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Abstract
Non-Impeding Noisy-AND (NIN-AND) Trees (NATs) offer a highly expressive compressed casual
model for significantly reducing space and inference time of Bayesian Nets (BNs). A causal model
often includes a leaky cause for all causes not explicitly named. A leaky cause may be persistent
or not. A conditional probability table (CPT) in a BN often behaves as if there is a persistent leaky
cause (PLC). We discuss limitations for not modeling PLC explicitly during compression. We also
reveal challenges if PLC is explicitly modeled. We extend an earlier solution that is limited to
binary NAT models and is incomplete, to a solution that is applicable to multi-valued NAT models
and is complete. We demonstrate the effectiveness of the solution experimentally for compressing
general BN CPTs with PLCs.

Keywords: Knowledge representation; Bayesian networks; causal independence models.

1. Introduction

We consider compression of CPTs in general discrete Bayesian networks (BNs) into multi-valued
NAT models (Xiang (2012a)). Once so compressed, space and time complexity of inference with
BNs can be significantly reduced (Xiang (2012b); Xiang and Jin (2016)).

A number of space-efficient models exist, including noisy-OR (Pearl (1988)), noisy-MAX (Hen-
rion (1989); Diez (1993)), CSI (Boutilier et al. (1996)), recursive noisy-OR (Lemmer and Gossink
(2004)), tensor-decomposition (Vomlel and Tichavsky (2012)), and cancellation model (Wouden-
berg et al. (2015)). Merits of NAT models include being based on simple causal interactions (rein-
forcement and undermining), expressiveness (allowing the above interactions as well as their recur-
sive mixtures), and being suited for exact multiplicative factorization (Xiang and Jin (2016)).

A causal model may include a leaky cause that represents all causes not explicitly named. A
leaky cause may be active or inactive (non-persistent), in which case it behaves similarly as any
normal cause. As a causal model, when all causes in a NAT model are inactive, the probability that
the effect is active is zero. In many real world BN CPTs, when all causes of an effect are inactive,
the probability of active effect is still positive. This may be modeled as a PLC that is always active.

To compress general CPTs into NAT models, one may choose to include only non-persistent
leaky causes. We discuss limitations of this approach. Alternatively, one may choose to include
PLCs. We reveal challenges that will be encountered. The issue of compressing CPTs with PLCs
is considered in (Xiang and Jiang (2016)). That result has two limitations. First, only binary NAT
models are treated. Second, only a partial solution is devised. In this work, we treat general NAT
models (multi-valued variables) and we offer a complete solution to compress BN CPTs with PLCs.
We demonstrate the proposed solution experimentally with real-world BN CPTs.

The remainder of the paper is organized as follows. Section 2 reviews the background. The task
of this research and its challenges are described in Section 3. A complete solution to compressing
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CPTs with PLCs is presented in Sections 4 through 6. Our experimental result is presented in
Section 7. We omit all proofs due to space limit.

2. Background

Consider an effect e and the set of all causes C = {c1, ..., cn} that are multi-valued and graded. The
domain of e is De = {e0, ..., eη} (η ≥ 1), where e0 is inactive, e1, , ..., eη are active, and a higher
index signifies higher intensity. The domain of ci is Di = {c0i , ..., c

mi
i } (mi > 0). An active value

may be written as e+ or c+i .
A causal event is success or failure depending on if e is active at a given intensity, is single- or

multi-causal depending on the number of active causes, and is simple or congregate depending on
the effect value range. P (ek ← cji ) = P (ek|cji , c0z : ∀z 6= i) (j > 0) is the probability of a simple
single-causal success. P (e ≥ ek ← cj11 , ..., c

jq
q ) = P (e ≥ ek|cj11 , ..., c

jq
q , c0z : cz ∈ C \X) (j > 0)

is the probability of a congregate multi-causal success, where X = {c1, ..., cq} (q > 1), and may
be denoted as P (e ≥ ek ← x+).

Interactions among causes may be reinforcing or undermining as defined below.

Definition 1 Let ek be an active effect value, R = {W1,W2, ...} be a partition of a set X ⊆ C
of causes, R′ ⊂ R, and Y = ∪Wi∈R′Wi. Sets of causes in R reinforce each other relative to ek,
iff ∀R′ P (e ≥ ek ← y+) ≤ P (e ≥ ek ← x+). They undermine each other iff ∀R′ P (e ≥ ek ←
y+) > P (e ≥ ek ← x+).

A NAT has multiple NIN-AND gates. A direct gate involves disjoint sets of causesW1, ...,Wm.
Each input event is e ≥ ek ← w+

i (i = 1, ...,m) (successes) and its output event is e ≥ ek ←
w+

1 , ..., w
+
m. Fig. 1 (a) shows one with each Wi being a singleton. Probability of the output event

Figure 1: (a) A multi-valued direct NIN-AND gate. (b) A dual NIN-AND gate. (c) A NAT.

is P (e ≥ ek ← w+
1 , ..., w

+
m) =

∏m
i=1 P (e ≥ ek ← w+

i ). Each input event of a dual gate is
e < ek ← w+

i (failure) and its output event is e < ek ← w+
1 , ..., w

+
m, as Fig. 1 (b). Probability

of the output is P (e < ek ← w+
1 , ..., w

+
m) =

∏m
i=1 P (e < ek ← w+

i ). Direct gates express
undermining among causes and dual gates express reinforcement. Fig. 1 (c) shows a NAT, where
causes h1 and h2 reinforce each other, so do b1 and b2, but the two groups undermine each other.

Each NAT model uniquely determines the pairwise causal interaction (PCI) between each pair
of variables ci and cj (i 6= j), denoted by the PCI bit pci(ci, cj) ∈ {u, r} (r for reinforcing) (Xiang
and Truong (2014)). The NAT in Fig. 1 (c) has pci(h1, h2) = r and pci(h1, b2) = u. A PCI pattern
(the collection of PCI bits over all pairs of variables) uniquely determines a NAT.

To significantly reduce space and inference time of BNs, each (target) CPT can be compressed
into a NAT model (Xiang and Jiang (2016)). A partial PCI pattern is first extracted from the target
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CPT, and is used to retrieve a small subset of candidate NATs. Constrained gradient descent over
each NAT then searches for parameters. The NAT model that has the minimal distance from the
target CPT defines the compressed model.

3. The Task and Challenges

To compress a general target CPT into a NAT model, a key step is to extract a partial PCI pattern
(with some bits unspecified). Given causes ci and cj (i 6= j), an atomic interaction is that between
a pair of active cause values cvi and cwj , relative to an active effect value ek. We refer to it as a
value-pair interaction relative to ek, and denote by pci(ek, cvi , c

w
j ) ∈ {u, r}.

A NAT model has ∀k>0 ∀v>0 ∀w>0 pci(e
k, cvi , c

w
j ) = pci(ci, cj). However, a target CPT, un-

less already a NAT model, generally has pci(ek, cvi , c
w
j ) 6= pci(ek

′
, cv

′
i , c

w′
j ) if k 6= k′, v 6= v′ or

w 6= w′. That is, value-pair interactions for the same variable pair may be inconsistent. Hence,
to extract pci(ci, cj), we first determine pci(ek, cvi , c

w
j ) for each combination of k, v, w, and then

induce pci(ci, cj).
A leaky cause represents all causes that are not explicitly named. We denote the leaky cause

by c0 and other causes by c1, ..., cn. The c0 may or may not be persistent. A non-persistent c0
is not always active, and can be modeled the same way as other causes. A target CPT with a
non-persistent leaky cause has P (e|c0, c1, ..., cn) fully specified where P (e0|c00, c01, ..., c0n) = 1 and
P (ek|c00, c01, ..., c0n) = 0 for k > 0.

A PLC is always active. We model c0 ∈ {c00, c10}, and c0 = c10 always holds. Hence, a target
CPT has the form P (e|c10, c1, ..., cn). This has two implications. First, parameters P (e|c00, c1, ..., cn)
are not empirically available, since the condition (c00, c1, ..., cn) never holds. Second, since c0 is a
persistent, uncertain cause, we have 0 < P (e|c10, c01, ..., c0n) < 1.

PLC raises an issue to CPT compression. Since P (e|c00, c1, ..., cn) is undefined, the target CPT
is formed P ′(e|c1, ..., cn) (only n causes) = P (e|c10, c1, ..., cn). One may be misled by the form
P ′(e|c1, ..., cn) and not model c0 explicitly. This choice, however, suffers from several limitations.
First, the resultant NAT model is incapable of expressing causal interactions between c0 and other
causes, and adjusting parameters accordingly. Second, the NAT model M incurs systematic error
PM (ek|c01, ..., c0n) = 0 for k > 0. Third, the search for parameters cannot be based on KL distance.
Each term of KL distance from a target CPT PT is formed PT (i) log(PT (i)/PM (i)), where i
indexes probabilities. Since PM (ek|c01, ..., c0n) = 0 (k > 0) while PT (ek|c01, ..., c0n) > 0 due to
PLC, KL distance is undefined (is infinity).

To avoid these limitations, one may choose to model c0 explicitly in the compressed NAT
model. This, however, encounters the following difficulty. To determine value-pair interaction
pci(ek, cvi , c

w
j ) where i, j, k, v, w > 0, we need to compare P (e ≥ ek ← cvi ), P (e ≥ ek ← cwj ),

and P (e ≥ ek ← cvi , c
w
j ), but none of them is available since c0 is a PLC. To overcome the diffi-

culty, it is plausible to compare instead the available P (e ≥ ek ← c10, c
v
i ), P (e ≥ ek ← c10, c

w
j ),

and P (e ≥ ek ← c10, c
v
i , c

w
j ). We show below that value-pair interaction pci(ek, cvi , c

w
j ) cannot be

uniquely determined by the comparison.

Proposition 1 Let c0, ci, cj be causes where ci and cj are reinforcing. There exist NAT models
among c0, ci, cj , where P (e ≥ ek ← c10, c

v
i , c

w
j ) > P (e ≥ ek ← c10, c

v
i ), as well as NAT models

where the opposite holds.
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Proposition 1 shows that, when ci and cj are reinforcing (pci(ek, cvi , c
w
j ) = r) with

P (e ≥ ek ← cvi , c
w
j ) > max(P (e ≥ ek ← cvi ), P (e ≥ ek ← cwj )),

we cannot guarantee P (e ≥ ek ← c10, c
v
i , c

w
j ) > max(P (e ≥ ek ← c10, c

v
i ), P (e ≥ ek ← c10, c

w
j )).

Proposition 2 Let c0, ci, cj be causes where ci and cj are undermining. There exist NAT models
among c0, ci, cj , where P (e < ek ← c10, c

v
i , c

w
j ) > P (e < ek ← c10, c

v
i ), as well as NAT models

where the opposite holds.

Proposition 2 shows that when ci and cj are undermining (pci(ek, cvi , c
w
j ) = u) with

P (e ≥ ek ← cvi , c
w
j ) < min(P (e ≥ ek ← cvi ), P (e ≥ ek ← cwj )),

we cannot guarantee P (e ≥ ek ← c10, c
v
i , c

w
j ) < min(P (e ≥ ek ← c10, c

v
i ), P (e ≥ ek ← c10, c

w
j )).

From Propositions 1 and 2, it follows that pci(ek, cvi , c
w
j ) cannot be determined soly based on com-

paring P (e ≥ ek ← c10, c
v
i ), P (e ≥ ek ← c10, c

w
j ), and P (e ≥ ek ← c10, c

v
i , c

w
j ).

Although c0 is used in Propositions 1 and 2, their proofs (omitted) do not depend on c0 being
a PLC. Hence, both propositions apply to any distinct causes c, ci and cj . It then also follows that
simple comparison of multi-causal probabilities from NATs with additional causes beyond ci and
cj cannot help determine pci(ek, cvi , c

w
j ).

In the following sections, we present a solution to meet this challenge.

4. Determine PCI Bits by SubNAT Differentiation

We observe that the above extraction of pci(ek, cvi , c
w
j ) focuses on ci and cj only. It fails since the

existence of PLC c0 deprives us of the necessary target probabilities. To overcome this difficulty, we
expand our focus to include c0. That is, instead of trying to estimate the causal interaction between
ci and cj , we estimate the causal interactions among c0, ci and cj . The inclusion of PLC c0 implies
that we are now able to conduct the analysis based on the following available target probabilities
over only c0, ci and cj :

P (e ≥ ek ← c10), P (e ≥ ek ← c10, c
v
i ), P (e ≥ ek ← c10, c

w
j ), and P (e ≥ ek ← c10, c

v
i , c

w
j ).

We do so by extending the analysis (Xiang and Jiang (2016)) on binary NAT models (where all
variables are binary).

Fig. 2 enumerates all possible (sub)NAT models for the value tuple (c10, c
v
i , c

w
j , e

k). For each
NAT, value-pair interactions relative to ek are summarized in Table 1. For a target CPT, if we can
identify which NAT in Fig. 2 characterizes the underlying causal interactions, we can obtain the
three corresponding value-pair interactions from Table 1.

To this end, we analyze the six pair-wise comparisons of the four available target probabilities.
The result is summarized in Proposition 3 and Table 2.

Proposition 3 Let c0, ci, and cj be multi-valued causes and Ta through Th be alternative NAT
models over them. The pair-wise comparisons among the following as listed in Table 2 hold.

P (e ≥ ek ← c10), P (e ≥ ek ← c10, c
v
i ), P (e ≥ ek ← c10, c

w
j ), and P (e ≥ ek ← c10, c

v
i , c

w
j )
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Figure 2: (Sub)NATs over c0, ci and cj

Ta Tb Tc Td Te Tf Tg Th
pci(ek, c10, c

v
i ) r u u r u r r u

pci(ek, c10, c
w
j ) r u r u u r u r

pci(ek, cvi , c
w
j ) r r r r u u u u

Table 1: Value-pair interactions of NAT models

From Proposition 3, it follows that Ta, Tb, Te, and Tf can be uniquely identified based on
comparisons in the first three rows. Td and Tg as a group can be identified based on comparisons in
the first two rows, and so can Tc and Th as a group. However, the two members in each group cannot
be differentiated by the comparisons (a partial solution). The analysis in (Xiang and Jiang (2016)) is
limited to binary NAT models, but otherwise has the similar nature of being a partial solution. The
above result is more general and covers multi-valued NAT models. In the next section, we explore
a novel idea to extend the partial solution into a complete solution.

5. NAT Group Member Differentiation

The technique described above on average allows unique identification of 50% (4 out of 8) of the
NAT models over c0, ci and cj . From Table 1, this means that 50% of value-pair interactions
pci(ek, cvi , c

w
j ), where i, j > 0, can be identified.

From the last two rows of Table 2, both members of group {Td, Tg} have the same value-pair
interactions pci(ek, c10, c

v
i ) and pci(ek, c10, c

w
j ). The same is true for the group {Tc, Th}. Hence,

pci(ek, c10, c
v
i ) and pci(ek, c10, c

w
j ) can always be uniquely identified, even though the underlying

NAT cannot be uniquely determined. This means that all pci(ek, c10, c
v
i ) and pci(ek, c10, c

w
j ) can be

identified uniquely.
On the other hand, from the last column of Table 1, we observe that pci(ek, cvi , c

w
j ) differs

between Td and Tg, and so does between Tc and Th. This implies that 50% of pci(ek, cvi , c
w
j ), where

i, j > 0, cannot be identified, which causes the corresponding PCI bit pci(ci, cj) to be unspecified.
Since the number of candidate NATs grow exponentially on the number of unspecified PCI bits, the
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Row Ta Tb Te Tf Td Tg Tc Th
P (e ≥ ek ← c10, c

v
i , c

w
j )

1 −P (e ≥ ek ← c10, c
v
i ) + + − − − − + +

P (e ≥ ek ← c10, c
v
i , c

w
j )

2 −P (e ≥ ek ← c10, c
w
j ) + + − − + + − −

P (e ≥ ek ← c10, c
v
i , c

w
j )

3 −P (e ≥ ek ← c10) + − − + +/− +/− +/− +/−
P (e ≥ ek ← c10, c

v
i )

4 −P (e ≥ ek ← c10, c
w
j ) +/− +/− +/− +/− + + − −

P (e ≥ ek ← c10, c
v
i )

5 −P (e ≥ ek ← c10) + − − + + + − −
P (e ≥ ek ← c10, c

w
j )

6 −P (e ≥ ek ← c10) + − − + − − + +

Table 2: Pairwise causal probability comparison by NAT models

existence of a large number of such bits will have a significant consequence on the complexity of
subsequent search computation.

To resolve the difficulty, we explore a novel idea below. Consider P (e ≥ ek ← c10, c
v
i ). If c0

and ci are undermining, we have P (e ≥ ek ← c10, c
v
i ) = P (e ≥ ek ← c10)P (e ≥ ek ← cvi ). The

parameter P (e ≥ ek ← cvi ) is unavailable, but we can estimate from the available by

P (e ≥ ek ← cvi ) = P (e ≥ ek ← c10, c
v
i )/P (e ≥ ek ← c10).

If c0 and ci are reinforcing, we have P (e < ek ← c10, c
v
i ) = P (e < ek ← c10)P (e < ek ← cvi ), and

can estimate P (e < ek ← cvi ) = P (e < ek ← c10, c
v
i )/P (e < ek ← c10).

For both members of group {Td, Tg}, c0 and ci are reinforcing, and c0 and cj are undermining.
If we can estimate P (e ≥ ek ← cvi ) and P (e ≥ ek ← cwj ) (called single-causals) accordingly from
the available parameters

P (e ≥ ek ← c10, c
v
i ), P (e ≥ ek ← c10, c

w
j ), and P (e ≥ ek ← c10),

we can then plug in the two single-causals and P (e ≥ ek ← c10) to Td and Tg, and obtain the
multi-causals Pd(e ≥ ek ← c10, c

v
i , c

w
j ) and Pg(e ≥ ek ← c10, c

v
i , c

w
j ). The NAT whose multi-causal

is closer to P (e ≥ ek ← c10, c
v
i , c

w
j ) from the target CPT will be chosen since it better models

interactions among c0, ci and cj .
For group {Tc, Th}, c0 and ci are undermining in both NATs, and c0 and cj are reinforcing. The

similar method can be applied to differentiate the two members.
Although the idea seems to have resolved the above difficulty, it is not always applicable. As an

example, we observed a target CPT where

P (e ≥ ek ← c10, c
v
i , c

w
j ) = 0.574, P (e ≥ ek ← c10, c

v
i ) = 0.283,

P (e ≥ ek ← c10, c
w
j ) = 0.651, and P (e ≥ ek ← c10) = 0.845.
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Applying comparisons in rows 1 and 2 of Table 2, it fits the group {Tc, Th} with (+,−). However,
since P (e ≥ ek ← c10, c

w
j ) < P (e ≥ ek ← c10), c0 and cj do not reinforce as Tc and Th expected.

As the result, estimation of P (e ≥ ek ← cwj ) by reinforcement is not applicable.
Applying comparisons in rows 5 and 6 of Table 2, the above example has the comparisons

(−,−). They do not match those of Tc and Th, and that is the source of failure to the above attempt.
This observation suggests that the above idea works only when comparisons in rows 5 and 6 have
the right match. It also suggests that when the comparisons mismatch, comparisons in rows 5 and 6
can be used for identifying NATs.

Following this hint and using comparisons (−,−) in rows 5 and 6, we obtain the new NAT
group {Tb, Te} with the matching comparisons. Since comparisons (+,−) in rows 1 and 2 differ
from Tb and Te (each by one comparison), we need to break the tie between Tb and Te. This can be
done by estimating single-causals P (e ≥ ek ← cvi ) and P (e ≥ ek ← cwj ) assuming undermining,
which will now succeed. We then estimate P (e ≥ ek ← c10, c

v
i , c

w
j ) for Tb and Te, and use the

multi-causal that is closer to the target CPT to select one.
As another example, we also observed a target CPT where

P (e ≥ ek ← c10, c
v
i , c

w
j ) = 0.960, P (e ≥ ek ← c10, c

v
i ) = 0.970,

P (e ≥ ek ← c10, c
w
j ) = 0.929, and P (e ≥ ek ← c10) = 0.733.

Applying comparisons in rows 1 and 2 of Table 2, it fits the group {Td, Tg} with (−,+). The
comparisons in rows 5 and 6 of Table 2 are (+,+), making estimation of P (e ≥ ek ← cwj ) by
undermining inapplicable. In response, we apply the similar procedure as above to differentiate
instead between Ta and Tf .

In summary, from the target probabilities

P (e ≥ ek ← c10), P (e ≥ ek ← c10, c
v
i ), P (e ≥ ek ← c10, c

w
j ), and P (e ≥ ek ← c10, c

v
i , c

w
j ),

we first use comparisons in rows 1, 2 and 3 (breaking ties arbitrarily) to identify the subNAT. If this
leads to a group of two subNATs, we estimate the single-causals, compute the implied multi-causals,
and differentiate between the group members. If the single-causal estimation is not applicable for
the group, we use comparisons in rows 5 and 6 to find an alternative group of two subNATs. We
then estimate the single-causals, compute the implied multi-causals, and differentiate between group
members. This is elaborated in Algorithm 1, where we denote

P (e ≥ ek ← c10), P (e ≥ ek ← c10, c
v
i ), P (e ≥ ek ← c10, c

w
j ), and P (e ≥ ek ← c10, c

v
i , c

w
j ),

by q, r, s and t, respectively.
In Algorithm 1, ties may occur in sign computation and difference comparison. Such cases

rarely occur, and we break ties arbitrarily for simplicity. Proposition 4 establishes the most impor-
tant property of Algorithm 1. Although we omit the proof, the above analysis serves as an intuitive
justification.

Proposition 4 For any target probabilities

P (e ≥ ek ← c10), P (e ≥ ek ← c10, c
v
i ), P (e ≥ ek ← c10, c

w
j ), and P (e ≥ ek ← c10, c

v
i , c

w
j ),

Algorithm 1 returns a unique NAT among Ta through Th, subject to arbitrary tie-breaking.
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Algorithm 1 (Input: q, r, s and t)
compute sign pattern pat1 = (sign(t− r), sign(t− s), sign(t− q));
if pat1 matches that of Ta, Tb, Te, or Tf , return the matching NAT;
compute sign pattern pat2 = (sign(r − q), sign(s− q));
if pat2 matches that of {Td, Tg} or {Tc, Th}, do

estimate single-causals x ≡ P (e ≥ ek ← cvi ) and y ≡ P (e ≥ ek ← cwj ) by matching group;
for each member NAT Tβ of the matching group, do

compute multi-causal z ≡ P (e ≥ ek ← c10, c
v
i , c

w
j ) from single-causals q, x, y and NAT Tβ;

compute difference |t− z|;
return the NAT with the smaller difference;

match pat2 against that of {Ta, Tf} or {Tb, Te};
estimate x′ ≡ P (e ≥ ek ← cvi ) and y′ ≡ P (e ≥ ek ← cwj ) by the matching group;
for each member T ′

β of the matching group, do
compute z′ ≡ P (e ≥ ek ← c10, c

v
i , c

w
j ) from q, x′, y′ and T ′

β;
compute difference |t− z′|;

return the NAT with the smaller difference;

Given a value-tuple (ek, c10, c
v
i , c

w
j ), once the NAT model is identified, the three value-pair inter-

actions can be found from Table 1. Hence, Proposition 4 implies that PCI bit identification under
PLC is solved completely by Algorithm 1.

6. Effect-Dependent PCI Patterns and Partial Distance Measures

Once value-pair interactions pci(ek, cvi , c
w
j ) have been identified for a given pair of variables ci and

cj (over all v, w > 0), the effect-dependent PCI bit pci(ek, ci, cj) can be determined by a majority
vote over all pci(ek, cvi , c

w
j ).

Let the number of active values of ci and cj be δi and δj . Given ek, the total number of distinct
pci(ek, cvi , c

w
j ) is δi× δj . If both δi and δj are odd, the number of pci(ek, cvi , c

w
j ) votes is odd. Since

each vote is binary, a majority vote is guaranteed and pci(ek, ci, cj) is either r or u. If one of δi and
δj is even, then δi × δj is even, and a tie vote may occur. It signifies that the two alternative causal
interactions are equally supported by analysis of P (e ≥ ek ← c10), P (e ≥ ek ← c10, c

v
i ), P (e ≥

ek ← c10, c
w
j ), and P (e ≥ ek ← c10, c

v
i , c

w
j ). We assign null to pci(ek, ci, cj) in such case. As the

result, pci(ek, ci, cj) will be substituted by both r and u in subsequent search for parameters (see
below).

With pci(ek, ci, cj) so assigned for each i and j, an effect-dependent PCI pattern relative to ek

is well-defined. It is generally a partial PCI pattern as some bits are null. There are a total of η
effect-dependent PCI patterns. Options exist on how to use them to generate candidate NATs. At the
most efficient extreme, one of them is selected to be the PCI pattern (effect independent and made of
PCI bits pci(ci, cj)). The effect-dependent PCI pattern with the least null bits may be selected, and
it generates the least number of candidate NATs. At the least efficient extreme, all η PCI patterns
are selected and they generate the most number of candidate NATs (this is used in our experiment
below). Other options in between exist and the trade-off is between efficiency and accuracy of the
final NAT model.

After the candidates NATs are generated, the constrained gradient descent is applied to each
candidate NAT to search for single-causals of the NAT model. Note that explicit modeling of PCL
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ensures that KL distance is well-defined. The descent therefore minimizes KL distance between the
target CPT PT and the NAT model CPT PM ,

KL(PT , PM ) =
∑
i

PT (i)log
PT (i)

PM (i)
,

where i indexes parameters in PT and PM . In our experiment (Sec. 7), we also report average Eu-

clidean distanceED(PT , PM ) =
√

1
K

∑K
i=1(PT (i)− PM (i))2, whereK counts parameters in PT .

In computation of KL and ED, note that all parameters of PT are in the form of PT (e|c10, c1, ..., cn).
On the other hand, PM contains more parameters, including all in the form PM (e|c0, c1, ..., cn),
where c0 is uninstantiated. Only the parameters PM (e|c10, c1, ..., cn) are used in the KL and ED
calculation.

7. Experiments

The effectiveness of PLC-based CPT compression (PLC-Comp) is compared with 3 alternatives.
One method (PLC-Opt) evaluates all NAT models exhaustively (no NAT selection by PCI pattern).
Another method (NPLC-Comp) does not model PLC (Xiang and Jiang (2016)). The 3rd method
(NMAX) is noisy-MAX, which does not model PLC either.

We conducted three groups of experiments using a laptop (Intel i7-3632QM CPU at 2.20 GHz).
The 1st group evaluates accuracy of PLC-Comp against the optimal baseline PLC-Opt. The 2nd
group compares PLC-Comp, NPLC-Comp, and NMAX on randomly generated CPTs. The 3rd
group compares the three methods on real-world BN CPTs.

7.1 Compression Accuracy Relative to the Optimal

PLC-Comp and PLC-Opt are run on 30 randomly generated CPTs, each of n = 3 causes with sizes
of variable domains bounded at 4. The value n = 3 is selected since both methods must evaluate
NATs of n′ = n + 1 = 4 causes (with an extra PLC). For n′ = 4, the total number of NATs is 52
and, and for n′ = 5, the number is 472. Since each NAT must be evaluated by PLC-Opt, to keep the
computation cost down, we choose n = 3 and n′ = 4.

PLC-Opt PLC-Comp
Mean Stdev Mean Stdev

ED 0.142 0.032 0.145 0.033
KL 2.791 1.826 2.919 1.918
RT 59.1 39.9 13.8 11.8
SR 5.47 1.39 5.47 1.39

Table 3: Performance summary of PLC-Opt and PLC-Comp

Table 3 summarizes the results with sample means and standard deviations of both distance mea-
sures, runtime (RT) in seconds, and space reduction (SR). SR is the ratio of numbers of independent
parameters between the target CPT and the NAT model. For instance, if n = 4 and k = 3 for all
variables, the CPT has 35 − 1 = 242 parameters. A NAT model without PLC has (2× 2)× 4 = 16
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and SR = 242/16 = 15.13. With PLC, the number of single-causals is (2× 2)× 4 + 2× 1 = 18
and hence SR = 242/18 = 13.44.

As shown, ED from PLC-Comp is only slightly larger (0.145) than PLC-Opt (0.142), but using
only 23% of runtime. In fact, PLC-Comp returned same optimal model in 14 out of the 30 CPTs.
It demonstrates that the PCI pattern extraction (Sections 4 and 5) reduces the NAT search space
effectively to a good subspace. The 23% scale of time saving is limited by the small n value due to
the nature of this experiment, and is expected to be much more significant for larger n.

7.2 Compression of Random CPTs

PLC-Comp, NPLC-Comp, and NMAX are run on 50 randomly generated CPTs, each of n = 5
causes with sizes of variable domains bounded at 4. This group compares PLC-Comp using noisy-
MAX as the baseline. It also compares explicit PLC modeling versus absence of such modeling.

Strictly speaking, KL distance is well defined only for PLC-Comp, but not so for NPLC-Comp
and NMAX, due to the issue discussed in Section 3. It has been suggested to replace 0 probabil-
ity in PT by a small constant (Zagorecki and Druzdzel (2013)). The KL values of NPLC-Comp
and NMAX in Table 4 are obtained instead by omitting the η + 1 terms corresponding to target
probabilities P (e|c01, ..., c0n).

PLC-Comp NPLC-Comp NMAX
Mean Stdev Mean Stdev Mean Stdev

ED 0.234 0.074 0.256 0.069 0.381 0.094
KL 96.181 88.654 126.470 97.403 305.586 225.428
RT 56.32 60.51 21.97 21.23 1.74 1.35
SR 33.59 16.41 36.73 17.47 36.73 17.47

Table 4: Performance summary of PLC-Comp, NPLC-Comp, and NMAX

As shown in Table 4, both PLC-Comp and NPLC-Comp have smaller compression errors than
NMAX, demonstrating the superior expressiveness of NAT modeling over noisy-MAX. PLC-Comp
has the smallest error, demonstrating the advantage of explicit PLC modeling. Note that NPLC-
Comp and NMAX achieve the same space reduction (36.73). SR by PLC-Comp is slightly less due
to the extra parameters associated with modeling PLC.

7.3 Real-world BN CPTs

From the book website (Nagarajan et al. (2013)), we obtained 11 real-world BNs, excluding MUNIN
subnets and binary BNs. From them, 61 CPTs are selected where the child variable has at least 3
parents, the CPT is not almost functional (close to extreme probabilities), and PLCs exist. The CPTs
are divided into 5 groups by size: Small (20 CPTs, size ∈ (0, 200]), Medium (21 , (200, 1000]),
Large (5, (1000, 2000]), Very Large (11, (2000, 5000), and Massive (4, > 5000). PLC-Comp,
NPLC-Comp, and NMAX are run on each CPT. Only EDs (more intuitive) are reported for space.

As shown in Table 5, both PLC-Comp and NPLC-Comp have smaller compression errors than
NMAX, and PLC-Comp has the smallest error. Furthermore, EDs by PLC-Comp from all groups
are smaller than that of random CPTs (0.234), but the errors do not increase as the CPT sizes become
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PLC-Comp NPLC-Comp NMAX
Size Mean Stdev Mean Stdev Mean Stdev

Small ED 0.137 0.091 0.185 0.067 0.205 0.074
RT 12.81 12.26 4.49 8.81 0.85 1.02
SR 9.58 6.00 10.80 6.32 10.80 6.32

Medium ED 0.183 0.095 0.210 0.060 0.246 0.071
RT 21.69 13.82 14.49 10.70 1.56 1.20
SR 9.38 3.72 10.44 3.95 10.44 3.95

Large ED 0.217 0.089 0.226 0.087 0.244 0.098
RT 86.07 78.22 61.53 40.56 8.47 5.26
SR 17.14 8.89 18.23 9.02 18.23 9.02

Very Large ED 0.167 0.074 0.175 0.077 0.185 0.081
RT 367.83 230.65 368.70 434.14 45.12 56.38
SR 18.78 7.73 19.72 7.76 19.72 7.76

Massive ED 0.187 0.047 0.190 0.046 0.255 0.058
RT 4089.62 2945.41 1577.83 788.06 120.58 35.30
SR 117.12 56.60 121.15 58.71 121.15 58.71

Table 5: Performance of PLC-Comp, NPLC-Comp, and NMAX for real-world BN CPTs

larger (resulting in more than 100 times space reduction). Note that NMAX is much faster as it does
not evaluate alternative NAT topologies.

8. Conclusion

Compression of BN CPTs into NAT models can reduce the space and time complexity for BN
inference significantly (Xiang and Jin (2016)). Coupled with other supporting techniques, e.g.,
multiplicative factorization, they will enable BN inference to be deployed in low resource devices.
Many real-world BN CPTs behave as if there is a PLC. Whether such a leaky cause should be
explicitly modeled during compression is the focus of this work. Either choice is associated with
limitations or difficulties.

We opted for explicit modeling of PLC. We presented a novel method to overcome the lack
of relevant target probabilities in extracting PCI patterns. It significantly reduces the NAT search
space for subsequent model selection. Our method is theoretically well-founded in comparison to
not modeling PLC, which requires practical remedies such as replacing zero model probabilities by
small constant or omitting these terms in KL distance calculation. Experimentally, the explicit PLC
modeling better captured causal interactions and improved compression accuracy. As a future work,
sensitivity of posteriors from BN inference to the compression will be evaluated.
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