level is
labeled by a bit value u or r. All leaf nodes occur at level N . A leaf z exists iff
the path from t to z forms the PCI pattern of a NAT, and the NAT is assigned
to z. For each node y at level k < N , y has a child node x iff bit values at y and
x are part of a well-defined PCI pattern.

A PST for n = 3 is shown in Fig. 2. It has 4 levels (N = 3). Levels 1 to 3
are labeled by PCI bit values. The NAT assigned to each leaf is indicated by an
arrow. This PST (n = 3) is the only balanced one. For instance, when n = 4, we
have N = 6. A balanced binary tree of 7 levels has 2N = 64 leaf nodes, but the
PST has only 52 leaf nodes (for 52 NATs). From a PCI pattern, e.g., (r, u, r), a
path in the PST can be followed to retrieve a NAT, e.g., T6. It takes O(n2) time
(since N is quadratic in n).

Fig. 2. A PST for n = 3 with the NATs at the bottom

If PT yields a partial PCI pattern, all NATs whose PCI patterns are consistent
with the partial pattern need to be retrieved. A partial pattern missing m > 0
bits has up to 2m consistent NATs. Following these paths takes O(2mn2) time.
We enhance the PST below so that the retrieval from a pattern of m missing
bits takes O(n2 −m) time at best (see below) and O(2mn2) time at worst.

6 Y. Xiang and Q. Liu

After the above PST is formed, index NATs assigned to leaves from left to
right in ascending order. Thus, for any node x, the NATs assigned to leaves
under x are consecutively indexed. These indexes can be specified by an interval
[i, j], which is used to label x. For leaf x, specify i = j.

In Fig. 2, NATs assigned to leaves are indexed from left to right at 0 through
7, e.g., T7 is indexed at 6. If the m missing bits are located at the deepest levels,
the search for NATs follows a single path to the level N−m only, and the interval
at the last node contains all NATs consistent with the partial pattern. It takes
O(n2 − m) time. For example, the pattern (r, u, ?) leads to the node with the
interval [4, 5] and retrieves T1 and T6.

5 PST Construction

Let W be the number of distinct NATs of n causes. Before building a PST for n,
the W NATs are enumerated [13]. For each NAT, treat its PCI pattern as a base-
2 number R = (a0, ..., aj, ..., aN−1), where aj ∈ {0, 1} = {u, r} and its position
has weight 2N−1−j. We refer to PCI patterns and PCI numbers interchangeably.

Algorithm 1 SetPST
Input: the number n of causes; the set of W NATs;
1 for each NAT, compute R = (a0, ..., aj, ..., aN−1);
2 sort PCI numbers ascending into (R0, ..., RW−1);
3 sequence corresponding NATs as (T0, ..., TW−1);
4 initialize PST to contain root t;
5 label t by interval [0, W − 1] and lower bound B = 0;
6 initialize set Fringe = {t};
7 for level k = 0 to N − 1,
8 Leaves = ∅;
9 for each v ∈ Fringe with labels [i, j] and B,
10 remove v from Fringe;
11 B′ = B + 2N−(k+1);
12 if Rj < B′,
13 add left child x to v and insert x to Leaves;
14 label x by ak = 0, [i, j] and B;
15 else if Ri ≥ B′,
16 add right child y to v and insert y to Leaves;
17 label y by ak = 1, [i, j] and B′;
18 else
19 add left child x and right child y to v;
20 insert x and y to Leaves;
21 search index d in (Ri, ..., Rj) such that Rd−1 < B′ and Rd ≥ B′;
22 label x by ak = 0, [i, d− 1] and B;
23 label y by ak = 1, [d, j] and B′;
24 Fringe = Leaves;
25 return PST;

Compression of Bayesian Networks with NIN-AND Tree Modeling 7

To compute the interval [i, j] for each PST node x, associate x with a lower
bound of PCI numbers for NATs assigned to leaves below x. The lower bound
is discarded once the PST is completed.

Construction of a PST starts at level 0 and proceeds to each deeper level.
Current leaf nodes are maintained in a set Fringe. Newly generated leaf nodes
are recorded in a set Leaves. SetPST specifies details of construction.

Lines 12 to 23 expand a current leaf by one child or both, depending on
whether each leads to a NAT. Hence, a PST is generally imbalanced. Its size
is about 2W . W has the complexity of O(n! 0.386−n n−3/2) [12] and so does
SetPST. It grows faster than n!. Fortunately, PSTs are reusable and can be
constructed offline once for all.

6 Search for Candidate NATs

At online time, after a well-defined partial PCI pattern Pat is obtained from PT ,
candidate NATs whose PCI patterns are consistent with Pat are retrieved using
a PST. For a given Pat, some deep PST levels may not be involved, and need
not be loaded. Each unloaded deep level reduces the loading time and space by
half. Given the O(n! 0.386−n n−3/2) space complexity of PST, such saving is
worthwhile.

Denote the set of bits in Pat by Bits. The partially loaded PST includes
only top levels of the full PST such that all bits in Pat are covered. Denote the
PCI bit for level i > 0 by bi. We assume that the PST has K +1 levels (K ≤ N)
and bK ∈ Bits.

The retrieval starts from the root t. Each path consistent with Pat is followed
to a node at level K, where the interval specifies candidate NATs. If b1 ∈ Bits,
one child of t is followed, according to the value of b1 in Pat. Otherwise, both
child nodes of t are followed. In general, when the loaded PST includes PCI bits
absent from Bits, multiple nodes at a given level may be followed. They are
maintained in a set Front. GetCandidateNAT specifies details of the retrieval.

A Pat extracted from PT may be invalid (no defining NATs). This condition
is captured in line 10, where no PST path is consistent with Pat and hence an
empty candidate set is returned. To handle such cases, one option is to con-
tinue as if the error causing bit is a missing bit. It will guarantee an non-empty
candidate set in the end.

From uniqueness of PCI pattern [11] and construction of PST by SetPST, it
can be proven that, given any well-defined Pat, GetCandidateNAT will return
exactly the set of NATs whose PCI patterns are consistent with Pat. As shown
in Section 4, the time complexity is O(2mn2).

A refinement to SetPST and GetCandidateNAT can be devised to improve
efficiency for both. As mentioned before, each root-labeled tree corresponds to
two NATs T0 and T1, differing in the type of leaf gate. Hence, their PCI patterns
are bitwise complement of each other. Consider a PST built by SetPST. Let x be
the leaf assigned with T0, and y be the leaf assigned with T1. On the path from
root t to x, the PCI bit value at each level is the complement of the corresponding

8 Y. Xiang and Q. Liu

bit value on the path from t to y. That is, the path from t to x is the bitwise
complement of the path from t to y.

Algorithm 2 GetCandidateNAT
Input: a partial pattern Pat over a set Bits of PCI bits; a PST of K + 1 levels
(K ≤ N) that covers Bits;

1 initialize Front = {t}, where t is the root of PST;
2 for level i = 1 to K,
3 Temp = ∅;
4 if bi ∈ Bits,
5 retrieve value bi = vi in Pat;
6 for each x ∈ Front,
7 remove x from Front;
8 if x has child y whose bit value is vi,
9 add y to Temp;
10 if Temp = ∅, return ∅;
11 else
12 for each x ∈ Front,
13 remove x from Front;
14 add each child of x to Temp;
15 Front = Temp;
16 initialize Candidates = ∅;
17 for each x ∈ Front with interval [i, j],
18 Candidates = Candidates ∪ {Ti, ..., Tj};
19 return Candidates;

This observation allows to refine SetPST and to construct a PST only for
NATs of direct leaf gates. The reduced PST relative to that in Fig. 2 is shown
in Fig. 3. With the reduced PST, GetCandidateNAT must be run twice and the
candidate set is the union of results from both runs. The 2nd run assumes the
bit value complement at each node and a dual leaf gate for each NAT.

Fig. 3. A PST for NATs of direct leaf gates

This refinement reduces the time of SetPST to half and reduce the space of
the PST to half. For GetCandidateNAT, the total search time in both runs is

Compression of Bayesian Networks with NIN-AND Tree Modeling 9

equivalent to the time used before. Since the half-sized PST needs to be loaded
only once, the load time is reduced to half.

7 Parameter Search by Steepest Descent

After candidate NATs are obtained, single-causals must be obtained to fully spec-
ify corresponding NAT models. It is possible to use the single-causals defined by
the target CPT PT . However, this option, though efficient, does not usually lead
to accurate compressed NAT models, as we demonstrate in Section 9. Instead,
TPDN searches single-causals for each NAT so that the resultant model M mini-
mizes ED(PT , PM). To this end, we apply the method of steepest descent, where
a point moves along the surface of a multi-dimensional function, in the direction
of the steepest descent, until the gradient is less than a threshold. Alternative
techniques, e.g., simulated annealing, may be used instead.

Descent is guided by the function ED(PT , PM) between the target CPT PT

and the CPT PM of a candidate NAT model M . The search space has the
dimension n, where each point p is a vector of n single-causals. Each single-
causal is bounded in (0, 1). To guard against finding a local extremum, multiple
searches are randomly started for each given NAT. If they converge to a single
point, the confidence increases that it is the global extremum.

8 Anytime Approximation

The TDPN presented above extracts a well-defined partial PCI pattern Pat
from PT and uses it to search for candidate NATs. As Pat is a heuristic guide
to focus evaluation of alternative NATs, there is no guarantee that candidate
NATs consistent with Pat include the best NAT. The number of bits in Pat
directly affects the number of candidate NATs. The shorter Pat is, the larger
the number of candidate NATs and the more accurate the resultant NAT model.
On the other hand, evaluating more NATs is more costly, due primarily to time
for steepest descent. To balance accuracy and efficiency, we present an anytime
enhancement to TDPN that constrains the model approximation computation
by a user specified time limit.

Let W be the number of NATs of n causes, rt be the average runtime for
steepest descent per NAT, Rt be the user specified runtime, and m be the number
of missing bits in Pat. The number of candidate NATs that can be processed
in Rt time is about Rt/rt. The number of NATs consistent with a PCI pat-
tern of m missing bits is about 2m−C(n,2) W . Hence, the largest m such that
2m−C(n,2) W < Rt/rt best balances accuracy and efficiency, given the user time.

What remains is to decide the m missing bits. Suppose PT yields C(n, 2)−m′

well-defined PCI bits. If m > m′, then m −m′ deepest bits in PST (Section 4)
can be dropped from Pat before it is used for NAT retrieval. If m < m′, then
m′ −m soft-identified PCI bits that are shallowest in PST can be added. This
ensures a Pat of C(n, 2) − m length, where well-defined PCI bits are used as
much as possible.

10 Y. Xiang and Q. Liu

9 Experimental Evaluation

To evaluate the effectiveness of TDPN, we conducted four groups of experiments.
The 1st group compares approximation accuracy of TDPN with the optimal
baseline, the 2nd compares TDPN with the well-known noisy-OR, and the 3rd
demonstrates effectiveness of the anytime enhancement to TDPN. Five batches
of target CPTs (a total of 353 CPTs) were used in these experiments. The 4th
group examines the offline PST construction time.

Approximation Accuracy The 1st group mainly evaluates the approximation
accuracy of TDPN. The 1st batch of 99 target CPTs were randomly generated
(the most general targets), where n = 4 and the leak probability is 0 (Section 2).

For comparison, the approximation accuracy by exhaustive search over all
NAT models is used as the baseline. We refer to the method by OP. The choice
of n = 4 (with W = 52) was made because running OP for a larger n value is
much more costly, e.g., W = 472 for n = 5.

For each target CPT PT , OP computes an optimal NAT model as follows.
For each distinct NAT, the best set of single-causals is obtained by steepest
descent and ED of the resultant NAT model is calculated. The model of the
minimum ED is selected by OP. Note that exhaustive search over all NATs by
OP is the same as an earlier method [9]. On the other hand, the earlier method
uses single-causals from the target CPT, while OP produces them by steepest
descent. Hence, the ED resultant from OP signifies the best accuracy that NAT
models can achieve.

For each PT , a NAT model is also obtained by TDPN, as well as its ED.
If TDPN selects the same NAT as OP, then difference between the two EDs is
zero, and the performance of TDPN for this PT is deemed optimal.

The 1st box in Fig. 4 (left) depicts EDs obtained by OP, where ends of
whiskers represent the minimum and maximum. The sample mean is 0.1787. It
shows that, under the most general condition, NAT model approximation can
achieve a reasonably high accuracy, while reducing the CPT complexity from
being exponential to being linear on n.

The 2nd box in Fig. 4 (left) depicts EDs by TDPN. Out of 99 target CPTs,
TDPN selected the same NAT as OP in 69 of them. The sample mean of EDs
is 0.1855 and is fairly close to that of OP. Fig. 4 (right) shows the runtime
comparison between OP (average 7.7 sec) and TDPN (average 0.8 sec). This
result shows that PCI heuristics of TDPN works well. Using 10% of time of OP,
TDPN either found the optimal NAT model or one very close to the optimal.

The runtime ratio of OP versus TDPN is expected to grow more than expo-
nentially on n (in favour of TDPN). This is due to super-exponential growth of
W on n and the same growth of OP runtime. On the other hand, the number
of NATs evaluated by TDPN is determined by the length of the partial PCI
pattern and can be well controlled through the anytime enhancement.

Each PT was also run with a modified version (SOFT) of TDPN. Instead of
using a well-defined, partial PCI pattern, SOFT uses soft PCI identification [9]

Compression of Bayesian Networks with NIN-AND Tree Modeling 11

Fig. 4. Left: Boxplot of EDs of NAT models by OP, TDPN, SOFT, TARSC and NOR
from the 1st batch of target CPTs. Right: Runtime by OP, TDPN and NOR in msec.

(introduced in Section 3) and a full, softly-defined PCI pattern. The 3rd box in
Fig. 4 (left) depicts EDs by SOFT. Out of 99 target CPTs, it selected the same
NAT as OP did in 30 of them (less than half compared to TDPN). Its sample
mean of EDs is 0.2550 and much worse than TDPN, relative to the OP baseline.
This comparison demonstrates the superiority of partial PCI patterns consisting
of only well-defined PCI bits.

In addition, each PT was run with an earlier method [9], referred to as
TARSC. It can be viewed as a modified OP, where single-causals of the tar-
get CPT are used directly. The 4th box in Fig. 4 (left) depicts EDs by TARSC.
It selected the same NAT as OP did in 54 of them and its sample mean of
EDs is 0.2234. Even though TARSC searches NATs exhaustively, it performed
worse than TPDN, relative to the OP baseline. This comparison demonstrates
the benefit of single-causal search by steepest descent.

The results by SOFT and TARSC show that the existing technique [9] for
recovering underlying NAT models does not work well for compressing gen-
eral CPTs. Hence, the innovations in TDPN (well-defined PCI bits, partial PCI
patterns, PST guided search, and single-causals by steepest descent) are both
effective and necessary.

Comparison with Noisy-OR The 2nd group of experiments compares TDPN
with noisy-OR approximation. For each PT , the latter method (NOR) searches
single-causals of a noisy-OR model by steepest descent.

The result of running NOR on the 1st batch of target CPTs is shown by the
5th box in Fig. 4 (left). For two target CPTs, NOR selected the same NAT as OP
did, compared with 69 by TDPN. The sample mean of EDs by NOR is 0.2662.
In comparison, TDPN is much more accurate, relative to the OP baseline.

Both NOR and TPDN were run on a 2nd batch of 100 randomly generated
noisy-OR target CPTs (each CPT follows a noisy-OR model) with n = 7. For
each PT , TDPN returned the same NAT as NOR did without exception. The
EDs by both methods are about 0.0013, and both ran about 1.5 seconds per

12 Y. Xiang and Q. Liu

target CPT. Hence, TDPN performs equally well as NOR when the underlying
CPT is the noisy-OR. This result confirms the generality of NAT models with
noisy-OR as a special case.

NOR and TPDN were run on a 3rd batch of 99 randomly generated NAT
CPTs (each CPT follows a NAT model) with n = 7. An example NAT is in
Fig. 1 (c). The ED performance of both methods are shown in Fig. 5 (left). Since
each target CPT is a NAT model, TPDN was able to express the target model
accurately, and hence close to zero ED. On the other hand, NOR was unable to
express undermining causal interaction between causes, and hence had a much
lower approximation accuracy. The runtimes of the two methods are shown in
Fig. 5 (right). TPDN not only compresses more accurately, but also runs faster
than NOR. This is because TDPN selected the NAT that matched well with
the target CPT, making subsequent search for single-causals converging quickly.
On the other hand, causal interactions assumed by noisy-OR did not match well
with the NAT modeled CPT, slowering down the search for single-causals.

Fig. 5. Left: Euclidean distances obtained by TDPN and NOR from the 3rd batch of
target CPTs. Right: Runtime by TDPN and NOR in msec.

The fourth batch was run on target CPTs from three real BNs: Alarm [14],
Hailfinder [15], and HeparII [16]. Since all three BNs use multi-valued variables,
they were coarsened equivalently into binary, and target CPTs were collected
from all variables of 3 or more parents since a non-trivial NAT model has at
least 3 causes. A total of 25 target CPTs were collected: 3 from Alarm, 6 from
Hailfinder, and 16 from HeparII. Among them, 14 CPTs have n = 3, 7 CPTs
have n = 4, 3 CPTs have n = 5, and one CPT has n = 6.

The ED performances of TPDN and NOR are shown in Fig. 6. For almost all
target CPTs, the data points are above the X = Y line, signifying smaller ED
by TPDN. A Friedman test with k = 2 [17] resulted in the test statistic 8.8947,
which is larger than the critical 0.01 χ2 value 6.63. Therefore, TDPN compresses
these real BN CPTs significantly more accurate than NOR.

The sample mean of EDs by TDPN over all 25 target CPTs is 0.1497. Com-
pared with 0.1855 from the random target CPTs, it suggests that TDPN approx-

Compression of Bayesian Networks with NIN-AND Tree Modeling 13

Fig. 6. Euclidean distances obtained by TDPN (X-axis) and NOR (Y-axis) from the
4th batch of target CPTs.

imates real BN CPTs more accurately than the random CPTs. In other words,
real BN CPTs are closer to NAT models than random CPTs.

The runtimes for the 4th batch are shown in Fig. 7. Because a single model
structure was evaluated by NOR, while multiple NATs were evaluated by TDPN,
NOR runs faster. The three most time consuming CPTs in HeparII (at top of
chart) took TDPN between 16 to 50 seconds due to the need to evaluate a large
number of alternative NATs.

Fig. 7. Log10 runtimes from 4th batch in order of Alarm, Hailfinder and HeparII

By comparing TDPN runtimes between the 3rd batch (Fig. 5, mostly < 2 sec)
and 4th (up to 50 sec), we see that TDPN is able to adapt its amount of com-
putation according to the target CPT. When the target CPT is fairly close to a
NAT model, very few alternative NATs are evaluated by steepest descent. More
NATs are evaluated only when it is necessary.

Effectiveness of Anytime Enhancement The 3rd group of experiment ex-
amines effectiveness of anytime enhancement to TDPN, where the length of a
PCI pattern is controlled to influence the runtime and accuracy. A 5th batch

14 Y. Xiang and Q. Liu

of 30 target CPTs with n = 5 were randomly generated. For n = 5, we have
N = 10. We chose to run TDPN for each PT using the following m (number of
missing bits in Pat) values: 2, 3, 4, 5, and 6. Fig. 8 summarizes the results.

Fig. 8. Left: Euclidean distances obtained by TDPN from the 5th batch of target
CPTs. Right: Runtimes in msec.

As m was increased from 2 to 6, the number of candidates NATs and runtime
was increased by more than 10 times, though still less than 30 sec. For some PT ,
the resultant ED was reduced by as much as 0.0609, and for some as little as 0.
The result shows that, with a small m value, TPDN runs fast with a reasonably
high accuracy and, with larger m values, the accuracy improves moderately with
the controlled extra time.

PST Construction Time The 4th group of experiments examines the offline
time for NAT enumeration and PST construction. Table 1 reports the runtime
using a 2.9 GHz laptop.

Table 1. Number of distinct NATs, runtime of NAT enumeration and PST construc-
tion, in relation to n

n 6 7 8 9

NATs 5,504 78,416 1.32 × 106 2.56 × 107

NAT enu. 110ms 0.3s 4.6s 134.5s

PST con. 828ms 16.8s 1.8h 42.9h

Table 1 shows that for n ≤ 9, construction of PSTs are practical, since it
is performed offline once for all and the resultant PSTs are reusable. Due to
conditional independence encoded in BN structures, the n value for BN CPTs
are not unbounded and are unlikely to be much larger than 9. Furthermore, for
target CPTs with n ≥ 10, it is possible to decompose the BN family into two or

Compression of Bayesian Networks with NIN-AND Tree Modeling 15

more subsets where n < 10 and to apply TDPN to each. Constructing PSTs for
n ≥ 10 will then be unnecessary. We leave this to a sequel of the current work.

10 Conclusion

This paper presents three key contributions in order to compress BNs for de-
ployment in low-resource platforms. First, we defined PCI pattern based search
trees (PSTs) and developed an algorithm for their construction. PSTs organize
seemingly incomparable NAT structures into a uniform searchable representa-
tion. PSTs enable exponential online complexity [9] to be shifted to offline and
to be incurred once for all. Second, we presented an algorithm for searching
highly promising NAT structures based on partial PCI patterns and proposed
its combination with steepest descent. This combination enables efficient online
compression of general target CPTs with reasonable accuracy. Third, our exper-
imental study demonstrated several key results: (a) many general target CPTs
can be approximated fairly well by NAT models, (b) NAT models lead to more
accurate approximations than noisy-OR models, and (c) TDPN is superior in
approximation accuracy than alternatives where either soft PCI identification or
single-causals from target CPT are used.

TDPN overcomes limitations of several existing techniques. Relative to QPNs,
a NAT-modeled BN retains the full range of probability. Relative to the noisy-
OR, NAT-modeled BNs encode both reinforcing and undermining. Hence, TDPN
leads to more expressive compression. Earlier method [9] can only recover a tar-
get CPT accurately if it is truly a NAT model. TDPN does not assume an
underlying NAT model and still achieves a reasonably high accuracy. Hence,
TDPN provides a general method to reduce the space complexity of BNs from
O(µ κn) to O(µ κ n) for κ = 2. It can be viewed as complementing techniques
such as divorcing by providing yet another alternative. Relative to coarsening
whose space complexity is still exponential on n, complexity of NAT-modeled
BNs is linear on n. Hence, TDPN has better space efficiency. The earlier method
[9] takes an exponential online time, while online computation of TDPN is effi-
cient (O(2mn2) where m is a user-controllable, small integer). BNs compressed
by TDPN support more efficient inference: lazy propagation in NAT-modeled
BNs can be one-order of magnitude faster [18].

Extension of TDPN to multi-valued NAT models where κ ≥ 2 remains the
most important for further research. We have shown that TDPN can practically
compress binary CPTs of up to at least n = 9. Although complexity of PST
construction is exponential, the computation is offline, it is incurred once for all,
and n is not unbounded in BNs. For target CPTs with n ≥ 10, promising direc-
tions include decomposition and parallel PST construction. Relaxation to target
CPTs of positive leak probabilities will also extend the generality of TPDN.

Acknowledgement

We thank anonymous reviewers for their helpful comments. Financial support
through Discovery Grant from NSERC, Canada is acknowledged.

16 Y. Xiang and Q. Liu

References

1. Wellman, M.: Graphical inference in qualitative probabilistic networks. Networks
20(5) (1990) 687–701

2. Renooij, S., Parsons, S., van der Gaag, L.: Context-specific sign-propagation in
qualitative probabilistic networks. Artificial Intelligence 140 (2002) 207–230

3. Chang, K., Fung, R.: Refinement and coarsening of Bayesian networks. In: Proc.
Conf. on Uncertainty in Artificial Intelligence. (1990) 475–482

4. Jensen, F., Nielsen, T.: Bayesian Networks and Decision Graphs (2nd Ed.).
Springer, New York (2007)

5. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1988)

6. Galan, S., Diez, F.: Modeling dynamic causal interaction with Bayesian networks:
temporal noisy gates. In: Proc. 2nd Inter. Workshop on Causal Networks. (2000)
1–5

7. Lemmer, J., Gossink, D.: Recursive noisy OR - a rule for estimating complex
probabilistic interactions. IEEE Trans. on System, Man and Cybernetics, Part B
34(6) (Dec 2004) 2252–2261

8. Xiang, Y., Jia, N.: Modeling causal reinforcement and undermining for efficient
CPT elicitation. IEEE Trans. Knowledge and Data Engineering 19(12) (Dec 2007)
1708–1718

9. Xiang, Y., Truong, M., Zhu, J., Stanley, D., Nonnecke, B.: Indirect elicitation of
NIN-AND trees in causal model acquisition. In Benferhat, S., Grant, J., eds.: Inter.
Conf. on Scalable Uncertainty Management (SUM 2011), LNCS 6929. Springer-
Verlag Berlin Heidelberg (2011) 261–274

10. Madsen, A., Jensen, F.: Lazy propagation: A junction tree inference algorithm
based on lazy evaluation. Artificial Intelligence 113(1-2) (1999) 203–245

11. Xiang, Y., Li, Y., Zhu, J.: Towards effective elicitation of NIN-AND tree causal
models. In Godo, L., Pugliese, A., eds.: Inter. Conf. on Scalable Uncertainty Man-
agement (SUM 2009), LNCS 5785. Springer-Verlag Berlin Heidelberg (2009) 282–
296

12. Schroeder, E.: Vier combinatorische probleme. Z. f. Math. Phys. 15 (1870) 361–376
13. Xiang, Y., Zhu, J., Li, Y.: Enumerating unlabeled and root labeled trees for

causal model acquisition. In Gao, Y., Japkowicz, N., eds.: Advances in Artificial
Intelligence, LNAI 5549. Springer (2009) 158–170

14. Beinlich, I., Suermondt, H., Chavez, R., Cooper, G.: The alarm monitoring system:
A case study with two probabilistic inference techniques for belief networks. In:
Proc. 2nd European Conf. Artificial Intelligence in Medicine. (1989) 247–256

15. Abramson, B., Brown, J., Edwards, W., Murphy, A., Winkler, R.L.: Hailfinder:
A Bayesian system for forecasting severe weather. Inter. J. Forecasting 12 (1996)
57–71

16. Onisko, A.: Probabilistic Causal Models in Medicine: Application to Diagnosis of
Liver Disorders. PhD thesis, Institute of Biocybernetics and Biomedical Engineer-
ing, Polish Academy of Science (2003)

17. Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures
(3rd ed.). Chapman & Hall/CRC (2004)

18. Xiang, Y.: Bayesian network inference with NIN-AND tree models. In Cano, A.,
Gomez-Olmedo, M., Nielsen, T., eds.: Proc. 6th European Workshop on Proba-
bilistic Graphical Models, Granada (2012) 363–370

