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Abstract

This paper focuses on the application of rough set constructs to inductive learning from a
database. A design guideline is suggested, which provides users the option to choose appropriate
attributes, for the construction of classification rules. Error probabilities for the resultant
rule are derived. A classification rule can be further generalized using concept hierarchies.
The condition for preventing overgeneralization is derived. Moreover, given a constraint, an
algorithm for generating a rule with minimal error probability is proposed.

1 Introduction

The rapidly growing size and number of databases, and the realization that intelligently analyzed
data is a valuable resource have generated increasing demands for knowledge discovery in databases
[2].

In this paper, we assume data are represented by a relational database in which information
about individual objects in a domain is represented by a set of tuples of attribute values. Adopting
the view of ‘learning by examples’ in AI, we may regard a database as a set of training examples.
The objective of learning is to produce a classification rule in a disjunctive normal form (DNF) for
a particular concept or class. A learned rule can be generated using the vocabulary of attributes.
We shall call the set of selected attributes a basis set [3], and call the learning process induction
using attributes. The rule from induction using attributes can be further generalized using a concept
hierarchy for each individual attribute. The rule is then represented in a higher level language and
is more compact. We shall call this generalization process induction by hierarchy.

Given a basis set A′ of attributes, a user my be interested only in a subset which is then used
to create the rule. Given this restriction, we can generate the rule using a minimum subset A ⊂ A′

of attributes. Such minimal subset may not be unique. We will discuss a design guideline based on
rough sets [6] to provide users with difference options.

Once a rule is generated by a learning system, a user may wish to know how reliable the rule is.
We will show how error probabilities can be estimated for each component of the rule and for the
rule as a whole.

Induction by hierarchy produces generalized rules. However, this induction process may over-
generalize and thus increase the classification error of the resultant rule. In this paper, we derive a
condition for induction by hierarchy, which guarantees that no additional error is introduced.
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In complex domains, the number of conjuncts in the resultant rule may be large. A user may
want to limit the number of conjuncts involved. We discuss how to produce a rule which satisfies
such a restriction and minimizes the classification error.

In complex domains, there are often exceptions to general principles. For example, most birds fly
but penguin as a bird does not. Each such exception will form a conjunct in a DNF rule. Sometimes,
the user is interested in only the general principles. An error bound can be used to prune those
conjuncts which corresponds to exceptions. We will show how to generate a rule whose classification
error is below a given threshold such that it includes minimal exceptions.

Our approach is based on the rough set theory [6] which provides a sound theoretical framework
for knowledge discovery in databases.

2 Terminology

2.1 Basic Notions of Rough Sets

Let U be the universe of discourse, and let R be an equivalence relation on U . The pair Z = (U,R) is
called an approximation space. If x, y ∈ U and (x, y) ∈ R, x and y are said to be indistinguishable in
Z. Equivalence classes of the relation R is called elementary sets in Z. A finite union of elementary
sets in Z is called a composed definable set or simply composed set in Z.

Let X be a subset of U . The least composed set in Z containing X is called upper approximation
of X in Z, denoted by Apr(X); the greatest composed set in Z contained in X is called the lower
approximation of X in Z, denoted by Apr(X). The set Bnd(X) = Apr(X) − Apr(X) is called the
boundary of X in Z.

2.2 A Database as Learning Examples

Let Y be a domain of objects. Let C ⊂ Y be a class of objects. We define a function c : Y → {0, 1}
by the following rule: for each y ∈ Y , c(y) = 1 if y ∈ C, and c(y) = 0 if y 6∈ C. Let S ⊂ Y be a
finite set of sample objects. Let A′ = {A1, . . . , An} be a set of attributes, and let V ′ = {V1, . . . , Vn}
be the domains of these attributes. Let T ′ be the Cartesian product: T ′ = V1 × . . . × Vn. Let
f : Y → T ′ be an one-to-one function such that each object y ∈ Y is assigned to a tuple t′ ∈ T ′

(f(x) = f(y)) ⇒ (x = y). The function f assigns each object to a unique tuple. This is the case in
databases.

Let D′ = f [S] and E′ = f [C] be the images of S and C under f , respectively. D′ represents
a database of tuples as learning examples. E′ ∩ D′ is the set of positive examples of the class C,
and D′ − E′ is the set of negative examples. Throughout this paper, we will call an object y ∈ S a
sample, and call its value f(y) = t′ ∈ T ′ an example tuple.

3 Superfluous Attributes

Given positive examples D′∩E′ and negative examples D′−E′, our task is to generate a classification
rule for C such that, given the representation t′ ∈ T ′ of an object y ∈ Y , the membership of y in C
can be determined with minimal error.

We could describe the rule based on the entire set A′ of attributes. However, for many practical
reasons, we often use only a subset of attributes of A′ to generate the classification rule. One reason
is because we know some attributes have no dependence relation with the class to be described.
For example, social insurance numbers do not help to distinguish a patient with tuberculosis from
one without. Another reason may be because it is not appropriate to use some attributes in the
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classification task. For example, to exact a rule for selecting good employees, we may not want to
include attributes sex and race in the rule. This restriction of attributes can be easily performed
by using a projection operation in relational databases. The option of specifying a desired set of
attributes should be given to the user of a learning system. The removal of a subset of attributes
represents a conceptual bias [3] of the learning process.

We formalize the projection in the following: Let B ⊂ A′ be a proper subset of A′. A projection of
the function f to the set of attributes A = A′−B is defined as g : U → T where T = Vj1 × . . .× Vjm

and Vji is the domain of Aji ∈ A. We use t = g(u) to denote the projected tuple obtained under g.
Note that, unlike f , g is not one-to-one. Multiple objects in Y can be mapped into the same tuple
by g.

After the attributes have been restricted to a subset in the above manner, it is often possible
to further reduce the subset without increasing the classification error of the resultant rule. This
involves the notion of reduct [8, 11] in the rough set theory.

Let g be the projection of f , D = g[S] be the set of learning examples described by the set of
attributes A = A′ − B, and E = g[C] ∩ D be the set of positive training examples described by A.
Following the notion in Section 2.1, let D be the universe, and let the equivalence relation R(A) be
defined as follows: (r, t) ∈ R(A) iff for every Λ ∈ A, rΛ = tΛ where rΛ is the value of the attribute
Λ in the tuple r. An attribute Λ ∈ A is superfluous in A if R(A) = R(A − {Λ}); otherwise Λ is
indispensable in A. If all attributes of A are indispensable in A, then A is orthogonal. A subset
W ⊆ A is a reduct of A iff W is orthogonal and R(W ) = R(A).

Since a reduct does not change the equivalence relation R, given a set X ⊆ D, none of Apr(X),
Apr(X), or Bnd(X) will change. This implies that the accuracy of classification relative to X does
not change if we use a reduct as the basis set. The advantage of using a reduct rather than the
original set A of attributes is that we have a more concise classification rule.

Given a set of examples D and the set A of attributes, there may exist more than one reduct. It
would be useful for a learning system to provide all the reducts to the user, and to proceed with the
subsequent learning task using the reduct selected by the user. The user may select the reduct with
minimum cardinality, or the one which makes the most sense to him.

To compute a reduct, we remove an arbitrarily chosen attribute, say A1, from the basis set A.
We then check if all the elementary sets are unchanged. If so, we proceed with A2, otherwise, we put
A1 back and proceed with A2. We go through all the attributes in A in this fashion. The attributes
left at the end constitute a reduct.

However, although a single reduct can be computed relatively easily, the general problem of
finding all reducts is NP-hard [10, 11].

4 Error Probability Estimation in Induction Using a Reduct

Given the set D of examples and the set E ⊂ D of positive examples, D can be partitioned into
Neg(E) = D − Apr(E) which is a set of negative examples, Pos(E) = Apr(E) which is a set of
positive examples, and Bnd(E) which is a set of mixed positive and negative examples. In the
following discussion, we will omit the variable E for brevity, and simply write Neg, Pos and Bnd.

Since all tuples in an elementary set are indistinguishable, we shall use s[t] to denote the elemen-
tary set of a tuple t.

Throughout this paper, we assume that the set of examples D is truly a representative of the
class C in the universe of interests.

Assumption 4.1 Let Y be a domain and let D be a set of examples. Let the number of positive
examples in an elementary set s[t] be n+[t] ≥ 0 and the number of negative examples be n−[t] ≥ 0.
The examples in D satisfy the following properties:
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1. Completeness For every object x ∈ Y , there is a sample y ∈ Y such that g(x) = g(y).

2. Proportion For every elementary set s[t] in D,

p(c(y) = 1|g(y) = t) = n+[t]/(n+[t] + n−[t])

3. Miniworld For every elementary set s[t] in D,

p(g(y) = t) = (n+[t] + n−[t])/Card(D)

where p(g(y) = t) is the probability that a randomly chosen y from Y is represented by t.

In the following, we construct a classification rule for the class C expressed in terms of a disjunctive
normal form:

∀y ∈ Y ((class(y) = 1) ⇐⇒ (t1 ∨ . . . ∨ tn)),

where each ti ∈ D is a tuple (conjunct) corresponding to an elementary set, and class(y) = 1 means
that the object y is classified by the rule as a member of the class C.

Proposition 4.1 Let t be a tuple in an elementary set s[t] ⊂ Pos. If g(y) = t for y ∈ Y , then
c(y) = 1.

Proof:
Suppose g(y) = t, and c(y) = 0 which means y 6∈ C. Since g(y) = t, s[t] must be either a subset

of Neg or Bnd. This contradicts the assumption s[t] ⊂ Pos. 2
Based on Proposition 4.1, for each t such that s[t] ⊂ Pos, we include t as a conjunct in the

classification rule. We label the conjunct with an error probability:

p(c(y) 6= 1|g(y) = t) = 0

which means that if the new tuple g(y) matches t, we can conclude c(y) = 1 with certainty.
For each elementary set s[t] ⊂ Bnd, we include t as a conjunct in the classification rule if

n+[t] ≥ n−[t]. We label it with an error probability:

p(c(y) 6= 1|g(y) = t) = n−[t]/(n+[t] + n−[t])

which means that if the new tuple g(y) matches t, we can conclude c(y) = 1 with probability
1 − p(c(y) 6= 1|g(y) = t). This is justified by the following Proposition.

Proposition 4.2 Let t be a tuple such that s[t] ⊂ Bnd and n+[t] ≥ n−[t]). If g(y) = t for y ∈ Y ,
then

p(c(y) = 1|g(y) = t) = n+[t]/(n+[t] + n−[t]) ≥ p(c(y) = 0|g(y) = t)

Proof:
By Assumption 4.1 and the given condition, p(c(y) = 1|g(y) = t) = n+[t]/(n+[t] + n−[t]) ≥ 0.5.

Therefore, p(c(y) = 0|g(y) = t) = 1 − p(c(y) = 1|g(y) = t) = n−[t]/(n+[t] + n−[t]) ≤ 0.5. 2
The above proposition states that, to minimize the chance of error, if n+[t] ≥ n−[t], we should

conclude class(y) = 1; otherwise conclude class(y) = 0 (by not firing the rule).
The error probability of the classification rule as a whole is determined by the following Propo-

sition.
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Proposition 4.3 The probability of false-positive error of the classification rule is

p(class(y) = 1 ∧ c(y) = 0) =

∑
g(y)∈Bnd(E)∧n+[g(y)]≥n−[g(y)] n−[g(y)]

Card(D)
.

The probability of false-negative error of the classification rule is

p(class(y) = 0 ∧ c(y) = 1) =

∑
g(y)∈Bnd(E)∧n+[g(y)]<n−[g(y)] n+[g(y)]

Card(D)
.

The error probability of the classification rule as a whole is

p(class(y) 6= c(y)) = p(class(y) = 1 ∧ c(y) = 0) + p(class(y) = 0 ∧ c(y) = 1).

We summarize the above discussion by the following Algorithm for the construction of a classifi-
cation rule.

Algorithm 4.1 (Construct)

Input: A set Z ⊂ D of distinct tuples, where D is the set of all examples.
Output: A classification rule in DNF.

BEGIN
Initialize List to empty list
FOR each t ∈ Z such that s[t] ⊂ Pos DO

Label t with p(c(y) 6= 1|g(y) = t) = 0
Add t with its label to List

END FOR
FOR each t ∈ Z such that s[t] ⊂ Bnd and n+[t] ≥ n−[t] DO

Label t with p(c(y) 6= 1|g(y) = t) = n−[t]/(n+[t] + n−[t])
Add t with its label to List

END FOR
Construct the classification rule

∀y ∈ Y ((class(y) = 1) ⇔ (t1 ∨ . . . ∨ tn)) where ti, . . . , tn are all the tuples in List
Label the rule with p(class(y) 6= c(y)) as determined by Proposition 4.3.

END

The error probability used to label the individual conjunct in a rule can be used for posterior
decision-making. For example, after a patient’s symptom matches a conjunct, the error probability
labelling the conjunct tells the doctor the chance of misdiagnosis.

The overall error probability labelling the entire rule can be used for prior decision-making. Sup-
pose two learning systems have learned the same concept from different sets of examples possibly
using different attribute descriptions. If we must commit to one of the systems for future classifi-
cations, the overall error probabilities of the two systems help us to make a choice. For example,
if we are to select one of two family doctors, we would prefer the one with lower overall rate of
misdiagnosis.

The overall error probability may also be used to limit the number of conjuncts contained in a
rule. We will discuss this issue in the next section.
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5 Restriction on the Number of Conjuncts

In order to increase the efficiency of a classification rule (less space to store and less time to apply),
the user may impose a restriction on the number of conjuncts, subject to the minimization of error
probability. To meet such a requirement, we can rank the conjuncts in a rule by their contribution
to the overall error probability.

The removal of a conjunct from a rule increases only the false-positive error but not the false-
negative error. In particular, the removal of a conjunct ti will add n+i to and subtract n−j from
the numerator of the error probability, where n+i and n−j are the number of positive examples and
negative examples in s[ti], respectively. That is, the net increase to the numerator is n+i − n−i.
Therefore, to find a conjunct whose removal causes minimal increase of error probability, we need
only to select the one with minimal n+i − n−i. These observations lead to the following Algorithm
and Proposition.

Algorithm 5.1 (SortConjuncts)

Input: A list I of conjuncts t1, . . . , tm, the number of positive examples in each elementary set
n+1, . . . , n+m, and the number of negative examples in each elementary set n−1, . . . , n−m.

Output: The list O of conjuncts such that the removal of a conjunct from the end of the list causes
minimal increase of error probability.

BEGIN
Initialize O to an empty list
WHILE I 6= φ DO

Find t in I with maximal n+ − n−
Remove t from I and place it at the end of O

END WHILE
END

Proposition 5.1 Given a list of n conjuncts in a classification rule, and m < n as an additional
restriction on the number of conjuncts, Algorithm 5.1 sorts n conjuncts such that retaining the first
m conjuncts in the list minimizes the increase of error probability.

6 Removal of Exceptions

In many applications, the general principle is associated with some exceptions. For example, a bird
is one that flies, but penguin is an exception to the flying principle. Each exception will necessarily
produce a conjunct in the classification rule. The above example would produce a rule with two
conjuncts: (x is a bird) ⇐⇒ (x flies or x is a penguin). Sometimes we would like to remove such
exceptions from the rule. This entails relaxing the error probability. The task presented to the
learning system is then the following: given a threshold for error probability, find the minimal subset
of conjuncts that satisfies the threshold.

The sorted list of conjuncts by Algorithm 5.1 can be used for this task. We may remove as many
conjuncts as necessary subject to the threshold. At each step we remove the conjunct whose removal
causes minimal increase of the overall error probability. The last conjunct in the sorted list is such
a conjunct.
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Algorithm 6.1 (RemoveExceptions)

Input: A list I of conjuncts t1, . . . , tm sorted by Algorithm 5.1, and an error probability threshold
P .

Output: The list O which contains the minimal set of conjuncts such that the error probability of
the rule constructed from O is less than P .

BEGIN
Initialize p to the error probability of the rule from I
If p ≤ P , print an error message and exit
Initialize Last to null
WHILE p ≥ P DO

Remove Last from I
Compute the error probability p of the rule from I − {Last}

END WHILE
END

7 Induction by Concept Hierarchy

One of the characteristics of knowledge discovery in databases is that the discovered knowledge is
represented in a high-level language [2]. This aspect of knowledge discovery is different from learning
in neural networks.

We consider here an externally provided generalization hierarchy [5] in which different levels of
generalization are organized into a tree called a concept tree [1].

Definition 7.1 Let Λ be an attribute with domain ∆. Let Γ be a rooted balanced 1 directed tree. Γ
is a concept tree for an attribute Λ if the following conditions hold:

1. The leaves of Γ are labelled by the elements in ∆.

2. The set of leaves are partitioned and leaves in each partition are connected to a common parent
node labelled by the partition.

3. The parent nodes of leaves are further partitioned and nodes in each partition is connected to a
common parent node labelled by the partition. This process continues until all nodes at a level
form a single partition. Their common parent, the root, is labelled by ‘any’.

In a concept tree, each node is identified with a unique label. Thus we will use terms node and
label interchangeably. Figure 1 gives an example of a concept tree for attribute Birth Place.

In induction by concept hierarchy, we consider the issue of substituting the attribute values of
some tuples by a more general concept: their ancestor label in the concept tree. This will extend the
domain of each attribute to include all concepts in the corresponding concept tree. Note that the
values in the extended domain will no longer be exclusive any more. We call a tuple resulting from
such a substitution a generalized tuple.

Definition 7.2 Let Λ be an attribute with its concept tree Γ. Let a and b be two labels in Γ. Labels a
and b are compatible if either (1) a = b, or (2) one of them is a descendent of the other. Otherwise,
a and b are said to be incompatible.

1We consider here balanced trees whose leaves have identical height.
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Figure 1: A concept tree for attribute BirthPlace

For example, in Figure 1, Vancouver and BC are compatible, but Vancouver and Victoria are
incompatible, so are Vancouver and Ontario.

Definition 7.3 Let r and t be two tuples. Let Λ be an attribute. Tuples r and t are compatible
if all the values of corresponding attributes of r and t are compatible; r and t are incompatible at
only Λ if all the values of corresponding attributes of r and t are compatible except the values for Λ.

For example, for a tuple schema (BirthPlace, Position), tuples (Vancouver, assit-prof) and (BC,
assit-prof) are compatible; (Vancouver, assit-prof) and (Victoria, assit-prof) are incompatible at
only BirthPlace.

Definition 7.4 A set L of tuples in a database is a full sibling with respect to an attribute Λ and
its corresponding concept tree Γ, if for every pair of tuples r, t ∈ L, (1) r and t are incompatible at
only Λ, (2) rΛ and tΛ have a common parent node w in Γ, and (3) the children of w are exhausted
in L. The node w is called the parent of the full sibling with respect to Λ.

For example, for the tuple schema (BirthPlace, Position), tuples (Vancouver, assit-prof) and
(Victoria, assit-prof) are siblings, but (Vancouver, assit-prof) and (Ontario, assit-prof) are not
siblings. Tuples (Vancouver, assit-prof),. . . , (Victoria, assit-prof) form a full sibling, but, if any
one tuple is missing, the rest are no longer a full sibling.

Definition 7.5 Let Λ be an attribute with its concept tree Γ. Let w be a label for a non-leaf node
in Γ. Let L be a set of tuples. The substitution of w for the values of Λ in each r ∈ L is a proper
induction if

1. L is a full sibling with respect to Λ,

2. w is the parent of the full sibling with respect to Λ,

3. L ⊆ Pos;

otherwise, the substitution is a strict overgeneralization.
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For example, if the positive examples for Professor include the following full sibling with respect to
BirthPlace, {(Vancouver, assit-prof),. . . , (Victoria, assit-prof)} , then the substitution of Vancouver,
. . . , Victoria by BC is a proper induction. As another example, suppose we have two tuples for
classifying a preferred electronic appliance: ‘Type=TV and Size=big’ and ‘Type=portable calculator
and Size=small’. The concept tree for Size has only three nodes: a root ‘any’ and two leaves
‘big’ and ‘small’. Substitution of ‘big’ and ‘small’ by ‘any’ for the attribute ‘Size’ causes a strict
overgeneralization. Now ‘Type=TV and Size=small’ is classified as a preferred appliance which is
not intended by the original example tuples.

Overgeneralization may or may not cause classification error. In the above example, if there is
a small TV in our object domain, in which case, L ∩ Neg 6= φ, the overgeneralization will cause
classification error. On the other hand, if there is no small TV in our object domain, in which case,
L ∩ Neg = φ, the overgeneralization does not cause any error. This shows that, if we restrict to the
object domain from which the samples are drawn, overgeneralization is not equivalent to the increase
of error probability. However, overgeneralization is equivalent to the increase of error probability
with an extended object domain, e.g., a domain including a small TV. A detailed discussion of this
issue is beyond the scope of this paper.

Proposition 7.1 A proper induction does not change the error probability of the resultant classifi-
cation rule.

Proof:
We refer the three conditions in Definition 7.5 as conditions 1, 2 and 3. Suppose the three

conditions hold. After substitution, a new tuple z will be generated to replace the corresponding
full sibling L in the classification rule. Because of conditions 1 and 2, every tuple t ∈ Pos ∩ L is
compatible with z and will fire the conjunct correctly. Because of conditions 1, 2, and 3, no tuple
t ∈ Neg ∪ Bnd is compatible with z, and t cannot incorrectly fire the conjunct. Since neither new
false-positive nor false-negative error are introduced by the proper induction, the error probability
remains the same. 2

Recall that Algorithm 4.1 labels each conjunct of the rule as well as the entire rule with error
probabilities. Proposition 7.1 shows that the error probability of the entire rule remains the same.
By Definition 7.5, the only conjuncts that are changed during a proper induction are from Pos, and
their error probabilities are zero. The conjuncts generalized from them have the identical zero error
probability. Each conjunct from Bnd should not be changed and their error probabilities also remain
the same.

8 Remarks

In this paper, we apply the rough set theory and probability concepts to inductive learning from
databases. Under the assumption of representative set of examples, we derive the error probabilities
for components of a classification rule as well as for the rule as a whole. We derive the result for
induction using attributes, and show the condition under which further induction can be performed
without increasing the error probabilities.

Our work are closely related to several other work in the area of knowledge discovery in databases:
Ziarko [11] discussed the application of reducts in inductive learning in databases. Cai, Cercone and
Han [1] and Han, Cai, and Cercone [4] developed an attribute-oriented approach for inductive learning
in databases using concept trees, and implemented in an experiment database learning system,
DBLEARN. Our work extends theirs and attempts to provide a theoretical basis for knowledge
discovery in databases. Pawlak, Wong and Ziarko [7] discussed similar decision rules in Section 4.
However, they did not provide the error probabilities explicitly.
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There are cases where the representative assumption on examples is not practical. In these cases,
our estimation provides a lower bound for the error probability. We plan to implement and test our
results in the next version of DBLEARN.
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