1 Lazy Inference in Multiply Sectioned
Bayesian Networks Using Linked Junction
Forests

Yang Xiang and Xiaoyun Chen

University of Guelph, Canada

Abstract. Lazy propagation reduces the space complexity from HUGIN inference.
Multiply Sectioned Bayesian Networks extend Bayesian Networks a cooperative
multiagent paradigm. To combine the benefits of the two, a framework was proposed
earlier to apply lazy propagation to inference in MSBNs. We propose an alternative
framework with a simpler compiled structure. The issues of lazy communication
and observation entering in a multiagent setting are considered. We prove that the
inference is exact.

1.1 Introduction

Multiply Sectioned Bayesian Networks (MSBNs) [8] extend BNs [4] to the
multiagent paradigm. The inference method is an extension of HUGIN method
for BNs using the junction tree (JT) representation. Lazy propagation [3] ex-
tends the applicability of HUGIN inference method to larger domains. It uses
a factorized representation for belief, performs only the necessary multiplica-
tion and marginalization, and results in reduced space complexity.

A framework was proposed earlier [6] to apply lazy propagation to infer-
ence in MSBNs. The compiled runtime representation requires the mainte-
nance of multiple local graphical structures for each subnet. In this work, we
propose an alternative framework for multiagent systems where only a single
local structure is needed. We propose a set of algorithms for local lazy infer-
ence at each agent, for lazy communication among agents, and for entering
observations. We prove that the lazy inference is autonomous and exact.

The alternative framework has the following advantages: Its local struc-
ture is isomorphic to that for standard inference in MSBNs. Hence, the same
set of structure compilation algorithms [8] are applicable and the same com-
pilation software components (such as those in WEBWEAVR [1]) can be
reused. It can also lead to space savings (one local structure versus several)
and resultant simplified control. Experimental evidence is expected from our
ongoing research.

We briefly overview the framework of MSBNs and lazy propagation in
Sections 1.2 and 1.3. Our overview assumes the knowledge on HUGIN and
Shafer-Shenoy inference methods in JT representations of BNs. Readers un-
familiar with these are directed to [2,5]. Readers who desire in-depth un-
derstanding of MSBNs are directed to [8]. The remaining sections develop

2 Yang Xiang and Xiaoyun Chen

the lazy propagation based new inference scheme for MSBNs. MSBNs are
intended for large and complex domains. However, many relevant concepts
can and should be illustrated with simple examples. Readers are reminded
of the discrepancy between the complexity of the examples in the paper and
that of intended applications.

1.2 Overview of MSBNs

1.2.1 Multiply Sectioned Bayesian Networks

A BN [4] can be used to structure the knowledge of a single agent. What
is its counterpart for a cooperative multiagent system? From a small set of
assumptions, it has been shown [7] that the resultant representation of a
cooperative multiagent system is an MSBN:

. exact probability measure of belief,

communication by belief over small sets of shared variables,

a simpler organization of agents,

. DAG domain structuring, and

. joint belief admitting agents’ beliefs on internal variables and combining
their beliefs on shared variables.

CU o N

Although an MSBN can be applied under the single agent paradigm, our
presentation follows the multiagent paradigm.

An MSBN M is a collection of Bayesian subnets, one from each agent,
that together defines a BN. M represents probabilistic dependence of a total
universe partitioned into multiple subdomains each of which is represented
by a subnet. Agents cooperate to reason about what is going on [8]. Without
confusion, we refer to an agent, its subdomain, and its subnet interchange-
ably from time to time. To ensure correct, distributed inference, subnets are
required to satisfy certain conditions [7] described below:

Let G; = (Ni, E;) (i = 0,1) be two graphs (directed or undirected). Go
and G are said to be graph-consistent if the subgraphs of Go and G spanned
by No N Ny are identical. Given two graph-consistent graphs G; = (N;, E;)
(1 =0,1), the graph G = (NgU Ny, Eg U E) is referred to as the union of Gg
and G1, denoted by G = Gy U G1. Given a graph G = (N, E), a partition of
N into Ny and Nj such that NgU Ny = N and Ny N Ny # @, and subgraphs
G; of G spanned by N; (i = 0,1), G is said to be sectioned into Gg and G} .
Sectioning is useful in defining the dependence between variables shared by
subdomains in a graphical model:

Definition 1 Let G = (N, E) be a connected graph sectioned into subgraphs
{G; = (N;, E;)}. Let the subgraphs be organized into an undirected tree ¥
where each node is uniquely labeled by a G; and each link between Gy and
G, is labeled by the non-empty interface Ny N N,, such that for each i and

Title Suppressed Due to Excessive Length 3

J, N;NNj is contained in each subgraph on the path between G; and G; in W.
Then ¥ is a hypertree over G. Each G; is a hypernode and each interface
is a hyperlink. A pair of hypernodes connected by a hyperlink is said to be
adjacent.

Each hyperlink serves as the information channel between subnets con-
nected and is referred to as an agent interface. Agents communicate by ex-
changing beliefs over their interfaces. An interface must be a d-sepset, as
defined below:

Definition 2 Let G be a directed graph such that a hypertree over G ezists.
A node = contained in more than one subgraph with its parents w(z) in G
is a d—sepnode if there erists at least one subgraph that contains w(x). An
interface I is o d—sepset if every x € I is a d-sepnode.

The overall structure of an MSBN is a hypertree MSDAG:

Definition 3 A hypertree MSDAG G = | |; G, where each G; is a DAG, is a
connected DAG such that (1) there exists a hypertree 1 over G, and (2) each
hyperlink in 1 is a d-sepset.

Graphically, a hyperlink separates the hypertree MSDAG into two sub-
trees. Semantically, this corresponds to conditional independence given the
d-sepset. An MSBN is then defined as follows:

Definition 4 An MSBN M is a triplet M = (N,G,P). N = |J, N; is the
total universe where each N; is a set of variables. G = | |; G; (a hyper-
tree MSDAG) is the structure where nodes of each DAG G; are labeled by
elements of N;. Let x be a variable and w(x) be all the parents of x in G.
For each z, exactly one of its occurrences (in a G; containing {z} U m(x)) is
assigned P(z|m(x)), and each occurrence in other DAGSs is assigned a con-
stant table. P = [[, Pi(N;) is the jpd, where each P;j(N;) is the product of
probability tables associated with nodes in G;. Each triplet S; = (N;,G;, P;)
is called a subnet of M. Two subnets S; and S; are said to be adjacent if
G; and G; are adjacent on the hypertree MSDAG.

An example MSBN is shown in Fig. 1.1.

1.2.2 Linked Junction Forest

Inference in an MSBN is performed based on message passing. Local infer-
ence within each agent passes intra-subnet messages which bring a subnet
into consistency. Communication among agents passes inter-subnet messages
which brings the system into global consistency. These messages are marginal
probability distributions. The key issue is to use messages over small subsets
of variables so that inference is efficient.

4 Yang Xiang and Xiaoyun Chen

Fig. 1.1. A trivial MSBN where each d-sepnode is shown with a dashed circle. The
hypertree has the structure G1 — Go — G2 and each d-sepset is {a,b, c}.

To compute intra-subnet messages and propagate them effectively, each
agent compiles its subnet into a junction tree (JT), where variables are
grouped into clusters with intersection of adjacent clusters referred to as
separators. Note that the hypertree of a MSDAG is a JT if each hypernode is
labeled by the corresponding subdomain N;. Without confusion, we simply
refer to this JT as hypertree.

Similarly, to facilitate computation of inter-subnet messages, agents com-
pile each d-sepset into a JT, called a linkage tree. With local JTs and linkage
trees combined, the resultant representation is called a linked junction forest
(LJF). For details on compilation, see [8]. See Fig. 1.2 for linkage trees L
between Ty and 77 and Lo between Ty and T5. Each cluster in a linkage tree
is called a linkage. Linkage {b, c} is an information channel between cluster
{b,c, f} in Ty and cluster {b,c,n} in Tp. They are referred to as the linkage
hosts of {b,c}.

Parallel to the structure compilation, probability tables in MSBN are
converted to potentials (non-normalized probability distributions) associated
with clusters, separators and linkages. From them, the joint system poten-
tial of LJF is defined that is equivalent to the jpd P of the MSBN. When
observations are available, each agent performs local inference in its local
JT using the HUGIN method. Communication among agents is performed
by propagation on hypertree along hyperlinks (technically along linkages).
After the communication, probabilistic queries posed to any agent can be
answered exactly relative to observations entered in the entire LJF. We refer
to the inference method as HUGIN-like inference with LJFs.

1.3 Overview of Lazy Propagation

Lazy propagation [3] is performed using the JT structure of a BN. Each
cluster is associated with a set of potentials from the BN. We refer to the
cluster of current focus by C and its set of potentials by 3. When no potential

Title Suppressed Due to Excessive Length 5

Fig. 1.2. JTs and linkage trees obtained from Fig. 1.1. Each linkage host is labeled
by *. The thick links show the relation between each linkage and its hosts.

is assigned to a cluster, 8 = (). The joint system potential of the JT is then
the product of all potentials in all clusters, denoted as B(N).

Each separator S between two adjacent clusters C' and C’ is associated
with two buffers. One buffer is used to store the message from C to C' and
the other from C’ to C. We formalize lazy propagation below as pseudo-code
algorithms so that we can refer to them in the new inference algorithms for
MSBNs. Given a cluster C, for each separator S, we shall refer to the two
buffers locally as the in-buffer and the out-buffer relative to C.

A cluster executes the following algorithm to compute and send a message
to an adjacent cluster, where \ is the set difference operator.

Algorithm 1 (SendPotential) Let C' be a cluster with §. Let adjacent
clusters be Cq,...,Cy,. Let B; be the set of potentials in the in-buffer from
C;. When SendPotential relative to Cy, is called in C, C does the following:

(1) B' = B Uiz Bi-

(2) Marginalize out variables C\Cy, from 3' . (To marginalize out variable
x, multiply potentials with x in the domain and apply marginalization to the
product.)

(8) Send the resultant set of potentials to the out-buffer to Cy.

In the following two algorithms, C' is a cluster and caller is an adjacent
cluster or the JT. The following algorithm is executed recursively by each
cluster for inward message passing.

6 Yang Xiang and Xiaoyun Chen

Algorithm 2 (CollectPotential) When caller calls CollectPotential in clus-
ter C, C does the following:

(1) If caller is the only adjacent cluster, perform SendPotential relative
to caller.

(2) Otherwise, for each adjacent cluster Q except caller, call CollectPo-
tential in Q. After all calls are completed, perform SendPotential relative to
caller if it is an adjacent cluster.

The following algorithm is executed recursively by each cluster for out-
ward message passing.

Algorithm 3 (DistributePotential) When caller calls DistributePotential
in C, for each adjacent cluster Q) except caller, C performs SendPotential rel-
ative to Q) followed by a call of DistributePotential in Q.

The following algorithm is executed by a JT for a full round of message
passing.

Algorithm 4 (UnifyPotential) Select a cluster C arbitrarily. Call Col-
lectPotential in C. Call DistributePotential in C.

The following proposition establishes the effect of UnifyPotential, where
const denotes a constant:

Proposition 5 (Proposition 3.4 in [5]) Let UnifyPotential be performed
in a JT. For any cluster C with B and in-buffer messages 8; (i = 1,...,m)
from separators R; with adjacent clusters, denote the product of potentials in
B as B(C) and the product of potentials in B; as B;(R;). Then

B(C) Hﬂz(Rl) = const Z B(N).

N\C

When observations are available, for each cluster, update each potential
whose domain contains observed variables and remove the observed variables
from the domain. Store the observed values for subsequent queries. The fol-
lowing algorithm is used to enter the observation on a variable to the JT.

Algorithm 5 (EnterObservation) When a variable x is observed at value
xg, for each cluster C (with B) containing x, do the following:

(1) Remove each potential f(x) from (.

(2) For each potential f(x,Y) in 8, where Y # 0, replace it by

9(Y) = f(z = 20,Y).

The effect of EnterObservation is such that the new joint system poten-
tial corresponds to the posterior distribution given the observation. After
EnterObservation is performed for each observed variable, followed by an
UnifyPotential, the posterior probabilities for each variable can be obtained
from any cluster that contains it.

Title Suppressed Due to Excessive Length 7

1.4 Lazy Inference With LJFs

We apply lazy propagation to inference in MSBNs. The on-line message com-
putation will be guided by LJFs, but factorized beliefs and messages will be
used as in lazy propagation. Each agent A; is associated with the subnet S;
and local JT T;.

1.4.1 Potential Assignment

Conditional probability tables (CPTs) in an MSBN are assigned to clusters
in its LJF as potentials: For each node x in each subnet S;, if it is assigned
with a non-constant CPT (see Def 4), then assign the CPT to a cluster in
local JT T; that contains z and its parents in S;. The potential associated
with a local JT T; is then

Br,(N:) = [T T Biiks
ik

where j indexes clusters, §; ; denotes the set of potentials assigned to the jth
cluster, and f3; ; ; is the kth potential in the set. The joint system potential
of the LIJF is
Bp(N) =[] Br.(Vy).
K3

Br(N) is identical to jpd of the MSBN.

1.4.2 Lazy Inference: An Example

Lazy inference consists of lazy communication among agents followed by local
lazy propagation. During lazy communication, inter-subnet messages are sent
through linkage trees. Messages are passed through a linkage tree in both
directions. Hence, a linkage between subnets S and R is associated with two
message buffers, one for each direction.

Fig. 1.3 illustrates inward propagation with root agent Ag. First, Unify-
Potential is performed by A; and A,. At T1, it causes message

B(b,c) = > _ P(c|h)B(b, h)
h
to be sent from cluster {b, ¢, h} to {b,c, f}, where

B(b,h) = P(h)Y_ P(blg,h)P(g)-

Similarly, messages P(a) and B(b) = >, B(b, h) are sent from clusters {a, d}
and {b, ¢, h} to cluster {a, b, e}, respectively. At linkage host {b, ¢, f}, message
to linkage {b, c} is computed based on local potentials plus the message from

8 Yang Xiang and Xiaoyun Chen

Fig. 1.3. Inward propagation in LJF.

cluster {b,c, h}. The resultant message is B(b,c). At linkage host {a,b,e},
message P(a)B(b) to linkage {a,b} is computed. As a consequence, both
linkages in Lo ; contain information on variable b: a duplication. To remove
the duplication, A; examines potentials at linkage {a, b} and identify B(b)
as the duplicated information on b. After B(b) is deleted, messages from Lo 1
to T become B(b, c¢) through linkage {b, ¢} and P(a) through linkage {a,b}.

At A,, UnifyPotential generates only empty messages among clusters.
Messages from linkage hosts {b,c, k} and {a,b, j} to linkages are also empty.
This concludes inward propagation.

Outward propagation follows, during which Ay sends messages to A; and
A,. To calculate messages to Ay, Ag performs UnifyPotential using linkage
messages (empty) from A, but not those from A;. All messages (intra as well
as inter-subnet) are empty in this case.

Fig. 1.4 shows outward propagation from Ag to As. Ay performs UnifyPo-
tential using linkage messages from A; but not those from A,. Message from
cluster {b,c,n} to {a,b,1} is B'(b) =) .B(b,c) and all other intra-subnet
messages are empty. Message from linkage host {b, ¢,n} through linkage {b, c}

Title Suppressed Due to Excessive Length 9

Fig.1.4. Outward propagation from Tp to T5.

to Az is B(b, ¢). The message through linkage {a, b} to Az is P(a)B'(b). Again,
information on variable b is duplicated in the two linkage messages. After du-
plication B'(b) is deleted from the message to linkage {a,b}, the resultant
messages from Ag to A are B(b, ¢) through linkage {b,c} and P(a) through
{a,b}. Lazy communication is now complete.

After communication, each agent performs inference in its JT, which al-
lows the prior probability of each variable z to be obtained from any cluster
containing z in any subnet. The local inference extends UnifyPotential by
including messages from linkages. For instance, to perform UnifyPotential in
T, cluster {b, ¢, k} includes linkage message B(b, ¢) in computing the message
to cluster {a, b, j}. To answer a query on P(b), A, picks a cluster that contains
b, say, {b, ¢, k}, and marginalizes the product of local potential P(k|b,c), mes-
sage from cluster {a,b,j} (empty in this case) and linkage message B(b, c).
Below, we present inference algorithms of which the above example is a trace.

1.4.3 Local Lazy Propagation

The most primitive operation is SendPotential. To take into account message
passing over linkages, we extend SendPotential (Algorithm 1) by extending
the notion of adjacency: Two clusters are adjacent if

(1) they are directly connected in a JT, or

(2) they are hosts of a linkage between two JTs.

We refer to the extended Algorithm 1 as SendPotential*.

We redefine CollectPotential (Algorithm 2) and DistributePotential (Al-
gorithm 3) to process messages over linkages. They use extended adjacency.
In the algorithms, C is a cluster in a JT and caller is the local agent or an
adjacent cluster not connected through a linkage.

10 Yang Xiang and Xiaoyun Chen

Algorithm 6 (CollectPotential*) When caller calls CollectPotential* in
cluster C, C does the following:

(1) If caller is the only adjacent cluster, perform SendPotential* relative
to caller.

(2) Otherwise, for each adjacent cluster Q) not connected through a link-
age except caller, call CollectPotential* in Q). After all calls are completed,
perform SendPotential* relative to caller if it is an adjacent cluster.

Note that CollectPotential* only receives messages from linkage in-buffers
and does not send to linkage out-buffers because calling CollectPotential*
across linkages is disallowed. Under the multiagent paradigm, CollectPotential*
is a local operation of an agent, while sending messages across linkages in-
volves a remote agent. CollectPotential* can be executed autonomously to
answer local queries, while message passing across linkages requires coordina-
tion and incurs communication cost. Next, we redefine DistributePotential.

Algorithm 7 (DistributePotential*) When the caller calls operation
DistributePotential* in cluster C, for each adjacent cluster Q) not connected
through a linkage except caller, C' performs SendPotential* relative to Q) fol-
lowed by a call of DistributePotential* in Q.

Local lazy propagation uses Algorithm 4, with CollectPotential* and
DistributePotential*, which we refer to as UnifyPotential*.

1.4.4 Lazy Communication

During communication, messages are sent from one agent with JT T to an
adjacent agent with JT T” through their linkage tree. The messages are orig-
inated from linkage hosts in T'. To ensure that each linkage host has the
necessary information, UnifyPotential* must be performed before these mes-
sages are computed. This renders T locally consistent. As a result, for every
two linkages adjacent in the linkage tree, the same information on their shared
variables will be sent by their hosts. If such messages are directly passed to
T', the new belief in 7" will be incorrect due to information duplication. We
consider below how to compute cross-linkage messages without information
duplication.

To compute messages going from a source JT T to a destination JT T",
the linkage tree L can be directed. For each linkage @ in L, the following
message buffers are then allocated.

in-buffer; in-buffer from the host cluster in T'.

in-buffer, in-buffer from the parent linkage in L. If () has no parent linkage,
its in-buffery is null.

out-buffer; out-buffer to the host cluster in 7".

out-buffer,, out-buffers, ... out-buffers to child linkages in L.

Title Suppressed Due to Excessive Length 11

The message from @ to T is computed as follows:

Algorithm 8 (SendLinkageMsg)
For each linkage QQ, QQ requests its linkage host to fill in-buffer; by
SendPotential* relative to Q). After both in-buffers are filled, () does the fol-
lowing:

(1) For each child linkage Q', marginalize out variables Q \ @' from po-
tentials in in-buffery, and send resultant potentials to the out-buffer to Q'.

(2) Divide the set a of potentials in in-buffer; by the set v of potentials
in in-buffers as follows and sends the resultant o to out-buffer,:

(2.1) If a potential appears in both o and v, delete it from both.

(2.2) For each potential f in vy, delete f from v, multiply the set 6 of
potentials in a whose domains overlop with that of f, and divide the product
by f. Replace 6 in o by the result of the division.

Note that sending to out-buffer; involves inter-agent message transmis-
sion. Using SendLinkageMsg, algorithms below perform lazy communication
in LJFs. In the algorithms, A is an agent and caller is the MSBN or an
adjacent agent of A. CollectBeliefLLJF defines inward lazy communication
along hypertree.

Algorithm 9 (CollectBeliefLLJF) When caller calls CollectBeliefLLJF
in agent A, A does the following:

(1) If caller is not the only adjacent agent, call CollectBeliefLLJF in each
adjacent agent except caller. After all calls are completed, receive linkage
messages from each adjacent agent except caller.

(2) If caller is an adjacent agent, do UnifyPotential* using linkage mes-
sages from each adjacent agent except caller, followed by SendLinkageMsg
relative to caller.

The inward propagation described in Section 1.4.2 is a trace of a call of
CollectBelief LLJF in Ag. Ap then calls in A; and A». DistributeBelief LLJF
below defines outward lazy communication along hypertree.

Algorithm 10 (DistributeBeliefLLIF) When caller calls DistributeBe-
liefLLJF in A, for each adjacent agent A’ except caller, A does UnifyPotential*
using linkage messages from each adjacent agent except A', followed by
SendLinkageMsg relative to A' and a call of DistributeBeliefLLJF in A'.

The outward propagation described in Section 1.4.2 is a trace of a call of
DistributeBeliefLLJF in Ag. Ag then calls it in A; and As. Since A; and A,
have no adjacent agents except Ay, recursive calls terminate. Communicate-
Belief LLJF below combines above algorithms to accomplish lazy inference in
a LJF.

Algorithm 11 (CommunicateBeliefLLJF) Select an agent A arbitrar-
ily. Call CollectBeliefLLJF in A. Call DistributeBeliefLLJF in A. Each agent
performs UnifyPotential* using linkage messages from all adjacent agents.

12 Yang Xiang and Xiaoyun Chen

An agent A calls UnifyPotential* before sending messages to each adjacent
agent. If A has k adjacent agents, then one call is made during CollectBe-
liefLLJF, k —1 calls are made during DistributeBeliefLLJF, and a final call is
made at the end of CommunicateBelief LLJF. Hence, a total of k 4+ 1 rounds
of local lazy propagations are needed to complete CommunicateBeliefLLJF.

1.5 Soundness

In the following, we use const to denote a positive constant. Proposition 6
says that messages sent over a linkage tree define the marginal potential over
the d-sepset.

Proposition 6 Let T over N be a local JT, T' be a local JT adjacent of T,
I be their d-sepset, and L be the linkage tree over I. Let UnifyPotential* be
performed in T followed by SendLinkageMsg relative to T'. Let B(N) be the
potential
BN) =] s©)]I 8@,
CeT Q'¢L

where B(C) is the product of potentials assigned to a cluster C, B(Q") is the
product of potentials received from a linkage Q', and only linkages other than
those in L are included. For each linkage Q € L, let a(Q) be the product of
potentials that Q sends to T' by SendLinkageMsg. Then

H a(Q) = const Z B(N).

Q€L N\TI

Proof:

First, we consider the effect of UnifyPotential* by applying Proposition 5.
To do so, for each cluster C in T', we define the equivalent cluster potential
of C as

g =80 I s@)
Q' —=C
where (' — C means that @' is a linkage that feeds a message to C. We
can then disregard each @' in the remaining proof and Proposition 5 is now
directly applicable.

Next, for any linkage @ € L, consider its linkage host X. From Proposi-
tion 5, after UnifyPotential*, the set of potentials (including those from its
in-buffers) associated with X defines the marginal of B(N) onto X. This
set, marginalized onto @), is sent to in-buffer; of (). Denote the product of
potentials in in-buffer; by o/(Q) and the product of potentials in in-buffer,
by ¢'(Z), where Z is the separator between) and its parent linkage. By
Proposition 7.5 of reference [8], a linkage tree is a JT. Hence,

H a'(Q)/ H 0'(Z2) = constZB(N).

Q€L Q€L N\I

Title Suppressed Due to Excessive Length 13

The proposition follows since the message that) sends to out-buffer; is

a(Q) = a'(Q)/0'(2).

O
The following theorem says that the local potential of an agent and linkage
tree messages it receives define the marginal of the joint system potential:

Theorem 7 Let F over N be the LJF of an MSBN with the joint system
potential Br(N) and let CommunicateBeliefLLJF be performed in F. Let T
be any local JT over N and B(N) be the potential

BN = [[8©] 8@,

CeT Q—-T

where B(C) is the product of potentials assigned to a cluster C, B(Q) is the
product of potentials received from a linkage Q into T (denoted by Q@ — T).
Then,
B(N) = const Z Br(N).
NN

Proof:

Denote the agent in charge of T as A. Given T, F' can be viewed as
a directed hypertree with A at the root. During CommunicateBeliefLLJF,
only inter-agent messages directed towards A has an impact on B(N). These
messages are sent in semi-parallel order from leaves to the root. We analyze
the impact of these messages by letting agents send one by one starting from
any leaf agent A'.

Since A’ (with subdomain N') is a leaf, it is adjacent to only one agent
A" (with subdomain N''). By Proposition 6, messages A’ sent to A" define
the marginal of B(N') onto their d-sepset. Since these messages are the only
impact that A’ has on B(IN) and they are received by A", agent A’ is effec-
tively removed from the system. The new joint system potential defined by
the local potentials in the remaining agents and the messages A" received is

const z Br(N).

NI\NII

By applying the above argument recursively to each leaf agent, eventually,
all other agents in F' will be removed except A. The result follows.
d
The following corollary states that the local potentials in a cluster and
its in-buffer messages define the marginal of the joint system potential. In
the corollary, in-buffers include both those from adjacent clusters in the same
local JT and those from linkages.

14 Yang Xiang and Xiaoyun Chen

Corollary 8 Let F over N be the LJF of an MSBN with the joint system
potential Br(N) and let CommunicateBeliefLLJF be performed in F. Let C
be any cluster in any local JT and B(C) be the potential

B(C)=pC) [] B8R] 8@,

R—C Q—C

where B(C) is the product of potentials assigned to C, B(R) is the product of
potentials received from the in-buffer associated with o separator R with an
adjacent cluster of C, and 5(Q) is the product of potentials received from a
linkage @ into C. Then,

B(C) = const Z Br(N).
M\C

Proof:

It follows from Theorem 7 and Proposition 5. Theorem 7 ensures the
marginal of Br(/N) onto the subdomain of the local JT and Proposition 5
ensures further marginalization onto C.

O

1.6 Enter Observations

When observation is obtained on a private variable, it can be entered using
EnterObservation (Algorithm 5). The effect is that the new joint system po-
tential corresponds to the posterior distribution given the observation. Con-
sider a variable z with its value zy observed. If z is a root variable, Enter-
Observation does two things: (a) It removes P(z). (b) For each child variable
y of z, it replaces P(y|z,n(y) \ {z}) by P(y|xz = z¢,7(y) \ {z}). Hence, the
new joint system potential corresponds to P(N \ {z}|z = z0).

If z is not a root variable, (a) is not applicable. EnterObservation will, in
addition to (b), replace P(z|m(z)) by P(xz = zo|m(z)). This is equivalent to
an operation

Y PW\{z},z =m) = P \ {z}[z = a0).

When observation is obtained by an agent A on a public variable, how-
ever, the above is not sufficient. By performing EnterObservation in A, the
local belief of A is updated. However, £ may have parents or children in
other agents.! Unless they take corresponding actions, the joint system po-
tential has not been updated correctly. We do not require other agents to do
so immediately following A’s observation as agent communication is costly.
Instead, it’s desirable that the coordinated observation entering is delayed
until the next communication. We therefore modify CollectBeliefLLJF into
CollectBelief LLJF* below.

! See [8] for reasons why & may not be observed by all relevant agents.

Title Suppressed Due to Excessive Length 15

e For (1), receive observations on d-sepnodes as well as linkage messages.
e For (2), EnterObservation before UnifyPotential*, and send observations
on d-sepnodes to caller before SendLinkageMsg.

Similarly, DistributeBeliefLLJF is modified into DistributeBeliefLLJF* by
performing EnterObservation before UnifyPotential*.

We refer to Algorithm 11, modified with CollectBeliefLLJF* and
DistributeBeliefLLJF*, as CommunicateBeliefLLJF*. The following theorem
establishes its effect whose proof is straightforward given Corollary 8 and the
above discussion.

Theorem 9 Let F over N be the LJF of an MSBN with jpd P(N'). Let Obs
be the set of variables observed at value obs. Let CommunicateBeliefLLJF*
be performed in F' after observations on Obs have been entered by the corre-
sponding agents through EnterObservation. Let C be any cluster in any local
JT and B¢ be the potential

Bo=8(C) [] B8R][8Q),

R—C Q—C

where B(C) is the product of potentials associated with C, B(R) is the product
of those received from the in-buffer associated with a separator R with an
adjacent cluster of C, and B(Q) is the product of potentials received from a
linkage @ into C. Then,

Bg = const Z Z P(Nobs).

CNObs N\C

Note that we have used word ‘associated’ instead of ’assigned’ regarding
potentials in C' to emphasize the possible change of these potentials due
to EnterObservation. We have also used notation B¢ instead of B(C) to
emphasize that the product does not include observed variables in its domain.
The inner summation above marginalizes P (N |obs) to variables in C' and the
outer summation marginalizes out any variable in C' that has been observed.

The following theorem establishes inference autonomy for each agent. Its
proof is trivial given Theorem 9 and Proposition 5.

Theorem 10 Let observations Obs' = obs' be obtained by agent A after
global observations Obs = obs followed by CommunicateBeliefLLJF*. Let A
perform EnterObservation relative to obs' followed by UnifyPotential*. Then,
for each cluster C' in A’s local JT,

B¢ = const Z Z P(N|obs, obs').

CNObsNObs' N\C

16 Yang Xiang and Xiaoyun Chen

1.7 Remarks

We presented an alternative exact method for multiagent inference in MSBNs
with a simpler run-time structure than a previously proposed method. In the
worst case, the complexity of lazy inference in MSBNs is upper-bounded by
that of HUGIN-like inference. However, in average cases, it is expected to
be much reduced due to factorized representation of cluster potentials. Fur-
ther experimental investigation will provide empirical evidence on the actual
complexity and comparison among the three inference methods: HUGIN-like
inference, that of [6], and the method presented.

Acknowledgements

The funding support from Natural Sciences and Engineering Research Coun-
cil (NSERC) of Canada to the first author is acknowledged.

References

1. P. Haddawy. 1999. An overview of some recent developments in Bayesian
problem-solving techniques. AI Magazine, 20(2):11-19.

2. F.V. Jensen. 1996. An Introduction To Bayesian Networks. UCL Press.

3. A.L. Madsen and F.V. Jensen. 1998. Lazy propagation in junction trees. In
Proc. 14th Conf. on Uncertainty in Artificial Intelligence.

4. J. Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann.

5. G. Shafer. 1996. Probabilistic Ezpert Systems. Society for Industrial and Applied
Mathematics, Philadelphia.

6. Y. Xiang and F.V. Jensen. 1999. Inference in multiply sectioned Bayesian
networks with extended Shafer-Shenoy and lazy propagation. In Proc. 15th Conf.
on Uncertainty in Artificial Intelligence, pages 680—687, Stockholm.

7. Y. Xiang and V. Lesser. 2003. On the role of multiply sectioned Bayesian
networks to cooperative multiagent systems. IEEE Trans. Systems, Man, and
Cybernetics-Part A, 33(4):489-501.

8. Y. Xiang. 2002. Probabilistic Reasoning in Multi-Agent Systems: A Graphical
Models Approach. Cambridge University Press.

