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ABSTRACT

We consider automatic construction of a Markov net-
work as an alternative to learning classification rules. A
Markov network consists of an undirected graph as a qual-
itative domain model and a factorized probability distri-
bution on the graph. We present a procedure for con-
structing a Markov network from a sample set of obser-
vations. The procedure minimizes the Kullback-Leibler
cross-entropy between the network under construction
and the set of samples in a stepwise fashion, until a preset
threshold is reached.

We present our experimental results as well as how the
learned network can be used in probabilistic inference.

INTRODUCTION

In automatic construction of many knowledge-based sys-
tems, the input is represented as a table of columns (vari-
ables, attributes) and rows (tuples). Each row may be
viewed as a single instance of observation. Thus, the in-
put consists of a set of observed instances. For example,
each tuple may represent a group of symptoms and dis-
eases that a patient has. From the vantage point of in-
ductive learning, the main task is to develop a method for
constructing inference rules from a sample set of observa-
tions. These rules can then be applied to classify future
cases (unobserved instances).

Many techniques have been developed over the years
for constructing explicit decision rules from a set of sam-
ples such as generation of classification trees (Quinlan
1986) and computation of reducts (Pawlak 1991). Alter-
natively, one may construct a belief network from a sam-
ple of observations for probabilistic inference (Herskovits
and Cooper 1990; Cooper and Herskovits 1992; Pittarelli
1990). In contrast to the methods for generating explicit
classification rules, belief networks attempt to capture the
relationships among a set of variables without the need
to designate a decision (expert) variable. Once a belief

network is constructed, we can compute the probability
of any subset of variables conditioned on any other sub-
set. This means that, with a belief network, we can make
predictions based on the available values of any subset of
variables. On the other hand, with a rule-based system,
the value of every variable in a rule must be known before
the rule can be applied.

This paper suggests an entropy-based procedure for
constructing a Markov network. The algorithm is
based on the Kullback-Leibler cross-entropy (kullback
and Leibler 1951) which allows us to choose a full joint
probability distribution in the absence of complete infor-
mation about the exact distribution.

A MARKOV NETWORK

Before discussing Markov networks, let us first introduce
the notion of hypertrees (Shafer 1991).

Let L denote a lattice. We say that H is a hypergraph,
if H is a finite subset of L. Consider, for example, the
power set 2X , where X = {x1, x2, ..., xn} is a set of vari-
ables. The power set 2X is a lattice of all subsets of X .
Any subset of 2X is a hypergraph on 2X . We say that
an element t in a hypergraph H is a twig if there ex-
ists another element b in H, distinct from t, such that
t ∩ (∪(H− {t}) = t ∩ b. We call any such b a branch for
the twig t. A hypergraph H is a hypertree if its elements
can be ordered, say h1, h2, ..., hi, so that hi is a twig in
{h1, h2, ..., hi}, for i = 2, ..., n. We call any such ordering
a hypertree construction ordering for H. Given a hyper-
tree construction ordering h1, h2, ..., hn, we can choose,
for i from 2 to n, an integer b(i) such that 1 ≤ b(i) ≤ i−1
and hb(i) is a branch for hi in {h1, h2, ..., hi}. We call the
function b(i) satisfying this condition a branch function
for H and h1, h2, ..., hn.

For example, let X = {x1, x2, ..., x6} and L = 2X .
Consider a hypergraph, H = {h1 = {x1, x2, x3}, h2 =
{x1, x2, x4}, h3 = {x2, x3, x5}, h4 = {x5, x6}}, depicted
in Figure 1. This hypergraph is in fact a hypertree; the
sequence, h1, h2, h3, h4, is a hypertree construction order-
ing. Furthermore, b(2) = 1, b(3) = 1, and b(4) = 3.

Consider a joint probability distribution defined as fol-
lows:
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Figure 1: A graphical representation of the hyper-
graph H = {h1 = {x1, x2, x3}, h2 = {x1, x2, x4}, h3 =
{x2, x3, x5}, h4{x5, x6}}.

p(c) = p(c1, c2, c3, c4, c5, c6)

= p(c1,c2,c3)p(c1,c2,c4)p(c2,c3,c5)p(c5,c6)
p(c1,c2)p(c2,c3)p(c5) (1)

where c = (c1, c2, c3, c4, c5, c6) is a configuration of the set
of variables X = {x1, x2, x3, x4, x5, x6}. The dependen-
cies among variables in the distribution can be depicted
as an undirected graph as shown in Figure 2.
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Figure 2: An undirected graph representing a Markov
network.

In many applications, it is more convenient to charac-
terize the dependencies by a hypergraph. The hypergraph
corresponding to the distribution p(c) defined by Equa-
tion 1 is shown in Figure 1 in which each hyperedge is a
maximal clique of the undirected graph in Figure 2. We
say that p(c) is factorized on such a hypergraph. A joint
probability distribution is called a Markov distribution
(Pearl 1988; Hajek et al. 1992), if it is factorized on a
hypertree.

CONSTRUCTION OF A

MARKOV NETWORK

In this section, we describe a procedure for constructing
a Markov network from a set of observed instances.

Ideally, based on the observed data, one would like to
find a Markov distribution that produces maximum en-
tropy as such a distribution has the least bias (Jaynes
1982). However, the computational complexity for
searching this distribution is too high. So far, no efficient
algorithm has yet been found for this task.

In this paper, similar to the method suggested by Chow
and Liu (1968), we adopt the Kullback-Leibler cross-
entropy as a measure of closeness between two probability
distributions:

I(p, p′) =
∑

c

p(c) log
p(c)
p′(c)

, (2)

where c = (c1, c2, . . . , cn) is a configuration of the set of
variables X = {x1, x2, . . . , xn}. With a fixed p, we can
choose, from the set of all possible Markov distributions
{p′}, the distribution p0 that minimizes the cross-entropy
I(p, p′). For a Markov distribution p′, Equation 2 can be
expressed as:

I(p, p′) =
∑

c

p(c) logp(c) −
∑

c

p′(c) log p′(c)

= H(p′) − H(p).

Thus, for a fixed p, minimizing the closeness metric
(i.e., the cross-entropy) among the elements in {p′} is
equivalent to minimizing the entropy H(p′), namely:

min
p′′∈{p′}

(I(p, p′′)) = min
p′′∈{p′}

(H(p′′)). (3)

An approximate method for constructing the desired
full joint distribution is outlined as follows. Initially, we
may assume that all variables are probabilistically inde-
pendent, i.e., there exists no edge between any two nodes
(variables) in the undirected graph representing the dis-
tribution. Then an edge is added to the graph subject
to the restriction that the resultant hypergraph must be
a hypertree. The undirected graph corresponding to the
distribution with minimum entropy is being selected as
the graph for further addition of other edges. This pro-
cess is repeated until a threshold is reached in the rate of
decrease of entropy between successive Markov distribu-
tions.

In practice, it may not be feasible to compute the en-
tropy directly by using the full joint distribution. It is
necessary to use a more efficient formula than Equation 2
for the computation, as the number of times that one has
to compute the entropy, during the search, could be very
large. It was shown in (Wong 1994) that the entropy of
a Markov distribution p can be expressed as:

H(p) =
n∑

i=1

H(p(hi)) −
n∑

j=2

H(p(hj ∩ hb(j)), (4)



where hi is a hyperedge in the hypergraph H representing
the joint distribution p, H(p(hi)) is the entropy of the
marginal distribution p(hi), the sequence h1, h2, . . . , hn
is a hypertree construction ordering for H, and b(i) for
2 ≤ i ≤ n is the branch fucntion for this particular or-
dering. It should be noted that all the required marginal
distributions are estimated from the input set of observed
data. It is not difficult to see that Equation 4 is a much
more efficient formula for computing the entropy of a
Markov distribution.

EXPERIMENTAL RESULTS

To evaluate our method, we first discuss the learning of
a Markov network from a full joint probability distribu-
tion (jpd) (equivalent to an infinite number of samples).
Then learning from a finite set of sample observations is
discussed.

p(tamp &alar &leav &rept &fire &smok) = .000059400
p(tamp &alar &leav &rept &fire &¬smok) = .000006600
p(tamp &alar &leav &rept &¬fire &smok) = .000111078
p(tamp &alar &leav &rept &¬fire &¬smok) = .010996723
p(tamp &alar &leav &¬rept &fire &smok) = .000019800
p(tamp &alar &leav &¬rept &fire &¬smok) = .000002200
p(tamp &alar &leav &¬rept &¬fire &smok) = .000037026
p(tamp &alar &leav &¬rept &¬fire &¬smok) = .003665574
p(tamp &alar &¬leav &rept &fire &smok) = .000000108
p(tamp &alar &¬leav &rept &fire &¬smok) = .000000012
p(tamp &alar &¬leav &rept &¬fire &smok) = .000000202
p(tamp &alar &¬leav &rept &¬fire &¬smok) = .000019994
p(tamp &alar &¬leav &¬rept &fire &smok) = .000010692
p(tamp &alar &¬leav &¬rept &fire &¬smok) = .000001188
p(tamp &alar &¬leav &¬rept &¬fire &smok) = .000019994
p(tamp &alar &¬leav &¬rept &¬fire &¬smok) = .001979410
p(tamp &¬alar &leav &rept &fire &smok) = .000001350
p(tamp &¬alar &leav &rept &fire &¬smok) = .000000150
p(tamp &¬alar &leav &rept &¬fire &smok) = .000000446
p(tamp &¬alar &leav &rept &¬fire &¬smok) = .000044105
p(tamp &¬alar &leav &¬rept &fire &smok) = .000000450
p(tamp &¬alar &leav &¬rept &fire &¬smok) = .000000050
p(tamp &¬alar &leav &¬rept &¬fire &smok) = .000000148
p(tamp &¬alar &leav &¬rept &¬fire &¬smok) = .000014701
p(tamp &¬alar &¬leav &rept &fire &smok) = .000000882
p(tamp &¬alar &¬leav &rept &fire &¬smok) = .000000098
p(tamp &¬alar &¬leav &rept &¬fire &smok) = .000000291
p(tamp &¬alar &¬leav &rept &¬fire &¬smok) = .000028815
p(tamp &¬alar &¬leav &¬rept &fire &smok) = .000087318
p(tamp &¬alar &¬leav &¬rept &fire &¬smok) = .000009702
p(tamp &¬alar &¬leav &¬rept &¬fire &smok) = .000028815
p(tamp &¬alar &¬leav &¬rept &¬fire &¬smok) = .002852679

p(¬tamp &alar &leav &rept &fire &smok) = .005762987
p(¬tamp &alar &leav &rept &fire &¬smok) = .000640332
p(¬tamp &alar &leav &rept &¬fire &smok) = .000006403
p(¬tamp &alar &leav &rept &¬fire &¬smok) = .000633929
p(¬tamp &alar &leav &¬rept &fire &smok) = .001920996
p(¬tamp &alar &leav &¬rept &fire &¬smok) = .000213444
p(¬tamp &alar &leav &¬rept &¬fire &smok) = .000002134
p(¬tamp &alar &leav &¬rept &¬fire &¬smok) = .000211310
p(¬tamp &alar &¬leav &rept &fire &smok) = .000010478
p(¬tamp &alar &¬leav &rept &fire &¬smok) = .000001164
p(¬tamp &alar &¬leav &rept &¬fire &smok) = .000000012
p(¬tamp &alar &¬leav &rept &¬fire &¬smok) = .000001153
p(¬tamp &alar &¬leav &¬rept &fire &smok) = .001037338
p(¬tamp &alar &¬leav &¬rept &fire &¬smok) = .000115260
p(¬tamp &alar &¬leav &¬rept &¬fire &smok) = .000001153
p(¬tamp &alar &¬leav &¬rept &¬fire &¬smok) = .000114107
p(¬tamp &¬alar &leav &rept &fire &smok) = .000001323
p(¬tamp &¬alar &leav &rept &fire &¬smok) = .000000147
p(¬tamp &¬alar &leav &rept &¬fire &smok) = .000145384
p(¬tamp &¬alar &leav &rept &¬fire &¬smok) = .014393064
p(¬tamp &¬alar &leav &¬rept &fire &smok) = .000000441
p(¬tamp &¬alar &leav &¬rept &fire &¬smok) = .000000049
p(¬tamp &¬alar &leav &¬rept &¬fire &smok) = .000048461
p(¬tamp &¬alar &leav &¬rept &¬fire &¬smok) = .004797688
p(¬tamp &¬alar &¬leav &rept &fire &smok) = .000000864
p(¬tamp &¬alar &¬leav &rept &fire &¬smok) = .000000096
p(¬tamp &¬alar &¬leav &rept &¬fire &smok) = .000094985
p(¬tamp &¬alar &¬leav &rept &¬fire &¬smok) = .009403468
p(¬tamp &¬alar &¬leav &¬rept &fire &smok) = .000085572
p(¬tamp &¬alar &¬leav &¬rept &fire &¬smok) = .000009508
p(¬tamp &¬alar &¬leav &¬rept &¬fire &smok) = .009403469
p(¬tamp &¬alar &¬leav &¬rept &¬fire &¬smok) = .930943429

Table 1: The joint probability distribution of the fire-
alarm problem.

Learning A Markov Network From A Full
Joint Distribution

For demonstration purposes, we use, in our experiments,
a small full jpd for the fire-alarm problem (Poole and
Neufeld 1988) given in Table 1.

This simple distribution describes the events involved
when fire or tampering occurs in a building. It is assumed
that the alarm would be activated by the occurrence of
either fire or tampering. If the alarm is on, people inside
the building should leave the building and this evacuation
is then reported to the security. It can be verified that
the following conditional independencies hold in this jpd.
We have capitalized each variable name to distinguish
the variable from the possible values (lower case) of the
variable.

p(Smoke|Fire&Tampering&Alarm&Smoke&Leaving&Report)

= p(Smoke|Fire)

p(Alarm|Fire&Tampering&Smoke)

= p(Alarm|Fire&Tampering)

p(Leaving|Fire&Tampering&Alarm&Smoke)

= p(Leaving|Alarm)

p(Report|Fire&Tampering&Alarm&Smoke&Leaving)

= p(Report|Leaving)

The above conditional independencies can be conve-
niently represented by a Markov network as shown in
Figure 3.

report

alarm-on
smoke

tampering fire

leaving

Figure 3: The Markov network of the fire-alarm joint
distribution.

The main objective of our experiments is to check how
well our method outlined in Section is able to learn the
probabilistic conditional independencies. Learning starts



with a completely disconnected Markov network. This
means that all the variables are initially assumed to be
probabilistically independent of each other. At each step
of search, each possible single link is added to the current
network, and the entropy of the resulting Markov network
is computed. Note that for n unconnected nodes, there
are O(n2) single links. The network yielding the lowest
entropy is chosen to be the starting network entering into
the next step of search. After each step of search, the
decrement of entropy is checked against a predetermined
threshold. If the decrement is less than the threshold, the
learning process terminates.

The threshold should be set according to the size of the
sample set, i.e., the smaller the sample set, the larger the
threshold. The intuition is that, when the sample set is
smaller, erroneous dependencies may be introduced and
hence erroneous links are added to the network. Thus, by
using a larger threshold, these false dependencies can be
suppressed.
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Figure 4: The learned Markov network in the fire-alarm
domain.

When we use the full jpd for learning, we set the thresh-
old at 0.001. Our method produced the exact Markov
network as shown in Figure 4. The numbers in the figure
indicate the order in which the links were added. The
learning process terminated after the 6th link was added.

Learning A Markov Network From Sam-
ples

The second experiment is to test our method using a finite
set of sample observations. We used the technique of
logic sampling (Henrion 1988) to generate 1000 samples.
The entropy threshold was set at 0.01. Again, the exact

Markov network was produced by using such a sample
set.

Using a finite set of samples, it is expected that the
learned jpd would be different from the original one.
Since the probability values of the jpd are generally small,
we compared the exact clique marginals with those ob-
tained from the learned jpd. The exact clique marginals
range from 0.000098 to 0.98. The corresponding clique
marginals in the learned Markov network range from 0
to 0.978. The maximal difference in probability value is
0.01495.

Using A Markov Network For Probabilis-
tic Inference

Figure 5: Probabilistic inference using the learned
Markov network. Each histogram shows the probabil-
ity distribution of the corresponding variable. The vari-
able ’report’ has been instantiated as ’yes’ by evidence.
Queries on all other unobserved variables can be an-
swered.

One of the advantages of using a belief network in deci-
sion making over a set of classification rules (Ziarko 1991)
or a decision tree (Quinlan 1986) is that a Markov net-
work, for example, allows one to use any variable as a de-
cision variable. For example, we can post to the fire-alarm
network the query, ”What is the probability of fire given
that report is received?”. We can post another query,
”What is the probability of tampering given that report
is received?”, which involves a different decision variable.
Figure 5 shows the answers to these queries, in the form
of updated probability distributions, obtained from the
same Markov network. In contrast, with conventional
approaches, it would require the generation of different



rules or a decision tree in order to answer both of these
queries.

Another advantage of using a belief network for infer-
ence is that any number of observed variables can be used
to obtain a probability on the decision variable. On the
other hand, in rule-based systems, a rule can be fired only
when all the conditional variables are observed. Figure 6
shows that the same Markov network can be used to an-
swer the query, ”What is the probability of fire given that
both report is received and smoke is observed?”.

Figure 6: Probabilistic inference with varied evidence pat-
tern. An additional variable ’smoke’ is instantiated as
’yes’.
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