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Abstract. One alternative to manual acquisition of belief networks from
domain experts is automatic learning of these networks from data. Com-
mon algorithms for learning belief networks employ a single-link looka-
head search. It is unclear, however, what types of domain models are
learnable by such algorithms and what types of models will escape. We
conjecture that these learning algorithms that use a single-link search
are specializations of a simple algorithm which we call LIM. We put for-
ward arguments that support such a conjecture, and then provide an
axiomatic characterization of models learnable by LIM.
The characterization coupled with the conjecture identifies models that
are definitely learnable and definitely unlearnable by a class of learning
algorithms. It also identifies models that are highly likely to escape these
algorithms. Research to formally prove the conjecture is ongoing.
Keywords: knowledge acquisition, learning, knowledge discovery.

1 Introduction

Belief networks [9, 5] provide a coherent and effective framework for building
knowledge based systems that must reason with uncertain knowledge. Acqui-
sition of such networks by manual elicitation from experts, however, has been
quite time consuming. One alternative to elicitation is to construct such net-
works by automatic learning from data, which has been an active research area
in recent years [3, 7, 1, 12, 2].

Common algorithms for learning belief networks (as referenced above) use
a single-link lookahead search to select candidate network structures. It is un-
clear, however, what types of (probabilistic) domain models are learnable by
such algorithms and what types of models will escape. We investigate this issue
by finding a generalization of these algorithms and then characterizing the gen-
eralized algorithm axiomatically. In this paper, we present our progress in this
quest.

In particular, we present a simple algorithm which we call LIM. We provide an
axiomatic characterization of models learnable by LIM. We conjecture that LIM
is a generalization of a class of common algorithms, and put forward arguments
that support this conjecture.

The characterization coupled with the conjecture identifies models that are
definitely learnable, definitely unlearnable by the whole class of algorithms, and
models that are highly likely to escape these algorithms. It also suggests di-
rections for improving these algorithms and provides a basis to analysis of the



new learning algorithms. Our current research effort is directed toward formally
proving the conjecture.

In Section 2, we overview the necessary background. We introduce the algo-
rithm LIM in Section 3. The generalization conjecture is presented and argued
in Section 4. In Section 5, we show that common concepts in belief network lit-
erature are inadequate to characterize domain models learnable by LIM. An
axiomatic characterization is presented in Section 6 and its implications are dis-
cussed in Section 7.

2 Background

Let N be a set of discrete variables in a problem domain. Each variable is
associated with a set of possible values. A configuration or a tuple of N ′ ⊆ N
is an assignment of values to every variable in N ′. A probabilistic domain model
(PDM) over N determines the probability of every tuple of N ′ for each N ′ ⊆ N .
For three disjoint sets X, Y and Z of variables, X and Y are independent given
Z if P (X|Y, Z) = P (X|Z) whenever P (Y, Z) > 0. We denote the conditional
independence relation by I(X, Z, Y ). A PDM satisfies the following axioms [9]
where =⇒ stands for implication:

Symmetry I(X, Z, Y ) =⇒ I(Y, Z, X).
Decomposition I(X, Z, Y ∪W ) =⇒ I(X, Z, Y ) & I(X, Z, W ).
Weak Union I(X, Z, Y ∪W ) =⇒ I(X, Z ∪W, Y ).
Contraction I(X, Z, Y ) & I(X, Z ∪ Y, W ) =⇒ I(X, Z, Y ∪W ).

If the PDM is strictly positive, then the following also holds:

Intersection I(X, Z ∪W, Y ) & I(X, Z ∪ Y, W ) =⇒ I(X, Z, Y ∪W ).

For disjoint subsets X, Y and Z of nodes in a graph G, we use < X|Z|Y >G to
denote that nodes in Z graphically separate nodes in X and nodes in Y . When G
is undirected, < X|Z|Y >G denotes that nodes in Z intercept all paths between
X and Y . When G is a directed acyclic graph (DAG), graphical separation is
defined by d-separation [9]. A graph G is an I-map of a PDM over N if there is
an one-to-one correspondence between nodes of G and variables in N such that
for all disjoint subsets X, Y and Z of N , < X|Z|Y >G =⇒ I(X, Z, Y ). G is
a D-map if whenever I(X, Z, Y ) holds, X and Y are separated by Z in G, i.e.,
< X|Z|Y >G ⇐= I(X, Z, Y ). G is a P-map if it is both an I-map and a D-map.
G is a minimal I-map if no link can be removed such that the resultant graph is
still an I-map.

A dependency model M (may or may not be a PDM) with an undirected
P-map is called a graph-isomorph [9]. M is a graph-isomorph iff it satisfies Sym-
metry, Decomposition, Intersection and the following axioms, where v ∈ N :

Strong Union I(X, Z, Y ) =⇒ I(X, Z ∪W, Y ).
Transitivity I(X, Z, Y ) =⇒ I(X, Z, v) or I(v, Z, Y ).



A dependency model M with a P-map that is a DAG is called a DAG iso-
morph [9]. A DAG isomorph satisfies Symmetry, Decomposition, Intersection,
Weak Union, Contraction and the following axioms, where x, y, z, v ∈ N :

Composition I(X, Z, Y ) & I(X, Z, W ) =⇒ I(X, Z, Y ∪W ).
Weak Transitivity I(X, Z, Y ) & I(X, Z∪{v}, Y ) =⇒ I(X, Z, v) or I(v, Z, Y ).
Chordality I(x, {v, z}, y) & I(v, {x, y}, z) =⇒ I(x, v, y) or I(x, z, y).

A belief network consists of a graph structure and a jpd factorized according
to the structure. Commonly used structures are DAGs for Bayesian networks
(BNs) and chordal graphs for decomposable Markov networks (DMNs) [15].
Common algorithms for learning belief networks [3, 7, 1, 12, 2] start with an
empty graph (no links). Links are added to the current graph one at a time (the
single-link lookahead search). All graphs differing from the current graph by a
single link are evaluated according to a scoring metric before the one with the
highest score is adopted (the greedy search).

3 LIM: A Simple Learning Algorithm

We shall take it for granted that the ideal outcome of an algorithm for learning
belief networks is an approximate minimal I-map of the data generating PDM
(see [9] for arguments for the minimal I-map). In order to characterize models
learnable by algorithms using the single-link lookahead search, we propose an
algorithm that captures the basic features of these algorithms, which we shall
refer to as LIM for Learning I-Maps.

LIM is equipped with a test whether P (X|Y, Z) = P (X|Z) holds (equivalent
to I(X, Y, Z)) for three disjoint subsets of variables X, Y and Z. Clearly, if we
allow such test to be performed for arbitrary X, Y and Z, then LIM will be
able to learn an I-map of any PDM. Unfortunately, the complexity of LIM will
be exponential. We therefore restrict LIM such that the test is only performed
based on the currently learned graph in the following manner:

LIM starts with an empty graph G. It systematically selects a link {x, y} not
contained in G such that one of the following two cases is true:

1. x and y are contained in different components of G.
2. Every node (at least one) adjacent to both x and y is adjacent to every other

such node, and these nodes intercept every path between x and y.

We shall call the links that satisfy the above conditions type 1 and type 2 links,
respectively. In Figure 1, the missing link (b, c) is a type 1 link, and (a, d) and
(d, g) are type 2 links. For a type 1 link, LIM tests if P (x|y) = P (x) (equivalent
to I(x, φ, y)). For a type 2 link, LIM tests if P (x|y, C) = P (x|C) (equivalent to
I(x, C, y)), where C is the set of nodes adjacent to both x and y. If the test is
negative, then the link {x, y} is added to the current graph. LIM repeats the
above until no type 1 or type 2 links can be added.

The following Theorem shows that LIM actually returns a chordal graph and
therefore learns a DMN. As the learned DMN will be an approximation of the
data-generating PDM, we do not require the structure of a DMN to be a minimal
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Fig. 1. Illustration of type 1 and type 2 links

I-map of the PDM as required in some literature (e.g., in [9]). DMNs are closely
related to BNs but are simpler to study for the purpose of this analysis1.

Theorem 1 For any PDM, LIM returns a chordal graph on termination.

Proof:
We prove by induction on the number i of links in the learned graph. LIM

starts with an empty graph (i = 0) which is chordal. We assume that when LIM
learns i = k ≥ 0 links, the graph G is chordal.

When LIM learns the k + 1’th link {x, y}, the link must be added to G as
either type 1 or type 2. Denote the new graph by G′. If {x, y} is type 1, it connects
two components of G. Since G is chordal by assumption, each component of G
is chordal. When two components are connected by a single-link, the resultant
new component is also chordal. Hence G′ is chordal.

We now show by contradiction that G′ is chordal if {x, y} is added as type 2.
Assume that G′ is not chordal. Then there must be a cycle of length > 3 without
a chord. Since G is chordal, the new link {x, y} must be in the cycle. There must
be at least two other nodes v and w in the cycle such that x − v − ...− w − y
form a simple path in G, {x, w} is not in G, {v, y} is not in G, and every other
node on the path is adjacent to neither x nor y. Now we have found a path
between x and y in G on which none of the nodes is adjacent to both x and y.
This contradicts the assumption that {x, y} is a type 2 link. 2

4 The Generalization Conjecture

LIM can be viewed as a generalization of several commonly used algorithms for
learning belief network structures [3, 7, 1, 12, 2]. We formalize this view as the
following conjecture.

Conjecture 1 Given any PDM M , if common algorithms can learn an I-map
of M , then so can LIM.

LIM appears to differ from common algorithms in many aspects. We argue
for Conjecture 1 as follows:

First, we consider the scoring metric. LIM is equipped with a conditional
independence (CI) test restricted by the currently learned graph structure. Al-
though a test similar to what is used in LIM was used by Rebane and Pearl

1 See [8], for example, for how testing d-separation [9] in a DAG D (a BN structure)
can be performed in a simpler way in an undirected graph converted from D.



[10], most common algorithms use entropy [3, 12], cross entropy [15], description
length (MDL) [7], and Bayesian score [1, 2].

We argue that the difference between these scores are not intrinsic as far
as learning network structures is concerned. It has been shown [15] that the
entropy score is equivalent to the cross entropy score, and both are equivalent to
the CI test. Careful examination of the MDL approach in [7] reveals that it can
be analyzed and interpreted using the cross entropy. Analysis of Bayesian score
based K2 [1] also shows that its behavior can be described using the language
of CI. Such intrinsic equivalence of seemingly different scores should not be too
surprising since all these algorithms are trying to learn an approximate minimal
I-map which is based on CI by definition.

Second, we consider the graphical representation. Most common algorithms
learn a DAG while LIM learns a chordal graph. Pearl [9] shows that an undirected
graph cannot represent induced dependency but a DAG can. As an example, if x
and y are marginally independent causes of z, then the DAG x→ z ← y captures
all dependence/independence while no undirected graph can. However, DAG is
more expressive only if we insist on P-maps. The chordal graph with pairwise
connection is the minimal I-map of the above example. Since our concern is
learning I-maps as stated in Conjecture 1, the difference between representing
outcomes as DAGs and chordal graphs is also nonintrinsic. On the other hand,
the use of chordal graphs by LIM does simplify our analysis of LIM as will be
seen.

Third, LIM only adds type 1 or type 2 links at each step. It seemingly is not
paralleled by any common algorithm. We have shown in Theorem 1 that it is a
sufficient condition for learning chordal structures. We can also show (not done
here due to limit in space) that these links are the only links to add that will
result in chordal graphs. Hence, the restriction of type 1/2 links is simply the
restriction of chordality. Common algorithms that learn BNs must also restrict
candidate structures to be acyclic. Given that the difference between DAG and
chordal graph representations is not intrinsic (as argued above), the restriction
to type 1/2 links by LIM changes nothing to the overall picture.

Finally, common algorithms are able to differentiate between a strong de-
pendence from a weak one in the dataset such that a link corresponding to a
weak true dependence or a false dependence due to sampling may be rejected.
These algorithms usually select the link to add that corresponds to the strongest
dependence among alternatives (indicated by the score) such that the learned
structure is as close to the minimal I-map or as sparse as possible. We have
chosen to abstract these capabilities out from LIM. Namely, LIM cannot detect
a strong dependence from a weak one, cannot reject any noise, nor does LIM try
to minimize the links added. It on average will not learn an I-map that is close
to minimal and it may sometime (but not always) learn a trivial I-map (com-
plete graph). However, these differences do not affect the truth of Conjecture 1
as minimality is not required.

The important features left in LIM are its single-link lookahead search and
its use of a restricted independence test. By using such a simplified algorithm,



we hope to demonstrate what is learnable by common algorithms by showing
what is learnable by LIM. We hope also to demonstrate models unlearnable by
common algorithms, without being distracted by unimportant details of these
algorithms. Ultimately, the achievement of these objectives depends on a formal
proof of Conjecture 1, which is the goal of our current research. The above
positive evidence for Conjecture 1 makes us believe that such a proof is within
our reach. Without waiting for such a proof, below we examine the models
learnable and unlearnable by LIM.

5 Inadequacy of Common Concepts for Characterization

A characterization of models learnable by LIM should help distinguish models
that are learnable and unlearnable by LIM. Can some common concept, e.g.,
strictly positive models or models with P-maps, be used as such a characteriza-
tion? In this section, we examine models classifiable using some common concepts
and show that these concepts are inadequate to characterize models learnable
by LIM.

We briefly review some terms to be used in this section. Two sets of variables
X and Y are marginally independent if P (X|Y ) = P (X), e.g., knowing the
value of Y tells us nothing about the value of X. Otherwise, they are marginally
dependent. Variables x and y are logically dependent if the value of one of them
determines uniquely the value of the other. A set N of variables are generally
dependent if for any proper subset A, ¬I(A, φ, N \ A) holds, i.e., no subset is
independent of the rest. A set N of variables are collectively dependent if for
each proper subset A ⊂ N , there exists no proper subset C ⊂ N \ A such that
P (A|N \ A) = P (A|C), i.e., no subset can convey all the relevant information
between two other subsets.

5.1 Strictly positive models

First, we show that strict positiveness cannot characterize models learnable by
LIM. (x, y, z) P (.) (x,y, z) P (.)

(0, 0, 0) 0.024 (1, 0, 0) 0.056
(0, 0, 1) 0.216 (1, 0, 1) 0.104
(0, 1, 0) 0.096 (1, 1, 0) 0.024
(0, 1, 1) 0.264 (1, 1, 1) 0.216

Table 1. A strictly positive model

Example 2 (An unlearnable strictly positive model) Table 1 shows a strictly
positive model of three binary variables. The marginals are P (x = 0) = 0.6,
P (y = 0) = 0.4 and P (z = 0) = 0.2. Each variable is dependent of the other
two, e.g., P (x|y, z) 6= P (x). Therefore, the minimal I-map of the model is a com-
plete graph. However, each pair of variables are marginally independent, e.g.,
P (x|y) = P (x).

In learning this model, LIM starts with an empty graph. Since the indepen-
dence test for each of the three type 1 links succeeds, LIM will return the empty
graph, which is not an I-map.



Example 2 shows that strict positiveness is not a sufficient condition of learn-
ability by LIM.

Example 3 (A learnable non-positive model) Let M be over N = {x, y, z},
where x and y are marginally dependent, and z = y (logically dependent). M is
not strictly positive since P (x, y, z 6= y) = 0.

For this model, LIM may learn two type 1 links {x, y} and {y, z}, and then
halts, which gives a minimal I-map. Alternatively, LIM may learn two type 1
links {x, y} and {x, z}, followed by type 2 link {y, z}, which gives a trivial I-map.

Example 3 shows that strict positiveness is not a necessary condition of learn-
ability by LIM either.

5.2 Faithful models

A model M that has a P-map is said to be faithful [11]. We show that faithfulness
does not characterize learnability by LIM.

Example 4 (A learnable unfaithful model) Dead battery and no fuel are
two independent causes for a car not to start. Since dead battery and no fuel
become dependent given that the car does not start (an induced dependency),
the minimal undirected I-map of this model is a complete graph. Since dead
battery and no fuel are marginally independent, the I-map is not a D-map.
Hence the model is unfaithful.

For this model, LIM will first learn two type 1 links {battery, start} and
{fuel, start}. Now {battery, fuel} is a type 2 link and the independence test
fails. Hence, LIM returns the minimal I-map.

The model in Example 4 is not a graph-isomorph, but it is a DAG isomorph.
The next example shows a model that is a graph-isomorph but not a DAG
isomorph.

Example 5 (Another learnable unfaithful model) Let M be a graph-isomorph
over N = {X, Y, Z, W}, where the undirected graph has a diamond-shape with
links {{X, Y }, {Y, Z}, {Z, W},{W,X}}. It is not a DAG isomorph [9].

For this model, LIM may first learn any three type 1 links, say, {X, Y },
{Y, Z} and {Z, W}. It will then learn a type 2 link, say, {X, Z}, followed by
another, {W, X}. LIM will now halt with the learned graph being a minimal
(chordal) I-map.

The next example shows a model that is both a graph-isomorph and a DAG
isomorph, but is unlearnable by LIM.

Example 6 (An unlearnable faithful model) Figure 2 (a) shows the P-map
of a PDM. For this model, LIM may learn the graph in (b) in the order of link la-
bels. First, four type 1 links are learned, and then three type 2 links are learned.
Now, the only type 2 links that may be added are {x, z} and {y, w}. Since the
PDM satisfies I(x, {y, v}, z) and I(y, {z, v}, w), LIM will halt. Note that the link
{x, w} is not a type 2 link. Note also that since the P-map in (a) is chordal, the
PDM is also isomorphic to a DAG.
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Fig. 2. (a) A P-map of a PDM. (b) A learned structure by LIM.

The above examples show that faithfulness is neither a necessary condition
nor a sufficient condition of learnability by LIM, and therefore is not an adequate
characterization.

5.3 Pseudo-independent models

A pseudo-independent (PI) model is a probabilistic model where a set of collec-
tively dependent variables displays marginal independence.

Definition 7 A PDM over a set N of generally dependent variables is PI if
there exists a partition {A1, . . . , Ak} (k > 1) of N such that for each x ∈ Ai and
each y ∈ Aj (i 6= j), x and y are marginally independent.

Example 2 is a PI model. More elaborated definitions of PI models can be
found in [13]. Theorem 8 shows that a necessary condition of learnability by LIM
is that M is non-PI.

Theorem 8 LIM cannot learn an I-map of a PDM M if M is PI.

Proof:
Let M be a PI model. According to Definition 7, the domain variables can be

partitioned into marginally independent subsets. Consider two such subsets A
and B. Since LIM starts with an empty graph, A and B are initially disconnected.
Since the test “P (x|y) = P (x)?” will succeed for each x ∈ A and each y ∈ B,
no type 1 links will ever be added between A and B. Hence, LIM will return a
graph G with A and B disconnected.

Since variables in M are generally dependent, any I-map of M must be
connected. Hence LIM cannot learn an I-map of M . 2

An important relation between PI models and single-link search is the con-
nectivity of the learned graph shown by Theorem 9.

Theorem 9 Let M be a generally dependent PDM over N and G be a graph
learned by LIM from M . Then G is connected iff M is non-PI.

Proof:
The necessity is clear from the proof of Theorem 8. We show the sufficiency

below:
Assume that M is generally dependent and non-PI. Then there is no marginally

independent partitions of N . Hence LIM will be able to find type 1 links which fail
the independence test until the learned graph is connected. 2



PI models are not the only type of models unlearnable by LIM. The following
example demonstrates this.

Example 10 (An unlearnable non-PI model) Table 2 shows a model of four
variables. It is non-PI since ¬I(x, φ, y), ¬I(y, φ, z) and ¬I(z, φ, w).

Its minimal I-map is a complete graph, which can be inferred as follows:
If there exists a minimal I-map that is not complete, then at least one pair of
variables is not connected directly. This pair must then be independent given the
other two. However for each variable, its distribution conditioned on the other
three variables is not degenerated. For example, no conditioning variable may
be removed in P (x|y, z, w) without changing the distribution.

In learning this model, LIM may first learn three type 1 links {x, y}, {y, z}
and {z, w}. Now only two type 2 links {x, z} and {y, w} may be added. How-
ever, since this model satisfies I(x, y, z) and I(y, z, w), both type 2 links will be
rejected. Hence, LIM will return a graph with only the three type 1 links, which
is not an I-map.

(x, y, z,w) P (.) (x, y, z,w) P (.) (x, y, z,w) P (.) (x, y, z,w) P (.)

(0, 0, 0, 0) 0.4192 (0, 1, 0, 0) 0.0189 (1, 0, 0, 0) 0.0548 (1, 1, 0, 0) 0.0613
(0, 0, 0, 1) 0.0725 (0, 1, 0, 1) 0.0005 (1, 0, 0, 1) 0.0088 (1, 1, 0, 1) 0.0132
(0, 0, 1, 0) 0.0690 (0, 1, 1, 0) 0.0065 (1, 0, 1, 0) 0.0156 (1, 1, 1, 0) 0.0773
(0, 0, 1, 1) 0.0871 (0, 1, 1, 1) 0.0296 (1, 0, 1, 1) 0.0045 (1, 1, 1, 1) 0.0611

Table 2. A non-PI model

Example 10 shows that although being a non-PI model is a necessary con-
dition for learnability by LIM, it is not a sufficient condition. Hence pseudo-
independence cannot characterize models learnable by LIM.

Example 10 is in fact a positive and non-PI model. Therefore, it also shows
that the combination of positiveness and non-PI is still not a sufficient condition
for learnability by LIM.

5.4 On the effect of greedy search

For Example 10, one might wonder if a greedy search may change the situation.
That is not the case. Among the six potential links, the three links learned above
have stronger dependence between their endpoints, measured by average mutual
information, compared with the other three links. Therefore, even if LIM is
augmented with the ability to compare the strength of dependence among alter-
native links and modified into a greedy search algorithm, the learning outcome
will still be the same as described in Example 10.

On the other hand, if LIM chooses an order different from a greedy search,
it may be able to learn the I-map of the model in Example 10. For example, it
may first learn type 1 links {x, y}, {x, z} and {z, w}. The type 2 link {y, z} and
then {x, w} can then be learned since the corresponding independence tests will
fail. Finally, the type 2 link {y, w} will be learned.

Note that we are not suggesting learning a complete graph in general. The
above example can be easily extended into a sparse model with more variables



while keeping the dependence among {x, y, z, w} unchanged. Hence, the example
only illustrates a subprocess in learning a generally much large model.

6 Characterization of LIM-learnable Models

In this section, we show that the class of PDMs learnable by LIM can be char-
acterized by the following properties:

Definition 11 Let X, Y , Z, V and W be any disjoint subsets of variables.

Composition: I(X, Y, Z) & I(X, Y, W ) =⇒ I(X, Y, Z ∪W ).
Strong Transitivity: I(X,Y ∪ V, Z) & I(Y, Z ∪ V, W ) =⇒ I(X,Y ∪ V, Z ∪ W ).

We will place proofs for some formal results in Appendix for readability.
We shall consider only chordal graphs as candidate I-maps of PDMs. We

shall use a junction tree (JT) of a chordal graph in our investigation. A JT T of
a chordal graph G is a tree. Each node in T is labeled by a (maximal) clique of G
and each link, called a sepset, is labeled by the intersection of the two cliques at
its ends. T is so connected that the intersection of any two cliques is contained
in each sepset on the unique path between them.

To ensure the validity of any conclusion drawn from the JT, we need to
establish the equivalence of a chordal graph and its JTs as I-maps. We complete
a partial result by Pearl in Theorem 13 below.

Conditional independence is portrayed in an I-map by graphical separation.
We define graphical separation in a JT of a chordal graph as follows:

Definition 12 Let T be a JT of cliques of a chordal graph G. For any disjoint
subsets X, Y and Z of nodes in G, X and Y are s-separated by Z in T ,
denoted by < X|Z|Y >T , if for each x ∈ X, y ∈ Y and each two cliques Cx, Cy

in T such that x ∈ Cx and y ∈ Cy,

1. Cx 6= Cy, and
2. on the path between Cx and Cy in T , there is a sepset S ⊆ Z.

The following theorem shows that, using s-separation, a JT of a chordal
graph portrays exactly the same set of relations of graphical separation as its
deriving chordal graph. The sufficiency has been shown in [9]. We prove here the
necessity.

Theorem 13 Let T be a JT of cliques for a connected chordal graph G. For any
disjoint subsets X, Y and Z of nodes in G, < X|Z|Y >G ⇐⇒ < X|Z|Y >T .

Next, we show that for any PDM that satisfies Composition and Strong
Transitivity, the dependence structure learned by LIM will be an I-map. Due to
the equivalence of a chordal graph G and its JT T as I-maps (Theorem 13), we
need only to show that < X|Z|Y >T =⇒ I(X, Z, Y ) holds for any G learned
by LIM.



In the following formal results, we sometime assume a generally dependent
PDM. This is not a restriction of the learnable models but rather a simplification
of proofs. When the underlying PDM is not generally dependent, our result is
applicable to each independent submodel.

Theorem 14 shows that the Composition axiom rules out PI models. It is
also needed by Lemma 15.

Theorem 14 Let M be a generally dependent PDM over N that satisfies Com-
position. Then M is non-PI.

Lemma 15 shows that if a PDM satisfies Composition and Strong Transi-
tivity, then in any graph learned by LIM, a clique sepset portrays conditional
independence correctly.

Lemma 15 Let M be a generally dependent PDM over N that satisfies Com-
position and Strong Transitivity. Let G be a chordal graph returned by LIM and
T be a JT of G.

Then I(Ca \S, S, Cb \S) holds for each pair of cliques Ca and Cb in T where
S is a sepset on the path between Ca and Cb.

Lemma 16 extends Lemma 15 by allowing the separating subset to be any
superset of a clique sepset.

Lemma 16 Let M be a generally dependent PDM over N that satisfies Com-
position and Strong Transitivity. Let G be a chordal graph returned by LIM and
T be a JT of G.

Then I(Ca \Q, Q, Cb\Q) holds for each pair of cliques Ca and Cb in T where
Q contains a sepset on the path between Ca and Cb.

Finally, we extend Lemma 16 to conditional independence of any subsets.

Theorem 17 Let M be a generally dependent PDM over N that satisfies Com-
position and Strong Transitivity. Let G be a chordal graph returned by LIM and
T be a JT of G. Let X, Y , Z be any disjoint subsets of N such that < X|Z|Y >T

holds according to s-separation.
Then I(X, Z, Y ) holds.

Proof: Let X1, ..., Xm be all cliques in T such that X ∩ Xi 6= φ (1 ≤ i ≤ m),
and Y1, ..., Yn be all cliques in T such that Y ∩ Yj 6= φ (1 ≤ j ≤ n). For each
Xi and each Yj , we have I(Xi, Z, Yj) by Lemma 16. Applying Composition to
Yj (1 ≤ j ≤ n), we have I(Xi, Z, Y ) for each given i. Applying Composition to
Xi (1 ≤ i ≤ m), we obtain I(X, Z, Y ). 2

Theorem 17, together with Theorem 13, implies that LIM will return an I-
map as long as the underlying PDM satisfies Composition and Strong Transitiv-
ity. This is summarized in Corollary 18. Note that the general dependence can
now be removed.

Corollary 18 Let M be a PDM that satisfies Composition and Strong Transi-
tivity. Let G be a chordal graph returned by LIM. Then G is an I-map of M .



7 Remarks

Corollary 18 provides an axiomatic characterization of models learnable by LIM.
Coupled with Conjecture 1, it implies that a PDM satisfying Composition and
Strong Transitivity is learnable by any algorithm, for learning BNs or DMNs,
equipped with a single-link search and some scoring metric equivalent to a con-
ditional independence test.

Can PDMs violating Composition be learned by LIM in general? Theo-
rems 14 and 9 show PI models as PDMs that violate Composition and are un-
learnable by LIM. Conjecture 1 then implies that PI models are unlearnable by
any algorithm, for learning BNs or DMNs, equipped with a single-link search
and some scoring metric equivalent to a conditional independence test.

Can PDMs violating Strong Transitivity be learned by LIM in general? Ex-
ample 10 shows the kind of non-PI PDMs that violate Strong Transitivity and
are not learnable by LIM when certain search paths (including greedy search)
are followed. Conjecture 1 then implies that if Strong Transitivity does not hold
in a PDM, the learning outcome is likely to be incorrect for any belief network
learning algorithm, equipped with a single-link search and some scoring metric
equivalent to a conditional independence test, and followed a single search path.

Our characterization of learnability by LIM may be compared with faith-
fulness as follows: Both graph-isomorph and DAG isomorph are closely tied to
strict positiveness through the Intersection axiom (Section 2). Our characteriza-
tion of learnability by LIM does not require Intersection and therefore does not
depend on strict positiveness. This can be seen from Example 3 which violates
Intersection but is learnable. DAG isomorph also requires the Chordality axiom.
It is not required by our characterization as can also be seen from Example 5.
Hence, LIM-learnable models are not a subset of either graph-isomorph or DAG
isomorph. In other words, LIM-learnable models are not a subset of faithful
models.

On the other hand, our characterization requires Strong Transitivity, which
differs from the Transitivity axiom for graph-isomorph and the Weak Transitiv-
ity for DAG isomorph. As shown in Example 6, a PDM that is both a graph-
isomorph and a DAG isomorph can violate Strong Transitivity. Hence, faithful
models are not a subset of models characterized by Composition and Strong
Transitivity.

These results improve our understanding of common algorithms for learning
belief networks, and suggest useful directions for improving these algorithms.
We are currently working on a formal proof of Conjecture 1 to put these results
in firm ground.
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Appendix: Proofs

Theorem 13 Let T be a JT of cliques for a connected chordal graph G. For any disjoint
subsets X, Y and Z of nodes in G, < X|Z|Y >G ⇐⇒ < X|Z|Y >T .
Proof:

The proof for < X|Z|Y >G =⇒ < X|Z|Y >T can be found in [9] (Lemma 1,
p114). We show < X|Z|Y >G ⇐= < X|Z|Y >T .

Let x ∈ X and y ∈ Y be contained in cliques Cx and Cy in T , respectively. Suppose
that on the path between Cx and Cy , there is a sepset S ⊆ Z. We show that < x|S|y >G

holds and so does < x|Z|y >G.
Assume that < x|S|y >G does not hold. Then there exists a path (x,v1, v2, ..., vn, y)

in G not through S. That is, vi 6∈ S for 1 ≤ i ≤ n.
On the other hand, if vi−1, vi and vi+1 are not contained in a same clique in T

such that vi−1, vi are in clique Ci−1 and vi, vi+1 are in Ci+1, then on the unique path
between Ci−1 and Ci+1 in T , every sepset must contain vi. To accommodate the case
where n = 1, we shall denote v0 = x and vn+1 = y. Hence on the path from Cx to
Cy in T , every sepset contains at least one vi 6∈ S. This contradicts that S is a sepset
between Cx and Cy. 2

Theorem 14 Let M be a generally dependent PDM over N that satisfies Composition.
Then M is non-PI.
Proof:

We shall build a subset S of N from a singleton such that each new element of S
is dependent on at least one existing element of S. When S = N , we have shown that
M is non-PI. We prove by induction on the cardinality of S.

Let S1 = {x} for any x ∈ N . We search for y ∈ N \ {x} such that ¬I(x,φ, y).
If I(x,φ, y1) holds for y1 ∈ N \ {x}, then from general dependence and Composition
(contrapositive form) of M , we have

¬I(x,φ,N \ {x}) & I(x, φ, y1) =⇒ ¬I(x,φ,N \ {x, y1}).

We then search for y ∈ N \{x, y1} such that ¬I(x,φ, y). By recursively applying general
dependence over the remaining subset and Composition, we will find y ∈ N \ {x} such
that ¬I(x,φ, y). We update S2 = {x, y}.

Suppose we have updated Si (i > 1). Next we search for v ∈ Si and z ∈ N \ Si

such that ¬I(v, φ, z) holds. If I(v1, φ, z) holds for v1 ∈ Si and each z ∈ N \ Si, then
by Composition we have I(v1, φ,N \ Si). In that case, by general dependence and
Composition of M we have

¬I(N \ Si, φ, Si) & I(N \ Si, φ, v1) =⇒ ¬I(N \ Si, φ, Si \ {v1}).

If I(v2, φ, z) holds for v2 ∈ Si \{v1} and each z ∈ N \Si , then by Composition we have
I(v2, φ,N \ Si). In that case, by general dependence and Composition of M we have

¬I(N \ Si, φ, Si) & I(N \ Si, φ, {v1, v2}) =⇒ ¬I(N \ Si, φ, Si \ {v1, v2}).

Repeating this argument, we eventually will find v ∈ Si and z ∈ N \ Si such that
¬I(v,φ, z) holds. We can then update Si+1 = Si ∪ {z}. 2

Lemma 15 Let M be a generally dependent PDM over N that satisfies Composition and
Strong Transitivity. Let G be a chordal graph returned by LIM and T be a JT of G.

Then I(Ca \ S, S, Cb \ S) holds for each pair of cliques Ca and Cb in T where S is
a sepset on the path between Ca and Cb.
Proof:



By Theorem 14, M is non-PI. By Theorems 1 and 9, G is chordal and connected.
Hence T exists.

We first show that I(Ca \ Cb, Ca ∩ Cb, Cb \ Ca) holds for any adjacent Ca and Cb.
LIM halts only if I(x,Ca∩Cb, y) holds for each pair of adjacent cliques Ca, Cb in T and
each pair of nodes x ∈ Ca \Cb and y ∈ Cb \Ca. Otherwise, {x, y} is a type 2 link that
fails the independence test. Assume that I(x,Ca ∩ Cb, Y ) holds, where Y ⊂ Cb \ Ca.
Let Y ′ = Y ∪ {y′} where y′ ∈ Cb \ (Ca ∪ Y ). From Composition,

I(x,Ca ∩ Cb, y
′) & I(x,Ca ∩ Cb, Y ) =⇒ I(x,Ca ∩ Cb, Y

′).

Hence, for each x ∈ Ca \ Cb, we have I(x,Ca ∩ Cb, Cb \ Ca). Assume that I(X,Ca ∩
Cb, Cb \ Ca) holds, where X ⊂ Ca \ Cb. Let X ′ = X ∪ {x′} where x′ ∈ Ca \ (Cb ∪ X).
From Composition,

I(X,Ca ∩ Cb, Cb \ Ca) & I(x′, Ca ∩ Cb, Cb \ Ca) =⇒ I(X ′, Ca ∩ Cb, Cb \ Ca).

Hence, I(Ca \ Cb, Ca ∩ Cb, Cb \ Ca) holds for each pair of adjacent Ca and Cb.
Next, we show that I(Ca \ S, S, Cb \ S) holds for non-adjacent Ca and Cb, where S

is a sepset on the path between Ca and Cb. Let three adjacent cliques Ca = X ∪Y ∪V ,
C1 = Y ∪ V ∪Z ∪A and Cb = V ∪Z ∪W form a chain Ca −C1 −Cb in T , where each
letter denotes a disjoint subset of variables. We show that I(X,Y ∪ V,Z ∪ W ) holds.
From the above proof and Decomposition, we have I(X,Y ∪V,Z) and I(Y, V ∪Z,W ).
From Strong Transitivity, we conclude I(X,Y ∪ V, Z ∪ W ).

Now consider a chain of n ≥ 1 intermediate cliques in T , Ca − C1 − ...− Cn − Cb.
We denote Ci \ ∪j 6=iCj by Ri and denote Ci \ Ri by Di for 1 ≤ i ≤ n. Ri is the subset
of Ci not contained in any other cliques. It is irrelevant here as can be seen from the
subset A above. Note (Di−1∩Di)∪(Di∩Di+1) = Di but (Ci−1∩Ci)∪(Ci∩Ci+1) = Ci

is not true in general.
Assume I(Ca \S, S, Cb \S) holds for n = m ≥ 1. When n = m+1, the clique chain

becomes Ca − C1 − ... − Cm − Cn − Cb. We show that I(Ca \ S, S, Cb \ S) still holds
where S is a sepset on the chain.

Let S be the sepset between Ci−1 and Ci (i ≤ n), and S′ be the sepset between Ci

and Ci+1. Note that S is a sepset in the subchain from Ca to Ci, and S′ is a sepset in
the subchain from Ci to Cb. Either subchain has no more than m intermediate cliques.
From the assumption and Decomposition, we have

I(Ca \ S, S, Di \ S) and I(Di \ S′, S′, Cb \ S′).

Since Di = S ∪S′, we have S ⊇ Di \S′ and S′ ⊇ Di \S. From Strong Transitivity with

X = Ca \ S, Y = Di \ S′, Z = Di \ S, V = S ∩ S′, and W = Cb \ S′,

we conclude I(Ca \ S, S, (Di \ S) ∪ (Cb \ S′)).
We now only have to show (Di \ S) ∪ (Cb \ S′) ⊇ Cb \ S.

Since Di \ S = S′ \ S, and S′ = (S′ \ S) ∪ (S′ ∩ S), we have

(Di \ S) ∪ (Cb \ S′) = (S′ \ S) ∪ (Cb \ ((S′ \ S) ∪ (S′ ∩ S))) = (S′ \ S) ∪ (Cb \ (S ∩ S′)).

Since Cb ∩ (S \ S′) = φ (T is a JT), we obtain

Cb \ (S ∩ S′) = Cb \ ((S′ ∩ S) ∪ (S \ S′)) = Cb \ S.

Hence, (Di \ S) ∪ (Cb \ S′) = (S′ \ S) ∪ (Cb \ S) ⊇ Cb \ S. 2



Lemma 16 Let M be a generally dependent PDM over N that satisfies Composition and
Strong Transitivity. Let G be a chordal graph returned by LIM and T be a JT of G.

Then I(Ca \ Q,Q, Cb \ Q) holds for each pair of cliques Ca and Cb in T where Q
contains a sepset on the path between Ca and Cb.
Proof:

Let the sepset between Ca and Cb be S ⊆ Q. We have I(Ca \ Q, S,Cb \ Q) by
Lemma 15 and Decomposition. Given S, T is partitioned into two subtrees Ta (con-
taining Ca) and Tb (containing Cb). Let Qa (Qb) be the subset of Q\S that is contained
in Ta (Tb).

For each variable y ∈ Qb, we have I(Ca\Q, S, y) by Lemma 15. By Composition, we
derive I(Ca\Q, S,Qb∪(Cb\Q)). From Weak Union, we have I(Ca\Q, S∪Qb, Cb\Q). For
each variable x ∈ Qa, from the symmetry of x and Ca \Q, we have I(x, S ∪Qb, Cb \Q).
By Composition, we derive I(Qa ∪ (Ca \ Q), S ∪ Qb, Cb \ Q). From Weak Union, we
have I(Ca \ Q, S ∪ Qb ∪ Qa, Cb \ Q) = I(Ca \ Q,Q, Cb \ Q). 2
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