
1 Interface Verification for Multiagent

Probabilistic Inference

Y. Xiang and X. Chen

University of Guelph, Guelph, Ontario, Canada

Abstract. Multiply sectioned Bayesian networks support representation of prob-
abilistic knowledge in multiagent systems. To ensure exact, distributed reasoning,
agent interfaces must satisfy the d-sepset condition. Otherwise, the system will be-
have incorrectly. We present a method that allows agents to verify cooperatively the
d-sepset condition through message passing. Each message reveals only partial in-
formation on the adjacency of a shared node in an agent’s local network. Hence, the
method respects agent’s privacy, protects agent vendors’ know-how, and promotes
integration of multiagent systems from independently developed agents.

1.1 Introduction

As the cost of computers and networking continues to drop and distributed
systems are widely deployed, users are expecting more intelligent behaviors
from such systems – multiagent systems (MAS) [14]. Agents in an MAS
perform a set of tasks depending on the particular application domain. A
common task is for a set of cooperative agents to determine what is the cur-
rent state of the domain so that they can act accordingly. Agents monitoring
a piece of equipment need to determine whether the equipment is function-
ing normally and, if not, which components have failed. Agents populating
a smart house should recognize the current need of inhabitants and adjust
the appliances accordingly. Similar situations arise in other domains such as
cooperative design, battle field assessment, and surveillance. Often agents
have only uncertain knowledge about the domain and must perform the task
based on partial observations. Such a task has been termed distributed in-
terpretation [7] by some authors. We shall refer to it as multiagent situation
assessment.

Different approaches have been proposed to tackle multiagent situation
assessment. Blackboard [10] offers a framework for multiagent inference and
cooperation. It does not dictate how uncertain knowledge should be repre-
sented nor offers any guarantee of inference coherence. DATMS [8] and DTMS
[4] offer inference frameworks based on default reasoning. Relation between
BDI model and decision-tree is studied in [12]. Reasoning about the men-
tal state of an agent from the received communication is considered by [2].
Monitoring whether a multiagent system is functioning normally by focus-
ing on agent-relation is investigated in [5]. Emotions of agents are studied
using decision theory in [3]. Proving hypotheses by agents with distributed



2 Y. Xiang and X. Chen

knowledge using dialectical argumentation is proposed in [9]. Multiply sec-
tioned Bayesian networks (MSBNs) [15] provide a framework where agents’
knowledge can be encoded with graphical models and agent’s belief can be
updated by distributed, exact probabilistic reasoning. Multiagent MSBNs
(MAMSBNs) are the focus of this work.

Distributed and exact inference requires that an MAMSBN observes a
set of constraints [15]. When building an MAMSBN, these constraints on the
knowledge representation need to be verified before inference for situation
assessment takes place. Otherwise, garbage-in-garbage-out may occur and the
resultant MAS will not reason correctly. When agents are autonomous and
may be constructed by independent vendors (hence privacy of agents becomes
an issue), verification of these constraints raises a challenge. In this work, we
study verification of agent interface. We present a method that verifies the
correctness of agent interfaces in an MAMSBN without compromising agent
autonomy and privacy.

Section 1.2 briefly overviews MAMSBNs and introduces formal back-
ground necessary for the remainder of the paper.

1.2 Overview of MAMSBNs

A BN [11] S is a triplet (N,G,P ), where N is a set of domain variables,
G is a DAG whose nodes are labeled by elements of N , and P is a joint
probability distribution (jpd) over N . In an MAMSBN, a set of n > 1 agents
A0, ..., An−1 populates a total universe V of variables. Each Ai has knowledge
over a subdomain Vi ⊂ V encoded as a Bayesian subnet (Vi, Gi, Pi). The col-
lection of local DAGs {Gi} encodes agents’ knowledge of domain dependency.
Distributed and exact reasoning requires these local DAGs to satisfy some
constraints [15] described below:

Let Gi = (Vi, Ei) (i = 0, 1) be two graphs. The graph G = (V0 ∪ V1, E0 ∪
E1) is referred to as the union of G0 and G1, denoted by G = G0 t G1. If
each Gi is the subgraph of G spanned by Vi, we say that G is sectioned into
Gi (i = 0, 1). Local DAGs of an MAMSBN should overlap and be organized
into a hypertree.

Definition 1 Let G = (V,E) be a connected graph sectioned into subgraphs
{Gi = (Vi, Ei)}. Let the Gis be organized as a connected tree Ψ , where each
node is labeled by a Gi and each link between Gk and Gm is labeled by the
interface Vk ∩ Vm such that for each i and j, Vi ∩ Vj is contained in each
subgraph on the path between Gi and Gj in Ψ . Then Ψ is a hypertree over
G. Each Gi is a hypernode and each interface is a hyperlink.

Each hyperlink serves as the information channel between agents con-
nected and is referred to as an agent interface. To allow efficient and exact
inference, each hyperlink should render the subdomains connected condition-
ally independent. It can be shown (by extending results in [15]) that this
implies the following structural condition.



1 Interface Verification for Multiagent Probabilistic Inference 3

Definition 2 Let G be a directed graph such that a hypertree over G exists.
A node x contained in more than one subgraph with its parents π(x) in G is
a d−sepnode if there exists one subgraph that contains π(x). An interface
I is a d−sepset if every x ∈ I is a d-sepnode.

The overall structure of an MAMSBN is a hypertree MSDAG:

Definition 3 A hypertree MSDAG D =
⊔

iDi, where each Di is a
DAG, is a connected DAG such that (1) there exists a hypertree ψ over D,
and (2) each hyperlink in ψ is a d-sepset.

1U

0U

U

U

U 3

2

4

(a)

D 1 D 4

D 2I0,1

I
I

I

1,2
2,4

2,3

D 3D 0 (b)

Fig. 1.1. (a) A digital system of five components. (b) The hypertree modeling.

Table 1.1. Agent communication interfaces.

Interface Interface Composition

I0,1 {a0, b0, c0, e0, f0, g1, g2, x3, z2}

I1,2 {g7, g8, g9, i0, k0, n0, o0, p0, q0, r0, t2, y2, z4}

I2,3 {a2, b2, d1, d2, d3, s0, u0, w0, x0, y0, z0}

I2,4 {e2, h2, i2, j2, t4, t5, t7, w2, x4, y4, z5}

As a small example, Figure 1.1 (a) shows a digital system with five com-
ponents Ui (i = 0, ..., 4). Although how components are interfaced, as shown
in (a), and the set of interface variables, as shown in Table 1.1, are known to
the system integrator, internal details of each component are proprietary. To
give readers a concrete idea on the scenario, a centralized perspective of the
digital system is shown in Figure 1.2.

The subnets for agents A1 and A2 are shown in Figures 1.3 and 1.4, where
each node is labeled by the variable name and an index. The agent interface
I1,2 between them contains 13 variables and is a d-sepset. For instance, the



4 Y. Xiang and X. Chen

Priority levels

1
v7

k0 0

0
o0

g8

k1z0 t0

0

0

1

g0
z2

1

0

1

0

i0

i2

g6

w5

1

_

d9
q2

o1

c0

b0

w6
v4

d4

z3t1

p0

e0

l1

z5

w2

z1

g3 x3

g5
y1

p1

q1

j2

w7
v5

h2
v6

w8t9

t3

w9
s0i1

x0
t8

n0

x4

d7

g7

1

_0

1

0

a0 0

U

_

_

m2

1

s1

1

0

1_

U

0

z4

0
1

w0

_0

0

1

0

U2

3U

4U

0

l2 0

0

v1
1 0

0

o2

1

0

1

0

1

1

0

1

0

f1
1

1

1

_

_

_

0

1

0

0

1

0

1

1

1 0

_0

0_

1_

d3u0
b2

x5

y0 d8 n1

d2

g9

d1

r0t2
q0

d6

y2

a2

n2

g2

f0
g1

g4

s2

d5

t4 t5
e2

t6

t7

d0

y4

Fig. 1.2. A digital system.

Fig. 1.3. The subnet D1 for U1.



1 Interface Verification for Multiagent Probabilistic Inference 5

parents of z4 are all contained in D2, while those of n0 are contained in both
D1 and D2.

Fig. 1.4. The subnet D2 for U2.

In an MAMSBN integrated from agents from different vendors, no agent
has the perspective of Figure 1.2, nor the simultaneous knowledge of D1 and
D2. Only the nodes in an agent interface are public. All other nodes in a
subnet are private and known to the corresponding agent only. This forms
the constraint of many operations in an MAMSBN, e.g., triangulation [17]
and communication [16]. Using these operations, agents can reason about
their environment probabilistically based on local observations and limited
communication. More formal details on MAMSBNs can be found in references
noted above.

1.3 The issue of cooperative verification

Each agent interface in an MAMSBN should be a d-sepset (Def. 2). When an
MAS is integrated from independently developed agents, there is no guarantee



6 Y. Xiang and X. Chen

that this is the case. Blindly performing MAMSBN operations on the MAS
would result in incorrect inference. Hence, agent interfaces need to be verified.

An agent interface is a d-sepset if every public node in the interface is a
d-sepnode. However, whether a public node x in an interface I is a d-sepnode
cannot be determined by the pair of local graphs interfaced with I. It depends
on whether there exists a local DAG that contains all parents π(x) of x in G.
Any local DAG that shares xmay potentially contain some parent nodes of x.
Some parent nodes of x are public, but others are private. For agent privacy,
it is desirable not to disclose parentship. Hence, we cannot send the parents
of x in each agent to a single agent for d-sepnode verification. Cooperation
among all agents whose subdomains contain x or parents of x is required to
verify whether x is a d-sepnode. We refer to the unverified structure of an
MAS as a hypertree DAG union.

In presenting our method, we will illustrate using examples. Although
MAMSBNs are intended for large problem domains, many issues in this paper
can be demonstrated using examples of much smaller scale. Hence, we will
do so for both comprehensibility as well as space. Readers should keep in
mind that these examples do not reflect the scales to which MAMSBNs are
applicable. Due to space limit, proofs for some formal results are omitted.

1.4 Checking private parents

A public node x in a hypertree DAG union G may have public or private
parents or both. Three cases regarding its private parents are possible: more
than one local DAG (Case 1), exact one local DAG (Case 2), or no local DAG
(Case 3) contains private parents of x. The following proposition shows that
the d-sepset condition is violated in Case (1).

Proposition 4 Let a public node x in a hypertree DAG union G be a d-
sepnode. Then no more than one local DAG of G contains private parent
nodes of x.

Proof: Assume that two or more local DAGs contain private parent nodes
of x. Let y be a private parent of x contained in a local DAG Gi and z
be a private parent of x contained in Gj(i 6= j). Then there cannot be any
one local DAG that contains both y and z. Hence no local DAG contains all
parents of x, and x is not a d-sepnode by Def. 2, which is a contradiction.
�

Figure 1.5 shows how this result can be used to detect non-d-sepnodes.
We refer to the corresponding operation as CollectPrivateParentInfo. To
verify if the public node j is a d-sepnode, suppose that agents perform a
rooted message passing (shown by arrows in (a)). Agent A4 sends a count 1
to A3, signifying that it has private parents of j. A3 has no private parents of
j. It forms its own count 0, adds the count from A4 to its own, and sends the



1 Interface Verification for Multiagent Probabilistic Inference 7

4

m

G

3G

(b)
p

i
G0

jf

j

k

l

j

k

l r

q

G1

b

e

f

g

h

d

c

a 2G
h

g

f

k

l

ji

o

s

t
u

v

0G 2G

1G

G43G

n

{f,i,j}

{f,g,h}

{j,k,l}
{j,k,l}

Ψ

(a)

Fig. 1.5. A hypertree DAG union with the hypertree in (a) and local DAGs in (b).

result 1 to A2. Because A1 does not contain j, it does not participate in this
operation. Hence, A2 receives a message only from A3. Because A2 has only
a public parent i of j, it forms its own count 0, adds the count from A3 to its
own, and sends the result 1 to A0. Upon receiving the message, A0 forms its
own count 1, for it has a private parent p of j. It adds the count from A2 to
obtain 2 and the message passing halts. The final count signifies that there
are two agents which contain private parents of j. Hence, j is a non-d-sepnode
and the hypertree DAG union has violated the d-sepset condition.

1.5 Processing public parents

If CollectPrivateParentInfo on a public node x results in a final count
less than or equal to 1, then no more than one agent contains private parents
of x (Cases (2) and (3) above). The hypertree DAG union G, however, may
still violate the d-sepset condition. Consider the example in Figure 1.6. The
public nodes are w, x, y, z. No local DAG has any private parent of x or
z. Only G0 has a private parent of y, and only G2 has a private parent of
w. Hence, CollectPrivateParentInfo will produce a final count ≤ 1 for
each of w, x, y, z. However, no single local DAG contains all parents of x:
π(x) = {w, y}. Therefore, x is not a d-sepnode according to Def. 2 and none
of the agent interfaces is a d-sepset.



8 Y. Xiang and X. Chen

2G

0G G3G2

1

G1

G
0G

G3

x x
x x

y y

z z

w wa

b c

d

e

f

g

h

i

j

(b)

{x,y,z} {x} {w,x} Ψ

(a)

Fig. 1.6. A hypertree DAG union G with the hypertree in (a) and local DAGs in
(b).

The example illustrates that final counts from CollectPrivateParentInfo
only provide a necessary condition for d-sepset verification. To determine if
G satisfies the d-sepset condition conclusively, agents still need to further
process the public parents of public nodes.

First, we consider Case 3, where no local DAG contains private parents
of x. Case 2 will be considered in Section 1.6.

1.5.1 Public parent sequence

We propose the following concept called public parent sequence to describe
the distribution of public parents π(x) of a public node x on a hyperchain
DAG union denoted as 〈G0, G1, ..., Gm〉. We use X ./ Y to denote that sets
X and Y are incomparable (neither is the subset of the other).

Definition 5 Let 〈G0, G1, ..., Gm〉 (m ≥ 2) be a hyperchain of local DAGs,
where x is a public node, each Gi contains either x or some parents of x, and
all parents of x are public. Denote the parents of x that Gi (0 < i < m) shares
with Gi−1 and Gi+1 by π−

i (x) and π+
i (x), respectively. Denote the parents of

x that Gm shares with Gm−1 by π−
m(x). Then the sequence

(π−
1 (x), π−

2 (x), ..., π−
m(x))

is the public parent sequence of x on the hyperchain. The sequence is
classified into the following types, where 0 < i < m:

Identical For each i, π−
i (x) = π+

i (x).
Increasing For each i, π−

i (x) ⊆ π+
i (x), and there exists i such that π−

i (x) ⊂
π+

i (x).
Decreasing For each i, π−

i (x) ⊇ π+
i (x), and there exists i such that π−

i (x) ⊃
π+

i (x).



1 Interface Verification for Multiagent Probabilistic Inference 9

Concave One of the following holds:
1. For m ≥ 3, there exists i such that the subsequence (π−

1 (x), ..., π−
i (x))

is increasing and the subsequence (π−
i (x), ..., π−

m(x)) is decreasing.
2. There exists i such that π−

i (x) ./ π−
i+1(x); the preceding subsequence

(π−
1 (x), ..., π−

i (x)) is trivial (i = 1), increasing, or identical; and the
trailing subsequence (π−

i+1(x), ..., π
−
m(x)) is trivial (i = m − 1), de-

creasing, or identical.
Wave One of the following holds:

1. There exists i such that π−
i (x) ⊃ π+

i (x) and j > i such that either
π−

j (x) ⊂ π+
j (x) or π−

j (x) ./ π+
j (x).

2. There exists i such that π−
i (x) ./ π+

i (x) and j > i such that either
π−

j (x) ⊂ π+
j (x) or π−

j (x) ./ π+
j (x).

32 G4GG

0

G

G 3

G

G G4

1

2

G

G

G2

1

G1

G

G3

0

0 G4

{x,a,b,...}

{x,a,...}

{x,a,b,c,...}

{x,a,b,...}

{x,a,b,...}

{x,a,b,...}

{x,a,b,...}

{x,a,b,...}

{x,a,b,...}

{x,a,...}

{x,a,b,c,...}

{x,a,b,...}

(a)

(b)

(c)

Fig. 1.7. Public parent sequences. (a) An identical sequence. (b) An increasing
sequence. (c) A decreasing sequence.

Figure 1.7 illustrates the first three sequence types, where only x and its
parents are shown explicitly in each agent interface. Identical sequence is
illustrated in (a). Each Gi contains π(x) = {a, b}, and hence x is a d-sepnode.
Increasing sequence is exemplified in (b). From i = 1 to m, each Gi contains
either the identical public parents of x or more. Because Gm contains π(x),
x is a d-sepnode. Decreasing sequence is exemplified in (c). It is symmetric
to the increasing sequence; G0 contains π(x) and x is a d-sepnode.

For Concave sequence, some parents of x appear in the middle of the
hyperchain but not on either end. Figure 1.8 illustrates two possible cases.
In (a), the parent b of x is contained in G1, G2, and G3 but disappears in
G0 and G4 and c is contained in G2 and G3 but disappears in G0, G1, and
G4. Two local DAGs (G2 and G3) in the middle of the hyperchain contain
π(x) , and hence x is a d-sepnode. In (b), an increasing subsequence ends at
π−

2 (x), and a decreasing subsequence starts at π−
3 (x) with π−

2 (x) and π−
3 (x)

incomparable. Because G2 contains π(x), x is a d-sepnode.
Figure 1.9 illustrates two possible cases of Wave sequence. In (a), a parent

d of x appears at one end of the hyperchain, another parent c appears at the



10 Y. Xiang and X. Chen

4G1 G3G

G

G

G2

G

G

2

0 G3

0

1 G4

{x,a,b,...}

{x,a,b,d,...}

{x,a,b,c,...}

{x,a,b,c,...}

{x,a,...}

{x,a,b,c...}

{x,a,...}

{x,a,...} (a)

(b)

Fig. 1.8. Concave parent sequences.

4G1 G3G

G

G

G2

G

G

2

0 G3

0

1 G4

(b)

(a)

{x,a,b...}

{x,a,b,d,...}

{x,a,b,...}

{x,a,b,...}

{x,a,d,...}

{x,a,b,...}

{x,a,b,c,...}

{x,a,c,d...}

Fig. 1.9. Wave parent sequences.

other end, and they disappear in the middle of the hyperchain. In other
words, we have π−

1 (x) ⊃ π+
1 (x) and π−

3 (x) ⊂ π+
3 (x). No local DAG contains

all parents of x, and hence x is not a d-sepnode. In (b), we have π−
2 (x) and

π+
2 (x) being incomparable and π−

3 (x) ⊂ π+
3 (x).

The following theorem states that the five parent sequences are exhaus-
tive. They are also necessary and sufficient to identify d-sepnode.

Theorem 6 Let x be a public node in a hyperchain 〈G0, G1, ..., Gm〉 of local
DAGs with π(x) being the parents of x in all DAGs, where no parent of x is
private and each local DAG contains either x or some parents of x.

1. There exists one local DAG that contains π(x) if and only if the public
parent sequence of x on the hyperchain is identical, increasing, decreasing,
or concave.

2. There exists no local DAG that contains π(x) if and only if the public
parent sequence of x on the hyperchain is of the wave type.

Proof:
We prove the statement 1 first:
[Sufficiency] If the sequence type is identical, then every local DAG con-

tains π(x). If the type is increasing, then at least Gm contains π(x). If the
type is decreasing, then at least G0 contains π(x). If the type is concave, for
Case (1) (see Definition 5), both Gi and Gi−1 contain π(x). For Case (2), Gi

contains π(x).
[Necessity] Suppose that there exists a local DAG that contains π(x).

We show that the parent sequence of x is identical, increasing, decreasing or
concave.



1 Interface Verification for Multiagent Probabilistic Inference 11

If every local DAG contains π(x), then π−
j (x) = π+

j (x) for each j and the
sequence is identical. Otherwise, if G0 contains π(x), then π−

j (x) ⊇ π+
j (x) for

each j and the sequence is decreasing. Otherwise, if Gm contains π(x), then
π−

j (x) ⊆ π+
j (x) for each j and the sequence is increasing.

Otherwise, if both Gi and Gi−1 contain π(x) for some i (2 ≤ i ≤ m− 1),
then π−

j (x) ⊆ π+
j (x) for each j ≤ i−1 and the subsequence (π−

1 (x), ..., π−
i (x))

is increasing, and π−
j (x) ⊇ π+

j (x) for each j ≥ i and the subsequence
(π−

i (x), ..., π−
m(x)) is decreasing. The entire parent sequence falls under con-

cave type Case (1).
Otherwise, if only one local DAG Gi contains π(x), then

π−
i (x) ⊂ π(x) and π+

i (x) ⊂ π(x).

We show π−
i (x) ./ π+

i (x) by contradiction. If they are comparable, then

either π−
j (x) ⊆ π+

j (x) or π−
j (x) ⊃ π+

j (x).

We have

π−
j (x) ⊆ π+

j (x) ⊂ π(x) or π(x) ⊃ π−
j (x) ⊃ π+

j (x),

which implies that π(x) contains a private parent of x: a contradiction. Fur-
thermore, the subsequence (π−

1 (x), ..., π−
i (x)) must be trivial, increasing, or

identical, and the subsequence (π−
i+1(x), ..., π

−
m(x)) must be trivial, decreas-

ing, or identical. Hence, the entire parent sequence falls under concave type
Case (2).

Next, we prove the statement 2:
[Sufficiency] Suppose that the sequence is of the wave type. For wave type

Case (1) in Definition 5, we have π−
i (x) ⊃ π+

i (x). It implies that Gi−1 and
Gi contain a parent, say y, of x that is not contained in Gi+1. It cannot be
contained in any Gk where k > i + 1 owing to the hyperchain. If π−

j (x) ⊂
π+

j (x) holds, then Gj+1 and Gj contain a parent, say z, of x that is not
contained in Gj−1. It cannot be contained in any Gk, where k < j − 1. In
summary, only local DAGs G0, ..., Gi may contain y (not necessarily all of
them contain y), and only Gj, ..., Gm may contain z. Because i < j, no local
DAG contains both y and z.

If π−
j (x) ./ π+

j (x), it implies that Gj+1 and Gj contain a parent, say z,
of x that is not contained in Gj−1, and Gj−1 and Gj contains a parent, say
w, of x that is not contained in Gj+1. Because the same condition as above
holds, no local DAG contains both y and z. For wave type Case (2), the same
conclusion can be drawn.

[Necessity] Suppose that no local DAG contains π(x). Then there exists
a pair of local DAGs Gi and Gj (i < j) such that the following hold:

1. The DAG Gi contains a parent, say y, of x that is not contained in Gj,
and Gi is the closest such local DAG to Gj on the hyperchain.



12 Y. Xiang and X. Chen

2. The DAG Gj contains a parent, say z, of x that is not contained in Gi,
and Gj is the closest such local DAG to Gi on the hyperchain.

3. No other local DAGs contain both y and z.

Clearly, we have either π−
i (x) ⊃ π+

i (x) or π−
i (x) ./ π+

i (x), and either π−
j (x) ⊂

π+
j (x) or π−

j (x) ./ π+
j (x). Hence, the sequence is of the wave type. �

1.5.2 Cooperative verification in hyperchain

To identify the sequence type by cooperation, agents on the hyperchain pass
messages from one end to the other, say, from Gm to G0. Each agent Ai

passes a message to Ai−1 formulated based on the message that Ai receives
from Ai+1 as well as on the result of comparison between π−

i (x) and π+
i (x).

Note that Ai+1 is undefined for Am.
We partition the five public parent sequence types into three groups and

associate each group with a message coded using an integer, as shown in
Table 1.2.

Table 1.2. Message code according to public parent sequence types

type group code

decreasing or identical -1

increasing or concave 1

wave 0

Agents pass messages according to the algorithm CollectPublicPar-
entInfoOnChain as defined below:

Algorithm 1 (CollectPublicParentInfoOnChain)

If Ai+1 is undefined, agent Ai passes -1 to Ai−1. Otherwise, Ai receives a
message from Ai+1, compares π−

i (x) with π+
i (x), and sends its own message

according to one of the following cases:

1. The message received is -1:
If π−

i (x) ⊇ π+
i (x), Ai passes -1 to Ai−1.

Otherwise, Ai passes 1 to Ai−1.
2. The message received is 1:

If π−
i (x) ⊆ π+

i (x), Ai passes 1 to Ai−1.
Otherwise, Ai passes 0 to Ai−1.

3. The message received is 0: Ai passes 0 to Ai−1.



1 Interface Verification for Multiagent Probabilistic Inference 13

We demonstrate how agents cooperate using examples in Figures 1.7
through 1.9. In Figure 1.7 (a), -1 is sent from A4 to A3 and is passed along
by each agent until A0 receives it. Interpreting the message code, A0 con-
cludes that the parent sequence is either identical or decreasing. Because
the actual sequence is identical, the conclusion is correct.

In (b), A3 receives -1 from A4 and sends 1 to A2. Afterwards, 1 is passed
all the way to A0, which determines that the sequence is either increasing
(actual type) or concave.

In (c), -1 is sent by each agent. The conclusion drawn by A0 is to classify
the type of sequence as either identical or decreasing (actual type).

In Figure 1.8 (a), A3 receives -1 from A4 and sends -1 to A2. Agent A2

sends 1 to A1, which passes it to A0. Agent A0 then concludes that the
sequence type is either increasing or concave, where concave is the actual
type. In (b), -1 is sent from A4 to A3 and then to A2. Agent A2 sends 1 to
A1, which is passed to A0.

In Figure 1.9 (a), A3 receives -1 from A4 and sends 1 to A2. Agent A2

passes 1 to A1, which in turn sends 0 to A0. Agent A0 then interprets the
sequence type as a wave, which matches the actual type. In (b), A3 receives
-1 from A4 and sends 1 to A2. Agent A2 sends 0 to A1, which passes 0 to A0.

In summary, each agent on the hyperchain can pass a code message for-
mulated based on the message it receives and the comparison of the public
parents it shares with the adjacent agents. The message passing starts from
one end of the hyperchain and the type of the public parent sequence can
be determined by the agent in the other end. In this cooperation, no agent
needs to disclose its internal structure.

1.5.3 Cooperative verification in hypertree

We investigate the issue in a general hypertree, and let agents to cooperate
in a similar way as in a hyperchain. However, the message passing is directed
towards an agent acting as the root of the hypertree.

Consider first the case in which the root agent Ai has exactly two ad-
jacent agents A1 and A2. If an agent Ai has a downstream adjacent agent
Ak, we denote the parents of x that Ai shares with Ak by πk(x). In Sec-
tion 1.5.2, Ai receives message from A1 and sends message to A2, so the only
information that agent Ai needs to process is the message received from A1.
Here, Ai receives messages from both A1 and A2. Thus, Ai has three pieces
of information: two messages received from adjacent agents and a comparison
between π1(x) and π2(x). The key to determine whether x is a d-sepnode is
to detect whether its public parent sequence along any hyperchain, on the
hypertree, is the wave type. A wave sequence can be detected based on one
message received by Ai only (when the hyperchain from Ai to a terminal
agent is a wave), or if not sufficient based on both messages received, or if
still not sufficient based in addition on the comparison between π1(x) and
π2(x).



14 Y. Xiang and X. Chen

The idea can be applied to a general hypertree where Ai has any finite
number of adjacent agents. Now Ai must take into account the three pieces
of information for each pair of adjacent agents. Consider the hypertree in

G

G

3

0

1GG2 G G

G4

5 6

{x,c,...}

G7

{x,a,...}

{x,d,...}

{x,c,...}{x,a,b,...}

{x,a,b,c,d,...}

{x,d,...}

Fig. 1.10. Parents π(x) of a d-sepnode x shared by local DAGs in a hypertree.

Figure 1.10. If A0 is the root, then messages will be passed towards A0 from
terminal agents A2, A4, and A7. After agents send messages according to
CollectPublicParentInfoOnChain, A0 receives -1 from each of A1, A3,
and A5. This implies that the parent sequence type of each hyperchain from
A0 to a terminal agent is either identical or decreasing. Hence agent A0

can conclude that itself contains π(x) and x is a d-sepnode.

7G
3G

G0

1GG2 G

G4

5

{x,d,...}{x,a,...}

{x,a,b,...}

{x,d,e,...}

{x,d,...}

G6

{x,d,...}
{x,d,...}

Fig. 1.11. Parents π(x) of a non-d-sepnode x shared by local DAGs in a hyperstar.

In Figure 1.11, suppose that A5 is the root. Messages will be passed to-
wards A5 from terminal agents A2, A4, and A7. Agent A0 will receives -1
from A1 and 1 from A3. It realizes that each hyperchain from A0 down-
stream through A1 is either identical or decreasing and the hyperchain
from A0 downstream through A3 is either increasing or concave. Because
the messages are not sufficient to conclude, A0 compares π1(x) with π3(x).
It discovers that they are incomparable. This implies that there exist a hy-
perchain H1 from A0 downstream through A1 and a hyperchain H3 from A0

downstream through A3 such that when H1 is joined with H3 the resultant
hyperchain has a wave parent sequence. Hence, A0 will pass the code mes-



1 Interface Verification for Multiagent Probabilistic Inference 15

sage 0 to A5. Based on this message, the root agent A5 concludes that x is
not a d-sepnode. The conclusion is correct because no local DAG contains
both a and e.

The following algorithm describes the actions a typical agent A0 performs.

Algorithm 2 (CollectPublicParentInfo(x))

1. Receive a message mi from each downstream adjacent agent Ai.
2. (a) If any message is 0, A0 sends 0 to the upstream agent Ac.

(b) Otherwise, if any two messages are 1, A0 sends 0 to Ac.
(c) Otherwise, if a message mi is 1, then A0 compares πi(x) with πj(x)

for each downstream adjacent agent Aj . If j is found such that πi(x) 6⊇
πj(x), A0 sends 0. If not found, A0 sends 1.

(d) Otherwise, continue.
3. A0 compares each πi(x) with the parents πc(x) shared with Ac. If there

exists i such that πc(x) 6⊇ πi(x), then A0 sends 1 to Ac. Otherwise, A0

sends -1.

The following theorem establishes that d-sepnode condition can be verified
correctly by agent cooperation through CollectPublicParentInfo.

Theorem 7 Let a hypertree of local DAGs {Gi} be populated by a set of
agents. Let x be a public node with only public parents in the hypertree. Let
agents pass messages according to CollectP ublicP arentInfo(x).

Then x is a non-d-sepnode if and only if the root agent returns 0.

1.6 Cooperative verification in a general hypertree

We consider cooperative verification of the d-sepnode condition when both
public and private parents of a public nodes are present. Agents who popu-
late such a hypertree can first perform CollectprivateParentInfo to find
out whether more than one local DAG contains private parents of x. If two or
more agents are found to contain private parents of x, then agents can con-
clude, by Proposition 4, x is a non-d-sepnode. If no agent is found to contain
private parents of x, then agents can perform CollectPublicParentInfo
with any agent being the root to determine if x is a d-sepnode.

On the other hand, if one agent A0 is found to contain private parents
of x, then agents can perform CollectPublicParentInfo with A0 being the
root to determine if x is a d-sepnode. Note that it is necessary for A0 to be
the root. For instance, in Figure 1.10, if A2 is the only agent that contains
the private parents of x, when CollectPublicParentInfo is performed with
the root A0, agent A0 cannot conclude as in Section 1.5.3. Clearly, although
A0 contains all public parents of x, it does not contain the private parents
of x. Hence, it is unknown to A0 whether there is an agent containing all
parents of x. In this case, it depends on whether A2 is such an agent.

The following algorithm summarizes the method.



16 Y. Xiang and X. Chen

Algorithm 3 (VerifyDsepset)
Let a hypertree DAG union G be populated by multiple agents with one at

each hypernode. For each public node x, agents cooperate as follows:

1. Agents perform CollectprivateP arentInfo. If more than one agent
is found to contain private parents of x, conclude that G violates the
d-sepset condition.

2. If no agent is found to contain private parents of x, agents perform
CollectP ublicP arentInfo with any agent A0 as the root. If A0 gen-
erates the message 0, conclude that G violates the d-sepset condition.
Otherwise, conclude that G satisfies the d-sepset condition.

3. If a single agent A0 is found to contain private parents of x, then agents
perform CollectP ublicP arentInfo with A0 as the root. If A0 gen-
erates the message -1, conclude that G satisfies the d-sepset condition.
Otherwise, conclude that G violates the d-sepset condition.

It can be proven that VerifyDsepset accomplishes the intended task
correctly:

Theorem 8 Let a hypertree DAG union G be populated by multiple agents.
After VerifyDsepset is executed in G, it concludes correctly with respect to
whether G satisfies the d-sepset condition.

1.7 Complexity

We show that multiagent cooperative verification by VerifyDsepset is ef-
ficient. We denote the maximum cardinality of a node adjacency in a local
DAG by t; the maximum number of nodes in an agent interface by k; the
maximum number of agents adjacent to any given agent on the hypertree by
s; and the total number of agents by n.

Each agent may call CollectPrivateParentInfo O(k s) times – one for
each shared node. Each call may propagate to O(n) agents. Examination of
whether a shared node has private parents in a local DAG takes O(t) time.
Hence, the total time complexity for checking private parents is O(n2 k s t).

Next, we consider processing of public parents after checking private par-
ents succeeds positively. The computation time is dominated by Collect-
PublicParentInfo. Each agent may call CollectPublicParentInfoO(k s)
times. Each call may propagate to O(n) agents. When processing public par-
ent sequence information, an agent may compare O(s) pairs of agent inter-
faces. Each comparison examines O(k2) pairs of shared nodes. Hence, the
total time complexity for processing public parents is O(n2 k3 s2). The over-
all complexity of VerifyDsepset is O(n2 (k3 s2+k s t)) and the computation
is efficient.



1 Interface Verification for Multiagent Probabilistic Inference 17

1.8 Alternative Methods of Verification

Some alternative verification methods to VerifyDsepset are worth consid-
ering. We analyze alternative methods that deviate from VerifyDsepset
around two aspects: first, verification by centralizing the parent set informa-
tion; and second, verification by asynchronous message passing.

According to Definition 2, to determine whether a public node x is a d-
sepnode, one needs to know whether a local DAG contains π(x). For Case 3 of
Section 1.4, π(x) contains only public parents. Hence, it appears that a direct
test whether there exists a local DAG containing π(x) can be employed.

To put this idea to work, for each such public node x, one needs to cen-
tralize the information on π(x) somehow. This can be done in at least two
ways. The first is to let agents propagate the information on public parents
of x through the hypertree. Two passes (inwards and then outwards) are
sufficient so that every agent knows about π(x). Each can then determine
whether π(x) is contained locally.

The drawback of this alternative is that information on each element in
π(x) is disclosed to agents that may not share the element. Note that π(x) is
public only in the sense that each variable in π(x) is shared by two or more
agents. An agent that shares one variable in π(x) may not share another.
Hence, this alternative publicizes π(x) beyond what is necessary.

An alternative is to collect the information on π(x) by a single agent A.
Each agent containing x needs to send information on its public parents of
x to A. After A collected information on π(x), A checks with each agent
whether it contains the entire π(x).

This method restricts the access to information on π(x) to a single agent
and is superior than the previous method as far as the privacy issue is con-
cerned. On the other hand, VerifyDsepset does not require such a central-
ized agent at all. One may argue that in the construction of an MAMSBN, an
integrator (Section 1.2) already knows all the public variables and is a suit-
able candidate for A. Note, however, that the integrator only needs to know
what are interface variables. It does not need to know the structural (parent)
information on public variables. In summary, although the alternative meth-
ods appear to be much simpler, VerifyDsepset provides the highest level of
privacy for internal structural information of agents.

Next, we consider an alternative method for message passing. VerifyD-
sepset uses a number of rooted message propagations. For instance, Collect-
PrivateParentInfo shown in Figure 1.5 can be performed by first propa-
gating a control message from the root agent A0 (located at G0) to the leaf
agents A1 and A4, and then propagating the private parent information from
A1 and A4 back to A0. Alternatively, message passing in a tree structure can
be performed in an asynchronous fashion such as that used in Shafer-Shenoy
belief propagation [13]:

In an asynchronous message passing, each agent on the tree sends one
message to each neighbor. It can send a message to a neighbor only after



18 Y. Xiang and X. Chen

it has received a message from each other neighbor (and, in general, the
message sent is dependent on the received messages). Figure 1.12 illustrates
an asynchronous message passing. In (a), agents A2, A4 and A5 are the only

(c)

(b)

(a)

0

A

A

1

A0

1

3

A

4A

A2A 5

A

3

3A

A0

A2 A

A 4

5

A2 A

A 4

5

1A

A

Fig. 1.12. Asynchronous message passing

ones that are able to send the message (shown by arrows). In (b), A3 has
received message from A4 and is now ready to send to A0. Similarly, A1 is
ready to send to A0. In (c), A0 has received messages from A1 and A5 and is
ready to send to A3. For similar reasons, it is also ready to send to A1 and
A5. Afterwards, A1 can send to A2, and A3 can send to A4 (not shown). The
asynchronous message passing is then completed.

An asynchronous message passing sends exactly the same set of messages
by each agent as in a rooted message passing. Therefore, in principle, Veri-
fyDsepset could be performed by asynchronous message passing. However,
depending on whether the MAMSBN is open or closed, the rooted message
passing can be more advantageous, as analyzed below.

When an MAMSBN is closed (agent membership does not change), in-
terface verification needs to be performed once for all. For rooted message
passing, a root agent needs to be selected and agreed by all (otherwise, no
agent will act as the root or multiple of them will). For asynchronous mes-
sage passing, all leaf agents (with exactly one neighbor) must agree on roughly



1 Interface Verification for Multiagent Probabilistic Inference 19

when to start (otherwise, some may start and wait for ever for others). In ei-
ther case, a value needs to be agreed upon (who is the root or when to start).
For how agents can reach such an agreement, see Coulouris et al. [1]. The
point is, an equivalent amount of effort is needed in either case. Therefore,
there does not seem to be any reason to favor one method of message passing
over the other when an MAMSBN is closed.

On the other hand, when an MAMSBN is open, verification may need to
be performed again when additional agents join. For asynchronous message
passing, all leaf agents must reach another agreement. For rooted message
passing, as long as the previous root agent is still a member, it can continue
to function as the root. No new agreement is needed. Hence, rooted mes-
sage passing has an advantage over asynchronous message passing when an
MAMSBN is open.

1.9 Conclusion

We present a method to verify agent interface in an MAS whose knowledge
representation is based on MSBNs. To ensure exact, distributed probabilistic
inference, agent interfaces must be d-sepsets. Using our verification method,
agents only pass concise messages among them without centralized control.
A message reveals only partial information about the parenthood of a public
node without disclosing additional details on the agent’s local DAG. Hence,
the method respects agent’s privacy, protects agent vendors’ know-how, and
promotes integration of MAS from independently developed agents.

MSBNs support both modular, exact probabilistic inference in single
agent systems and exact, distributed probabilistic inference in MAS. The
connection between MSBNs and OOBNs was explored by Koller and Pfeffer
[6]. Although OOBNs are intended for single agent systems, the object in-
terfaces also have to satisfy the d-sepset condition. The approach taken was
to require all arcs from one network segment to another to follow the same
direction. Owing to this requirement, the d-sepset condition is automatically
satisfied in a hypertree DAG union. No verification is required. On the other
hand, the requirement does restrict the dependency structures to a proper
subset of general MSBNs. For instance, in the MAMSBN for monitoring the
digital system (Figure 1.2), arcs may go either way between a pair of adjacent
local DAGs. The method presented in this paper allows agent interfaces to
be verified efficiently in a general MAMSBN.

Acknowledgements

The funding support from Natural Sciences and Engineering Research Coun-
cil (NSERC) of Canada to the first author is acknowledged.



20 Y. Xiang and X. Chen

References

1. G. Coulouris, J. Dollimore, and T. Kindberg. 2001. Distributed Systems: Con-
cepts and Design, 3rd Ed. Addison-Wesley.

2. A.F. Dragoni, P. Giorgini, and L. Serafini. 2001. Updating mental states from
communication. In Intelligent Agents VII: Agent Theories, Architectures and
Languages. Springer-Verlag.

3. P.J. Gmytrasiewicz and C.L. Lisetti. 2000. Using decision theory to formalize
emotions for multi-agent systems. In Second ICMAS-2000 Workshop on Game
Theoretic and Decision Theoretic Agents, Boston.

4. M.N. Huhns and D.M. Bridgeland. 1991. Multiagent truth maintenance. IEEE
Trans. Sys., Man, and Cybernetics, 21(6):1437–1445.

5. G. Kaminka and M. Tambe. 1999. I’m ok, you’re ok, we’re ok: experiments in
centralized and distributed socially attentive monitoring. In Proc. Inter. Confer-
ence on Automonomous Agents.

6. D. Koller and A. Pfeffer. 1997. Object-oriented Bayesian networks. In D. Geiger
and P.P. Shenoy, editors, Proc. 13th Conf. on Uncertainty in Artificial Intelli-
gence, pages 302–313, Providence, Rhode Island.

7. V.R. Lesser and L.D. Erman. 1980. Distributed interpretation: a model and
experiment. IEEE Trans. on Computers, C-29(12):1144–1163.

8. C.L. Mason and R.R. Johnson. 1989. DATMS: a framework for distributed
assumption based reasoning. In L. Gasser and M.N. Huhns, editors, Distributed
Artificial Intelligence II, pages 293–317. Pitman.

9. P. McBurney and S. Parsons. 2001. Chance discovery using dialectical argu-
mentation. In T. Terano, T. Nishida, A. Namatame, S. Tsumoto, Y. Ohsawa,
and T. Washio, editors, New Frontiers in Artificial Intelligence, Lecture Notes in
Artificial Intelligence Vol. 2253, pages 414–424. Springer-Verlag.

10. H.P. Nii. 1986. Blackboard systems: the blackboard model of problem solving
and the evolution of blackboard architectures. AI Magazine, 7(2):38–53.

11. J. Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann.

12. A. Rao and M. Georgeff. 1991. Deliberation and its role in the formation of
intentions. In B. D’Ambrosio, P. Smets, and P.P. Bonissone, editors, Proc. 7th
Conf. on Uncertainty in Artificial Intelligence, pages 300–307. Morgan Kaufmann.

13. G. Shafer. 1996. Probabilistic Expert Systems. Society for Industrial and
Applied Mathematics, Philadelphia.

14. K.P. Sycara. 1998. Multiagent systems. AI Magazine, 19(2):79–92.
15. Y. Xiang and V. Lesser. 2000. Justifying multiply sectioned Bayesian networks.

In Proc. 6th Inter. Conf. on Multi-agent Systems, pages 349–356, Boston.
16. Y. Xiang. 2000. Belief updating in multiply sectioned Bayesian networks with-

out repeated local propagations. Inter. J. Approximate Reasoning, 23:1–21.
17. Y. Xiang. 2001. Cooperative triangulation in MSBNs without revealing subnet

structures. Networks, 37(1):53–65.


